
An Experience Report on Producing Verifiable
Builds for Large-Scale Commercial Systems

Yong Shi, Mingzhi Wen, Filipe R. Cogo , Boyuan Chen , and Zhen Ming Jiang

Abstract—Build verifiability is a safety property for a software system which can be used to check against various security-related

issues during the build process. In summary, a verifiable build generates equivalent build artifacts for every build instance, allowing

independent auditors to verify that the generated artifacts correspond to their source code. Producing a verifiable build is a very

challenging problem, as non-equivalences in the build artifacts can be caused by non-determinsm from the build environment, the build

toolchain, or the system implementation. Existing research and practices on build verifiability mainly focus on remediating sources of

non-determinism. However, such a process does not work well with large-scale commercial systems (LSCSs) due to their stringent

security requirements, complex third party dependencies, and large volumes of code changes. In this paper, we present an experience

report on using a unified process and a toolkit to produce verifiable builds for LSCSs. A unified process contrasts with the existing

practices in which recommendations to mitigate sources of non-determinism are proposed on a case-by-case basis and are not

codified in a comprehensive tool. Our approach supports the following three strategies to systematically mitigate non-equivalences in

the build artifacts: remediation, controlling, and interpretation. Case study on three LSCSs within Huawei shows that our approach is

able to increase the proportion of verified build artifacts from less than 50 to 100 percent. To cross-validate our approach, we

successfully applied our approach to build 2,218 open source packages distributed under CentOS 7.8, increasing the proportion of

verified build artifacts from 85 to 99 percent with minimal human intervention. We also provide an overview of our mitigation guideline,

which describes the recommended strategies to mitigate various non-equivalences. Finally, we present some discussions and open

research problems in this area based on our experience and lessons learned in the past few years of applying our approach within the

company. This paper will be useful for practitioners and software engineering researchers who are interested in build verifiability.

Index Terms—Verifiable build, large scale commercial system, build system, security, trustworthiness, software engineering

Ç

1 INTRODUCTION

BUILD verifiability is an important safety property for soft-
ware releases, as independent outsiders can verify if a

software release suffers from various security problems intro-
duced during the build process (e.g., surveillancemalware [1],
compromised cryptographic signatures [2], supply chain
attacks [3], and untrusty dependencies [4]). Independent out-
siders generally refer to third party auditing agencies or
government organizations. If they themselves alone can suc-
cessfully validate the correspondence between source code
and the generated build artifacts, the provided software
release is considered as a verified build [5].Many open source
software (OSS) (e.g., BitCoin [6], Chromium [7], and Debian [8]),
commercial (e.g., Facebook [9], Google [10], Huawei [5],
Pinterest [11] and Telegram [12]), and governmental organiza-
tions [13], [14] are actively investigating or have already sup-
ported build verifiability, as these organizations need to

demonstrate that the build artifacts they have sold to the cus-
tomers or distributed openly in the wild correspond to the
exact source code that they have developed. Although there
are various available tools to ensure the consistency of the
build environment [15], [16] and the build toolchain [9], [17],
extra efforts are still required to produce verifiable builds. For
example, even using a virtualized environment, there are still
various non-equivalent build artifacts generated during the
build processes for software systems (e.g., Debian [8] and
Tor [18]).

There are two general processes proposed in the existing
literature to produce verifiable builds. The first process,
named deterministic build process [16], [19], [20], mainly
focuses on the elimination of any non-deterministic build
instruction. The second process, named explainable build pro-
cess [21], mainly focuses on interpreting the non-equivalen-
ces in the build artifacts that cannot or should not be
mitigated. Given the same set of source code files, the same
build scripts, and the same build environment, the deter-
ministic build process can repeatedly generate equivalent
artifacts (i.e., artifacts with the exact same contents) [22].
Source code files or the build scripts are modified in order
to remediate sources of non-determinism (e.g., time-
stamps [23], build path [24], and file ordering [25]) that
cause non-equivalences in the generated build artifacts
across different build processes. In turn, the explainable
build process aims at providing a technical interpretation
for the non-equivalences in the build artifacts. Due to secu-
rity requirements or system design, certain non-equivalen-
ces in the build artifacts cannot or should not be eliminated.

� Yong Shi and Mingzhi Wen are with the Huawei Technologies, Shenzhen
518129, China. E-mail: {young.shi, wenmingzhi}@huawei.com.

� Filipe R. Cogo and Boyuan Chen are with the Centre for Software Excel-
lence, Huawei Technologies, Kingston, ON K7K 3T1, Canada. E-mail: filipe.
cogo@gmail.com, boyuan.chen1@huawei.com.

� Zhen Ming Jiang is with the Department of Electrical Engineering &
Computer Science, York University, Toronto, ON M3J 1P3, Canada.
E-mail: zmjiang@cse.yorku.ca.

Manuscript received 19 Jan. 2021; revised 13 June 2021; accepted 14 June 2021.
Date of publication 25 June 2021; date of current version 19 Sept. 2022.
(Corresponding author: Filipe R. Cogo.)
Recommended for acceptance by S. Apel.
Digital Object Identifier no. 10.1109/TSE.2021.3092692

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022 3361

0098-5589 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5494-685X
https://orcid.org/0000-0002-5494-685X
https://orcid.org/0000-0002-5494-685X
https://orcid.org/0000-0002-5494-685X
https://orcid.org/0000-0002-5494-685X
https://orcid.org/0000-0001-9103-5820
https://orcid.org/0000-0001-9103-5820
https://orcid.org/0000-0001-9103-5820
https://orcid.org/0000-0001-9103-5820
https://orcid.org/0000-0001-9103-5820
https://orcid.org/0000-0002-3063-3197
https://orcid.org/0000-0002-3063-3197
https://orcid.org/0000-0002-3063-3197
https://orcid.org/0000-0002-3063-3197
https://orcid.org/0000-0002-3063-3197
mailto:young.shi@huawei.com
mailto:wenmingzhi@huawei.com
mailto:filipe.cogo@gmail.com
mailto:filipe.cogo@gmail.com
mailto:boyuan.chen1@huawei.com
mailto:zmjiang@cse.yorku.ca

The explainable build process needs to document the root
cause of the non-equivalences as well as the rationale for
not eliminating them. We also highlight that, although build
verifiability relates to build reproducibility [22], these are two
different concepts. Build reproducibility focuses on making
the generated build artifacts by two different build instan-
ces equivalent (i.e., with the exact same contents), whereas
build verifiability focuses on the best effort to maximize the
equivalences between the build artifacts and to interpret all
non-equivalences. While build reproducibility implies build
verifiability, the inverse is not necessarily true, as a verifi-
able build can generate an artifact containing an interpreted
non-equivalence.

Build verifiability is an important property of large-scale
commercial systems (LSCSs) that are deployed in critical
infrastructures such as regulated communication networks.
Furthermore, to instill customer confidence in the product
security, it is required that these LSCSs can produce verifi-
able builds in a consistent and systematic manner [5].
Hence, it is vital for the companies to have appropriated
processes and automated tools to detect, mitigate, and ver-
ify the non-equivalences in LSCCs builds. However, exist-
ing processes to produce deterministic builds cannot match
the needs for LSCSs due to the following three challenges:

1) Security: Some build artifacts will not be equivalent
due to the additional security mechanisms (e.g., digi-
tal signatures [26]) required for LSCSs.

2) Third party dependencies: LSCSs adopt a set of external
commercial or open source third party packages.
Ensuring equivalences in the build artifacts for LSCSs
requires addressing the sources of non-determinism
for LSCSs aswell as their dependency packages.

3) Scalability: Localizing sources of non-determinism
and non-deterministic build instructions is a chal-
lenging and time consuming task [19], [20], [21].
Effective techniques to address recurrent sources of
non-determinism are crucial for LSCSs, which are
constantly changed every day.

In this paper, we propose an approach to produce verifi-
able builds for LSCSs. Despite our experience report draw-
ing on existing research results, our approach to produce
verifiable builds was designed over the years of practical
Research & Development and is of great value to practi-
tioners. Our approach consists of two parts: a unified pro-
cess, called VBP (Verified Build Process), and a toolset,
called ToolKitA.1 The VBP leverages prior knowledge to
detect, diagnose and mitigate the non-equivalences in the
build artifacts. Our VBP unifies different practices for build
verifiability that are typically presented on a case-by-case
basis. For example, Reproducible Builds [27] proposes an
extensive set of practices for verifiable build, however these
practices are not attached to a coherent and repeatable SE
process. In addition to the two aforementioned strategies
(the remediation strategy in the deterministic build process
and the interpretation strategy in the explainable build pro-
cess), our VBP also supports the controlling strategy, in
which we dynamically intercept calls to non-deterministic
build instructions and return a deterministic value. Regular

software engineers (RSEs) and build specialists (BSPs) carry
out the VBP by leveraging the ToolKitA toolset, which con-
tains a set of tools for build profiling, extraction of build
dependencies, and analysis and mitigation of non-equiva-
lences in the build artifacts.

The VBP and ToolKitA have been applied to three mission
critical LSCSs from Huawei, which are used by tens of millions
of people every day. Case study results show that by leverag-
ing our process and toolset, all of the build artifacts can be
independently verified. This result represents a significant
improvement compared to more than 50 percent of the
unverified build artifacts previously. To further evaluate the
generalizability of the VBP and ToolKitA, we have also applied
our approach to verify the build process of 2,218 open source
packages distributed with CentOS on version 7.8. We demon-
strate the satisfatory performance of our approach bymitigat-
ing 100 percent of the non-equivalences in our LSCSs and
99.94 percent of the non-equivalences in CentOS 7.8. In sum-
mary, our papermakes the following contributions:

� We are the first to discuss the challenges and solu-
tions to produce verifiable build for LSCSs, which
have stringent security requirements, complex third
party dependency relations, and many code changes.
Case study results also show that our approach can
work with non-Huawei systems (e.g., CentOS) with
very little human intervention. We are also the first
to report results on verifiably building a complete
CentOS release.

� We provide a general guideline on the application of
the three mitigation strategies (remediation, control-
ling, and interpretation) to both recurrent and new
non-equivalences caused by different sources of
non-determinism.

� We describe the lessons learned during several years
of developing and deploying our approach within
Huawei. We also present future research opportuni-
ties and open problems in this research area, which
can be of interest to practitioners and software engi-
neering researchers.

Paper Organization. The reminder of this paper is orga-
nized as follows: Section 2 presents some background infor-
mation on the problem context. Section 3 describes our
approach to producing a verifiable build for LSCSs using a
running example. Section 4 presents an empirical assess-
ment on applying our approach on three LSCSs from Huawei

and one open source system. Section 5 discusses the lessons
learned and describes some future research topics. Section 6
describes related works and Section 7 presents the threats to
validity. Section 8 concludes our paper.

2 BACKGROUND AND OVERVIEW

In this section, we describe the problem of producing a veri-
fiable build for LSCSs in Huawei. These LSCSs are mission
critical systems used by tens of millions of people every
day. Such systems have to go through rigorous auditing
process by independent organizations to ensure they meet
various requirements. One of the important aspect to check
during the auditing process is build verifiability. First,
Huawei provides auditing agencies with a system image1. ToolKitA is anonymized due to confidentiality reasons.

3362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

(e.g., a virtual machine) with the complete set of source code
(both the system implementation and the open source third
party dependencies), the build toolchain (e.g., linkers and
compilers), and a detailed documentation describing the
configuration of the build as well as how the non-equivalen-
ces were mitigated from the build artifacts. Then these
organizations perform the build process and compare the
resulting build artifacts against the release-ready artifacts.
This auditing aspect passes if all the build artifacts are
equivalent or the non-equivalences are clearly explained
and checked. It is challenging to ensure a verifiable build
for the LSCSs within Huawei:

Challenge 1: Security. Existing research (e.g., [16], [19], [20],
[21]) and practices (e.g., [6], [7], [27]) mainly focus on the
deterministic build process, which remediates all the sources
of non-determinism during the build process. However, in
addition to build verifiability, there are many other security
measures implemented within LSCSs to protect them against
a range of different vulnerabilities. For example, the following
two mechanisms are considered as common security protec-
tion mechanisms, both of which introduce non-determinism
during the build process: (1) digital signatures [26], which
provide a secure approach to verifying the authenticity of the
LSCSs; and (2) ASLR (Address Space Layout Randomiza-
tion) [28], [29], [30], [31], which is a security technique to ran-
domize memory addresses to fend off memory safety-related
vulnerabilities. This technique can become a source of non-
determinism if the contents that are written into the binary
artifacts are impacted bymemory addresses. For example, we
once found that in Berkeley DB [32], the value of a particular
variable [33] is dependent on the memory address that stores
the process ID of the current running process and causes non-
equivalences when ASLR is enabled. Such non-equivalences
should not be remediated, but explained and verified during
the auditing process.

Challenge 2: Third Party Packages. LSCSs usually have
complex third party dependencies, which can be from open
source communities or other companies. Such complex
dependency relations introduce the following two sub-
challenges:

� Addressing non-determinism in third party packages: To
ensure build verifiability, the whole system needs to
be built from scratch. This means the complete set of
source code, which includes the code of the LSCSs
and the code of the third party dependencies. The
third party dependencies include the third party
packages that LSCSs directly depend on as well as
all the additional packages that these third party
packages depend on. Ensuring build verifiability
requires addressing the source of non-determinism
in LSCSs as well as the non-determinsm introduced
in the third party dependencies.

� Change management: The communities or organiza-
tions behind these third party dependencies may not
accept changes related to verifiable builds. For exam-
ple, the GhostScript community decides not to support
a deterministic build [34]. Other organizations like
Apple suggest users to download from their official
channels [35] and provide security checking mecha-
nisms to ensure the downloaded artifacts match the

officially released versions [36]. Therefore, local repos-
itory forks need to be introduced to track the code
changes to produce a verifiable build for these third
party dependencies. Such code changes need to be
documented for maintenance and auditing purposes.
In addition, extra effort is also needed to ensure that
the local forks are constantly synchronized with the
changes from the upstream repositories of these
dependencies [37].

Challenge 3: Scalability. Typically, non-equivalences are
mitigated in a case-by-case fashion, as they can be caused by
many different sources of non-determinism (e.g., the system
implementation, the build toolchain, or the build environ-
ment) [19], [20], [21]. LSCSs are maintained by thousands of
developers and with hundreds of code changes every day.
Due to different deployment environment and customization
requirements, multiple builds can be produced for the same
set of code changes. Manual analysis is extremely time con-
suming due to the problem complexity and the scale of the
non-equivalences that need to be analyzed. Automated
approaches are required to integrate the prior knowledge on
diagnosing the non-equivalences and to mitigate them in
large scale.

To address the above challenges, during the past few
years we have developed a novel approach to produce veri-
fiable builds for LSCSs. Our approach consists of two parts:
(1) the VBP, which leverages prior knowledge on diagnos-
ing non-equivalences in the build artifacts, addresses sour-
ces of non-determinism through the follow three strategies:
remediation, controlling, and interpretation; and (2) the
ToolKitA toolkit, which provides the automation tool sup-
port. Before our approach was proposed and deployed, the
approach to verify build artifacts in the product team was
completely manual. RSEs and BSPs manually diagnosed the
non-deterministic behavior of the build and directly modi-
fied the source code files or the build files to remediate the
non-equivalences. They could only address the non-equia-
lences introduced by timestamps by using this approach.
Other types of non-equivalences cannot be solved by using
remediation only, e.g., the non-equivalences introduced by
archiving and packaging cannot be mitigated by modifying
source code files. In the next section, we will describe our
approach in details.

3 OUR APPROACH

Prior works on build verifiability are done on open-source
projects and address each non-equivalence one-by-one. As
explained in Section 2, LSCSs from Huawei are more complex
due to security requirements, code complexity, and scale.
Hence, a new approach, which is of minimal impact on reg-
ular software development activities, is needed. Our
approach to achieve a verifiable build combines characteris-
tics of the deterministic and explainable build processes.
Still, our approach presents significant differences from the
existing practices. First, our approach describes and evalu-
ates the usage of a controlling technique (namely intercept
& ignore lists) to effectively mitigate a variety of sources of
non-determinism and support build verifiability. We show
that the majority of the common sources of non-determin-
ism can be mitigated with the usage of intercept & ignore

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3363

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

lists. Second, our approach integrates both process and tool-
ing to achieve verifiable builds in LSCSs. This characteristic
constrasts with existing practices, which are recommended in
isolation (i.e., on a case-by-case basis) without attention to the
undelying SE process that integrates these practices. Lastly,
our approach conveys important recommendations for docu-
menting and explaining sources of non-determinism that are
not remediated nor eliminated from the build process. Practi-
tioners can produce verifiable builds by applying the lessons
learned from our experience report in their own context.
Based on our investigation of non-verifiable builds in the past
few years, we observed that many non-equivalences can be
automatically mitigated by controlling the sources of non-
determinism (e.g., setting initial seed values for random num-
ber generations) during the build process. Such observation is
the basis for developing our approach to produce verifiable
builds for LSCSs.

Fig. 1 illustrates the flow of our VBP, which consists of
two phases: (1) the mitigation phase, which is carried out dur-
ing the product development and testing stages (Section 3.1),
and (2) the verification phase, which is carried out during the
auditing stage (Section 3.2). The mitigation phase is handled
by RSEs and BSPs. RSEs iteratively invoke the build process
using the ToolKitA until all non-equivalences are verified.
During each iteration, non-equivalences are reported to
BSPs who investigate them carefully. The resulting root
causes are documented in the mitigation guidelines. If there
are new controllable sources of non-determinism, BSPs will
also modify the configurations of ToolKitA accordingly to
accommodate the new additional changes. The learning-
curve for RSE is small, as they just need to learn the docu-
mentation to run ToolKitA. The effort for BSP is also small
and decreases over time, as most of the non-equivalences
are already diagnosed, mitigated, and documented, and

very few new ones are generated. Finally, the verification
phase is performed by a collaboration between the software
vendor and the auditing agency.

Running Example. The build for this running example
consists of three steps as shown in the build script of Fig. 2a:
(1) Recording the current date and time in a text file (time.
now); (2) Compiling time.c into an executable file (time.
bin) that outputs the compiling time by invoking the
__TIME__ macro,2 and (3) Packaging both files (time.now
and time.bin) into an archive file (time.tgz) and writ-
ing a timestamp in the header of this file (this latter step
being implicitly performed by the tar tool). The source code
contents written in C for time.c are shown in Fig. 2b. In
the following, we will explain how to use our VBP and
leverage our toolset ToolKitA to produce a verifiable build for
this running example.

3.1 The Mitigation Phase

The mitigation phase is broken down into six steps (see
Fig. 3), which iterates until the build is deemed as verifiable.
Steps 1, 2, and 6 of the mitigation phase are executed by
RSEs with fully automation support from ToolKitA. Steps 3,
4, and 5 of the mitigation phase are executed by BSPs, which
require manual efforts. The first step checks whether the
build is verifiable. The second step employs the build profiler
to trace the entire build process. The third step leverages
the build profile, as well as the previous knowledge that is
documented in the mitigation guideline, to diagnose the non-
equivalence (i.e., to identify an isolated source of non-deter-
minism that is accountable for the non-equivalence). The

Fig. 1. The flow of our VBP for LSCSs. Boxes represent input and output information, whereas arrows represent information flow.

2. https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-
Macros.html

3364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html

fourth step updates the mitigation guideline such that the
knowledge generated during the mitigation of a non-equiv-
alence can be reused in later iterations. The documentation
of the mitigation also serves the purpose of explaining how
the non-equivalences were mitigated in the verification
phase. The fifth step adds specific build instructions to the
intercept & ignore lists so that an isolated non-equivalence
can be mitigated. The mitigation guideline is updated
whenever any new knowledge regarding the mitigation of a
non-equivalence is generated in the fifth step. The sixth step
executes the build process again to validate if the non-
equivalence was mitigated. At the end of this iterative pro-
cess, any non-equivalences that are not eliminated (a.k.a.,
being controlled or interpreted) are documented for mainte-
nance and auditing purposes.

Step 1 – Checking Verifiability. The build environment for
our LSCSs is provided as a virtual machine image with the
proper version of the operating system and build toolchain.
The build environment is loadedwith the up-to-date complete
set of source code files, which includes the implementation of
the LSCS, the code for their third party dependencies, and the
build scripts (see Fig. 1). The build process is executed twice
and the generated build artifacts are compared against each
other. To unpack and compare the contents of the generated
build artifacts, we use standard tools (such as diffoscope [38] in
Linux). Since our LSCSs can be built in different platforms, we
also integrate such standard tools for different platforms in
our ToolKitA. The build is verifiable when the two sets of build
artifacts have the same contents or when the differences (i.e.,
non-equivalences) can be interpreted. A non-equivalent arti-
fact is successfully interpreted if it can be produced by an
independent auditor, who also agreeswith the technical expla-
nation behind the differences. Otherwise, the build is consid-
ered as non-verifiable and will be profiled and analyzed in
subsequent steps. In our running example, since time.bin,
and time.now both include the up-to-date timestamp infor-
mation, they will have different contents every time the build
process is executed in the same build environment. Therefore,
this build is considered as non-verifiable.

Step 2 – Profiling Build. In this step, we profile the build
process to record the necessary information for further anal-
ysis. Our technique is similar to the techniques as proposed
in prior studies [20], [39], [40] to intercept function calls and

to construct a build call graph. Other than applying com-
mon build profiling tools such as strace for Linux, we con-
struct the build call graph by leveraging the API hook
mechanism of the operating system (e.g., LD_PRELOAD in
Linux). A build call graph consists of build instructions as
edges and files and processes as vertices. The connection
between the nodes can be recovered by analyzing the
instructions (e.g., open, read, write) and their arguments
(e.g., files and processes) recorded from traces of the func-
tion calls. In the Linux environment, we leverage the API
hook mechanism by setting LD_PRELOAD to our self-imple-
mented dynamic library. Our dynamic library then inter-
cept the __libc_start_main function. This function is
invoked whenever a build instruction (e.g., gcc, clang, ar,
and ld) is called, allowing us to record the necessary infor-
mation for constructing the build call graph (i.e., the name
of the build instruction, the input files, the output files, and
the SHA256 values of these files) in a database. These build
instruction are commonly used in the compilation process
of our LSCSs and our self-implemented dynamic library
allows us to specify such build instructions. After recording
such information, we construct the build call graph by con-
necting the build instruction names in the order they were
called. By analyzing the build call graph, we can pinpoint
non-deterministic instructions and trace their origin to
higher or lower level instructions. The build call graph is
also used during the verification phase to ensure that the
correct external dependencies are loaded during the build
process. Fig. 4 shows an excerpt of the resulting build call
graph of our running example.

Step 3 – Diagnosing Non-Equivalence. In this step, for each
non-equivalent build artifact, we further analyze and
resolve the non-equivalences one at a time. We analyze the
build call graph to identify a call to the lower-level instruc-
tions that are not explicitly stated in the build scripts or in
the source code. For example, in our Fig. 5, the build starts
from the source code file Foo.c. After the build profiling
process, we know that the build instruction A (e.g., gcc)
generates the intermediate file Foo.o. By comparing the
recorded SHA256 of the files, we know that Foo.c is equiv-
alent to the same file produced by the previous build, while
Foo.o is non-equivalent. In this case, we can identify that
the process associated with gcc introuced the non-

Fig. 2. a) Build script and b) source code of our running example.

Fig. 3. The mitigation phase of our VBP. Steps 1, 2, and 6 are fully automated, whereas steps 3, 4, 5 require human intervention.

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3365

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

equivalence in the generated build artifacts. During the
diagnosing process, standard tracing tools (e.g., strace in
Linux) are also enabled so that we can manually identify the
low-level instructions that introduce the non-equivalences.
Back to our running example, we first focus on the file
time.now. By analyzing the build call graph generated by
Step 2, we know that time.now has non-equivalences and
depends on the process date. By analyzing the non-equiva-
lences (which is a date and time information), we can deduce
that it is caused by the invocation of the date instruction as
shown in Fig. 2a. We can also verify that date invokes the
clock_gettime function, as shown in Fig. 4. Since the time
is constantly changing, the results of invoking clock_get-

timewill be different at each invocation.
Step 4 – Documenting Mitigation. We have documented

the various sources of non-determinism and their mitigation
strategies in a document called the mitigation guideline. The
information in the mitigation guideline is either from exist-
ing research and practice (e.g., [19], [20], [21], [27]) or added
as a result of the investigation of prior non-equivalences in
the build artifacts of our LSCSs. There are three general mit-
igation strategies:

� Remediation aims to remove the non-equivalences by
modifying the LSCS implementation, the third party
source code, or the build script.

� Controlling aims to control the non-equivalences by
dynamically intercepting specific build instructions
and returning pre-defined values. To control the non-
equivalences, we have developed an intercept & ignore
list mechanism (see ToolKitA in Fig. 1). We record the
set of build instructions that need to be controlled in
the intercept lists. During the build process, whenever
an instruction that is in an intercept list is invoked, it
will be intercepted and pre-defined values will be
returned. However, returning pre-defined values in
some specific runtime context may have a systemic
and potentially undesirable effect (e.g., a build failure).
Hence, the ignore list maintains a set of build instruc-
tions that are bypassed by the interception mecha-
nism. This interception mechanism works at the
kernel level and therefore is agnostic to build artifacts
or build tools, as long as the build process uses the
exact same instructions as annotated in the lists. This
characteristic is essential to hangle the heterogeneity
of the build environment of LSCSs.

Fig. 5. Our interception mechanism and its relation with each step of the mitigation phase.

Fig. 4. The build call graph of our running example.

3366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

� Interpretation is the strategy for dealing with non-
equivalences due to security requirements (e.g., digi-
tal signatures) or system design (e.g., ASLR), which
cannot or should not be eliminated nor controlled.
Instead, we need to explain the sources of non-deter-
minism by documenting the location of the non-
equivalences, their root causes, as well as the ratio-
nale behind not eliminating or controlling them.
Such documentation needs to be detailed and accu-
rate enough so that other practitioners and auditing
agencies can verify its correctness.

In our running example, by analyzing the build call
graph we can deduce that the non-equivalences in time.

now have their origin in the invocation of the time function
clock_gettime, which is one of the documented sources
of non-determinism. The adopted mitigation strategy is to
control the source of non-determinism. Assuming that the
mitigation guideline is empty, we update this document
with the following entry:

Source of non-determinism: Date and time.
Description: The date and/or time at which the build is

performed is stamped in the generated build artifacts.
Related build instructions: date
Recommended mitigation strategy:
Controlling: Add related build instruction to

CGT_LIST to intercept build instructions that calls
clock_gettime. Set pre-defined date and time to the
TIME_VALUE variable.

It mentions that a source of non-determinism is related to
the date and time instructions that are invoked during the
build process and can be generally traced to the lower level
clock_gettime function.

Step 5 – Updating Intercept & Ignore Lists.Wemaintain one
intercept list per low level instruction that is going to be
intercepted. Considering our running example, the recom-
mended mitigation strategy by the mitigation guideline is
to add the high level date instruction to the intercept list
called CGT_LIST (i.e., the intercept list associated with the
low level instruction clock_gettime). Whenever an
instruction that is in the CGT_LIST is intercepted, it will
receive a pre-defined date and time as the returning value
to a call to clock_gettime. The snippet below shows the
configuration of the interception mechanism (libtool-
kita.so) as well as the contents of the CGT_LIST:

export LD_PRELOAD=libtoolkita.so

export TIME_VALUE=2020-07-11,08:30:18

export CGT_LIST=date

In this example, depending on the build environment, we
leverage different mechanisms to intercept system calls. For
Linux, we leverage the API hook mechanism (a.k.a., LD_PRE-
LOAD) to pre-load our toolset ToolKitA [41] before the build
process starts. During the build process, the specified system
calls are intercepted and replaced by a call to a customized
function (which, in turn, returns the pre-defined value). For
the Windows platform, we leverage the Detours [42] tool to

monitor and instrument system calls. Specified system calls in
the intercept list are intercepted and replaced by a call to a cus-
tomized function. In the example above, whenever a call to
clock_gettime is intercepted, a customized function that
returns the value stored in TIME_VALUE will be called
instead. Currently only one instruction (date) is added to
CGT_LIST, but other time- and date-related instructions that
calls clock_gettime can be added as well. The clock_-

gettime function is also invoked by many other instructions
likegcc and tar. Sincewe alsowant to control the non-deter-
minism in the time.bin and time.tgz files, we add gcc

and tar to CGT_LIST. At this point, the mitigation guideline
is updated with two additional related build instructions to
the date and time entry: gcc and tar. In some specific cir-
cumstances, by adding a build instruction to an intercept list,
the build can start to fail. For example, some build instruction
can use the date instruction to generate intermediate build
files with different names (i.e., by appending the current date
and time to the intermediate file names). If the date instruc-
tion always return the same pre-defined date and time value,
the intermediate files are overwritten with each other and the
build fails. In this case, the higher-level instruction that uses
date to generate the intermediate files needs to be added to
the ignore list. In Fig. 5, we demonstrate that the hook func-
tions communicate with our intercept & ignore lists, both by
intercepting the instructions in the list as well as by returning
the associated predefined value.

The update of the intercept & ignore lists is the most effec-
tive step of our VBP to remediate non-equivalences in build
artifacts. It configures the process for controlling the sources
of non-determinism during the build process and, according
to our experience (see Section 5.2), is responsible for remediat-
ingmost of the non-equivalences in the build artifacts.

Step 6 – Validating Mitigation. The build process is
repeated again to check if the non-equivalence investigated
in the prior steps are mitigated. As shown in Fig. 5, this
repeated build process (i.e., the rebuild process) will invoke
the same set of build instructions. These build instructions
will get the pre-defined values returned from the hook func-
tions on top of the system kernel. The hook functions are
configured by the intercept & ignore lists discussed in Step
5. If there are still some non-equivalences left at the end of
this build process, we will reiterate the whole process from
Step 1. This iterative process continues until all the non-
equivalences are mitigated. During this process, any non-
equivalences that have been mitigated will be clearly docu-
mented for maintenance and auditing purposes.

At the end of the mitigation phase, we record in the build
specification all information that is necessary to verify the
build in the verification phase.

3.2 The Verification Phase

Once all the non-equivalences are mitigated, the build is
considered as verifiable and can be audited by an inde-
pendent organization. The same build environment as
used in the mitigation phase, along with the source
code, the intercept & ignore lists, as well as the build
specification are all provided to the auditing agency. The
build specification contains the following information
regarding the build:

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3367

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

� The configuration of the build environment (e.g., an
specification of the virtual machine and operating
system, as well as the version of the build toolchain).

� A detailed rationale for each instruction that is con-
tained in the intercept & ignore list. Please refer to Sec-
tion 3.1 for an example of mitigating the non-
equivalences caused by date and time.

� A detailed rationale for each non-equivalence that is
interpreted (i.e., neither remediated nor controlled). In
addition, for each non-equivalence in the build arti-
facts, the location of the non-equivalence is recorded
and mapped to the rationale described in the non-
equivalence inventory. Fig. 6 shows one example.

The auditing agency executes the build process and
checks the resulting build artifacts against the provided
(release ready) artifacts. For all the controlled non-equiva-
lences, they can edit or remove the contents in the intercept
& ignore lists to examine and verify their impact on the
build artifacts. For the interpreted non-equivalences, they
carefully examine the documentation and the build artifacts
to see if they are legitimate. The build call graph can be
used during this examination to ensure that the loaded
external dependencies are also legitimate. To pass the audit-
ing process, all the non-equivalences need to be mitigated
and independently verified.

4 CASE STUDY

In this section, we present an in-field evaluation of our
approach to produce verifiable builds. In Section 4.1, we dis-
cuss our case study setup and explain the studied LSCSs. In
Section 4.2, we compare the proportion of equivalent build
artifacts that are generated before and after applying our
approach for three LSCSs within Huawei and for version 7.8
of CentOS. In Section 4.3, we provide an overview of our
mitigation strategies for various sources of non-determin-
ism described in the mitigation guideline (see Section 3). This
guideline records our experience on successfully mitigating
many non-equivalences for these three LSCSs in the past
few years.

4.1 Case Study Setup

We report our experience on applying our approach to three
representative LSCSs within Huawei. All three studied LSCSs
are mission critical systems used by tens of millions of people
every day. They have been widely deployed in many of the
products within Huawei. As these LSCSs are deployed in the
access-point of the wireless networks, they are considered to
be the main focus of security related auditing by the third
party auditing agencies. For this reason, these three LSCSs
have been submitted to different security audits and their

ability to produce verifiable build artifacts was validated by
an independent auditing agency [5]. Each of these systems
consist of millions or tens of millions lines of code and have
complex third party dependency relations.

To evaluate the generalizability of our approach, we have
also applied our approach to the open source packages dis-
tributed under CentOS version 7.8, which is a popular Linux
distribution. CentOS is widely used inside Huawei and the
software packages contained in the distribution are used by
software systems inside Huawei. Hence, conducting a study
on CentOS will improve the product quality and also con-
tribute to the open source community. For example, Huawei
has created an open source project called OpenEuler, which
is forked from CentOS, that could benefit from this study. In
addition, existing works towards deterministic builds are
found only in other Linux distributions such as Debian [8].
Our work complements those works and provides practical
contributions to the CentOS community.

4.2 Performance Evaluation

In this section, we report the methodological details (Sec-
tion 4.2.1) and report results of our performance evaluation
on three LSCSs within Huawei (Section 4.2.2) and a large-
scale open source system, CentOS (Section 4.2.3).

4.2.1 Evaluation Method and Evaluation Metrics

For the studied systems (including the three LSCSs in
Huawei and CentOS), we compute two metrics between two
identical build processes: the number (percentage) of equiv-
alent build artifacts and the number (percentage) of non-
equivalent build artifacts that are interpreted. The number
(percentage) of equivalent build artifacts represents how
many build artifacts are equivalent before and after we
remediate or control the non-equivalences. The number
(percentage) of non-equivalent build artifacts that are inter-
preted denotes the number of build artifacts that cannot be
remediated or controlled, but can only be interpreted after
investigation.

We first conduct the same build process twice before
applying our approach and collecting the build artifacts.
Then we compare the percentage of build artifacts that can
be repeatedly produced (a.k.a., equivalent build artifacts).
For example, one system generates 100 build artifacts dur-
ing the build process. If the same build process is repeated
again and only 20 of the build artifacts are equivalent to the
ones generated in the previous build, then the percentage of
equivalent build artifacts is 20/100 * 100%=20%.

After applying our unified process to mitigate sources of
non-determinism, we conduct the same build process twice
and collect the generated build artifacts. By applying our

Fig. 6. Interpreting the non-equivalences in the build artifacts. Non-equivalent regions of the build artifacts are highlighted in grey.

3368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

unified process, we build the system using our ToolKitA with
the build specification. We then compare the percentage of
build artifacts which are equivalent. For example, after
applying our approach, there are 99 build artifacts that are
equivalent compared to 20 before applying our approach.
Then we consider the percentage of equivalent build arti-
facts is 99/100 * 100% = 99%. The remaining one build arti-
fact is mitigated by interpretation. In other words, we
achieve the verifiable build by generating 99 percent equiva-
lent build artifacts and 1 percent interpreted build artifacts.

4.2.2 Evaluation Results for the LSCSs

Table 1 shows our results on the three LSCSs. The first
LSCS, LSCS1, is supported on two different platforms and
hence produces two different sets of build artifacts. All
three LSCSs under study are required to be built from the
complete set of source code. Before adopting our approach,
one of three LSCSs have less than 50 percent of equivalent
build artifacts. After adopting our approach, all the build
artifacts in LSCS1 (PlatformA) and LSCS1 (Plat-

formB) are equivalent. Also, 99.70 percent of the build arti-
facts in LSCS2 are equivalent and 99.99 percent of the build
artifacts in LSCS3 are equivalent. The remaining 0.3 percent
of the non-equivalent build artifacts (6 build artifacts) in
LSCS3 and the remaining 0.001 percent of the non-equiva-
lent build artifacts (1 build artifact) in LSCS3 are mitigated
by interpretation (see Section 3.1). In other words, the builds
of all three LSCSs are verifiable.

The released versions of these three systems (one system
supported in two platforms) along with another four systems
have been audited by the independent auditing agencies
between 2019 and 2020. Following the verification phase of
our VBP, the auditors are able to verify the build of the LSCSs
by leveraging our toolset ToolKitA and the provided documen-
tation (i.e., build specification). They have compared and
inspected their produced build artifacts against the released
versions and confirmed the builds are verifiable: “HCSEC (the
independent auditing agency) has now verified binary equiva-
lence across eight product builds” (page 20 of [5]).

4.2.3 Evaluation Results for CentOS

To evaluate the generalizability of our approach, we have also
applied our approach to the open source packages distributed
under CentOS version 7.8, which is a popular Linux distribu-
tion. We have followed the VBP with the same intercept &
ignore list configured for our LSCSs.We successfully compiled
2,218 of these open source packages, which contains 889,430

source code files and 245 million lines of code. Similarly to
Section 4.2.2, we evaluate our approach by comparing the per-
centage of build artifacts that can be repeatedly generated
before and after applying our approach. The results are
shown at the last rowof Table 1.

In total, we generate 94,888 build artifacts from the CentOS

7.8 distribution. Before adopting our approach, 85.87 percent
(81,483) of the build artifacts are equivalents. After directly
adopting our approach using the existing intercept & ignore
list, 94.56 percent (89,724) of the build artifacts are equivalent.
Among the remaining 5.44 percent of the non-equivalent
build artifacts (5,164 build artifacts), 5.29 percent (5,021) can
be mitigated by interpretation. Among the remaining 143
(5164� 5021 ¼ 143) build artifacts, 0.096 percent (91 build
artifacts) of the build artifacts can be furthermitigated by con-
trolling. When investigating those non-equivalences, we
observed that they are associated with files generated by
source code written in Python (i.e., files with the .pyc and .

pyo extensions) in specific versions. Therefore, we updated
the intercept & ignore list configured from our LSCSs with the
python2 and python3.6 instructions, as our LSCSs are
mainly implemented in C and Cþþ. After adopting our
approach, we observed that 99.94 percent (94,836) of the build
artifacts are deemed as verified. We are still investigating the
root causes of the remaining 0.06 percent (52) non-equivalent
build artifacts. The results clearly show that our approach on
the LCSCs can be applicable to open source software packages
with satisfactory performance.

4.3 An Overview of Our Mitigation Guideline

The non-equivalences in the build artifacts are caused by
different sources of non-determinism. Based on our experi-
ence on diagnosing many non-equivalent build artifacts in
the past few years, we categorize the sources of non-deter-
minism into the following three categories:

� Environment refers to the non-equivalences caused
by the interactions between the build process and
the build environment, either by means of function
calls or global environment variables.

� Build toolchain refers to the non-equivalences caused
by the non-deterministic behavior of various tools
used during the build process (e.g., linkers, com-
pilers, and archivers).

� System refers to the non-equivalences caused by the
implementation of the system under development. It
includes the implementation of the system itself, the
source code of the external third party dependencies,
and the build scripts.

In the remaining of this section, we describe the details of
our mitigation guideline based on the above three categories
of sources of non-determinism.

Environment. The recommended strategy to mitigate the
non-equivalences caused by the environment is controlling.
There are two main mechanisms for controlling the interac-
tion between the build process and the environment: (1) utiliz-
ing intercept & ignore list for intercepting build instructions
that invoke certain functions; and (2) providing pre-defined
values for the referenced global environment variables.

We explained a running example in Section 3 on how we
use the first mechanism to address the most common source

TABLE 1
The Percentage of Equivalent Build Artifacts Before and After

Applying Our Approach for LSCSs

System %(#) of equivalent artifacts # interpreted artifacts

Before After

LSCS1 (A) 32%ð9Þ 100:00%ð28Þ 0
LSCS1 (B) 0%ð0Þ 100:00%ð37Þ 0
LSCS2 83%ð1; 877Þ 99:70%ð2; 253Þ 6
LSCS3 88%ð64; 029Þ 99:99%ð72; 784Þ 1
CentOS 85:87%ð81; 483Þ 94:56%ð89; 724Þ 5,021

LSCS1 is built in platforms A and B.

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3369

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

of non-determinism: date and time. To further illustrate the
details, we describe two function calls that interacts with
date and time: time and __xstat. time returns the num-
ber of seconds since the Epoch. __xstat returns the last
modification time of a file. Many build instructions may
invoke these two functions. If a non-deterministic build
instruction invokes time, then we add this build instruction
to INTERCEPT_LIST_TIME. Furthermore, if a non-deter-
ministic build instruction invokes __xstat, then we add
this build instruction to INTERCEPT_LIST_XSTAT. For
example, gcc compiler invokes __xstat to write the file
modification time into the compiled artifacts, hence we add
gcc to INTERCEPT_LIST_XSTAT.

All of the above function calls can be invoked from differ-
ent locations such as the implementation of LSCSs themselves
(shown in Section 3), the third party dependencies (e.g.,
openssl, mkimage), the build scripts (e.g., Make file), and some
tools in the build toolchain (e.g., tar and gcc). Furthermore, the
function calls can be invoked throughout the build process.
Therefore, the best strategy is to centrally control the build
instructions that invoke these function calls such that they
return the same pre-defined date and time. Other intercept
lists are also specified for other environment-induced sources
of non-determinism. Here we describe two more examples:
file ordering and pseudo-randomnumber generation.

1) File ordering: Depending on the type of file system,
reading the contents of a directory would return a list
of files whose order is unspecified. The differently
ordered list of files can either directly cause the non-
equivalences if they are embedded in the generated
artifacts; or indirectly if these files are processed in a
different order during each build process. We found
that a set of function calls (e.g., readdir and nsfw)
whose behavior may vary depending on the types of
file systems. To control the non-deterministic behav-
ior, we add the build instructions that may invoke
these function calls to the corresponding intercept list
(e.g.,make).

2) Pseudo-random number generation: Pseudo-random
numbers are generated using different seeds and
algorithms during each build process. Function calls
that read a generated random number and write
them on an intermediate artifact will cause non-
equivalences (e.g., rand, srand, and random). For
example, to generate unique serial numbers during
the build process, pseudo-random number genera-
tion functions need to be invoked (e.g., oggenc [43]
invokes srand). Hence, we add oggenc to the corre-
sponding intercept list. Therefore, every time oggenc

is executed, the same seed is used by srand during
the pseudo-random number generation.

Other environment-induced non-equivalences are
caused by the global environment variables, which may
vary across different build environments. To control such
non-deterministic behavior, we set the same pre-defined
values to these environment variables. Below, we show two
such examples:

1) Locale: Depending on the locale, information like the
format of the time, and character encoding can be

different. Such information is usually embedded in
the build artifacts. To control this source of non-
determinism, we can override the locale of the envi-
ronment by setting a same pre-defined value for the
global environment variable LC_ALL.

2) Hash seeds: Hash functions generally randomize their
hash seeds while computing the hash values for num-
bers or strings. This can introduce non-equivalences in
the build artifacts if hash functions are invoked by dif-
ferent build instructions. To control such source of
non-determinism,we set the hash seeds as an environ-
ment variable (e.g., PYTHONHASHSEED for Python and
PERL_HASH_SEED for Perl), so that different build
instructions use the same hash seeds while computing
the hash functions.

Build Toolchain. The recommended strategy to mitigate
the non-equivalences caused by the build toolchain is reme-
diation. We describe two sources of non-determinism that
are induced by the build toolchain.

1) Absolute file path. The absolute path of the source files
is written to the final artifacts as a debug information
by many tools in the build toolchain (e.g., compilers,
archiving tools, etc.). Many tools provide utilities for
suppressing such outputs. For example, the output-
ted file paths in gzip can be easily removed by adding
the command option -n. Similarly, we can set the
command option -fdebug-prefix-map=OLD=NEW

in gcc to prevent outputting the absolute path names
during the compilation process.

2) Randomly generated intermediate files. The absolute
path of the intermediate files are sometimes ran-
domly generated and written to the final build arti-
facts, which cause non-equivalences. For example,
the Windriver compiler writes the randomly generated
intermediate files to the build artifacts. To address
this source of non-determinism, we add the com-
mand option -save-temps in the build commands
to specifically indicate the generated file paths.

System. Depending on the problem context, the recom-
mended mitigation strategy for system induced non-equiva-
lences can vary. Here we describe three common system
induced sources of non-determinism:

1) Non-initialized variables: In programming languages
like C, variables that are not explicitly initialized by
the programmer are assigned with different values
as they capture the random bytes in memory, caus-
ing non-equivalences. To mitigate such non-equiva-
lences, the remediation strategy is recommended.
Practitioners need to fix the problem by explicitly ini-
tializing variables.

2) Digital signatures or encrypted information: The built
system requires that generated artifacts have
stamped digital signatures or encrypted information,
which causes non-equivalences. The preferred miti-
gation strategy is interpretation. For LSCSs, these
non-equivalences cannot be eliminated or controlled
due to security concerns. Instead, the location and
the causes of such non-equivalences need to be
clearly documented for product maintenance and
auditing process.

3370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

3) Documentation: LSCSs include many documentation
files generated during the build process. Some of
them are generated by Microsoft applications and
have a binary format. These binary documentation
files can be non-equivalents even when the encoded
textual contents are identical. For example, hhc:exe is
a build-in tool provided by Microsoft for compiling
chm documents. During the compiling process, ran-
dom numbers are injected into the final documents,
causing non-equivalences in the build artifacts. Since
this tool is a commercial tool, it is impossible for us
to diagnose and fix this problem. Similar to the digi-
tal signatures, such non-equivalences are interpreted
and explained in the documentation. ps2pdf is
another tool used for converting PostScript docu-
ments into pdf files. This tool randomly generates
UUID (universally unique identifier) for each docu-
ment. To address this source of non-determinism,
we apply the remediation strategy by modifying the
build scripts to specify pre-defined UUIDs.

5 DISCUSSIONS AND FUTURE WORK

In this section, we discuss the lessons learned by applying
our approach to LSCSs within Huawei and present some
future research directions.

5.1 Building LSCSs From Source Code

Before checking build verifiability for LSCSs, we need to
ensure LSCSs can be built successfully from source code.
However, this process is non-trivial due to the complex
third party dependency relations in the LSCSs.

� Software Bill of Materials (SBOM): LSCSs have multi-
ple third party dependencies, each of which can also
have additional third party dependencies. Hence, it
is crucial to obtain the SBOM, which is a list of third
party dependencies and their versions for the
LSCSs [44]. We obtain this information by manually
identify the exhaustive list of third party dependen-
cies, which are involved during the build process.
These third party dependencies can be from open
source communities, from Huawei, or from other
companies. For open source dependencies, we
download their source code from the official website
and re-build the projects while turning on the build
profiler of ToolKitA. We manually identify additional
dependent open source packages and download
them. This process continues until all the dependent
open source projects are downloaded. Same proce-
dure is also repeated for packages from Huawei. For
third party packages of other companies, since we
cannot obtain their source code, we just record their
names and versions in the build specification docu-
ment. Currently, there are no well defined processes
to systematically recover the SBOMs in the context
of LSCSs. More research is needed in this area.

� Unified Build Process: The verifiable build process for
LSCSs requires the entire system, including all third-
party dependencies and internal libraries, to be built
from source code. Therefore, each LSCS encompass a

very heterogeneous set of components and this hetero-
geneity is amplified when many LSCSs are developed
by the same company. For example, in Huawei, differ-
ent LSCSs use different programming languages and
open source dependencieswhich, in turn, use different
build tools and build processes. Therefore, it is impor-
tant to implement an unified build process accross all
product teams within the same company. Although
there are build tools (e.g., Bazel [17] and Buck [9]) that
support build processes for different projects and dif-
ferent programming languages, unifying the build
processes accross different product teams using the
existing build toolchain is still an open research area.
The independent auditing agencymention that “binary
equivalence remains a bespoke project, rather than a consis-
tent output of Huawei’s build process” [5]. Hence, a huge
amount of effort is currently devoted in Huawei to
adapt our toolset ToolKitA and to modify the build
scripts or changing the build toolchain in order to
unify the entire build process accross different product
teams. Research is needed to support automated inte-
gration of the build processes for different LSCSs,
which have complex dependency relations.

5.2 Comparison Among Different Mitigation
Strategies

5.2.1 Advantages and Disadvantages

Although both controlling and remediation can be used to
remove the non-equivalences in the build artifacts, both of
them have their advantages and disadvantages.

Compared to remediation, controlling has three advan-
tages: First, it is non-intrusive as practitioners only need to
modify the intercept list instead of changing the source code
or the build scripts of LSCSs or the third party packages.
Second, different from remediation, whose impact is spe-
cific to the changed artifacts, controlling has a more general
impact. For example, all the build instructions which refer-
ence a particular global environment variable will have a
pre-defined value (e.g., see LC_ALL in Section 4.3). Third, as
the prior resolution on controlling various environment-
induced non-equivalences are encoded in the intercept list,
recurrent problems caused by the environment are automat-
ically mitigated. However, we need to take extra care on
updating the intercept lists, as some build instructions(e.g.,
make, git) may behave in an unexpected way once inter-
cepted. For example, if not careful, the pre-defined date and
time would cause clock skew and the build process will
either be blocked or behave differently [45]. In addition, our
current implementation of ToolKitA intercept system calls
that are performed by programs allocated at the user space
and, therefore, it is not able to intercept system calls that are
directly performed by the kernel space. Further research
and development should propose a similar hooking mecha-
nism for the kernel space.

Compared to controlling, remediation has one advan-
tage, which is that we can independently verify whether the
source of non-determinism is addressed. The impact of the
remediation is localized and do not impact other build pro-
cesses. On the other hand, the disadvantage is that we have
to analyze each individual source of non-determinism of

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3371

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

different external dependencies, which is time-consuming.
For example, to fix date and time issue, multiple patches are
proposed for open source projects (e.g., openssl [46], sysstat
[47], and lsof [48]).

When the non-equivalences should not or cannot be
remediated or controlled due to design or security require-
ments, they should be interpreted. For each of the inter-
preted non-equivalences, we clearly document its location,
the source of non-determinism, and the rationale. However,
such analysis might need to be repeated each time new
build requests come in, as their locations and contents may
change from build to build. How to effectively track or miti-
gate the same interpreted non-equivalences across different
builds or how to mitigate recurrent interpreted non-equiva-
lences remain as an open research problem.

5.2.2 Soundness

Verifiable builds generate build artifacts that satisfy either one
of the following conditions: (1) the generated build artifacts
are equivalent; (2) if the build artifacts are not equivalent, the
differences can be interpreted. The soundness of the explain-
able build process presented by Carnavalet et al. [21] can be
validated, as it explains every source of non-determinism
found in the build artifacts.However, this process lacks tooling
support and the study is mainly done manually. In turn, the
deterministic build process was proposed by Ren et al.[20]
with an automated tool. RepLoc is a tool to support the mitiga-
tion of non-equivalences by means of remediation and, there-
fore, to produce reproducible builds. Since some non-
equivalences are not possible to be remediated, this strategy
does not necessarily satisfy the conditions for a verifiable build
(unless all the non-equivalences can be interpreted). Therefore,
the soundness of producing verifiable builds using only reme-
diation cannot be validated. We can validate the soundness of
our VBP in achieving verifiable builds based on the definition.
First, ourVBP can control a variety of sources of non-determin-
ism, including those described by Ren et al. Second, for the
remaining non-equivalent build artifacts, we interpret the dif-
ferences similar to Carnavalet et al. The third party auditing
agencies can independently check the verifiability of our VBP
on the LSCSs.

5.3 The Cost of Applying VBP

The cost of applying our unified process to produce a verifi-
able build can be broken down into: (1) the cost of localizing
and mitigating a new source of non-determinism; and (2)
the cost of localizing and mitigating similar causes of recur-
rent non-equivalences across multiple releases or different
systems.

As for (1), we observe that using our controlling strategy
with the intercept & ignore lists to eliminate non-equivalences
in the generated build artifacts is the strategy that contributes
the most for the cost-effectiveness of our approach. The main
reason is that controlling avoids having to recurrently localize
build instructions that are associated with the same source of
non-determinism (e.g., having to individually localize all
build instructions that cause timestamp differences). The key
technical characteristic of our controlling strategy is to inter-
cept instructions at the system level, which allows to remedi-
ate the sources of non-determinism associated with different

instructions all together (see Section 3.1 – Step 4). When sour-
ces of non-determinism can be automatically localized, the
controlling strategy still outweighs the remediation mecha-
nism with respect to cost-effectiveness. For example, RepLoc
[20] is the state-of-the-art tool that automatically identifies the
build instructions that are accountable for non-equivalences
and generates a ranked list of source files containing such
build instructions. In this approach, the BSPs need to manu-
ally verify the instructions within the ranked list of files and
remediate the non-equivalences one by one. All the non-
equivalences that are reported by Ren et al.[20] can be miti-
gated through the controlling strategy.

As for (2), using the controlling strategy requires manual
efforts at the beginning when BSPs need to identify the non-
equivalences and localize the sources of non-determinism. As
this process evolves, the effort for BSPs decreases because
recurrent sources of non-determinism are all mitigated at
once by our controlling mechanism (due to interception of
instructions at the system level). The controlling mechanism
also has a positive impact in another aspect regarding the cost
effectiveness of our unified process, which is the portability
among different systems and releases. Our unified process
has been successfully adapted and applied to verifiably build
hundreds of productswithinHuawei. RSEs can reuse the docu-
mentedmitigations and run our ToolKitAwith a standard set of
build instructions in the intercept & ignore lists, saving a sig-
nificant amount of effort usually spent in Steps 3, 4, 5 and 6 of
ourMitigation Phase. New types of non-equivalences that are
occasionally identified are mitigated by BSPs running a com-
plete cycle of our Mitigation Phase, which will update the
standard intercept & ignore list as well as the mitigation
guideline. Informal feedback of the product teams suggests
that both RSEs and BSPs are positive regarding the usage of
our approach.

There are currently 239 products inside Huawei that apply
our approach, including the three LSCSs described above.
The product teams are satisfied with the verifiable builds
generated and acknowledge that our approach has reduced
a great amount of manual effort. Most of the non-determin-
istic behavior can be addressed by simply executing our
ToolKitA (with a standard set of build instructions added to
the intercept & ignore lists). By means of informal feedback
from the product teams in Huawei, we have found that most
of the non-deterministic instructions come from dynamic
libraries, which can be controlled using our approach. How-
ever, very few products use static libraries (less than 1 per-
cent in our LSCSs), for which the API hook mechanism does
not apply. Our current solution is to convert the static librar-
ies into dynamic libraries. How to efficiently control static
libraries remains as an open research problem.

5.4 Sources of Non-Determinism in LSCSs

Identifying the sources of the non-determinism in non-verifi-
able builds is challenging and time consuming [19], [20], [21].
First, build artifacts have to be analyzed such that the non-
equivalences can be traced back to the problematic files or
build scripts that generate them. Then, additional manual
inspection is required to further locate the specific lines of
source code or build instructions. As we have described in the
mitigation guideline in Section 4.3, the sources of non-

3372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

determinism can be induced from the environment, the build
toolchain, or the system. By analyzing thousands of non-
equivalences from LSCSs and their third party dependencies
in the past few years, we find that themajority of the problems
in the non-verifiable builds are caused by various interactions
with the environment (e.g., querying the current date and
time or returning a list of files). This is the main reason why
we can support a verifiable build process for multiple LSCSs
in a short period of time and produce 100 percent or over 99
percent of the equivalent build artifacts.

To cross-validate our findings, we have also applied our
approach to all the open source packages distributed under
CentOS7:8, which is a popular Linux distribution. The
detailed evaluation results are discussed in Section 4.2.3. As
shown in Section 4.2.3, before adopting our approach, there
are 13,405 non-equivalent binary artifacts. Among these
build artifacts, the majority (61:48% ¼ 8241

13405) of the non-
equivalent build artifacts are mitigated by controlling. In
addition, 5,021 (37:46% ¼ 5021

13405) non-equivalent build arti-
facts are mitigated through interpretation. These 5,021 build
artifacts are the driver files of the operating system kernel
and the non-equivalences are caused by digital signatures,
which should be reserved due to security requirements. We
first use the intercept & ignore list directly configured from
the LCSCs without any modification. After careful examina-
tion, we found another 91 (0:68% ¼ 91

13405) non-equivalent
build artifacts can be mitigated through controlling by add-
ing the related processes into the intercept & ignore list. In
the end, through our approach, only 52 (0:39% ¼ 52

13405) non-
equivalent build artifacts remain. On one hand, this study
clearly demonstrates the generalizability of our approach.
On the other hand, it also shows that the main sources of
non-determinism in CentOS are also environment-related,
followed by a non-trivial portion of the non-equivalences
caused by security requirements. This also demonstrates
the advantage of our verified build process over the existing
deterministic build processes, which mitigates the non-
equivalences by remediation in a case-by-case basis.

5.5 Integration With the Development Workflow

Currently, our verifiable build process is recommended to
run frequently when a project just starts or if the build tool-
chain has been recently updated. Once the non-equivalen-
ces have been successfully mitigated, the verifiable build
process can be executed less frequently due to the perfor-
mance overhead imposed to the build process (e.g., build
profiling). Once the LSCSs are close to release deadlines,
this process needs to be executed on the builds of each
release candidate. However, such scheduling recommenda-
tion may not be optimal due to the following two reasons:
(1) occasionally the verifiable build process can be invoked
even when no changes are made to the existing build pro-
cesses. This results in a waste of computing resources and
analysis effort (especially for the interpreted non-equivalen-
ces). (2) If some non-equivalences are introduced in a series
of code changes during which the verifiable build process is
not invoked, practitioners will spend more time to pinpoint
the sources of non-determinism. Future research may look
into automated recommendation on when to invoke the ver-
ifiable build process in a cost-effective fashion.

6 RELATED WORKS

In this section, we discuss four areas of related work to this
paper: (1) security-related issues in the build process, (2)
fault localization, (3) analysis of runtime behavior of the
build process, and (4) a comparison with related practices
with the steps of the mitigation phase.

6.1 Security-Related Issues in the Build Process

The type of toolchain attack that a verifiable build is able to
detect was first explained by Thompson [49]. In this attack, a
compromised compiler is used to inject malicious code during
the compilation of a source code. As a result, the generated
build artifacts are compromised. Therefore, to ensure that a
built software system is not compromised, in addition to
inspecting the source code for malicious code, the whole build
toolchain needs to be turstworthy. Wheeler [50] describes a
countermeasure to this attack that is based on the idea of com-
paring the generated artifacts by a trusted compiler against
those generated by a non-trusted compiler. Carnavalet et al.
[21] discuss a set of challenges for verifiable builds in security-
critical OSSs. The authors also describe the sources of non-
determinism identified while checking build verifiability for
the TrueCrypt system. Nikitin et al. [51] describe a decentralized
software update infrastructure that builds the release and com-
pares the generated artifacts against the deployed binaries.
Leija et al. [16] describe the design of a container technology –
called reproducible container – which can deterministically
execute x86� 64 instructions and Linux system calls. Compared
to the papers above, our paper is the first research work focus-
ing on the challenges and solutions for producing verifiable
builds in the context of LSCSs.

libfaketime [52] is an open source utility that returns pre-
specified date and time values and can be used during a
verifiable build process. In comparison, our intercept &
ignore list mechanism implemented on ToolKitA is a more
generic mechanism which supports returning pre-defined
values for many different build instructions and, therefore,
control different sources of non-determinism. Moreover,
our toolset ToolKitA implements the ignore list to avoid
injecting pre-defined values in specific build instructions.

6.2 Fault Localization

Prior studies in fault localization [53] focus on reproducing the
production environment [54], recovering call graphs [55],
recording and replaying program execution [56], and generat-
ing artificial faults [57]. There are only twoworks on the locali-
zation of sources of non-determinism in verifiable builds [19],
[20]. Ren et al. [19] present a tool, which automatically localizes
the sources of non-determinism by leveraging information
retrieval techniques. Their proposed tool can achieve an accu-
racy of 79 percent for the top-10 ranked files. In their subse-
quent work, Ren et al. [20] propose another tool that analyzes
the build call graph to localize the sources of non-determinism.
The accuracy of their new tool is 90 percent for the top-10
ranked instructions. Both tools aim to support the determin-
istic build process whose main objective is to remediate the
sources of non-determinism. This is because theymainly focus
on the build verifiability of OSSs, whose build environment
varies. However, checking build verifiability in LSCSs has a
different sets of challenges. LSCSs have the same build

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3373

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

TABLE 2
The Differences and Similarities of Steps of Our Mitigation Phase and Existing Practices Towards Build Verifiability

Step Our approach Existing practices Comparison

Step 1 – Checking
verifiability

Uses an integrated tool to
ToolKitA to support checking
build verifiability in multiple
platforms.

Use reprotest [65] to vary build
environment and decidewhether two
build instances produce equivalent
build artifacts. Use diffoscope [38] to
visualize
the non-equivalences in build artifacts.

Similarities: The step in our approach for checking build
verifiability uses the same techniques and concepts as
the existing tools.Differences: Existing practices are
typically supported on a single platform.OurToolKitA for
LSCSsworks onmultiple platforms.

Step 2 – Profiling
build

Uses a build profiler tool
integrated into ToolKitA and
leverages an API hook
mechanism to construct a build
call graph and identify non-
deterministic build
instructions. Stores the build
call graph in a database.

Van der Burg et al. [39] use build
profiling to find inconsistent licences
in OSS projects. Ren et al. [20] use
build profiling to find root causes of
non-equivalences for deterministic
builds. Adams et al. [64] use for design
recovery. Bezemer et al. [40] use for the
identification of unspecified
dependencies. Zhou et al. [54] use for
fault localization.

Similarities: Our build profiler is similar to existing
practices in the sense that it also intercepts specific
system calls during the build process and constructs a
build call graph.Differences:While ToolKitA records
specific build instructions that are intercepted by using
theAPI hookmechanism, existing practices typically
parse the output of a profiling tool such as strace. As a
result, our ToolKitA recovers the build call graph during
the build, while existing practices recover the build call
graph after the build process is finished.

Step 3 – Diagnosing
non-equivalence

Mostly done bymanual
analysis of the sources of non-
determinism that are still not
mitigated. The build call graph
constructed through theAPI
hookmechanismhelps us to
identify high-level instructions
that introduce non-determinism.
The low-level instructions are
identified byBSPsmanually.

Carnavalet et al. [21] report the results
of a manual analysis to identify
sources of non-determinism and
diagnose non-equivalences. Ren et al.
[19], [20]
propose automated tools to identify
build instructions that are accountable
for non-determininsm.

Similarities: Similar to Carnavalet et al. [21], we rely on
manual effort to diagnose sources of non-
determinism. However, our manual diagnosis is
supported by a build call graph constructed during
the build process. Differences: RepTrace [19] is the state
of the art tool to automatically support the diagnosis
of non-equivalences and its effectiveness was
demonstrated to support the remediation strategy.
However, after adding sufficient instructions in the
intercept & ignore lists, we are able to easily produce
a verifiable build of different systems, avoiding the
need of sophisticated support for diagnosing non-
equivalences. The usage of intercept & ignore lists
offers flexibility to control a multitude of sources of
non-determinism including but not limited those
identified by RepTrace: Random numbers generated
by different seeds, Randomness in file system
ordering, Name of the build system, File attributes for
owner (st_uid), group (st_gid), disk block location
(ino_t) and device ID (st_dev), Debugging
information on executable files, Intermediate files
(logs, lock-files, etc.) generated in a non-deterministic
form, Documentation in binary format (e.g., MS
Office)

Step 4 –
Documenting
mitigation

Uses themitigation guideline to
document prior knowledge
about the sources of non-
determinism. For each category
of source of
non-determinism (environment,
toolchain, or system), the
mitigation guideline
recommends themost suitable
mitigation strategy
(remediation, controlling, or
interpretation).

Reproducible Builds [27] records a
comprehensive knowledge base
related to verifiable builds, including
reusable practices and tools.

Similarities: Both Reproducible Builds [27] and our
approach explicitly document the knowledge
generated during the mitigation phase. We also reuse
specific knowledge about the mitigation of sources of
non-determinism throughout our process. Differences:
In our documentation, we categorize the sources of
non-determinism into the environment, the build
toolchain, and the system. For each category, our
approach recommends the most suitable mitigation
strategy.

Step 5 – Updating
intercept & ignore
lists

Uses the intercept & ignore
lists to manage the controlled
build instructions.

Uses libfaketime to intercept time
system calls and return predefined
values.

Similarities: Both ToolKitA and libfaketime use a hook
mechanism to intercept system calls and return
predefined values instead of the value returned by the
originally called function. Differences: libfaketime is
over specific and does not support the heterogeneity
of LSCSs. In particular, libfaketime supports controlling
time-related build instructions, whereas our intercept
& ignore lists support any build instruction.

Step 6 – Validating
mitigation

Records a complete build
specification that is used
during the verification phase,
including the complete build
environment in a virtual
machine and interpretation of
sources of non-determinism.

Use build specifications as
recommended by Reproducible
Builds [66] and Debian [67].

Similarities: Build specifications are common
documents for systems that can be verifiably built.
Differences: Our LSCSs need to be provided to an
independent auditing agency and thus requires a
complete build specification that includes the build
environment (i.e., virtual machine, build toolchain, set
of source code, and pre-compiled proprietary
libraries), as well as an explanation of the interpreted
sources of non-determinism, the performed
remediations, and the controlled build instructions.

3374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

environment, but new challenges like stringent security
requirements, complex third party dependencies, and scalabil-
ity. Therefore, the main focus of this paper is to describe our
verified build process, which ismore suitable for LSCSs.

6.3 Analyzing the Runtime Behavior of the Build
Process

Various studies have been performed to analyze the behav-
ior of the build process. Many studies focus on reducing the
duration of the build by analyzing the runtime behavior of
the build process [58], [59], [60]. Kerzazi et al. [61] and Zolfa-
gharinia et al. [62] studied the build failures in commercial
systems and OSSs. Tu et al. [63] and Adams et al. [64] profile
the build process to collect build logs and system tracing
data. Such profiling data is used to construct build call
graphs, which can be used in a variety of purposes, such as
detecting licensing inconsistency in OSSs [39], detecting
undefined build dependencies in Make files [40], or localiz-
ing sources of non-determinism during the verifiable build
process [20]. In this paper, we also generate and analyze the
build call graphs to diagnose and mitigate the non-equiva-
lences in the build artifacts.

6.4 Related Practices With the Steps of the
Mitigation Phase

In this section, we describe the main differences and similar-
ities between our mitigation phase and the existing practices
to support build verifiability. In Table 2, for each step of the
mitigation phase, we describe related research results and
tools, and compare them with our approach.

7 THREATS TO VALIDITY

In this section, we discuss the threats to validity.

7.1 External Validity

7.1.1 Programming Languages

Currently our approach focus onmitigating non-equivalences
in C/Cþþ based systems. We are currently working on
extending our support to systems written in other program-
ming languages. However, the main idea behind them are
similar. For example, we are working on supporting a verifi-
able build for Java-based systems. In particular, we are
extending our build profiler to Java-based build tools (e.g.,
Maven and Gradle). In addition, we are also implementing a
similar intercept & ignore list mechanism at the JVM level in
order to control the environment-induced non-equivalences.

7.1.2 Build Environment

Our approach assumes a homogeneous build environment,
as we use the same system image for the build both in the
development and in the auditing environments. Such a
homogeneous environment assumption is mainly because
the LSCSs of Huawei are used in embedded devices, in which
the deployment environment is fixed. Our approach will
not work for systems which need to be deployed in a hetero-
geneous development, since those systems need to be
deployed in various environmental settings. For example,
Debian needs to support different locales (e.g., United States,

United Kingdom, and German). For such systems, a deter-
ministic build process is more appropriate [19], [20]) .

7.1.3 Mitigation Guideline

In Section 4.3, we summarize our recommended strategies
to mitigate the non-equivalences in LSCSs and the third
party dependencies. Although we also tried our process on
many other open source systems to ensure generalizability,
the reported sources of non-determinism and their associ-
ated recommended strategies are not exhaustive and are
only based on our experience.

7.2 Internal Validity

Controlling is an important mitigation strategy introduced
in our approach. It is a very effective approach to eliminat-
ing the environment-induced non-equivalences. However,
it might cause side effects and introduce problems during
the build process, as all the functions specified in the inter-
rupt list will return pre-defined values. Therefore, excep-
tions need to be specified in the ignore list, such that
whenever a function specified in the ignore list is invoked,
real computed values would be returned.

7.3 Construct Validity

When we evaluate the performance of our approach, we
measure the number of build artifacts that can be repeatedly
produced (a.k.a., equivalent build artifacts). The improve-
ment shown in Section 4.2 is a result of both remediating
and controlling the sources of non-determinism in LSCSs.
For the non-equivalences that cannot be mitigated through
the aforementioned two strategies, we interpret them. If all
of the non-equivalences in the build artifacts can be miti-
gated by any of the above three strategies, the build process
for this system is considered as verifiable. This process has
also been communicated and accepted by various audit
organization.

8 CONCLUSION

Build verifiability is an important safety property to ensure
that build artifacts correspond to the source code of that sys-
tem. Previous research and practices mainly focus on devel-
oping and enhancing deterministic build. However, LSCSs
within Huawei have challenges that deterministic builds are
not able to handle, ranging from security requirements,
third party dependencies, to large-scale code changes. To
cope with these challenges, we have developed an inte-
grated approach to produce verifiable builds for LSCSs.
Our approach includes a unified build process and a toolset.
Our approach supports three strategies to mitigate the non-
equivalences in the build artifacts: remediation, controlling,
and interpretation. We apply our approach to three LSCSs,
showing effective results. We improved the proportion of
build artifacts that are successfully verified from less than
50 to 100 percent. We cross validated our results by using
our approach to build 2,218 open source packages distrib-
uted under CentOS 7.8, increasing the proportion of verified
build artifacts from 85 to 99.9 percent. We also give an over-
view of our mitigation guidelines and share the lessons
learned based on our experience in the past few years.

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3375

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

Finally, we describe some open research problems related to
verifiable builds, which can be of interest to practitioners
and software engineering researchers.

ACKNOWLEDGMENTS

The findings and opinions expressed in this paper are those
of the authors and do not necessarily represent or reflect
those of Huawei and/or its subsidiaries and affiliates. More-
over, our results do not in any way reflect the quality of
Huawei’s products.

REFERENCES

[1] H. Security, Malware Trends, 2020. Accessed: Aug. 2020. [Online].
Available: https://us-cert.cisa.gov/sites/default/files/documents/
NCCIC_ICS-CERT_AAL_Malware_Trends_Paper_S508C.pdf

[2] A. C. L. U. (ACLU), How Malicious Software Updates Endanger
Everyone, 2020. Accessed: Augu. 2020. [Online]. Available:
https://www.aclu.org/issues/privacy-technology/consumer-
privacy/how-malicious-software-updates-endanger-everyone

[3] D. A. Wheeler, Attack on SolarWinds Could Have Been Countered by
Reproducible Builds, 2020. Acessed: Jan. 2021. [Online]. Available:
https://lists.reproducible-builds.org/pipermail/rb-general/
2020-December/002109.html

[4] M. Perry, Deterministic Builds Part One: Cyberwar and Global Com-
promise, 2020. Accessed: Aug. 2020. [Online]. Available: https://
blog.torproject.org/deterministic-builds-part-one-cyberwar-and-
global-compromise

[5] HCSEC, “HCSEC annual report, ”Huawei Cyber Security Evalua-
tion Centre Oversight Board, 2020. [Online]. Available: https://
assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/923309/Huawei_Cyber_Security_
Evaluation_Centre__HCSEC__Oversight_Board-_annual_report_
2020.pdf

[6] B. Project, Bitcoin Reproducible Build, 2020. Accessed: Aug. 2020.
[Online]. Available: https://bitcoinops.org/en/topics/reproducible-
builds

[7] C. Project, Chromium Reproducible Build, 2020. Accessed: Aug. 2020.
[Online]. Available: https://www.chromium.org/developers/
testing/isolated-testing/deterministic-builds

[8] Debian, Debian Reproducible Build How-to Wiki, 2020. Accessed:
Jun. 17, 2020. [Online]. Available: https://wiki.debian.org/
ReproducibleBuilds/Howto

[9] Buck, Buck: A High Performance Build Tool, 2020. Accessed: Aug.
2020. [Online]. Available: https://buck.build

[10] D. McNutt, The 10 Commandments of Release Engineering, 2020.
Accessed: Aug. 2020. [Online]. Available: https://www.usenix.
org/legacy/events/lisa10/tech/slides/mcnutt.pdf

[11] R. Malik, Developing Fast & Reliable iOS Builds at Pinterest (Part
One), 2020. Accessed: Aug. 2020. [Online]. Available: https://
medium.com/pinterest-engineering/developing-fast-reliable-ios-
builds-at-pinterest-part-one-cb1810407b92

[12] Telegram, Telegram Reproducible Build, 2020. Accessed: Aug. 2020.
[Online]. Available: https://core.telegram.org/reproducible-builds

[13] SwissCovid, SwissCovid: DP3TAndroid App for Switzerland – Reproduc-
ible Build, 2020. Accessed: Aug. 2020. [Online]. Available: https://
github.com/DP-3T/dp3t-app-android-ch/blob/c64feecf68ee
62391013ca3cd668a34443c63322/REPRODUCIBLE_BUILDS.md

[14] C.-W.-A. Backlog, Allow for Reproducible Builds, 2020. Accessed:
Aug. 2020. [Online]. Available: https://github.com/corona-warn-
app/cwa-backlog/issues/21

[15] L. Court�es and R. Wurmus, “Reproducible and user-controlled
software environments in HPC with Guix,” in Proc. Eur. Conf. Par-
allel Process.: Parallel Process. Workshops, 2015.

[16] O. S. N. Leija et al., “Reproducible containers,” in Proc. 25th Int.
Conf. Architect. Support Program. Lang. Operating Syst., 2020,
pp. 167–182.

[17] Bazel, Bazel – FAQ, 2020. Accessed: Aug. 2020. [Online]. Available:
https://bazel.build/faq.html

[18] M. Perry, Deterministic Builds Part Two: Technical Details, 2020.
Accessed: Aug. 2020. [Online]. Available: https://blog.torproject.
org/deterministic-builds-part-two-technical-details

[19] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, “Automated localization
for unreproducible builds,” in Proc. 40th Int. Conf. Softw. Eng.,
2018, pp. 71–81.

[20] Z. Ren, C. Liu, X. Xiao, H. Jiang, and T. Xie, “Root cause localiza-
tion for unreproducible builds via causality analysis over system
call tracing,” in Proc. 34th Int. Conf. Automated Softw. Eng., 2019,
pp. 527–538.

[21] X. de Carne de Canavalet andM. Mannan, “Challenges and impli-
cations of verifiable builds for security-critical open-source
software,” in Proc. 30th Annu. Comput. Secur. Appl. Conf., 2014,
pp. 16–25.

[22] R. Builds, Reproducible Build Definition, 2020. Accessed: Aug.
2020. [Online]. Available: https://reproducible-builds.org/docs/
definition

[23] Lsof org, Allow Reproducible Builds, 2020. Accessed: Aug. 2020.
[Online]. Available: https://github.com/lsof-org/lsof/pull/94

[24] Debian, dpkg-buildpackage: Set BUILD_PATH_PREFIX_MAP for Build
Tools to Generate Reproducible Output, 2020. Accessed: Aug. 2020.
[Online]. Available: https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=862116

[25] Debian, dh-buildinfo: Please Produce Stable Output, 2020. Accessed:
Aug. 2020. [Online]. Available: https://bugs.debian.org/cgi-bin/
bugreport.cgi?bug=722186

[26] N. I. of Standards and T. (NIST), Digital Signature Standard (DSS),
2020. Accessed: Aug. 2020. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186–4.pdf

[27] R. Builds, Reproducible Build Buy-in, 2020. Accessed: Aug. 2020.
[Online]. Available: https://reproducible-builds.org/docs/buy-
in

[28] M. S. R. C. (MSRC), Software Defense: Mitigating Common Exploita-
tion Techniques, 2020. Accessed: Aug. 2020. [Online]. Available:
https://msrc-blog.microsoft.com/2013/12/11/software-defense-
mitigating-common-exploitation-techniques/

[29] M. S. R. C. (MSRC), Clarifying the Behavior of Mandatory ASLR,
2020. Accessed: Aug. 2020. [Online]. Available: https://msrc-
blog.microsoft.com/2017/11/21/clarifying-the-behavior-of-
mandatory-aslr/

[30] The Unreproducible Package, 2021. Accessed: Apr. 2021. [Online].
Available: https://github.com/bmwiedemann/theunreproducible
package

[31] Value Initialization, 2021. Accessed: Apr. 2021. [Online]. Available:
https://reproducible-builds.org/docs/value-initialization/

[32] Oracle,Oracle Berkeley DB, 2021. Accessed: Jul. 2021. [Online]. Avail-
able: https://www.oracle.com/database/technologies/related/
berkeleydb.html

[33] Oracle, Oracle Berkeley DB repository, 2021. Accessed: Jul. 2021.
[Online]. Available: https://github.com/berkeleydb/libdb/blob/
master/src/os/os_uid.c

[34] Ghostscript, Support SOURCE_DATE_EPOCH for Reproducible
Builds, 2020. Accessed: Aug. 2020. [Online]. Available: https://
bugs.ghostscript.com/show_bug.cgi?id=696765

[35] A. Developer, Validating Your Version of Xcode, 2020. Accessed:
Aug. 2020. [Online]. Available: https://developer.apple.com/
news/?id=09222015a

[36] A. Support, Safely Open Apps on Your Mac, 2020. Accessed: Aug.
2020. [Online]. Available: https://support.apple.com/en-ca/
HT202491

[37] C. Sung, S. Lahiri, P. Choudhury, M. Kaufman, and C. Wang,
“Towards understanding and fixing upstream merge induced
conflicts in divergent forks: An industrial case study,” in Proc.
42nd Int. Conf. Softw. Eng., 2020, pp. 172–181.

[38] reprotest, 2021. Accessed: Apr. 2021. [Online]. Available: https://
diffoscope.org

[39] S. van der Burg, E. Dolstra, S. McIntosh, J. Davies, D. M. German,
and A. Hemel, “Tracing software build processes to uncover
license compliance inconsistencies,” in Proc. Int. Conf. Automated
Softw. Eng., 2014, pp. 731–742.

[40] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E.
Hassan, “An empirical study of unspecified dependencies in
make-based build systems,” Empir. Softw. Eng., vol. 22, no. 6,
pp. 3117–3148, 2017.

[41] LD_PRELOAD, ld.so(8) — Linux Manual Page, 2020. Accessed:
Aug. 2020. [Online]. Available: https://man7.org/linux/man-
pages/man8/ld.so.8.html

[42] Microsoft, Microsoft Research Detours Package, 2021. Accessed: Jan.
2021. [Online]. Available: https://github.com/microsoft/Detours

3376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

https://us-cert.cisa.gov/sites/default/files/documents/NCCIC_ICS-CERT_AAL_Malware_Trends_Paper_S508C.pdf
https://us-cert.cisa.gov/sites/default/files/documents/NCCIC_ICS-CERT_AAL_Malware_Trends_Paper_S508C.pdf
https://www.aclu.org/issues/privacy-technology/consumer-privacy/how-malicious-software-updates-endanger-everyone
https://www.aclu.org/issues/privacy-technology/consumer-privacy/how-malicious-software-updates-endanger-everyone
https://lists.reproducible-builds.org/pipermail/rb-general/2020-December/002109.html
https://lists.reproducible-builds.org/pipermail/rb-general/2020-December/002109.html
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/923309/Huawei_Cyber_Security_Evaluation_Centre__HCSEC__Oversight_Board-_annual_report_2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/923309/Huawei_Cyber_Security_Evaluation_Centre__HCSEC__Oversight_Board-_annual_report_2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/923309/Huawei_Cyber_Security_Evaluation_Centre__HCSEC__Oversight_Board-_annual_report_2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/923309/Huawei_Cyber_Security_Evaluation_Centre__HCSEC__Oversight_Board-_annual_report_2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/923309/Huawei_Cyber_Security_Evaluation_Centre__HCSEC__Oversight_Board-_annual_report_2020.pdf
https://bitcoinops.org/en/topics/reproducible-builds
https://bitcoinops.org/en/topics/reproducible-builds
https://www.chromium.org/developers/testing/isolated-testing/deterministic-builds
https://www.chromium.org/developers/testing/isolated-testing/deterministic-builds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/Howto
https://buck.build
https://www.usenix.org/legacy/events/lisa10/tech/slides/mcnutt.pdf
https://www.usenix.org/legacy/events/lisa10/tech/slides/mcnutt.pdf
https://medium.com/pinterest-engineering/developing-fast-reliable-ios-builds-at-pinterest-part-one-cb1810407b92
https://medium.com/pinterest-engineering/developing-fast-reliable-ios-builds-at-pinterest-part-one-cb1810407b92
https://medium.com/pinterest-engineering/developing-fast-reliable-ios-builds-at-pinterest-part-one-cb1810407b92
https://core.telegram.org/reproducible-builds
https://github.com/DP-3T/dp3t-app-android-ch/blob/c64feecf68ee62391013ca3cd668a34443c63322/REPRODUCIBLE_BUILDS.md
https://github.com/DP-3T/dp3t-app-android-ch/blob/c64feecf68ee62391013ca3cd668a34443c63322/REPRODUCIBLE_BUILDS.md
https://github.com/DP-3T/dp3t-app-android-ch/blob/c64feecf68ee62391013ca3cd668a34443c63322/REPRODUCIBLE_BUILDS.md
https://github.com/corona-warn-app/cwa-backlog/issues/21
https://github.com/corona-warn-app/cwa-backlog/issues/21
https://bazel.build/faq.html
https://blog.torproject.org/deterministic-builds-part-two-technical-details
https://blog.torproject.org/deterministic-builds-part-two-technical-details
https://reproducible-builds.org/docs/definition
https://reproducible-builds.org/docs/definition
https://github.com/lsof-org/lsof/pull/94
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=862116
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=862116
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=722186
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=722186
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186--4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186--4.pdf
https://reproducible-builds.org/docs/buy-in
https://reproducible-builds.org/docs/buy-in
https://msrc-blog.microsoft.com/2013/12/11/software-defense-mitigating-common-exploitation-techniques/
https://msrc-blog.microsoft.com/2013/12/11/software-defense-mitigating-common-exploitation-techniques/
https://msrc-blog.microsoft.com/2017/11/21/clarifying-the-behavior-of-mandatory-aslr/
https://msrc-blog.microsoft.com/2017/11/21/clarifying-the-behavior-of-mandatory-aslr/
https://msrc-blog.microsoft.com/2017/11/21/clarifying-the-behavior-of-mandatory-aslr/
https://github.com/bmwiedemann/theunreproduciblepackage
https://github.com/bmwiedemann/theunreproduciblepackage
https://reproducible-builds.org/docs/value-initialization/
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://github.com/berkeleydb/libdb/blob/master/src/os/os_uid.c
https://github.com/berkeleydb/libdb/blob/master/src/os/os_uid.c
https://bugs.ghostscript.com/show_bug.cgi?id=696765
https://bugs.ghostscript.com/show_bug.cgi?id=696765
https://developer.apple.com/news/?id=09222015a
https://developer.apple.com/news/?id=09222015a
https://support.apple.com/en-ca/HT202491
https://support.apple.com/en-ca/HT202491
https://diffoscope.org
https://diffoscope.org
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://github.com/microsoft/Detours

[43] OggSerialNumbers, 2020. Accessed: Aug. 2020. [Online]. Available:
https://wiki.debian.org/ReproducibleBuilds/OggSerialNumbers

[44] C. Yanko, Using a Software Bill of Materials (SBOM) is Going Main-
stream, 2020. Accessed: Aug. 2020. [Online]. Available: https://
blog.sonatype.com/software-bill-of-materials-going-mainstream

[45] Clockskew, Make Mac Bundles Built With LXC Match Their KVM
Counterparts, 2020. Accessed: Aug. 2020. [Online]. Available:
https://gitlab.torproject.org/legacy/trac/-/issues/12240

[46] openssl, Fix SOURCE_DATE_EPOCH bug; use UTC, 2020. Accessed:
Aug. 2020. [Online]. Available: https://github.com/openssl/
openssl/commit/8a8d9e190533ee41e8b231b18c7837f98f1ae231

[47] sysstat, How can we Eliminate the Build Differences Caused by the
Time Stamps for Reproducible Build, 2020. Accessed: Aug. 2020.
[Online]. Available: https://github.com/sysstat/sysstat/issues/
164

[48] lsof, Allow Reproducible Builds, 2020. Accessed: Aug. 2020. [Online].
Available: https://github.com/lsof-org/lsof/pull/94

[49] K. Thompson, “Reflections on trusting trust,” Commun. ACM, vol.
27, no. 8, pp. 761–763, 1984.

[50] D. A. Wheeler, “Countering trusting trust through diverse dou-
ble-compiling,” in Proc. 21st Annu. Comput. Secur. Appl. Conf.,
2005, pp. 13–48.

[51] K. Nikitin et al., “CHAINIAC: Proactive software-update trans-
parency via collectively signed skipchains and verified builds,” in
Proc. 26th USENIX Secur. Symp., 2017, pp. 1271–1287.

[52] Wolfcw, libfaketime, 2020. Accessed: Aug. 2020. [Online]. Avail-
able: https://github.com/wolfcw/libfaketime

[53] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[54] X. Zhou et al., “Latent error prediction and fault localization for
microservice applications by learning from system trace logs,” in
Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2019, pp. 683–694.

[55] Y. Yuan, L. Xu, X. Xiao, A. Podgurski, and H. Zhu, “RunDroid:
Recovering execution call graphs for android applications,” in
Proc. 11th Joint Meeting Found. Softw. Eng., 2017, pp. 949–953.

[56] E. T. Barr, M. Marron, E. Maurer, D. Moseley, and G. Seth, “Time-
travel debugging for JavaScript/Node.js,” in Proc. 24th ACM SIG-
SOFT Int. Symp. Found. Softw. Eng., 2016, pp. 1003–1007.

[57] S. Pearson et al., “Evaluating and improving fault localization,” in
Proc. IEEE/ACM 39th Int. Conf. Softw. Eng., 2017, pp. 609–620.

[58] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni,
“Automated decomposition of build targets,” in Proc. 37th Int.
Conf. Softw. Eng., 2015, pp. 123–133.

[59] S. McIntosh, B. Adams, M. Nagappan, and A. E. Hassan,
“Identifying and understanding header file hotspots in C/C++
build processes,” Automated Softw. Eng., vol. 23, no. 4, pp. 619–
647, 2016.

[60] Y. Yu, H. Dayani-Fard, J. Mylopoulos, and P. Andritsos,
“Reducing build time through precompilations for evolving large
software,” in Proc. 21st IEEE Int. Conf. Softw. Maintenance, 2005,
pp. 59–68.

[61] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds
break? An empirical study,” in Proc. 30th IEEE Int. Conf. Softw.
Maintenance Evol., 2014, pp. 41–50.

[62] M. Zolfagharinia, B. Adams, and Y.-G. Gu�eh�eneuc, “A study of
build inflation in 30 million CPAN builds on 13 Perl versions and
10 operating systems,” Empir. Softw. Eng., vol. 24, pp. 3933–3971,
2019.

[63] Q. Tu and M. W. Godfrey, “The build-time software architecture
view,” in Proc. 18th IEEE Int. Conf. Softw. Maintenance, 2001, pp.
398–407.

[64] B. Adams, H. Tromp, K. de Schutter, and W. de Meuter, “Design
recovery and maintenance of build systems,” in Proc. 23rd IEEE
Int. Conf. Softw. Maintenance, 2007, pp. 114–123.

[65] reprotest, 2021. Accessed: Apr. 2021. [Online]. Available: https://
pypi.org/project/reprotest/

[66] Formal Definition, 2021. Accessed: Apr. 2021. [Online]. Available:
https://reproducible-builds.org/docs/formal-definition

[67] ReproducibleBuilds BuildinfoFiles, 2021. Accessed: Apr. 2021. [Online].
Available: https://wiki.debian.org/ReproducibleBuilds/Buildinfo
Files

Yong Shi received the master’s degree in com-
puter science from theDalian University of Technol-
ogy, Dalian, China. He is currently an expert on
software engineering and cyber security with the
Trustworthiness Theory, Technology & Engineering
Lab, Huawei Technologies Co., Ltd. His research
interests include build engineering, security
defense, and static analysis.

Mingzhi Wen received the BSc degree from the
Mathematics Department, Xidian University, Xi’an,
China. He is currently a principle engineer with the
Beijing Research Center, Huawei Technologies
Co., Ltd. His research interests include trustworthy
build, including reproducible build processes and
accurate tracking of the build processes. He has 14
years of experience in the cyber security field.

Filipe R. Cogo received the BSc and MSc
degrees in computer science from the Universi-
dade Estadual de Maring�a (UEM), Maring�a, Bra-
zil, and the PhD degree from Queen’s University,
Kingston, Canada. He is currently a software engi-
neering researcher with the Centre for Software
Excellence, Huawei Canada. His research interest
include empirical software engineering, mining
software repository, and AI4SE.

Boyuan Chen received the BEng degree from the
School of Computer Science, University of Sci-
ence and Technology of China, Hefei, China, and
the MASc and PhD degrees from the Department
of Electrical Engineering and Computer Science,
York University, Toronto, Canada. He is currently a
senior researcher with the Centre for Software
Excellence, Huawei Canada. His research inter-
ests include software engineering and artificial
intelligence, in particular, software logging, SE for
AI, empirical software engineering, DevOps, and

software testing. He has papers published in top venues like ICSE, ASE,
EMSE, and CSUR.

Zhen Ming Jiang received the BMath and MMath
degrees in computer science from the University of
Waterloo, Waterloo, Canada, and the PhD degree
from the School of Computing, Queen’s University,
Kingston, Canada. He is currently an associate pro-
fessor with theDepartment of Electrical Engineering
and Computer Science, York University, Toronto,
Canada. His research interests include software
engineering and computer systems. Some of his
research results are already adopted and used in
practice on a daily basis. For more information,
please visit http://www.cse.yorku.ca/�zmjiang.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SHI ETAL.: EXPERIENCE REPORTON PRODUCING VERIFIABLE BUILDS FOR LARGE-SCALE COMMERCIAL SYSTEMS 3377

Authorized licensed use limited to: York University. Downloaded on May 11,2023 at 16:22:31 UTC from IEEE Xplore. Restrictions apply.

https://wiki.debian.org/ReproducibleBuilds/OggSerialNumbers
https://blog.sonatype.com/software-bill-of-materials-going-mainstream
https://blog.sonatype.com/software-bill-of-materials-going-mainstream
https://gitlab.torproject.org/legacy/trac/-/issues/12240
https://github.com/openssl/openssl/commit/8a8d9e190533ee41e8b231b18c7837f98f1ae231
https://github.com/openssl/openssl/commit/8a8d9e190533ee41e8b231b18c7837f98f1ae231
https://github.com/sysstat/sysstat/issues/164
https://github.com/sysstat/sysstat/issues/164
https://github.com/lsof-org/lsof/pull/94
https://github.com/wolfcw/libfaketime
https://pypi.org/project/reprotest/
https://pypi.org/project/reprotest/
https://reproducible-builds.org/docs/formal-definition
https://wiki.debian.org/ReproducibleBuilds/BuildinfoFiles
https://wiki.debian.org/ReproducibleBuilds/BuildinfoFiles
http://www.cse.yorku.ca/~zmjiang
http://www.cse.yorku.ca/~zmjiang

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

