
Finding and Evaluating the Performance
Impact of Redundant Data Access for
Applications that are Developed Using
Object-Relational Mapping Frameworks

Tse-Hsun Chen, Student Member, IEEE, Weiyi Shang,Member, IEEE, Zhen Ming Jiang,Member, IEEE,

Ahmed E. Hassan,Member, IEEE, Mohamed Nasser,Member, IEEE, and Parminder Flora,Member, IEEE

Abstract—Developers usually leverage Object-Relational Mapping (ORM) to abstract complex database accesses for large-scale

systems. However, since ORM frameworks operate at a lower-level (i.e., data access), ORM frameworks do not know how the data will

be used when returned from database management systems (DBMSs). Therefore, ORM cannot provide an optimal data retrieval

approach for all applications, which may result in accessing redundant data and significantly affect system performance. Although

ORM frameworks provide ways to resolve redundant data problems, due to the complexity of modern systems, developers may not be

able to locate such problems in the code; hence, may not proactively resolve the problems. In this paper, we propose an automated

approach, which we implement as a Java framework, to locate redundant data problems. We apply our framework on one enterprise

and two open source systems. We find that redundant data problems exist in 87 percent of the exercised transactions. Due to the large

number of detected redundant data problems, we propose an automated approach to assess the impact and prioritize the resolution

efforts. Our performance assessment result shows that by resolving the redundant data problems, the system response time for the

studied systems can be improved by an average of 17 percent.

Index Terms—Performance, object-relational mapping (ORM), program analysis, database

Ç

1 INTRODUCTION

DUE to the increasing popularity of big data applications
and cloud computing, software systems are becoming

more dependent on the underlying database for data man-
agement and analysis. As a system becomes more complex,
developers start to leverage technologies to manage the
data consistency between the source code and the database
management systems (DBMSs).

One of the most popular technologies that developers
use to help them manage data is Object-Relational Map-
ping (ORM) framework. ORM frameworks provide a
conceptual abstraction for mapping database records to
objects in object-oriented languages [1]. With ORM,
objects are directly mapped to database records. For
example, to update a user’s name in the database, a sim-
ple method call user:updateNameð‘‘Peter}Þ is needed. By

adopting ORM technology, developers can focus on the
high-level business logic without worrying about the
underlying database access details and without having to
write error-prone database boilerplate code [2], [3]. ORM
has become very popular among developers since early
2,000, and its popularity continues to rise in practice [4].
For instance, there exists ORM frameworks for most mod-
ern Object-Oriented programming languages such as
Java, C#, and Python. However, despite ORM’s advan-
tages and popularity, there exist redundant data prob-
lems in ORM frameworks [5], [6], [7], [8]. Such redundant
data problems are usually caused by non-optimal use of
ORM frameworks.

Since ORM frameworks operate at the data-access level,
ORM frameworks do not know how developers will use the
data that is returned from the DBMS. Therefore, it is diffi-
cult for ORM frameworks to provide an optimal data
retrieval approach for all systems that use ORM frame-
works. Such non-optimal data retrieval can cause serious
performance problems. We use the following example to
demonstrate the problem. In some ORM frameworks (e.g.,
Hibernate, NHibernate, and Django), updating any column
of a database entity object (object whose state is stored in a
corresponding record in the database) would result in
updating all the columns in the corresponding table. Con-
sider the following code snippet:

// retrieve user data from DBMS

user.updateName(”Peter”);
// commit the transaction

...

� T.-H. Chen and A.E. Hassan are with the Software Analysis and Intelligence
Lab, School of Computing, Queen’s University, Kingston, ON K7L 3N6,
Canada. E-mail: {tsehsun, ahmed}@cs.queensu.ca.

� W. Shang is with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, QC H4B 1R6, Canada.
E-mail: shang@encs.concordia.ca.

� Z. Jiang is with the Department of Electrical Engineering and Computer
Science, York University, Toronto, ONM3J 1P3, Canada.
E-mail: zmjiang@cse.yorku.ca.

� M. Nasser and P. Flora are with BlackBerry, Waterloo, ON, Canada.
E-mail: {tse, hsun}@cs.queensu.ca.

Manuscript received 10 June 2016; revised 21 Mar. 2016; accepted 3 Feb.
2016. Date of publication 11 Apr. 2016; date of current version 16 Dec. 2016.
Recommended for acceptance by M. Dwyer.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2553039

1148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Even though other columns (e.g., address, phone num-
ber, and profile picture) were not modified by the code, the
corresponding generated SQL query is:

update user set name=‘Peter’, address=‘Waterloo’, phone_
number = ‘12345’, profile_pic = ‘binary data’ where id=1;

Such redundant data problems may bring significant per-
formance overheads when, for example, the generated SQLs
are constantly updating binary large objects (e.g., profile pic-
ture) or non-clustered indexed columns (e.g., assuming
phone number is indexed) in a database table [9]. The redun-
dant data problemsmay also cause a significant performance
impact when the number of columns in a table is large (e.g.,
retrieving a large number of unused columns from the
DBMS). Prior studies [10], [11] have shown that the number
of columns in a table can be very large in real-world systems
(e.g., the tables in the OSCAR database have 30 columns on
average [10]), and some systems may even have tables with
more than 500 columns [12]. Thus, locating redundant data
problems is helpful for large-scale real-world systems.

In fact, developers have shown that by optimizing ORM
configurations and data retrieval, system performance can
increase by as much as 10 folds [13], [14]. However, even
though developers can change ORM code configurations to
resolve different kinds of redundant data problems, due to
the complexity of software systems, developers may not be
able to locate such problems in the code, and thus may not
proactively resolve the problems [14], [15]. Besides, there is
no guarantee that every developer knows the impact of
such problems.

In this paper, we propose an approach for locating
redundant data problems in the code. We implemented the
approach as a framework for detecting redundant data
problems in Java-based ORM frameworks. Our framework
is now being used by our industry partner to locate redun-
dant data problems.

Redundant data or computation is a well-known cause
for performance problems [16], [17], and in this paper, we
focus on detecting database-related redundant data prob-
lems. Our approach consists of both static and dynamic
analysis. We first apply static analysis on the source code to
automatically identify database-accessing functions (i.e.,
functions that may access the data in the DBMS). Then, we
use bytecode instrumentation on the system executables to
obtain the code execution traces and the ORM generated
SQL queries. We identify the needed database accesses by
finding which database-accessing functions are called dur-
ing the system execution. We identify the requested data-
base accesses by analyzing the ORM generated SQL
queries. Finally, we discover instances of the redundant
data problems by examining the data access mismatches
between the needed database accesses and the requested
database accesses, within and across transactions. Our
hybrid (static and dynamic analysis) approach can mini-
mize the inaccuracy of applying only data flow and pointer
analysis on the code, and thus can provide developers a
more complete picture of the root cause of the problems
under different workloads.

We perform a case study on two open-source systems (Pet
Clinic [18] and Broadleaf Commerce [19]) and one large-scale

Enterprise System (ES). We find that redundant data prob-
lems exist in all of our exercised workloads. In addition, our
statistical rigorous performance assessment [20] shows that
resolving redundant data problems can improve the system
performance (i.e., response time) of the studied systems by
2–92 percent, depending on the workload. Our performance
assessment approach can further help developers prioritize
the efforts for resolving the redundant data problems accord-
ing to their performance impact.

The main contributions of this paper are:

1) We survey the redundant data problems in popular
ORM frameworks across four different program-
ming languages, and we find that the different popu-
lar frameworks share common problems.

2) We propose an automated approach to locate the
redundant data problems in ORM frameworks, and
we have implemented a Java-version to detect
redundant data problems in Java systems.

3) Case studies on two open source and one enterprise
system show that resolving redundant data prob-
lems can improve the system performance (i.e.,
response time) by up to 92 percent (with an average
of 17 percent), when using MySQL as the DBMS and
two separate computers, one for sending requests
and one for hosting the DBMS. Our framework
receives positive feedback from ES developers, and
is now integrated into the performance testing pro-
cess for the ES.

Paper organization. The rest of the paper is organized as fol-
lows. Section 2 surveys the related work. Section 3 discusses
the background knowledge of ORM. Section 4 describes our
approach for finding redundant data problems. Section 5
provides the background of our case study systems, and the
experimental setup. Section 6 discusses our framework
implementation, the types and the prevalence of redundant
data problems that we discovered, and introduces our per-
formance assessment approach and the results of our case
studies. Section 7 surveys the studied redundant data prob-
lems in different ORM frameworks. Section 8 talks about the
threats to validity. Finally, Section 9 concludes the paper.

2 RELATED WORK

In this section, we discuss related prior research.
Optimizing DBMS-based applications. Many prior studies

aim to improve system performance by optimizing how
systems access or communicate with a DBMS. Cheung
et al: [31] propose an approach to delay all queries as late as
possible so that more queries can be sent to the DBMS in a
batch. Ramachandra et al: [32], on the other hand, pre-fetch
all the data at the beginning to improve system perfor-
mance. Chavan et al: [33] automatically transform query
execution code so that queries can be sent to the DBMS in
an asynchronous fashion. Therefore, the performance
impact of data and query transmission can be minimized.
Bowman et al: [34] optimize system performance by pre-
dicting repeated SQL patterns. They develop a system on
top of DBMS client libraries, and their system can automati-
cally learn the SQL patterns, and transform the SQLs into a
more optimized form (e.g., combine loop-generated SQL
selects into one SQL).

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1149

Our paper’s goal is to improve system performance by
finding redundant data problems in systems that are devel-
oped using ORM frameworks. Our approach can reduce
unnecessary data transmission and DBMS computation.
Different from prior work, our approach does not introduce
another layer to existing systems, which increases system
complexity, but rather our approach pinpoints the problems
to developers. Developers can then decide a series of actions
to prioritize and resolve the redundant data problems.

Detecting performance bugs. Prior studies propose various
approaches to detect different performance bugs through
run-time indicators of such bugs. Nistor et al: [16] propose a
performance bug detection tool, which detects performance
problems by finding similar memory-access patterns during
system execution. Chis et al: [35] provide a tool to detect
memory anti-patterns in Java heap dumps using a catalogue.
Parsons et al: [36] present an approach for automatically
detecting performance issues in enterprise applications that
are developed using component-based frameworks. Parsons
et al: detect performance issues by reconstructing the run-
time design of the system using monitoring and analysis
approaches.

Xu et al: [37] introduce copy profiling, an approach that
summarizes runtime activity in terms of chains of data cop-
ies, which are indicators of Java runtime bloat (i.e., many
temporary objects executing relatively simple operations).
Xiao et al: [38] use different workflows to identify and pre-
dict workflow-dependent performance bottlenecks (i.e.,
performance bugs) in GUI applications. Xu et al: [39] intro-
duce a run-time analysis to identify low-utility data struc-
tures whose costs are out of line with their gained benefits.
Grechanik et al: develop various approaches for detecting
and preventing database deadlocks through static and
dynamic analysis [40], [41]. Chaudhuri et al: [42] propose an
approach to map the DBMS profiler and the code for finding
the root causes of slow database operations. Similar to prior
studies, our approach relies on dynamic system informa-
tion. However, we focus on systems that use ORM frame-
works to map code to DBMSs.

In our prior research, we propose a framework to stati-
cally identify performance anti-patterns by analyzing the
system source code [14]. This paper is different from our
prior study in many aspects. First, in our prior study, we
develop a framework for detecting two performance anti-
patterns that we observed in practice. Only one of these per-
formance anti-patterns is related to data retrieval. In this
paper, we focus on the redundant data problems between
the needed data in the code and the SQL requested data.
Performance anti-patterns and redundant data problems
are two different sets of problems with little overlap. Perfor-
mance anti-patterns may be any code patterns that may
result in bad performance. The problem can be related to
memory, CPU, network, or database. On the other hand,
redundant data problems are usually caused by request-
ing/updating too much data than actually needed.

We propose an approach to locate such redundant data
problems, and we do not know what kinds of redundant
data problems are there before applying our approach. Sec-
ond, in our prior study, we use only static analysis for
detecting performance anti-patterns. However, static analy-
sis is prone to false positives as it is difficult to obtain an

accurate data flow and pointer analysis given the assump-
tions made during computation [43]. Thus, most of the
problems we study in this paper cannot be detected by sim-
ply extending our prior framework. In this paper, we pro-
pose a hybrid approach using both static and dynamic
analysis to locate the redundant data problems in the code.
Our hybrid approach can give more precise results and bet-
ter locate the problems in the code. In addition, we imple-
mented a tool to transform SQL queries into abstract syntax
trees for further analysis. Finally, we manually classify and
document the redundant data problems that we discovered,
and we conduct a survey on their existence in ORM frame-
works across different programming languages.

3 BACKGROUND

In this section, we provide some background knowledge of
ORM before introducing our approach. We first provide a
brief overview of different ORM frameworks, and then we
discuss how ORM accesses the DBMS using an example.
Our example is shown using the Java ORM standard, Java
Persistence API (JPA), but the underlying concepts are com-
mon for other ORM frameworks.

3.1 Background of ORM

ORM has become very popular among developers due to its
convenience [3], [4]. Most modern programming languages,
such as Java, C#, Ruby, and Python, all support ORM. Java,
in particular, has a unified persistent API for ORM, called
Java Persistent API. JPA has become an industry standard
and is used in many open source and commercial sys-
tems [44]. Using JPA, users can switch between different
ORM providers with minimal modifications. There are
many implementations of JPA, such as Hibernate [45],
OpenJPA [46], EclipseLink [47], and parts of IBM Web-
Sphere [48]. These JPA implementations all follow the Java
standard, and share similar concepts and design. However,
they may experience some implementation specific differen-
ces (e.g., varying performance [49]). In this paper, we imple-
ment our approach as a framework for detecting redundant
data problems for JPA systems due to the popularity of JPA.

3.2 Translating Objects to SQL Queries

ORM is responsible for mapping and translating database
entity objects to/from database records. Fig. 1 illustrates
such process in JPA. Although the implementation details
and syntax may be different for other ORM frameworks, the
fundamental idea is the same.

JPA allows developers to configure a class as a database
entity class using source code annotations. There are three
categories of source code annotations:

� Entities and columns: A database entity class (marked
as @Entity in the source code) is mapped to a data-
base table (marked as @Table in the source code).
Each database entity object is mapped to a record in
the table. For example, the User class is mapped to
the user table in Fig. 1. @Column maps the instance
variable to the corresponding column in the table.
For example, the userName instance variable is
mapped to the user_name column.

1150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

� Relations: There are four different types of class rela-
tionships in JPA: OneToMany, OneToOne, Many-
ToOne, and ManyToMany. For example, there is a
@ManyToOne relationship between User and Group
(i.e., each group can have multiple users).

� Fetch types: The fetch type for the associated objects
can be either EAGER or LAZY. EAGER means that
the associated objects (e.g., User) will be retrieved
once the owner object (e.g., Group) is retrieved from
the DBMS; LAZY means that the associated objects
(e.g., User) will be retrieved from the DBMS only
when the associated objects are needed (by the
source code). Note that in some ORM frameworks,
such as ActiveRecord (the default ORM for Ruby on
Rails), the fetch type is set per each data retrieval,
but other underlying principals are the same. How-
ever, most ORM frameworks allow developers to
change the fetch type dynamically for different use
cases [50].

JPA generates and may cache SQL templates (depending
on the implementation) for each database entity class. The
cached templates can avoid re-generating query templates
to improve performance. These templates are used for
retrieving or updating an object in the DBMS at run-time.
As shown in Fig. 1 (Main:java), a developer changes the
user object in the code in order to update a user0s name in
the DBMS. JPA uses the generated update template to gen-
erate the SQL queries for updating the user records.

To optimize the performance and to reduce the number
of calls to the DBMS, JPA, as well as most other ORM frame-
works, uses a local memory cache [51]. When a database
entity object (e.g., a User object) is retrieved from the DBMS,
the object is first stored in the JPA cache. If the object is
modified, JPA will push the update to the DBMS at the end
of the transaction; if the object is not modified, the object
will remain in cache until it is garbage collected or until the
transaction is completed. By reducing the number of
requests to the DBMS, the JPA cache reduces the overhead

of network latency and the workload on database servers.
Such cache mechanism provides significant performance
improvement to systems that rely heavily on DBMSs.

Our case study systems use Hibernate [45] as the JPA
implementation due to Hibernate’s popularity. However, as
shown in Section 7, our survey finds that redundant data
problems also exist in other ORM frameworks and are not
specific to the JPA implementation that we choose.

4 OUR APPROACH OF FINDING REDUNDANT DATA

PROBLEMS

In the previous section, we introduce how ORM frame-
works map objects to database records. However, such
mapping is complex, and usually contains some impedance
mismatches (i.e., conceptual difference between relational
databases and object-oriented programming). In addition,
ORM frameworks do not know what data developers need
and thus cannot optimize all the database operations auto-
matically. In this section, we present our automated app-
roach for locating the redundant data problem in the code
due to ORM mapping. Note that our approach is applicable
to other ORM frameworks in other languages (may require
some framework-specific modifications).

4.1 Overview of Our Approach

Fig. 2 shows an overview of our approach for locating redun-
dant data problems. We define the needed database accesses as
how database-accessing functions are called during system
execution. We define the requested database accesses as the cor-
responding generated SQL queries during system execution.
Our approach consists of three different phases. First, we use
static source code analysis to automatically identify the data-
base-accessing functions (functions that read or modify
instance variables that aremapped to database columns). Sec-
ond, we leverage bytecode instrumentation to monitor and
collect system execution traces. In particular, we collect the
exercised database-accessing functions (and the location of

Fig. 1. An example flow of how JPA translates object manipulation to SQL. Although the syntax and configurations may be different for other ORM
frameworks, the fundamental idea is the same: developers need to specify the mapping between objects and database tables, the relationships
between objects, and the data retrieval configuration (e.g., eager versus lazy).

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1151

the call site of such functions) as well as the generated SQLs.
Finally, we find the redundant data problems by comparing
the exercised database-accessing functions and the SQLs. We
explain the detail of each phase in the following sections.

4.2 Identifying Needed Database Accesses

Weuse static code analysis to identify themappings between
database tables and the source code classes.We then perform
static taint analysis on all the database instance variables
(e.g., instance variables that are mapped to database col-
umns) in database entity classes. Static taint analysis allows
us to find all the functions along a function call graph that
may read or modify a given variable. If a database instance
variable is modified in a function, we consider the function
as a data-write function. If a database instance variable is being
read or returned in a function, we consider the function as a
data-read function. For example, if a database entity class has
an instance variable called name, which is mapped to a col-
umn in the database table, then the function getUserName(),
which returns the variable name, is a data-read function. We
also parse JPQL (Java Persistence Query Language, the stan-
dard SQL-like language for Java ORM frameworks) queries
to keep track of which entity objects are retrieved/modified
from the DBMS, similar to a prior approach proposed by
Dasgupta et al. [52]. We focus on parsing the FROM and
UPDATE clauses in JPQL queries. To handle the situation
where both superclass and subclass are database entity clas-
ses but they are mapped to different tables, we construct a
class inheritance graph from the code. If a subclass is calling
a data-accessing function from its superclass, we use the
result of the class inheritance graph to determine the col-
umns that the subclass function is accessing.

4.3 Identifying Requested Database Accesses

We define the requested database accesses as the columns
that are accessed in an SQL query.We develop an SQL query
analyzer to analyze database access information in SQLs.
Our analyzer leverages the SQLparser in FoundationDB [53],
which supports standard SQL92 syntax. We first transform
an SQL query into an abstract syntax tree (AST), then we tra-
verse the AST nodes and look for information such as col-
umns that an SQL query is selecting from or updating to,
and the tables that the SQL query is querying.

4.4 Finding Redundant Data

Since database accesses arewrapped in transactions (to assure
the ACID property), we separate the accesses according to the
transactions to which they belong. Fig. 3 shows an example of

the resulting data. In that XML snippet, the function call user.
getUserName() (the needed data access) is translated to a
select SQL (the requested data access) in a transaction.

We find redundant data problems at both the column and
table level by comparing the needed and the requested data-
base accesses within and across transactions. Since we know
the database columns that a function is accessing,we compare
the column reads andwrites between the SQL queries and the
database-accessing functions. If a column that is being
selected/updated in an SQL query has no corresponding
function that reads/updates the column, then the transaction
has a redundant data problem (e.g., in Fig. 1 the Main:java
only modifies user0s name, but all columns are updated). In
other words, an SQL query is selecting a column from the
DBMS, but the column is not needed in the source code (simi-
larly, the SQL query is updating a column but the column
was not updated in the code). Note that after the static analy-
sis step, we know the columns that a table (or database entity
class) has. Thus, in the dynamic analysis step, our approach
can tell us exactly which columns are not needed. In other
words, our approach is able to find, for example, if a binary
column is unnecessarily read from the DBMS, or if the SQL is
constantly updating an unmodified but indexed column.

4.5 Performance Assessment

We propose an approach to automatically assess the perfor-
mance impact of the redundant data problems. The perfor-
mance assessment results can be used to prioritize
performance optimization efforts. Since there may be differ-
ent types of redundant data problems and each type may
need to be assessed differently, we discuss our assessment
approach in detail in Section 6.3, after discussing the types of
redundant data problems thatwe discovered in Section 6.2.

5 EXPERIMENTAL SETUP

In this Section, we discuss the studied systems and experi-
mental setup.

Fig. 2. An overview of our approach for finding and evaluating redundant data problems.

Fig. 3. An example of the exercised database-accessing functions and
generated SQL queries during a transaction.

1152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

5.1 Case Study Systems

In this paper, we implement our approach as a framework,
and apply the framework on two open-source systems (Pet
Clinic [18] and Broadleaf Commerce [19]) and one large-
scale Enterprise System (ES). Pet Clinic is a system devel-
oped by Spring [54], which provides a simple yet realistic
design of a web application. Pet Clinic and its predecessor
have been used in a number of performance-related stud-
ies [14], [55], [56], [57], [58]. Broadleaf [19] is a large open
source e-commerce system that is widely used in both non-
commercial and commercial settings worldwide. ES is used
by millions of users around the world on a daily basis, and
supports a high level of concurrency control. Since we are
not able to discuss the configuration details of ES due to a
non-disclosure agreement (NDA), we also conduct our
study on two open source systems. Table 1 shows the statis-
tics of the three studied systems.

All of our studied systems are web systems that are
implemented in Java. They all use Hibernate as their JPA
implementation due to Hibernate’s popularity (e.g., in 2013,
15 percent of the Java developer jobs requires the candidates
to have Hibernate experience [59]). The studied systems fol-
low the typical “Model-View-Controller” design pat-
tern [60], and use Spring [54] to manage HTTP requests. We
use MySQL as the DBMS in our experiment.

5.2 Experiments

Our approach and framework require dynamic analysis.
However, since it is difficult to generate representativework-
loads (i.e., system use cases) for a system, we use the readily
available performance test suites in the studied systems (i.e.,
Pet Clinic and ES) to obtain the execution traces. If the perfor-
mance test suites are not present (i.e., Broadleaf), we use the
integration test suites as an alternate choice. Both the perfor-
mance and the integration test suites are designed to test dif-
ferent features in a system (i.e., use case testing). Both
performance and integration test suites provide more realis-
tic workloads and better test coverage [61]. Table 3 shows the
descriptions of the exercised test suites. Nevertheless, our
approach can be adapted to deployed systems or to monitor
real-world workloads for finding redundant data problems
in production.

We group the test execution traces according to the trans-
actions to which they belong. Typically in database-related
systems, a workload may contain one to many transactions.
For example, a workload may contain user login and user log-
out, which may contain two transactions (one for each user
operation).

6 EVALUATION OF OUR APPROACH

In this section, we discuss how we implement our approach
as a framework for evaluating our proposed approach, the

redundant data problems that are discovered by our frame-
work, and their performance assessment. We want to know
if our approach can discover redundant data problems. If
so, we want to also study what are the common redundant
data problems and their prevalence in the studied systems.
Finally, we assess the performance impact of the discovered
redundant data problems.

6.1 Framework Implementation

To evaluate our approach, we implement our approach as a
Java framework to detect redundant data problems in three
studied JPA systems. We implement our static analysis tool
for finding the needed database accesses using JDT [62]. We
use AspectJ [63] to perform bytecode instrumentation on the
studied systems. We instrument all the database-accessing
functions in the database entity classes in order to monitor
their executions. We also instrument the JDBC libraries in
order to monitor the generated SQL queries, andwe separate
the needed and requested database accesses according to the
transaction inwhich they belong (e.g., Fig. 3).

6.2 Case Study Results

Using our framework, we are able to find a large number of
redundant data problems in the studied systems. In fact, on
average 87 percent of the exercised transactions contain at
least one redundant data problem. Our approach is able to
find the redundant data problems in the code, but we are
also interested in understanding what kinds of redundant
data problems are there. Moreover, we use the discovered
redundant data problems to illustrate the performance
impact of the redundant data problems. However, other
types of redundant data problems may still be discovered
using our approach, and the types of the redundant data
problems that we study here is by no means complete. In
the following sections, we first describe the type of redun-
dant data problems that we discovered, then we discuss
their prevalence in our studied systems.

6.2.1 Types of Redundant Data Problems

We perform a manual study on a statistically representative
random sample of 344 transactions (to meet a confidence
level of 95 percent with a confidence interval of 5 per-
cent [64]) in the exercised test suites that contain at least one
redundant data problem (as shown in Table 3). We find that
most redundant data can be grouped into four types, which
we call: update all, select all, excessive data, and per-transaction
cache (other types of redundant data problems may still
exist, and may be discovered using our approach). Table 2

TABLE 1
Statistics of the Studied Systems

System Total lines
of code (K)

No. of
files

Max. No. of
columns

Pet Clinic 3.3K 51 6
Broadleaf 3.0 206K 1,795 28
ES > 300K > 3,000 > 50

TABLE 2
Overview of the Redundant Data Problems That
We Discovered in Our Exercised Workloads

Types Trans. Description

Update all Within Updating unmodified data
Select all Within Selecting unneeded data
Excessive data Within Selecting associated data

but the data is not used
Per-trans cache Across Selecting unmodified

data (caching problem)

Trans. column shows where the redundant data problem is discovered (i.e.,
within a transaction or across transactions).

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1153

shows an overview of the redundant data problems that we
discovered in our exercised workloads.

Update all. When a developer updates some columns of a
database entity object, all the database columns of the objects
are updated (e.g., the example in Section 1). The redundant
data problem is between the translations from objects to
SQLs, where ORM simply updates all the database columns.
This redundant data problem exists in some, but not all of
the ORM frameworks. However, it can cause serious perfor-
mance impact if not handle properly. There aremany discus-
sions on Stack Overflow regarding this type of redundant
data problem [6], [65]. Developers complain about its perfor-
mance impact when the number of columns or the size of
some columns is large. For example, columns with binary
data (e.g., pictures) would lead to a significant and unex-
pected overhead. In addition, this redundant data problem
can cause significant performance impact when the gener-
ated SQLs are updating unmodified non-cluster indexed col-
umns [9]. Prior studies [10], [11] have shown that the
number of columns in a table can be very large in real-world
systems (e.g., the tables in the OSCAR database have on aver-
age 30 columns [10]), and some systemsmay even have tables
with more than 500 columns [12]. Even in our studied sys-
tems, we find that some tables have more than 28, or even 50
columns (Table 1). Thus, this type of redundant data prob-
lemmay bemore problematic in large-scale systems.

Select all. When selecting entity objects from the DBMS,
ORM selects all the columns of an object, even though only
a small number of columns are used in the source code. For
example, if we only need a user’s name, ORMwill still select
all the columns, such as profile picture, address, and phone
number. Since ORM frameworks do not know what is the
needed data in the code, ORM frameworks can only select
all the columns.

We use the User class from Fig. 1 as an example. Calling
user:getNameðÞ ORM will generate the following SQL
query:

select u.id, u.name, u.address, u.pho-

ne_number, u.profile_pic from User u where

u.id=1.

However, if we only need the user0s name, selecting
other columns may bring in undesirable performance
overheads.

Developers also discuss the performance impact of this
type of redundant data problem [7], [66]. For example, devel-
opers are complaining that the size of some columns is too
large, and retrieving them from the database causes perfor-
mance issues [7]. Even though most ORM frameworks pro-
vide a way for developers to customize the data fetch,
developers still need to know how the data will be used in
the code. The dynamic analysis part of our approach can dis-
cover which data is actually needed in the code (and can pro-
vide a much higher accuracy than using only static analysis),
and thus can help developers configure ORMdata retrieval.

Excessive data. Excessive data is different from select all in all
aspects, since this type of redundant data problem is caused
by querying unnecessary entities from other database tables.
When using ORM frameworks, developers can specify rela-
tionships between entity classes, such as @OneToMany,
@OneToOne, @ManyToOne, and @ManyToMany. ORM
frameworks provide different optimization techniques for
specifying how the associated entity objects should be
fetched from the database. For example, a fetch type of
EAGER means that retrieving the parent object (e.g., Group)
will eagerly retrieve the child objects (e.g., User), regardless
whether the child information is accessed in the source code.

If the relationship is EAGER, then selecting Group will
result in the following SQL:

select g.id, g.name, g.type, u.id, u.gid,

u.name, u.address, u.phone_number, u.

profile_pic from Group g left outer join

User u on u.gid=g.id where g.id=1.

If we only need the group information in the code,
retrieving users along with the group causes undesirable
performance overheads, especially when there are many
users in the group.

ORM frameworks usually fetch the child objects using an
SQL join, and such an operation can be very costly. Devel-
opers have shown that removing this type of excessive data
problem can improve system performance significantly [67].
Different ORM frameworks provide different ways to
resolve this redundant data problem, and our approach can
provide guidance for developers on this type of problem.

Per-transaction cache. Our approach described in Section 4
also looks for redundant data problems across transactions
(e.g., some data is repeatedly retrieved from the DBMS but

TABLE 3
Prevalence of the Discovered Redundant Data Problems in Each Test Suite

System Test Case
Description

Total No.
of Trans.

Total No.
of Trans. with

Redundant Data

No. of Transactions with Redundant Data

Update All Select All Excessive
Data

Per-Trans.
Cache

Pet Clinic Browsing & Editing 60 60 (100%) 6 (10%) 60 (100%) 50 (83%) 7 (12%)

Broadleaf

Phone Controller 807 805 (99%) 4 (0.5%) 805 (100%) 203 (25%) 202 (25%)
Payment Info 813 611 (75%) 10 (1.6%) 611 (100%) 7 (1.1%) 200 (25%)
Customer Addr. 611 609 (99%) 7 (1.1%) 607 (99%) 7 (1.1%) 203 (33%)
Customer 604 602 (99%) 4 (0.7%) 602 (100%) 3 (0.5%) 200 (33%)
Offer 419 201 (48%) 19 (9%) 19 (9%) 17 (9%) 201 (100%)

ES Multiple Features > 1000 > 30% 3% 100% 0% 23%

The detail of ES is not shown due to NDA.

1154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

the data is not modified). We find that the same SQLs are
being executed across transactions, with no or only a very
little number of updates being called. Per-transaction cache is
completely different from one-by-one processing studied in a
prior study [14]. One-by-one processing is caused by repeat-
edly sending similar queries with different parameters (e.g.,
in a loop) within the same transaction. Per-transaction cache is
caused by non-optimal cache configuration: different transac-
tions need to query the database for the same data even
though the data is never modified. For example, consider
the following SQLs:

update user set name=‘Peter’, address=

‘Waterloo’, phone_number = ‘12345’ where

id=1;

select u.id, u.name, u.address, u.phone

number from User u where u.id=1;

...

select u.id, u.name, u.address, u.phone

number from User u where u.id=1;

The first select is needed because the user data was previ-
ously updated by another SQL query (the same primary key
in the where clause). The second select is not needed as the
data is not changed. Most ORM frameworks provide cache
mechanisms to reuse fetched data and to minimize database
accesses (Section 7), but the cache configuration is never auto-
matically optimized for different application systems [51].
Thus, some ORM frameworks even turn the cache off by
default. Developers are aware of the advantages of having a
global cache shared among transactions [44], but they may
not proactively leverage the benefit of such a cache. We have
seen cases in real-world large-scale systemswhere this redun-
dant data problem causes the exact same SQL query to be exe-
cuted millions of times in a short period of time, even though
the retrieved entity objects are notmodified. The cache config-
uration may be slightly different for different ORM frame-
works, but our approach is able to give a detailed view on the
overall data read and write. Thus, our approach can assist
developerswith cache optimization.

Note that, although some developers are aware of the
above-mentioned redundant data problems, it is not a com-
mon knowledge. Moreover, some developers may still for-
get to resolve the problem, as a redundant data problem
may become more severe as a system ages.

6.2.2 Prevalence of Redundant Data Problems

Table 3 shows the prevalence of the redundant data prob-
lems in the executed test suites (a transaction may have
more than one redundant data problem). Due to NDA, we
cannot show the detail results for ES. However, we see that
many transactions (> 30%) have an instance of a redundant
data problem in ES.

Most exercised transactions in BroadLeaf and Pet Clinic
have at least one instance of redundant data problem (e.g.,
at least 75 percent of the transactions in the five test suites
for BroadLeaf), and select all exists in almost every transac-
tion. On the other hand, update all does not occur in many
transactions. The reason may be that the exercised test
suites mostly read data from the database; while a smaller
number of test cases write data to database. We also find

that excessive data has a higher prevalence in Pet Clinic but
lower prevalence in Broadleaf.

Since the per-transaction cache problem occurs across mul-
tiple transactions (caused by non-optimized cache configu-
ration), we list the total number of SQLs and the number of
duplicate selects (caused by per-transaction cache) in each
test suite (Table 4). We filter out the duplicated selects
where the selected data is modified. We find that some test
suites have a larger number of duplicate selects than others.
In Pet Clinic, we find that the per-transaction cache problems
are related to selecting the information about a pet’s type
(e.g., a bird, dog, or cat) and its visits to the clinic. Since Pet
Clinic only allows certain pet types (i.e., six types), storing
the types in the cache can reduce a large number of unnec-
essary selects. In addition, the visit information of a pet
does not change often, so storing such information in the
cache can further reduce unnecessary selects. In short,
developers should configure the cache accordingly for dif-
ferent scenarios to resolve the per-transaction cache problem.

The four types of redundant data problems that are dis-
covered by our approach have a high prevalence in our
studied systems. We find that most transactions (on average
87 percent) contain at least one instance of our discovered
problems, and on average 20 percent of the generated SQLs
are duplicate selects (per-transaction cache problem).

6.3 Automated Performance Assessment

Since every ORM framework has different ways to resolve
the redundant data problems, it is impossible to provide an
automated ORM optimization for all systems. Yet, ORM
optimization requires a great amount of effort and a deep
understanding of the system workloads and design. Thus,
to reduce developers’ effort on resolving the redundant
data problems, we propose a performance assessment
approach to help developers prioritize their performance
optimization efforts.

6.3.1 Assessing the Performance Impact of Redundant

Data Problems

We follow a similar methodology as a previous study [15] to
automatically assess the performance impact of the redun-
dant data problem. Note that our assessment approach is
only for estimating the performance impact of redundant
data problems in different workloads, and cannot completely
fix the problems. Developers may wish to resolve these prob-
lems after further investigation. Below, we discuss the
approaches that we use to assess each type of the discovered
redundant data problems.

TABLE 4
Total Number of SQLs and the Number of Duplicated

Selects in Each Test Suite

System Test Case
Description

Total No.
of SQL queries

No. of
Duplicate Selects

Pet Clinic Browsing 32,921 29,882 (91%)
Broadleaf Phone Controller 1,771 431 (24%)

Payment Info 1,591 11 (0.7%)
Customer Addr. 2,817 21 (0.7%)

Customer 1,349 22 (1.6%)
Offer 1,052 41 (3.9%)

ES Multiple Features > > 10,000 > 10%

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1155

Assessing update all and select all. We use the needed data-
base accesses and the requested database accesses collected
during execution to assess update all and select all in the test
suites. For each transaction, we remove the requested col-
umns in an SQL if the columns are never used in the code.
We implement an SQL transformation tool for such code
transformation. We execute the SQLs before and after the
transformation, and calculate the differences in response
time after resolving the redundant data problem.

Assessing excessive data. Since we use static analysis to
parse all ORM configurations, we know how the entity clas-
ses are associated. Then, for each transaction, we remove
the eagerly fetched table in SQLs where the fetched data is
not used in the code. We execute the SQLs before and after
the transformation, and calculate the differences in response
time after resolving the discrepancies.

Assessing per-transaction cache. We analyze the SQLs to
assess the impact of per-transaction cache in the test suites. We
keep track of the modified database records by parsing the
update, insert, and delete clauses in the SQLs. To improve
the precision, we also parse the database schemas beforehand
to obtain the primary and foreign keys of each table. Thus, we
can better find SQLs that are modifying or selecting the same
database record (i.e., according to the primary key or foreign
key).We bypass an SQL select query if the queried data is not
modified since the execution of the last same SQL select.

6.3.2 Results of Performance Impact Study

We first present a statistically rigorous approach for perfor-
mance assessment. Then we present the results of our per-
formance impact study.

Statistically rigorous performance assessment
Performance measurements suffer from variances during

system execution, and such variances may lead to incorrect
results [20], [73]. As a result, it is important to provide confi-
dence intervals for performance measurements. We follow
the recommendation of Georges et al. [20] and repeat each
performance test for 30 times. We use a Student’s t-test to
determine if resolving a redundant data problem can result
in a statistically significant (p-value � 0:05) performance
improvement. Although the t-test requires the population to
be normally distributed, according to the Central Limit The-
orem, our performance measurements will be approxi-
mately normal (we repeat the same test under the same
environment for 30 times) [20], [64].

In addition, we calculate the effect sizes [74], [75] of the
response time differences. Unlike the t-test, which only tells
us if the differences of the mean between two populations are
statistically significant, effect sizes quantify the difference

between two populations. Reporting only the statistical sig-
nificance may lead to erroneous results [75] (i.e., if the sample
size is very large, p-value can be small even if the difference is
trivial). We use Cohen’s d to quantify the effects [75]. Cohen’s d
measures the effect size statistically, and has been used in
prior engineering studies [75], [76].

The strength of the effects and the corresponding range
of Cohen’s d values are [77]:

effect size ¼
trivial if Cohen0sd � 0:2
small if 0:2 < Cohen0sd � 0:5
medium if 0:5 < Cohen0sd � 0:8
large if 0:8 < Cohen0sd:

8
>><

>>:

Results of Performance Impact Study
In the rest of this section, we present and discuss the

results of our performance assessment. The experiments
are conducted using MySQL as the DBMS and two separate
computers, one for sending requests and one for hosting
the DBMS (our assessment approach compares the perfor-
mance between executing the original and the transformed
SQLs). The response time is measured at the client side
(computer that sends the requests). The two computers use
Intel Core i5 as their CPU with 8G of RAM, and they reside
in the same local area network (note that the performance
overhead caused by data transfer may be bigger if the com-
puters are on different networks).

Update all. Table 5 shows the assessed performance
improvement after resolving each type of redundant data
problem in each performance test suite. For each test
suite, we report the total response time (in seconds) along
with a confidence interval. In almost all test suites, resolv-
ing the update all problem gives a statistically significant
performance improvement. We find that, by only updat-
ing the required columns, we can achieve a performance
improvement of 4–7 percent with mostly medium to large
effect sizes. Unlike select queries, which can be cached by
the DBMS, update queries cannot be cached. Thus, reduc-
ing the number of update queries to the DBMS may, in
general, have a higher performance improvement. The
only exception is Pet Clinic, because the test suite is
related to browsing, which only performs a very small
number of updates (only six update SQL queries). ES also
does not have a significant improvement after resolving
update all.

As discussed in Section 6.2, the update all problem can
cause a significant performance impact in many situations.
In addition, many emerging cloud DBMSs implement the
design of column-oriented data storage, where data is

TABLE 5
Performance Impact Study by Resolving the Redundant Data Problems in Each Test Suite

1156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

stored as sections of columns, instead of rows [78]. As a
result, update all has a more significant performance impact
on column-oriented DBMSs, since the DBMS needs to seek
and update many columns at the same time for one
update.

Select all. The select all problem causes a statistically
significant performance impact in Pet Clinic, ES, and two
test suites in Broadleaf (3–31 percent improvement) with
varying effect sizes. Due to the nature of the Broadleaf
test suites, some columns have null values, which reduce
the overhead of data transmission. Thus, the effect of the
select all problem is not as significant as the update all
problem. In addition to what we discuss in Section 6.2,
select all may also cause a higher performance impact in
column-oriented DBMSs. When selecting many different
columns from a column-oriented DBMS, the DBMS
engine needs to seek for the columns in different data
storage pools, which would significantly increase the time
needed to retrieve data from the DBMS.

Excessive data. We find that the excessive data problem
has a high performance impact in Pet Clinic (92 percent
performance improvement), but only 2–6 percent improve-
ment in Broadleaf and 5 percent in ES with mostly non-
trivial effect sizes. Since we know that the performance
impact of the redundant data problem is highly dependent
on the exercised workloads, we are interested in knowing
the reasons that cause the large differences. After a manual
investigation, we find that the excessively selected table in
Pet Clinic has a @OneToMany relationship. Namely, the
transaction is selecting multiple associated excessive
objects from the DBMS. On the other hand, most excessive
data in Broadleaf has a @ManyToOne or @OneToOne rela-
tionship. Nevertheless, excessively retrieving single associ-
ated object (e.g., excessively retrieving the child object in a
@ManyToOne or @OneToOne relationship) may still cause
significant performance problems [79]. For example, if the
eagerly retrieved object contains large data (e.g., binary
data), or the object has a deep inheritance relationship
(e.g., the eagerly retrieved object also eagerly retrieves
many other associated objects), the performance would
also be impacted significantly.

Per-transaction cache. The per transaction cache problem has
a statistically significant performance impact in 4 out of 5
test suites in Broadleaf with non-trivial effect sizes. We also
see a large performance improvement in Pet Clinic, where
resolving the per-transaction cache problem improves the
performance by 88 percent. Resolving the per-transaction
cache problem also improves the ES performance by 10 per-
cent (with large effect sizes).

The performance impact of the per-transaction cache may
be large if, for example, some frequently accessed read-only
entity objects are stored in the DBMS and are not shared
among transactions [9]. These objects will be retrieved once
for each transaction, and the performance overhead
increases along with the number of transactions. Although
the DBMS cache may be caching these queries, there are still
transmission and cache-lookup overheads. Our results sug-
gest that the performance overheads can be minimized if
developers use the ORM cache configuration in order to
prevent ORM frameworks from retrieving the same data
from the DBMS across transactions.

All of our uncovered redundant data problems have a
performance impact in all studied systems. Depending on
the workloads, resolving the redundant data problems can
improve the performance by up to 92 percent (17 percent
on average). Our approach can automatically flag redun-
dant data problems that have a statistically significant
performance impact, and developers may use our approach
to prioritize their performance optimization efforts.

7 A SURVEY ON THE REDUNDANT DATA

PROBLEMS IN OTHER ORM FRAMEWORKS

In previous sections, we apply our approach on the studied
systems. We discover four types of redundant data prob-
lems, and we further illustrate their performance impact.
However, since we only evaluate our approach on the stud-
ied systems, we do not know if the discovered redundant
data problems also exist in other ORM frameworks. Thus,
we conduct a survey on four other popular ORM frame-
works across four programming languages, and study the
existence of the discovered redundant data problems.

We study the documents on the ORM frameworks’ offi-
cial websites, and search for developer discussions about
the redundant data problems. Table 6 shows the existence
of the studied redundant data problems in the surveyed
ORM frameworks under default configurations. Our stud-
ied systems use Hibernate as the Java ORM solution (i.e.,
one of the most popular implementations of JPA), and we
further survey EclipseLink, NHibernate, Entity Framework,
Django, and ActiveRecord. EclipseLink is another JPA
implementation developed by the Eclipse Foundation. NHi-
bernate is one of the most popular ORM solution for C#,
Entity Framework is an ORM framework that is provided
by Microsoft for C#, and Django is the most popular Python
web framework, which comes with a default ORM frame-
work. Finally, ActiveRecord is the default ORM for the
most popular Ruby web framework, Ruby on Rails.

Update all. Most of the surveyed ORM frameworks have
the update all problem, but the problem does not exist in
EclipseLink and ActiveRecord [80], [81]. These two ORM
frameworks keep track of which columns are modified and
only update the modified columns. This is the design trade-
off that the ORM developers made. The pros of the design
decision is that this redundant data problem is handled by
default. However, this will also introduce overheads such
as tracking modifications and generating different SQLs for
each update [82]. All other surveyed ORM frameworks pro-
vide some way for developers to customize the update to
only update the modified columns (e.g., Hibernate supports

TABLE 6
Existence of the Studied Redundant Data Problems in the
Surveyed ORM Frameworks (under Default Configurations)

Lang.
ORM

Framework
Update

all
Select
all

Exce.
Data

Per-trans.
Cache

Java Hibernate Yes Yes Yes Yes
Java EclipseLink No Yes Yes Yes
C# NHibernate Yes Yes Yes Yes
C# Entity Framework Yes Yes Yes Yes
Python Django Yes Yes Yes Yes
Ruby ActiveRecord No Yes Yes Yes

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1157

a dynamic-update configuration). Although the actual fixes
may be different, the idea on how to fix them is the same.

Select all. All of the surveyed ORM frameworks have the
select all problem. The reason may be the ORM implementa-
tion difficulties, since ORM frameworks do not know how
the retrieved data will be used in the system. Nevertheless,
all the surveyed ORM frameworks provide some way to
retrieve only the needed data from theDBMS (e.g., [83], [84]).

Excessive data. All of the surveyed ORM frameworks may
have the excessive data problem. However, some ORM
frameworks handle this problem differently. For example,
the Django, NHibernate, Entity Framework, and ActiveRe-
cord frameworks allow developers to specify the fetch type
(e.g., EAGER versus LAZY) for each data retrieval. Although
Hibernate and EclipseLink require developers to set it at the
class level, there are still APIs that can configure the fetch
type for each data retrieval [44].

Per-transaction cache.All of the surveyed ORM frameworks
support some ways to share an object among transactions
through caching. In the case of distributed systems, it is diffi-
cult to find a balance point between performance and stale
data when using caches. Solving the problem will require
developers to recover the entire workloads, and determine
the tolerance level of stale data. Since our approach analyzes
dynamic data, it can be used to help identify where and how
to place the cache in order to optimize system performance.

8 THREATS TO VALIDITY

In this section, we discuss the potential threats to validity of
our work.

8.1 External Validity

We conduct our case study on three systems. Some of the
redundant data problems may not exist in other systems,
and we might also miss some problems. We try to address
this problem by picking systems with various sizes, and
include both open source and industrial systems in our
study. Nevertheless, the most important part of our
approach is that it can be adapted to find redundant data
problems in other systems using various ORM frameworks.

8.2 Construct Validity

Manual classification of the redundant data problems. Our case
study includesmanual classification of the types of redundant
data between the source code and the generated SQLs. We
evaluate our discovered types of redundant data problems by
studying their prevalence in the exercised workflows, but our
findings may contain subjective bias and we may miss other
types of redundant data problems. Nevertheless, we study
the redundant data problems that are discovered in our stud-
ied systems to illustrate the impact of redundant data prob-
lems, but our approach is applicable to other systems.

Experimental setup. We use either the performance or the
integration test suites to exercise different workflows of
the studied systems. These test suites may not cover all the
workflows in the systems, and the workflows may not all be
representative to real system workflows. However, our
approach can be easily adapted to other workflows. The
studied workflows demonstrate the feasibility and useful-
ness of our approach.

The redundant data problems that are studied in this
paper may have different performance impact in other
workflows, yet we have shown that developers indeed care
about the impact of these redundant data problems. We
conduct performance assessments in an experimental envi-
ronment, which may also lead to different results compared
to the performance impact in real-world environment.
However, the improvements should be very similar in the
production environment given that other conditions such as
hardware are the same. Moreover, resolving the redundant
data problem is challenging, as it requires a deep under-
standing of the system design and workflows. For example,
one needs to first locate the workflows that have redundant
data problems, and customize ORM configurations for the
workflows based on the logic in the source code. Our pro-
posed approach can provide an initial performance assess-
ment, and the results can be used to assist developers in
prioritizing their performance optimization efforts.

Redundant data problems in different ORM frameworks. Sec-
tion 7 provides a survey on the redundant data problems in
different ORM frameworks. We do not include the fixes of
the redundant data problems, but the fixes are very similar
across ORM frameworks. Moreover, the fixes are available
in the frameworks’ official documents. Although we did not
survey the impact of the redundant data problems, the
impact should be similar across ORM frameworks.

9 CONCLUSION

Object-Relational Mapping frameworks provide a concep-
tual abstraction for mapping the source code to the DBMS.
Since ORM automatically translates object accesses and
manipulations to database queries, ORM significantly sim-
plifies software development. Thus, developers can focus
on business logic instead of worrying about non-trivial
database access details. However, ORM mappings intro-
duce redundant data problems (e.g., the needed data in the
code does not match with the requested data by the ORM
framework), which may cause serious performance prob-
lems. In this paper, we proposed an automated approach to
locate the redundant data problems in the code. We also
proposed an automated approach for helping developers
prioritize the efforts on fixing the redundant data problems.
We conducted a case study on two open source and one
enterprise system to evaluate our approaches. We found
that, depending on the workflow, all the redundant data
problems that are discussed in the paper have statistically
significant performance overheads, and developers are con-
cerned about the impacts of these redundant data problems.
Developers do not need to manually locate the redundant
data problems in thousands of lines of code, and can lever-
age our approach to automatically locate and prioritize the
effort to fix these redundant data problems.

ACKNOWLEDGMENTS

We are grateful to BlackBerry for providing access to the
enterprise system used in our case study. The finding and
opinions expressed in this paper are those of the authors and
do not necessarily represent or reflect those of BlackBerry
and/or its subsidiaries and affiliation. Our results do not in
anyway reflect the quality of BlackBerry’s products.

1158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

REFERENCES

[1] M. Keith and M. Schincariol, Pro JPA 2: Mastering the Java Persis-
tence API. New York City, NY, USA: Apress, 2009.

[2] D. Barry and T. Stanienda, “Solving the Java object storage prob-
lem,” IEEE Comput., vol. 31, no. 11, pp. 33–40, Nov. 1998. [Online].
Available: http://dx.doi.org/10.1109/2.730734

[3] N. Leavitt, “Whatever happened to object-oriented databases?”
IEEE Comput., vol. 33, no. 8, pp. 16–19, Aug. 2000.

[4] R. Johnson, “J2EE development frameworks,” IEEE Comput.,
vol. 38, no. 1, pp. 107–110, Jan. 2005.

[5] Django. (Mar. 2016). Specifying which fields to save [Online].
Avialable: https://docs.djangoproject.com/en/dev/ref/models/
instances/#specifying- which-fields-to-save

[6] JPA2.0/hibernate: Why JPA fires query to update all columns
value even some states of managed beans are changed?
(Mar. 2016) [Online]. Available: http://stackoverflow.com/ques-
tions/15760934/jpa2-0-hibernate-why-jpa-fi res-query-to-update-
all-columns-value-even-some-stat

[7] Hibernate criteria query to get specific columns (Mar. 2016)
[Online]. Available: http://stackoverflow.com/questions/
11626761/hibernate-criteria-query-to -get-specific-columns

[8] NHibernate update on single property updates all properties in
SQL (Mar. 2016) [Online]. Available: http://stackoverflow.com/
questions/813240/nhibernate-update-on-single-property-updates-
all-properties-in-sql

[9] P. Zaitsev, V. Tkachenko, J. Zawodny, A. Lentz, and D. Balling,
High Perform. MySQL: Optimization, Backups, Replication, More.
Sebastopol, CA, USA: O’Reilly Media, 2008.

[10] L. Meurice and A. Cleve, “Dahlia: A visual analyzer of database
schema evolution,” in Proc. Softw. Evolution Week—Softw. Mainte-
nance, Reeng. Reverse Eng., 2014, pp. 464–468.

[11] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution
of schema and code in database applications,” in Proc. 9th Joint
Meeting Found. Softw. Eng., 2013, pp. 125–135.

[12] mysql—How many columns is too many? (Mar. 2016) [Online].
Available: http://stackoverflow.com/questions/3184478/how-
many-columns-is-too-many -columns

[13] J. Sutherland (Mar. 2016). How to improve JPA performance by
1,825% [Online]. Available: http://java-persistence-performance.
blogspot.ca/2011/06/how-to-improve-jpa-performance-by-1825.
html

[14] T.-H. Chen, S. Weiyi, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 1001–1012.

[15] M. Jovic, A. Adamoli, and M. Hauswirth, “Catch me if you can:
Performance bug detection in the wild,” in Proc. ACM Int. Conf.
Object Oriented Program. Syst. Languages Appl., 2011, pp. 155–170.

[16] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting
performance problems via similar memory-access patterns,” in
Proc. 2013 Int. Conf. Softw. Eng., 2013, pp. 562–571.

[17] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel: Detecting
and fixing performance problems that have non-intrusive fixes,”
in Proc. 37th IEEEE Int. Conf. Softw. Eng., 2015, pp. 902–912.

[18] S. PetClinic. (Mar. 2016). Petclinic [Online]. Available: https://
github.com/SpringSource/spring-petclinic/

[19] B. Commerce. (Mar. 2016). Broadleaf commerce [Online]. Avail-
able: http://www.broadleafcommerce.org/

[20] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous
Java performance evaluation,” in Proc. 22nd Annu. ACM SIGPLAN
Conf. Object-Oriented Program. Syst. and Appl., 2007, pp. 57–76.

[21] W. H. Brown, R. C. Malveau, and T. J. Mowbray, AntiPatterns:
Refactoring Softw., Architectures, Projects Crisis. Hoboken, NJ, USA:
Wiley, 1998.

[22] R. Fourati, N. Bouassida, and H. Abdallah, “A metric-based
approach for anti-pattern detection in UML designs,” in Computer
and Information Science, Berlin, Germany: Springer, 2011.

[23] D. Ballis, A. Baruzzo, and M. Comini, “A rule-based method to
match software patterns against UML models,” Electron. Notes
Theor. Comput. Sci., vol. 219, pp. 51–66, Nov. 2008. [Online]. Avail-
able: http://dx.doi.org/10.1016/j.entcs.2008.10.034

[24] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from per-
fection is a better criterion than closeness to evil when identifying
risky code,” in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng.,
2010, pp. 113–122.

[25] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proc. 20th IEEE Int. Conf. Softw. Mainte-
nance, 2004, pp. 350–359.

[26] N. Moha, Y. Guhneuc, L. Duchien, and A. Le Meur, “Decor: A
method for the specification and detection of code and design
smells,” IEEE Trans. Softw. Eng, vol. 36, no. 1, pp. 20–36, Jan./Feb.
2010.

[27] F. Khomh, S. Vaucher, Y.-G. Gu�eh�eneuc, and H. Sahraoui, “Bdtex:
A GQM-based Bayesian approach for the detection of anti-
patterns,” J. Syst. Softw., vol. 84, no. 4, pp. 559–572, Apr. 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2010.11.921

[28] D. Settas, A. Cerone, and S. Fenz, “Enhancing ontology-based
antipattern detection using Bayesian networks,” Expert Syst.
Appl., vol. 39, no. 10, pp. 9041–9053, Aug. 2012. [Online]. Avail-
able: http://dx.doi.org/10.1016/j.eswa.2012.02.049

[29] A. Maiga, N. Ali, N. Bhattacharya, A. Saban�e, Y.-G. Gu�eh�eneuc,
G. Antoniol, and E. A€ımeur, “Support vector machines for anti-
pattern detection,” in Proc. 27th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2012, pp. 278–281.

[30] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Gueheneuc,
and E. Aimeur, “Smurf: A SVM-based incremental anti-pattern
detection approach,” in Proc. 19th Working Conf. Reverse Eng.,
2012, pp. 466–475.

[31] A. Cheung, S. Madden, and A. Solar-Lezama, “Sloth: Being lazy is
a virtue (when issuing database queries),” in Proc. Int. Conf.
Manag. Data, 2014, pp. 931–942.

[32] K. Ramachandra and S. Sudarshan, “Holistic optimization by pre-
fetching query results,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2012, pp. 133–144.

[33] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan,
“Program transformations for asynchronous query submission,”
in Proc. IEEE 27th Int. Conf. Data Eng., 2011 , pp. 375–386.

[34] I. T. Bowman and K. Salem, “Optimization of query streams using
semantic prefetching,” ACM Trans. Database Syst., vol. 30, no. 4,
pp. 1056–1101, Dec. 2005.

[35] A. E. Chis, “Automatic detection of memory anti-patterns,” in
Proc. Companion 23rd ACM SIGPLAN Conf. Object-Oriented Pro-
gram. Syst. Languages Appl., 2008, pp. 925–926.

[36] T. Parsons and J. Murphy, “A framework for automatically detect-
ing and assessing performance antipatterns in component based
systems using run-time analysis,” in Proc. 9th Int. Workshop Com-
ponent Oriented Program., 2004, pp. 1–8.

[37] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky,
“Software bloat analysis: Finding, removing, and preventing per-
formance problems in modern large-scale object-oriented
applications,” in Proc. FSE/SDP Workshop Future Softw. Eng. Res.,
2010, pp. 421–426.

[38] X. Xiao, S. Han, D. Zhang, and T. Xie, “Context-sensitive delta
inference for identifying workload-dependent performance
bottlenecks,” in Proc. Int. Symp. Softw. Testing Anal., 2013, pp. 90–
100.

[39] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and
G. Sevitsky, “Finding low-utility data structures,” in Proc. ACM
SIGPLAN Conf. Program. Language Des. Implementation, 2010, pp.
174–186.

[40] M. Grechanik, B. Hossain, and U. Buy, “Testing database-centric
Application for causes of database deadlocks,” in Proc. 6th Int.
Conf. Softw. Testing Verification Validation, 2013, pp. 174–183.

[41] M. Grechanik, B. M. M. Hossain, U. Buy, and H. Wang,
“Preventing database deadlocks in application,” in Proc. 9th Joint
Meeting Found. Softw. Eng., 2013, pp. 356–366.

[42] S. Chaudhuri, V. Narasayya, and M. Syamala, “Bridging the
application and DBMS profiling divide for database application
developers,” in Proc. 33rd Int. Conf. Very Large Data Bases, 2007,
pp. 1039–1042.

[43] B. Chess and J. West, Secure Programming with Static Analysis, 1st
ed. Reading, MA, USA: Addison-Wesley, 2007.

[44] J. Sutherland and D. Clarke, Java Persistence. Wikibooks, 2013,
https://en.wikibooks.org/wiki/Java_Persistence

[45] J. Community. (Mar. 2016). Hibernate [Online]. Available: http://
www.hibernate.org/

[46] A. S. Foundation (Mar. 2016). Apache openjpa [Online]. Available:
http://openjpa.apache.org/

[47] T. E. Foundation. (Mar. 2016). Eclipselink [online]. Available:
http://www.eclipse.org/eclipselink/

[48] IBM. (Mar. 2016). Websphere [Online]. Available: http://www-
01.ibm.com/Software/ca/en/websphere/

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1159

[49] O. S. Ltd. (Mar. 2016). JPA performance benchmark [Online].
Available: http://www.jpab.org/All/All/All.html

[50] E. Foundation. (Mar. 2016). Eclipselink JPA 2.1 [Online].
Available: https://wiki.eclipse.org/EclipseLink/Release/2.5/
JPA21#Entity_Graphs

[51] M. Keith and R. Stafford, “Exposing the ORM cache,” Queue,
vol. 6, no. 3, pp. 38–47, May 2008.

[52] A. Dasgupta, V. Narasayya, and M. Syamala, “A static analysis
framework for database application,” in Proc. IEEE Int. Conf. Data
Eng., 2009, pp. 1403–1414.

[53] FoundationDB (Mar. 2016) [Online]. Available: http://commu-
nity.foundationdb.com/

[54] SpringSource. (Mar. 2016). Spring framework [Online]. Available:
www.springsource.org/

[55] Z. M. Jiang, A. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in Proc. IEEE Int. Conf.
Softw. Maintenance, Sept 2008, pp. 307–316.

[56] A. van Hoorn, M. Rohr, and W. Hasselbring, “Generating proba-
bilistic and intensity-varying workload for web-based software
systems,” in Proc. SPEC Int. Perform. Eval. Workshop Perform. Eval.:
Metrics, Models Benchmarks, 2008, pp. 124–143.

[57] M. Grechanik, C. Fu, and Q. Xie, “Automatically finding perfor-
mance problems with feedback-directed learning software
testing,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 156–166.

[58] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever,
S. Giesecke, and W. Hasselbring, “Kieker: Continuous monitoring
and on demand visualization of Java software behavior,” in Proc.
IASTED Int. Conf. Softw. Eng., 2008, pp. 80–85.

[59] A. Cheung, A. Solar-Lezama, and S. Madden, “Optimizing data-
base-backed application with query synthesis,” in Proc. 34th ACM
SIGPLAN Conf. Program. Language Des. Implementation, 2013,
pp. 3–14.

[60] G. E. Krasner and S. T. Pope, “A cookbook for using the model-
view controller user interface paradigm in smalltalk-80,” J. Object
Oriented Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[61] R. Binder, Testing Object-Oriented System: Models, Patterns, Tools.
Reading, MA, USA: Addison-Wesley, 2000.

[62] E. Foundation. (Mar. 2016). Eclipse Java development tools
[Online]. Available: https://eclipse.org/jdt/

[63] T. E. Foundation. (Mar. 2016). Aspectj [Online]. Available: http://
eclipse.org/aspectj/

[64] D. Moore, G. MacCabe, and B. Craig, Introduction Practice Statis-
tics. San Francisco, CA, USA: Freeman, 2009.

[65] Why in JPA Hibernate update query: All attributes get update in
SQL [Online]. Available: http://stackoverflow.com/questions/
10315377/why-in-jpa-hibernate-update -query-all-attributes-get-
update-in-sql

[66] C. McDonald. (Mar. 2016). JPA performance, don’t ignore the data-
base [Online]. Available: https://weblogs.java.net/blog/caro-
ljmcdonald/archive/2009/08/28/jpa-per formance-dont-ignore-
database-0

[67] J. Dubois. (Mar. 2016). Improving the performance of the spring-
petclinic sample application [Online]. Available: http://blog.
ippon.fr/2013/03/14/improving-the-performance-of-the-spring-
pe tclinic-sample-application-part-4-of-5/

[68] Hibernate produce different SQL for every query (Mar. 2016)
[Online]. Available: http://stackoverflow.com/questions/
9452183/hibernate-produce-different- sql-for-every-query

[69] Why is the hibernate query.list() slow? (Mar. 2016) [Online].
Available: http://stackoverflow.com/questions/12163268/why-
is-the-hibernate-query- list-slow/15257317#15257317

[70] O. Inc. (Mar. 2016). Database JDBC developer’s guide and refer-
ence [Online]. Available: http://docs.oracle.com/cd/B28359_01/
java.111/b31224/stmtcach.htm

[71] Generate identical column aliases among cluster (Mar. 2016)
[Online]. Available: https://hibernate.atlassian.net/browse/
HHH-2448

[72] Deterministic column aliases across cluster nodes with non-
identical mappings (Mar. 2016) [Online]. Available: https://hiber-
nate.atlassian.net/browse/HHH-7903

[73] T. Kalibera and R. Jones, “marking in reasonable timerigorous
benchmarking in reasonable time,” in Proc. Int. Symp. Int. Symp.
Memory Manag., 2013, pp. 63–74.

[74] S. Nakagawa and I. C. Cuthill, “Effect size, confidence interval
and statistical significance: a practical guide for biologists,” Biolog-
ical Rev., vol. 82, pp. 591–605, 2007.

[75] V. B. Kampenes, T. Dyba
�
, J. E. Hannay, and D. I. K. Sjøberg,

“Systematic review: A systematic review of effect size in software
engineering experiments,” Inf. Softw. Technol., vol. 49, no. 11-12,
pp. 1073–1086, Nov. 2007.

[76] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg, “Preliminary guidelines for empiri-
cal research in software engineering,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 721–734, Aug. 2002.

[77] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Mah-
wah NJ, USA: L. Erlbaum Associates, 1988.

[78] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics application
when deploying on hadoop clouds,” in Proc. Int. Conf. Softw. Eng.,
2013, pp. 402–411.

[79] Making a onetoone-relation lazy (Mar. 2016) [Online]. Available:
http://stackoverflow.com/questions/1444227/making-a-oneto-
one-relation-l azy

[80] EclipseLink. (Mar. 2016). Eclipselink documentation [Online].
Available: http://www.eclipse.org/eclipselink/documentation/
2.5/solutions/migrhib0 02.htm

[81] R. on Rails. (Mar. 2016). What’s new in edge rails partial updates
[Online]. Available: http://archives.ryandaigle.com/articles/
2008/4/1/what-s-new-in-edge-rai ls-partial-updates

[82] Hibernate: Dynamic-update dynamic-insert—performance effects
(Mar. 2016) [Online]. Available: http://stackoverflow.com/ques-
tions/3404630/hibernate-dynamic-update-dyn amic-insert-
performance-effects?lq=1

[83] EclipseLink. (Mar. 2016). Eclipselink documentation [Online].
Available: http://eclipse.org/eclipselink/documentation/2.4/
concepts/descriptors00 2.htm

[84] Django objects values select only some fields (Mar. 2016)
[Online]. Available: http://stackoverflow.com/questions/
7071352/django-objects-values-select -only-some-fields

Tse-Hsun Chen is a PhD student in the Software
Analysis and Intelligence (SAIL) Lab at Queen’s
University, Canada. He obtained his BSc from the
University of British Columbia, and MSc from
Queen’s University. His research interests include
performance engineering, database performance,
program analysis, log analysis, and mining soft-
ware repositories.

Weiyi Shang is an assistant professor in the
Department of Computer Science and Software
Engineering at Concordia University, Montreal.
His research interests include big-data software
engineering, software engineering for ultra-large-
scale systems, software log mining, empirical
software engineering, and software performance
engineering. Shang received a PhD in computing
from Queen’s University, Canada.

Zhen Ming Jiang is an Assistant Professor at the
Department of Electrical Engineering and Com-
puter Science, York University. Prior to joining
York, he worked at BlackBerry Performance
Engineering Team. His research interests lie
within Software Engineering and Computer Sys-
tems, with special interests in software perfor-
mance engineering, mining software repositories,
source code analysis, software architectural
recovery, software visualizations and debugging
and monitoring of distributed systems. Some of

his research results are already adopted and used in practice on a daily
basis. He is the co-founder and co-organizer of the annually held Inter-
national Workshop on Large-Scale Testing (LT). He is also the recipient
of several best paper awards including ICST 2016, ICSE 2015 (SEIP
track), ICSE 2013, WCRE 2011 and MSR 2009 (challenge track). Jiang
received his PhD from the School of Computing at the Queen’s Univer-
sity. He received both his MMath and BMath degrees in Computer
Science from the University of Waterloo.

1160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

Ahmed E. Hassan is a Canada Research Chair
in Software Analytics and the NSERC/Blackberry
Industrial Research Chair at the School of Com-
puting in Queen’s University. Dr. Hassan serves
on the editorial board of the IEEE Transactions
on Software Engineering, the Journal of Empiri-
cal Software Engineering, and PeerJ Computer
Science. He spearheaded the organization and
creation of the Mining Software Repositories
(MSR) conference and its research community.
Early tools and techniques developed by

Dr. Hassan’s team are already integrated into products used by millions
of users worldwide. Dr. Hassan industrial experience includes helping
architect the Blackberry wireless platform, and working for IBM
Research at the Almaden Research Lab and the Computer Research
Lab at Nortel Networks. Dr. Hassan is the named inventor of patents at
several jurisdictions around the world including the United States,
Europe, India, Canada, and Japan.

Mohamed Nasser is currently the manager of Performance Engineer-
ing team for the BlackBerry Enterprise Server at Research In Motion.
He has a special interest in designing new technologies to improve per-
formance and scalability of large communication systems. This interest
has been applied in understanding and improving communication sys-
tems that are globally distributed. He holds a BS degree in Electrical
and Computer Engineering from The State University of New Jersey-
New Brunswick.

Parminder Flora is currently the director of Performance and Test
Automation for the BlackBerry Enterprise Server at BlackBerry. He
founded the team in 2001 and has overseen its growth to over 40 peo-
ple. He holds a BS degree in Computer Engineering from McMaster Uni-
versity and has been involved for over 10 years in performance
engineering within the telecommunication field. His passion is to ensure
that BlackBerry provides enterprise class software that exceeds cus-
tomer expectations for performance and scalability.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: FINDING AND EVALUATING THE PERFORMANCE IMPACT OF REDUNDANT DATA ACCESS FOR APPLICATIONS THAT ARE... 1161

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

