
YARN: Animating Software Evolution

Abram Hindle, Zhen Ming Jiang, Walid Koleilat, Michael W. Godfrey, Richard C. Holt
University of Waterloo and University of Victoria

ahindle@ cs.uwaterloo.ca, zmjiang@ ece.uvic.ca, {wkoleila,migod,holt} @ cs.uwaterloo.ca

Abstract

A problem that faces the study of software evolution is
how to explore the aggregated and cumulative effects of
changes that occur within a software system over time. In
this paper we describe an approach to modeling, extracting,
and animating the architectural evolution ofa software sys-
tem. We have built a prototype tool called YARN (Yet An-
other Reverse-engineering Narrative) that implements our
approach; YARN mines the source code changes ofthe tar-
get system, and generates YARN "balls" (animations) that
a viewer can unravel (watch). The animation is based on
a static layout of the modules connected by animated edges
that model the changing dependencies. The edges can be
weighted by the number ofdependencies or the importance
of the change. We demonstrate our approach by visualizing
the evolution of PostgreSQL DBMS.

1. Introduction

Successful software systems evolve in many ways and
for many reasons: bugs are found and fixed, new features
and deployment environments are requested by users, and
systems are refactored by developers to improve the inter-
nal design. Successful software systems that grow in size
and complexity over many years present a challenge to their
maintainers: how can these systems best be modelled, visu-
alized, and ultimately understood given the amount of detail
present and the volume of change.

For a given system, a developer may have access to static
"snapshots" of its software architecture and its internal de-
pendencies. These snapshots may be hand-drawn by an ex-
pert or automatically extracted from the source code. How-
ever, in practice these approaches are not well suited to the
task of understanding how the system has evolved. Hand
drawn snapshots are often not maintained as the system
ages, and automated architecture visualization tools tend to
emphasize a static view of the current version of the system.

Emphasizing the changes to a system's architecture re-
quires refocusing the supporting tools toward calculating
architectural deltas and then representing them effectively

to the user. Thus software architecture needs to be ex-
tracted incrementally to reflect the historical changes. In
our case, we establish a baseline architecture for the system,
and then examine the CVS commits that contain the code
for the changes. After analyzing the results and reconciling
the changes against the baseline, the resulting architectural
model of the system and its changes can be presented using
an animated visualization.

Animating the changes is an intuitive and natural way to
compare changes visually over time. We start by showing
the state of the architectural dependencies within the system
at a chosen baseline version, and then show the user the sub-
sequent changes progressively as animations of the chang-
ing architectural visual model. Change can be shown cumu-
latively. Cumulative views allow us to compare instances
sequentially, this helps us to compare the dependencies at
two different points in time, and animate the transition.

The set of data we analyze is often quite large and is
difficult to represent all at once in a way that is both mean-
ingful and useful. Animation enables us to traverse this rich
and large information space and interpret the data visually
rather than in a textual or statistical way.

Keeping the positions of the nodes fixed encourages the
user to create a stable mental model of the system's struc-
ture, allowing the user to concentrate on the interactions be-
tween changing dependencies over time and to observe the
interactions between the system's components. Animation
exploits the temporality of the data in the repository and
helps to illustrate the dynamic behavior of the evolving de-
pendencies between modules. We employ two approaches
to represent the dependencies: the cumulative addition of
dependencies and the difference of edge weights between
changes.

Our tool, YARN (Yet Another Reverse-engineering Nar-
rative), generates animations of the changing dependencies
(edges) between subsystems (vertices) of a project. These
changes are animated via varying edge width and edge
color, against statically placed vertices which represent sub-
systems of the project being studied. Figure 3 provides
an annotated look at a YARN ball produced based on Post-
greSQL.

129

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

Our primary motivation behind YARN was that we
wanted to visualize the changing architecture and share
these visualizations with others. We wanted to convey our
mental model of the software[13] via modular decomposi-
tion, yet we had to deal with a large amount of data which
was hard to interpret in text form. YARN balls help us vi-
sualize change and share these visualizations with others.
YARN balls could be useful for managers or newcomers just
to summarize the concrete architectural state of a project, or
show how the project has evolved.

In this paper, we describe our approach to extracting,
modeling, and animating architectural evolution, as imple-
mented in our tool YARN. We have included an example
use of YARN on PostgreSQL and its generated YARN Ball
animations in a flip-book-like form (figures 1, 2, 4, 5, 7, 8);
thus, the reader can manually animate the printed YARN
Ball like a flip-book.

2. Related Research

One of the earliest uses of program visualization and an-
imation is the well known film "Sorting Out Sorting" by
Baecker et al. [2], which animated how values can be sorted
by various algorithms. More recently, Gall et al. used 3D
graphics to compare releases of a project side by side [9].
Marcus et al. have also used 3D visualization of source code
[16]. Mesnage et al. [17] created web embeddable presen-
tations of software evolution matrices using VRML. Beyer
et al. [3] used animation and software evolution metrics to
storyboard changes to files. Evograph maps time to time-
lines rather than animations [8] yet uses architectural fact
extraction similar to C-REX and HistODiff.

Lungu et al. [14] produced film strips which were sim-
ilar to our flip book approach in this paper. D'Abrmos et
al. [4] produced a series of radar plots which used distance
from the center of a visualization, instead of edge width,
(like a radar display) as an indicator of coupling. Many of
these visualization tools [14, 4, 19, 20, 22], which display
graphs of modules and their coupling metrics as edges, im-
plement animation interactively rather than as a free playing
animation like YARN.

Our architectural views are similar to those of Rigi [18]
and Shrimp [21]. Shrimps uses animation to support iter-
ative navigation instead of representing change over time.
Finally, we note that our architectural model of PostgreSQL
was adapted from that of Dong et al. [5].

highlight architecturally important changes. YARN reads
these dependency graphs and then produces YARN Ball an-
imations that can be played back by the user.

3.1 C-Rex

We use C-REX [11] as our fact extractor, as it has been
designed specifically for conducting historical architectural
analysis. It has several advantages over most architectural
fact extractors. First, traditional snapshot fact extractors,
such as LDX [23], RIGI [18], and CPPX [15], are designed
to retrieve architectural information from only one version
of a system. C-REX is an evolutionary source code ex-
tractor; it extracts information from version control sys-
tems and recovers architectural information over a period
of time. Second, source code might not compile properly
due to the use of different programming language dialects,
syntax errors, etc. In this situation, many parser-based ex-
tractors will fail, but C-REX avoids fully parsing the source
code by making use of the ctags source code tokenizing
tool.This makes C-REX more robust than most extractors.
Finally, most extractors operate on the preprocessed code
or the object code. Because of compilation flags, a parser-
based extraction results may contain information specific to
only a particular configuration; C-REX operates on the orig-
inal source code, therefore it can extract more information
relevant to software evolution than parser-based extractors.

C-REX analyzes the main branch of a system's source
code repository. C-REX extracts all the changes from each
revision and groups revisions into transactions. It outputs
two types of information: a Global Symbol Table and a set
of Transaction Changes[24].

The Global Symbol Table maps all of the programming

Sun Dou 21 27 1997 -REWRInTER
1 480-n .-

-,
P!iR MRiJf

JSTOEMHOIRNGER

)X_SY |"CODROLH1RfGUI

.ME

TmFfIlcCO
OPTI,_ ffiZ(*W IMN_

Y'jIt
AM_

3. Tools

C-REX is used to extract the architectural information
from the CVS repository of PostgreSQL. Once extraction
is done, we run HistODiff (part of YARN), which makes
use of C-REX's output to compute the number of dependen-
cies between subsystems, output the dependency graph, and

BCER1MD
AneuiNi

-:Y-z

DEtIELOPERUTII
l,,i

Figure 1. PostgreSQL YARN Flip-book shot 1/6

130

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

language entities ever defined during the history of software
development to the file locations where these entities are
defined. An entity can be of any C language type, such as
a macro, variable, function, struct, enum, etc. C-REX uses
static analysis to keep track of entities.

Transaction Changes list the entity changes committed
by the same author, at approximately the same commit time,
with the same log message. It contains the author's name,
a unique hash value to identify this transaction, the commit
time, and the log message as well as detailed entity changes.
An entity change can be one of three types depending on
the scope of the entity: modified if the entity exists in both
the previous and current system revision, added if it exists
only in the current revision, or removed if it exists only in
the previous revision. HistODiff uses these transactions to
maintain its model of the system.

Within each changed entity, C-REX keeps tracks of
changes in entity types, dependencies, and comments. If the
entity is a function, C-REX also tracks changes in parame-
ters and return types. C-REX's output is then processed by
our tool, HistODiff.

3.2 HistODiff

HistODiff analyzes C-REX output, and creates graphs
for YARN to animate. HistODiff performs many tasks such
as symbol mapping, architectural mapping, lifting and fil-
tering.

Symbol Mapping: C-REX's output consists of many
identifiers and symbols per transaction, HistODiff resolves
these symbols and identifiers to functions and macros.

Architectural Mapping: C-REX produces a list of trans-
actions where entities such as functions, macros, and vari-
ables are added, removed, and modified. HistODiff maps
these transactions to architectural entities. These transac-
tions are used to update the architectural dependency graph
per each commit.

Lifting: The change information is "lifted" to the archi-
tectural level, where the top-level subsystems and their de-
pendencies are modeled. Two kinds of graphs can be pro-
duced: a dependency graph between subsystems over time,
and a difference graph that shows the dependency changes
between subsystems before and after a given transaction.
The graphs have directed weighted edges that indicate the
number of calls between modules. It makes the assumption
that each file is associated with a single module within the
module hierarchy for the entire animation.

Filtering: In large projects such as PostgreSQL there are
a very large number of changes to consider, but not all are
architecturally significant. Large change transactions are
noticeable because they affect many files or have a large line
count, but small changes of one or two lines can also drasti-
cally alter the architecture and change the dependencies be-
tween modules. These are important changes to make note

of, because they could indicate some kind of architectural
rule violation or an important feature addition.

Our filtering heuristics retain transactions that affect the
number of dependencies between the top level subsystems
that satisfy one or more of the following criteria:

* The transaction adds a dependency between two sub-
systems that were previously unconnected.

* The transaction removes a dependency between two
subsystems that causes them to be unconnected.

* The transaction doubles the number of dependencies
between two subsystems.

* The transaction reduces the number of dependencies
between two subsystems by half.

3.3 YARN

The goal of YARN (Yet Another Reverse-engineering
Narrative) is to provide a narrative animation; that is, the
story of the evolution of a software project over time. YARN
uses HistODiff output along with some animation parame-
ters to generate YARN Balls (animations), which can be un-
raveled (watched) by the user, in order to learn about the
history of the system's architecturally significant changes.

YARN uses HistODiff's graph output to create a graph-
ical animation of the architectural changes of a system. In
the animation, the thickness of the edges represents how
many dependencies exist between two modules. In figures
1 through 8, we can see the modules do not change position.
They are laid out in a radial pattern due to the high coupling
and ease of layout.

Wed Feb11 1 4t07591 998 REWRITER

1853 ~STOM6fEMHHRGER

) SYSI UCODROLH1RfGUI

P,M_5E

TmFfIlcco
OPTIHhIZ(flAM'ZE\1111

I'I
,BPV

BCER1MD
AneuiNi

X __ `DEXUELOPERUTIl

Figure 2. PostgreSQL YARN Flip-book shot 2/6

131

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

Revision Date
Revision
Number /
% Sun Rug 27 21:48:002000'% 451 5 ___

Subsystems

_000 |
..,I

ges _?WtO tlWL Pause & Play
Buttons

Progressbar Paws Play
-~

Figure 3. Screen-shot of YARN with PostgreSQL

Edges are directed; when displayed, the edge of lesser
weight is shown inside of the edge going in the reverse di-
rection. Edges are also rendered transparently, thus inter-
sections of edges are both visible and visually resolvable.

YARN animates edges in different ways:
Cumulative view: Edges are shown the entire time

when there is a dependency between two modules. This ap-
proach emphasizes the current state of the system and what
edges have been changed.

Delta view: Edges are shown only when they change.
This approach emphasizes what the actual changes are by
removing the extra information.

All of the the following algorithms assume that the edges
are growing and shrinking in width and that the nodes re-
main stationary while the edges are being animated.

YARN supports several coloring schemes. Each uses
color in a different way, in the animation, to emphasize cer-
tain aspect of the changes over time. Three of these schemes
are:

Color Changes on Modification: This algorithm
changes the color of the edges, each time the edge is modi-
fied. This serves to emphasize edges that change. Per each
revision a new color is assigned. This color changes grad-
ually over time. When dependencies between two modules
change, the edge is highlighted with the current color. This
means edges that change frequently will flash with color.

Frequent edges will be colored similarly while edges which
are infrequently changed will have out-dated colors. In fig-
ure 3 we can see this algorithm in use, the edges that have
a similar color were changed at the same time, where as
edges with distinct colors have not been changed recently.
This coloring scheme can be ambiguous; based on the col-
ors chosen, edges getting brighter or darker might suggest
decay rather than change to a user. The suggested use for
this algorithm is to emphasize the rate of change and show
all of the modifications that are occurring.

Highlight and Decay: Each edge that is modified is
highlighted when a change occurs. It is highlighted by
changing the color to a bright bold color; then over the pe-
riod of a few changes the color of that edge decays back
down to a neutral color. This color function emphasizes re-
cent changes. The flip book figures (1) uses this method.
Possible disadvantages are that the decaying colors could
look like new changes, also selecting an appropriate decay
time could be difficult depending on how busy the graph
is. Highlight and decay emphasize new changes, as old
changes disappear rapidly, it makes the current change more
obvious by making the past fade away.

Highlight the Important Changes: This coloring algo-
rithm is much like the highlight and decay algorithm ex-
cept only the important changes are highlighted instead of
just the new changes. Our algorithm has designated certain
changes as important based on our importance metric. The
flip book figures (1) are similar to this method. This algo-
rithm is useful for highlighting changes that are flagged as
important as it demonstrates how the frequency of "impor-
tant" changes.

Edge widths can be displayed in several different ways:

Sjit flug 221238331 998 REWRITER
2287 --

Q~-~UERVEUfLfTffEIH
8lfMGENNRHOGER

""SymIIICONTROUIIHNfiGR
P;lRE R7

TMEFIpOP
,_,,TmIZL_ .1 | _

'GILtIi ri

uB..

NInCMDE

E.EUTR.

Xs0.~ A~ BRCIIno

DEUELOPERUTIL

Figure 4. PostgreSQL YARN Flip-book shot 3/6

132

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

Cumulative Width: This edge width function is a scal-
ing function such as log(weight(t, u, v))2 (where u and v
are modules and weight(t, u, v) is the number of dependen-
cies from u to v at the current step t). Cumulative Width
shows how many dependencies currently exist between the
two different modules. This scheme is useful as it shows the
current state of the architecture. This algorithm shows the
accumulation of dependencies up to the current time.

Decaying Edge Width: The older an edge gets the thin-
ner it gets. Over time an edge shrinks (decays) until it
reaches a minimum width. When a change occurs, the
edge gets thicker again. This scheme emphasizes the cur-
rent change over the past changes, it doesn't allow for much
historical comparison and can unnecessarily indicate a de-
creasing relationship, but serves to highlight the content of
the revision.

Edge Width as Age: Instead of the number of depen-
dencies, edge width indicates when the last change hap-
pened to the dependencies between modules. This scheme
reflects the frequency of change in dependencies between
two modules by the edge width itself. This can be used to
emphasize the dependencies that are frequently added.

3.4 Implementation

The animated changes are transactions. One frame rep-
resents one transaction; PostgreSQL had over 10,800 frames
of animation. In the top corner, the current date of the trans-
action is shown; see figure 3. Underneath is the order of the
revision. At the bottom, a time-line shows relatively when
the transaction occurs. The time-line is interactive, it allows
jumping to any part of the evolution of the project.

The animations are created in SWF (Macromedia Flash)
format using vector graphics, and can be embedded into
web-pages and viewed by most modern browsers. This
could be used in hypermedia software evolution systems
such as the Software Bookshelf [7] or SoftChange [10].

Modules can be laid out manually or automatically. Au-
tomatic layout algorithms currently include radial or matrix
layouts. The radial layout is useful for systems like Post-
greSQL, where there are many dependencies.

Figures 1, 2, 4, 5, 7, and 8 depict 6 frames from a YARN
ball of PostgreSQL (cropped) using the Highlight and De-
cay color function and the Cumulative Width edge function.
Figure 3 depicts a screen-shot of YARN in action.

4. Exploratory Case Study of PostgreSQL

PostgreSQL is a well known open source DBMS that is
in wide use. PostgreSQL has a well defined layered archi-
tecture. The three layers are:

Client Interface Layer: This layer accepts input from
the users through a variety of user interfaces. It submits the
queries to the Backend layer below and returns the answers.

Backend: This layer parses the user's query, expands
it, and presents it to the optimizer which uses information
to produce the most efficient execution plan for the evalua-
tion. In order to execute the plan tree, this layer uses the I/O
functions in the Data Store Layer.

Data Store Layer: This layer deals with managing
space on disk, where the data is stored. Upper layers re-
quire this layer to write or read pages.

Using figure 5 going clockwise we'll describe the sub
modules of the layers:

Rewriter: is the primary module for the rewriting
queries which are recursive or can be optimized.

Storage Manager: is found inside of the data layer, it
manages files and pages of the database.

System Control Manager: handles authentication and
starts and stops po stgre s processes.

Traffic Cop: handles the flow control of queries.
Util: consists of utility procedures and routines that dif-

ferent modules use to do their jobs, especially Backend.
Backend: is a small module which stitches together the

various modules to create the PostgreSQL server.
Developer Util: consists of code which end-users will

probably not use, like the test suite.
Executor: executes the query plan (execution tree).
Include: consists of common include files shared

amongst many modules, particularly those which use Util.
LibPQ: enables the client or user to query the RDBMS.
Optimizer: attempts to choose an optimal query plan

structure for a given query.
Parser: tokenizes and parses SQL queries.
Query Evaluation Engine: consists of submodules

(Catalog, Command and Nodes) used to represent queries
and meta-data about the databases.

Figure 5. PostgreSQL YARN Flip-book shot 4/6

133

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

4.1 Timeline of PostgreSQL

We examined the history of architectural changes of
PostgreSQL by manually inspecting a few architecturally
significant transactions. HistODiff flagged about 100 trans-
actions that it considered to be architecturally significant;
that is, they have either added or removed dependencies
which have significantly increased or decreased the degree
of coupling between subsystems.
We divided the history, consisting of a sequence of trans-

actions, into three periods with an equal number of flagged
changes. The time intervals of these periods varied consid-
erably because the rate of occurrence of changes varied.

1996 to 1998: PostgreSQL was released as Open Source
Software. Portability and reimplementation of features such
as ODBC were included (see figures 1 and 2).

1998 to 2000: PostgreSQL was still in flux, ODBC
updates occurred and PostgreSQL was extended by the
PL/pgSQL language (see figures 4 and 5).

2000 to 2005: PostgreSQL was maintained, as a reason-
ably mature system. Fewer features were added, more au-
diting and bug fixing occurred (see figures 7 and 8).

Figure 6 depicts the changes made to the system start-
ing from 2001 to 2005; larger changes are highlighted.
This was a notable period for PostgreSQL where large
changes to the source code included new implementations
of SQL statements, improving triggers, JOINS and dropped
columns. Most of the changes were maintenance and im-
provement of properties such as robustness, security and
performance. Security improvements included fixing flaws
related to interrupt handling and critical sections.

5. Visual Story of PostgreSQL

not tell the full story, the revisions around this time revealed
that the embedded language PL/TCL was added. PL/TCL
is an extension to PostgreSQL which allows the TCL pro-
gramming language to be used in stored procedures.

The added dependencies between Util and System Con-
trol Manager, Parser, and Executor were the most notable
in figure 4 (color-enhanced). By investigating the revisions,
we found this was the addition of the PL/PgSQL embedded
language: a language for stored procedures in PostgreSQL
which wasn't TCL. It is important and noteworthy because
the inclusion of the language crosscut multiple modules and
introduced more coupling.

The fourth change (figure 5) we show is actually both
an increase and a reduction of coupling. This change was
highlighted by our importance metric due to a reduction of
dependencies. It is hard to see since we haven't shown the
immediate preceding changes, but the coupling of LibPQ
to the System Control Manager has been reduced. Most
of the other changes seem to show an increase in coupling.
Investigation of the related revisions revealed that a memory
management submodule was rewritten, there were several
bug fixes and some dead code was removed.

From the fifth change (figure 7), we see new coupling
from Include to Traffic-Cop, Include to LibPQ and LibPQ to
Executor. These changes were made to PostgreSQL due to
the advice given by "white hat hackers" regarding security
holes in the interrupt and issues with some of the critical
sections.

The sixth change (figure 8) was important due to the
changes in dependencies that occurred between various
modules and LibPQ and Util. The related revisions revealed
that there was a change to the Win32 signal-handling code.

There were many significant changes from 1996 to 2005;
we have shown a few and have provided screen-shots (from
our YARN ball [12]) of the revisions. These screen-shots
help highlight the progression of architectural dependencies
over time in PostgreSQL. As well, they highlight the archi-
tecturally significant changes that occurred over time. We
will now show screenshots at times when important changes
were flagged; when we investigated we looked at a few re-
visions within a small time window around that change.

The first notable change (figure 1), shows that depen-
dencies changed between Parser, Query Evaluation Engine,
Storage Manager, Traffic Cop and Utils. Investigation into
the revisions revealed that this change was the reimplemen-
tation of the ODBC driver by Insight, and it was highlighted
because of the doubling of dependencies between Parser
and Utils.

The second notable change is from figure 2. We can
see that the two corresponding dependencies that changed
during this time are highlighted, namely those between the
System Control Manager and Util. Although YARN does

Sun Jan 14 05:08:16 2001
5030

-QUJERVEIfUJflIOHEfGIIEll_|l_s

~~SYSTMCOIDTROLUAIUIGERSwA il _ a i ;ti iiiniir

fIMR_ _'_.1

IP_T_IIrn

I fIL
-._

E1EUQ DtU(LO"EP(RUTII

Figure 7. PostgreSQL YARN Flip-book shot 5/6

134

IRPEWRITER
IO-RnENIOUIGER

,.A
3 t EIrII3itlI1 11IiX

Ti -inir-uin;.w> n r

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

Thu ulg 4 11:0929 2005 R-- WRITER
1 0830

1--QUfRERYAfLuOTJflEGfmlE
... -- -7 ~ 77 - s --

jpflRSf,

SIJfHOUflOHhlflGII

I ,-SYSTrIICODTROUf*GfR

Ti...-oi
XOwIZ__

lUllL
_-F

ITCliJD(h
OfiCKENDOI

DEUftOPERUTIL Uv(C AJ DE-fOPERUTIL

Figure 6. Important architectural changes done during the last 5 years

This change made signal handling more portable via ab-
stractions of the kill and sigsetmask syscalls.

6. Survey

In order to evaluate YARN, we created an informal user
survey to see how intuitive the visualization was for users
and if they were interested in using YARN . The survey
could be answered over email or live over chat. Ten peo-
ple took the survey, their backgrounds ranged from high
school Source Forge contributors, CS undergraduate stu-
dents, PhD students to full time developers. Most respon-
dents answered all the questions.

All users could use the functionality of a YARN Ball
without much difficulty. The navigation controls and the
play and pause buttons worked intuitively. Most users ex-
pected the pause animation on jump feature.

Users did not know initially what the animation was
about. They had to be told it was about revisions to the
source code and coupling. Some users assumed this was
the run time coupling until they were informed otherwise.

Color-wise, most users like the highlight and decay
based color schemes where changes are highlighted in red
and then slowly decay back to a neutral color.

Users could infer coupling from the animation for
changes with large and small coupling. Generally users
understood what the edge weights meant. Users did not
seem to gain a better understanding of software architec-
ture. Due to a general lack of experience with PostgreSQL
many didn't have any expectations of the PostgreSQL archi-
tecture; one respondent said they were not surprised since
they had experience with the architecture of the Linux ker-
nel .

Some users said they would use the YARN Balls if they
were available but were not actively going to create YARN

Balls. Survey respondents suggested improvements such as
making the visualization 3D or projected onto a sphere, or
the use of other metrics. Some said more data should be dis-
played like the change log and a legend was needed. Some
suggested tweaking parameters like color decay speed etc.
One suggested coloring the edges to indicate which module
was being depended on.

7. Future Work

One extension to YARN will be to its YARN Ball user in-
terface. More layout algorithms will be added to YARN. We
plan to add more interactivity to the animation. This would
include dragging and dropping modules as well as expand-

Figure 8. PostgreSQL YARN Flip-book shot 6/6

135

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

ing sub modules. This would allow hierarchical naviga-
tion of sub modules. Different views of the architecture are
planned, such as a source control view which shows which
modules are coupled together per commit. Other work in-
cludes formally evaluating the use of animation for mainte-
nance work and how to improve scalability via lifting and
new layouts.

8. Conclusions

In this paper, we have described an approach to ex-
tracting, modeling, and animating architectural evolution
of software systems, as implemented in our prototype tool
YARN. The YARN tool aggregates this data into anima-
tions, or YARN Balls, which can be explored by the user
to better understand the architectural evolution of the sys-
tem under study. These YARN Balls can be embedded into
web pages or shared in order to communicate change based
dependency information about software projects. Many dif-
ferent kinds of animations can be produced.

The main contributions of this work include: an ap-
proach for animating the evolution of a project's dependen-
cies in a coherent static manner; a system to view changes
and the cumulative effects of the changes; animations which
provide a commit-level view of the evolution of the project;
and an informal user survey evaluating the perception and
usefulness of the visualization.

Acknowledgments
Part of this research was funded by an NSERC scholarship.

References

[1] 13th Working Conference on Reverse Engineering (WCRE
2006), 23-27 October 2006, Benevento, Italy. IEEE Com-
puter Society, 2006.

[2] R. Baecker and D. Sherman. Sorting Out Sorting. 30 minute
colour sound film, 1981.

[3] D. Beyer and A. E. Hassan. Animated Visualization of Soft-
ware History using Evolution Storyboards. In WCRE [1],
pages 199-210.

[4] M. D'Ambros and M. Lanza. Reverse Engineering with
Logical Coupling. In WCRE [1], pages 189-198.

[5] X. Dong, L. Zou, and Y. Lin. Conceptual/Concerte Archi-
tecture of PostgreSQL. Technical report, University of Wa-
terloo, 2004.

[6] S. Ducasse, M. Lanza, A. Marcus, J. I. Maletic, and M.-
A. D. Storey, editors. Proceedings of the 3rd International
Workshop on Visualizing Software for Understanding and
Analysis, VISSOFT 2005, September 25, 2005, Budapest,
Hungary. IEEE Computer Society, 2005.

[7] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Muller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The Software Bookshelf. pages 564-593, Novem-
ber 1997.

[8] M. Fischer and H. Gall. EvoGraph: A Lightweight Ap-
proach to Evolutionary and Structural Analysis of Large
Software Systems. In WCRE [1], pages 179-188.

[9] H. Gall, M. Jazayeri, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In
ICSM '99: Proceedings of the IEEE International Confer-
ence on Software Maintenance, page 99, Washington, DC,
USA, 1999. IEEE Computer Society.

[10] D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using softChange. In SEKE 2004
Proceedings, pages 336-341. Knowledge Systems Institute,
June 2004.

[11] A. E. Hassan and R. C. Holt. C-REX: An Evo-
lutionary Code Extractor for C - (PDF). Tech-
nical report, University of Waterloo, 2004.
http://plg.uwaterloo.caraeehassa/home/pubs/crex.pdf.

[12] A. Hindle, Z. Jiang, W. Koleilat, M. W. God-
frey, and R. C. Holt. Yarn ball example, 2007.
http:llswag.uwaterloo.carahindle/yarn/postgres.html.

[13] R. Holt. Software Architecture as a Shared Mental Model.
In Proceedings of the ASERC Workhop on Software Archi-
tecture, University of Alberta, Aug. 2002.

[14] M. Lungu and M. Lanza. Exploring Inter-Module Relation-
ships in Evolving Software Systems. CSMR 2007,0:91-102,
2007.

[15] A. J. Malton. CPPX: Open Source C++ Fact Extrac-
tor. Technical report, University of Waterloo, 2001.
http:llswag.uwaterloo.ca/cppx.

[16] A. Marcus, L. Feng, and J. I. Maletic. 3D Representations
for Software Visualization. In SoftVis '03: Proceedings of
the 2003 ACM symposium on Software visualization, pages
27-ff, New York, NY, USA, 2003. ACM Press.

[17] C. Mesnage and M. Lanza. White Coats: Web-Visualization
of Evolving Software in 3D. In Ducasse et al. [6], pages
40-45.

[18] H. A. Muller and K. Klashinsky. Rigi - A System for
Programming-in-the-large. April 1998.

[19] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visual-
izing Multiple Evolution Metrics. In Proceedings of the
ACM Symposium on Software Visualization, pages 67-75,
St. Louis, Missouri, 2005. ACM Press.

[20] J. Ratzinger, M. Fischer, and H. Gall. EvoLens: Lens-View
Visualizations of Evolution Data. In Proceedings of the In-
ternational Workshop on Principles of Software Evolution,
pages 103-112, Lisbon, Portugal, September 2005. IEEE
Computer Society Press.

[21] M.-A. D. Storey, C. Best, and J. Michaud. SHriMP Views:
An Interactive Environment for Exploring Java Programs.
In 9th International Workshop on Program Comprehension
(IWPC 2001), 12-13 May 2001, Toronto, Canada, pages
111-112. IEEE Computer Society, 2001.

[22] A. Telea and L. Voinea. Interactive Visual Mechanisms for
Exploring Source Code Evolution. In Ducasse et al. [6],
pages 52-57.

[23] J. Wu and R. C. Holt. Linker-Based Program Extraction and
Its Uses in Studying Software Evolution. Technical report,
In Proceedings of the International Workshop on Unantici-
pated Software Evolution (FUSE 2004), March 2004.

[24] T. Zimmermann and P. Weibgerber. Preprocessing CVS
Data for Fine-grained Analysis. In Proceedings of the 1st
International Workshop on Mining Software Repositories,
pages 2-6, May 2004.

136

Authorized licensed use limited to: Queens University. Downloaded on July 8, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

