IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 11,

NOVEMBER 2015

1091

A Survey on Load Testing of Large-Scale
Software Systems

Zhen Ming Jiang, Member, IEEE and Ahmed E. Hassan, Member, IEEE

Abstract—Many large-scale software systems must service thousands or millions of concurrent requests. These systems must be
load tested to ensure that they can function correctly under load (i.e., the rate of the incoming requests). In this paper, we survey the
state of load testing research and practice. We compare and contrast current techniques that are used in the three phases of a load
test: (1) designing a proper load, (2) executing a load test, and (3) analyzing the results of a load test. This survey will be useful for load
testing practitioners and software engineering researchers with interest in the load testing of large-scale software systems.

Index Terms—Software testing, load testing, software quality, large-scale software systems, survey

1 INTRODUCTION

ANY large-scale systems ranging from e-commerce

websites to telecommunication infrastructures must
support concurrent access from thousands or millions of
users. Studies show that failures in these systems tend to be
caused by their inability to scale to meet user demands,
as opposed to feature bugs [1], [2]. The failure to scale
often leads to catastrophic failures and unfavorable media
coverage (e.g., the meltdown of the Firefox website [3],
the botched launch of Apple’s MobileMe [4] and US
Government’s Health Care Website [5]). To ensure the qual-
ity of these systems, load testing is a required testing
procedure in addition to conventional functional testing
procedures, like unit testing and integration testing.

This paper surveys the state of research and practices in
the load testing of large-scale software systems. This paper
will be useful for load testing practitioners and software
engineering researchers with interests in testing and analyz-
ing large-scale software systems. Unlike functional testing,
where we have a clear objective (pass/fail criteria), load
testing can have one or more functional and non-functional
objectives as well as different pass/fail criteria. As illus-
trated in Fig. 1, we propose the following three research
questions on load testing based on the three phases of tradi-
tional software testing (test design, test execution and test
analysis [6]):

1) How is a proper load designed? The Load Design phase
defines the load that will be placed on the system
during testing based on the test objectives (e.g.,

o Z.M. Jiang is with the Software Construction, AnaLytics and Evaluation
(SCALE) Lab, Department of Electrical Engineering and Computer
Science, York University, Toronto, ON, Canada.

E-mail: zmjiang@cse.yorku.ca.

e A.E. Hassan is with the Software Analysis and Intelligence (SAIL) Lab,
School of Computing, Queen’s University, Kingston, ON, Canada.
E-mail: ahmed@cs.queensu.ca.

Manuscript received 9 June 2014; revised 13 May 2015; accepted 31 May
2015. Date of publication 14 June 2015; date of current version 13 Nov. 2015.
Recommended for acceptance by M. Woodside.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2015.2445340

detecting functional and performance problems
under load). There are two main schools of load
designs: (1) designing realistic loads, which simulate
workload that may occur in the field; or (2) designing
fault-inducing loads, which are likely to expose load
related problems. Once the load is designed, some
optimization and reduction techniques could be
applied to further improve various aspects of the
load (e.g., reducing the duration of a load test). In
this research question, we will discuss various load
design techniques and explore a number of load
design optimization and reduction techniques.

2) How is a load test executed? In this research question,
we explore the techniques and practices that are
used in the Load Test Execution phase. There are three
different test execution approaches: (1) using live-
users to manually generate load, (2) using load driv-
ers to automatically generate load, and (3) deploying
and executing the load test on special platforms (e.g.,
a platform which enables deterministic test execu-
tions). These three load test execution approaches
share some commonalities and differences in the fol-
lowing three aspects: (1) setup, which includes
deploying the system and configuring the test infra-
structure and the test environment, (2) load genera-
tion and termination, and (3) test monitoring and
data collection.

3) How is the result of a load test analyzed? In this research
question, we survey the techniques used in the Load
Test Analysis phase. The system behavior data (e.g.,
execution logs and performance counters) recorded
during the test execution phase needs to be analyzed
to determine if there are any functional or non-func-
tional load-related problems. There are three general
load test analysis approaches: (1) verifying against
known thresholds (e.g., detecting violations in reli-
ability requirements), (2) checking for known prob-
lems (e.g., memory leak detection), and (3) inferring
anomalous system behavior.

The structure of this paper is organized as follows:

Section 2 provides some background about this survey.

0098-5589 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1092

Load Test Objectives

Design a Load Test
Designing Realistic Loads | Designing Fault-Inducing Loads
Load Design Optimization and Reduction

Testing Load

Execute the Load Test
Live-User Based ’ Driver Based
Test Execution Test Execution
Setup

Emulation Based
Test Execution

Load Generation and Termination

Test Monitoring and Data Collection

Recorded System
Behavior Data

Analyze the Load Test
Verifying Against ‘ Detecting Known ‘

Detecting Anomalous

Threshold Values Problems Behavior

Test Results

Fig. 1. Load testing process.

Then, based on the flow of a load test, we discuss the techni-
ques that are used in designing a load test (Section 3), in
executing a load test (Section 4), and in analyzing the results
of a load test (Section 5). Section 6 concludes our survey.

2 BACKGROUND

Contrary to functional testing, which has clear testing objec-
tives (pass/fail criteria), load testing objectives (e.g., perfor-
mance requirements) are not clear in the early development
stages [7], [8] and are often defined later on a case-by-case
basis (e.g., during the initial observation period in a load
test [9]). There are many different interpretations of load
testing, both in the context of academic research and indus-
trial practices (e.g., [10], [11], [12], [13]). In addition, the
term load testing is often used interchangeably with two
other terms: performance testing (e.g., [14], [15], [16]) and
stress testing (e.g., [11], [17], [18]). In this section, we first
provide our “own” working definition of load testing by
contrasting among various interpretations of load, perfor-
mance and stress testing. Then we briefly explain our selec-
tion process of the surveyed papers.

2.1 Definitions of Load Testing, Performance
Testing and Stress Testing

We find that these three types of testing share some com-
mon aspects, yet each has its own focus. In the rest of this
section, we first summarize the various definitions of the
testing types. Then we illustrate their relationship with
respect to each other. Finally, we present our definition of
load testing. Our load testing definition unifies the existing
load testing interpretations as well as performance and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015
stress testing interpretations, which are also about load test-
ing. There could be other aspects/objectives (e.g., additional
non-functional requirements) of load testing that we may
have missed due to our understanding of the objectives of
software testing and our survey process.

Table 1 outlines the interpretations of load testing, per-
formance testing and stress testing in the existing literature.
The table breaks down various interpretations of load, per-
formance and stress testing along the following dimensions:

e Objectives refer to the goals that a test is trying to
achieve (e.g., detecting performance problems under
load);

e Stages refer to the applicable software development
stages (e.g., design, implementation, or testing), dur-
ing which a test occurs;

e Terms refer to the terminology used in the relevant
literature (e.g., load testing and performance testing);

o Is It Load Testing? indicates whether we consider
such cases (performance or stress testing) to be load
testing based on our working definition of load test-
ing. The criteria for deciding load, performance and
stress testing is presented later (Section 2.2).

2.1.1 Load Testing

Load testing is the process of assessing the behavior of a
system under load in order to detect load-related problems.
The rate at which different service requests are submitted to
the system under test (SUT) is called the load [73]. The load-
related problems can be either functional problems that
appear only under load (e.g, such as deadlocks, racing,
buffer overflows and memory leaks [23], [24], [25]) or non-
functional problems which are violations in non-functional
quality-related requirements under load (e.g., reliability [23],
[37], stability [10], and robustness [30]).

Load testing is conducted on a system (either a prototype
or a fully functional system) rather than on a design or an
architectural model. In the case of missing non-functional
requirements, the pass/fail criteria of a load test are usually
derived based on the “no-worse-than-before” principle. The
“no-worse-than-before” principle states that the non-func-
tional requirements of the current version should be at least
as good as the prior version [26]. Depending on the objec-
tives, the load can vary from a normal load (the load
expected in the field when the system is operational [23],
[37]) or a stress load (higher than the expected normal load)
to uncover functional or non-functional problems [29].

2.1.2 Performance Testing

Performance testing is the process of measuring and/or
evaluating performance related aspects of a software sys-
tem. Examples of performance related aspects include
response time, throughput and resource utilizations [24],
[25], [74].

Performance testing can focus on parts of the system
(e.g., unit performance testing [61] or GUI performance
testing [75]), or on the overall system [24], [25], [48]. Perfor-
mance testing can also study the efficiency of various
design/architectural decisions [63], [64], [65], different
algorithms [58], [59] and various system configurations [48],

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS 1093
TABLE 1
Interpretations of Load Testing, Performance Testing and Stress Testing
Objectives Stages Terms Is It Load
Testing?
Detecting functional problems Testing (After Conventional Load Testing [14], [18], [19], [20], Yes
under load Functional Testing) [21], [22], [23], [24], [25], [26], [27],
[28], [29], Stress Testing [18], [26],
(301, [31], [32], [33], [34]
Detecting violations in performance Testing (After Conventional Load Testing [10], Performance Yes
requirements under load Functional Testing) Testing [2], [10], [35], Stress
Testing [36], [37], [38]
Detecting violations in reliability Testing (After Conventional Load Testing [10], [21], [22], [23], Yes
requirements under load Functional Testing) [37], Reliability Testing [10]
Detecting violations in stability Testing (After Conventional Load Testing [10], Stability Yes
requirements under load Functional Testing) Testing [10]
Detecting violations in robustness Testing (After Conventional Load Testing [10], Stress Yes
requirements under load Functional Testing) Testing [10], [30]
Measuring and/or evaluating Implementation Performance Testing [39], [40], Depends
system performance under load [41], [42]
Testing (After Conventional Performance Testing [12], [13], Depends
Functional Testing) [15], [16], [43], [44], [45], [46], [47],
[48], [49], Load Testing [15], [50],
Stress Testing [37], [38], [51], [52],
(53], [54]
Maintenance (Regression Testing) Performance Testing [55], Depends
Regression Benchmarking [56],
[57]
Measuring and/or evaluating Testing (After Conventional Performance Testing [58], [59], [60] No
system performance without load Functional Testing)
Measuring and/or evaluating Implementation Performance Testing [61] No
component/unit performance
Measuring and/or evaluating Design Performance Testing [62], [63], No
various design alternatives [64], [65], Stress Testing [66], [67],
[68], [69]
Testing (After Conventional Performance Testing [70] No
Functional Testing)
Measuring and/or evaluating Testing (After Conventional Performance Testing [48], [71],[72] = No

system performance under different

Functional Testing)

configurations

[71], [72]. Depending on the types of systems, performance
testing can be conducted with load (e.g., e-commerce sys-
tems [15], [16], [47], middle-ware systems [2], [35] or ser-
vice-oriented distributed systems [39]), or single user
request (e.g., mobile applications [60] or desktop applica-
tions [58], [59]).

Contrary to load testing, the objectives of performance
testing are broader. Performance testing (1) can verify perfor-
mance requirements [48] or in case of absent performance
requirements, the pass/fail criteria are derived based on the
“no-worse-than-previous” principle [26] (similar to load test-
ing); or (2) can be exploratory (no clear pass/fail criteria). For
example, one type of performance testing aims to answer the
what-if questions like “what is system performance if we
change this software configuration option or if we increase
the number of users?” [47], [48], [76], [77].

2.1.3 Stress Testing

Stress testing is the process of putting a system under
extreme conditions to verify the robustness of the system
and/or to detect various load-related problems (e.g.,
memory leaks and deadlocks). Examples of such conditions
can either be load-related (putting system under normal [36],
[37], [38] or extreme heavy load [14], [26], [27], [37]), limited

computing resources (e.g., high CPU [78]), or failures (e.g.,
database failure [20]). In other cases, stress testing is used to
evaluate the efficiency of software designs [66], [67], [68], [69].

2.2 Relationships between Load Testing,
Performance Testing and Stress Testing

As Dijkstra pointed out in [79], software testing can only

show the presence of bugs but not their absence. Bugs are

the behavior of systems which deviate from the specified

requirements. Hence, we define our unified definition of

load testing that is used in this paper is as follows:

Load testing is the process of assessing system behavior
under load in order to detect problems due to one or both of
the following reasons: (1) functional-related problems (i.e.,
functional bugs that appear only under load), and (2) non-
functional problems (i.e., violations in non-functional qual-
ity-related requirements under load).

Comparatively, performance testing is used to measure
and/or evaluate performance related aspects (e.g.,
response time, throughput and resource utilizations) of
algorithms, designs/architectures, modules, configura-
tions, or the overall systems. Stress testing puts a system

1094

Performance Stress

Load Testing
3

Fig. 2. Relationships among load, performance and stress testing.

under extreme conditions (e.g., higher than expected load
or limited computing resources) to verify the robustness
of the system and/or detect various functional bugs (e.g.,
memory leaks and deadlocks).

There are commonalities and differences among the three
types of testing, as illustrated in the Venn Diagram shown
in Fig. 2. We use an e-commerce system as a working exam-
ple to demonstrate the relation across these three types of
testing techniques.

1) Scenarios considered as both load testing and performance
testing. The e-commerce system is required to pro-
vide fast response under load (e.g., millions of con-
current client requests). Therefore, testing is needed
to validate the system’s performance under the
expected field workload. Such type of testing is not
considered to be stress testing as the testing load
does not exceed the expected field workload.

2) Scenarios considered as both load testing and stress test-
ing. The e-commerce system must be be robust under
extreme conditions. For example, this system is
required to stay up even under bursts of heavy load
(e.g., flash crowd [15]). In addition, the system
should be free of resource allocation bugs, like dead-
locks or memory leaks [34].

This type of testing, which imposes a heavy load
on the system to verify the system’s robustness and
to detect resource allocation bugs, is considered as
both stress testing and load testing. Such testing is
not performance testing, as software performance is
not one of the testing objectives.

3) Scenarios only considered as load testing. Although this
system is already tested manually using a small
number of users to verify the functional correctness
of a service request (e.g., the total cost of a shopping
cart is calculated correctly when a customer checks
out), the correctness of the same types of requests
should be verified under hundreds or millions of
concurrent users.

The test, which aims to verify the functional cor-
rectness of a system under load is considered only as
a load test. This scenario is not performance testing,
as the objective is not performance related; nor is this
scenario considered as stress testing, as the testing
conditions are not extreme.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015

4) Scenarios considered as load, performance and stress test-
ing. This e-commerce website can also be accessed
using smartphones. One of the requirements is that
the end-to-end service request response time should
be reasonable even under poor cellular network con-
ditions (e.g., packet drops and packet delays).

The type of test used to validate the performance
requirements of the SUT with limited computing
resources (e.g., network conditions), can be consid-
ered as all three types of testing.

5) Scenarios considered as performance testing and stress
testing. Rather than testing the system performance
after the implementation is completed. The system
architect may want to validate whether a compres-
sion algorithm can efficiently handle large image
files (processing time and resulting compressed file
size). Such testing is not considered to be load test-
ing, as there is no load (concurrent access) applied to
the SUT.

6) Scenarios Considered as Performance Testing Only. In
addition to writing unit tests to check the functional
correctness of their code, the developers are also
required to unit test the code performance. The test to
verify the performance of one unit/component of the
system is considered only as performance testing.

In addition, the operators of this e-commerce
system need to know the system deployment
configurations to achieve the maximal performance
throughput using minimal hardware costs. There-
fore, performance testing should be carried out to
measure the system performance under various
database or webserver configurations. The type of
test to evaluate the performance of different archi-
tectures/algorithms/configurations is only consid-
ered as performance testing.

7) Scenarios considered as stress testing only. Developers
have implemented a smartphone application for
this e-commerce system to enable users to access
and buy items from their smartphones. This smart-
phone application is required to work under spo-
radic network conditions. This type of test is
considered as stress testing, since the application
is tested under extreme network condition. This
testing is not considered to be performance testing,
since the objective is not performance related; nor
is this scenario considered as load testing, as the
test does not involve load.

2.3 Our Paper Selection Process

We first search the following three keywords on the General
scholarly article search engines (DBLP searches [80] and
Google Scholar [81]): “load test”, “performance test” and
“stress test”. Second, we filter irrelevant papers based on
the paper titles, publication venues and abstracts. For exam-
ple, results like “Test front loading in early stages of auto-
motive software development based on AUTOSAR” are
filtered out. We also remove performance and stress testing
papers that are not related to load testing (e.g., “Backdrive
Stress-Testing of CMOS Gate Array Circuits”). Third, we
add additional papers and tools based on the related work
sections from relevant load testing papers, which do not

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

contain the above three keywords. Finally, we include rele-
vant papers that cite these papers, based on the “Cited by”
feature from Microsoft Academic Search [82], Google
Scholar [81], ACM Portal [83] and IEEE Explore [84]. For
example, papers like [85], [86] are included, because they
cite [23] and [87], respectively.

In the end, we have surveyed a total of 147 papers and
tools between the year 1993 — 2013. To verify the complete-
ness of the surveyed papers, the final results include all the
papers we knew beforehand to be related to load testing
(e.g., [11], [15], [17], [21], [23], [87], [88D).

3 RESEARCH QUESTION 1: HOW IS A PROPER
LoAD DESIGNED?

The goal of the load design phase is to devise a load, which
can uncover load-related problems under load. Based on
the load test objectives, there are two general schools of
thought for designing a proper load to achieve such
objectives:

1) Designing realistic loads. As the main goal of load test-
ing is to ensure that the SUT can function correctly
once it is deployed in the field, one school of thought
is to design loads, which resemble the expected
usage once the system is operational in the field. If
the SUT can handle such loads without functional
and non-functional issues, the SUT would have
passed the load test.

Once the load is defined, the SUT executes the
load and the system behavior is recorded. Load
testing practitioners then analyze the recorded
system behavior data to detect load-related prob-
lems. Test durations in such cases are usually not
clearly defined and can vary from several hours
to a few days depending on the testing objectives
(e.g., to obtain steady state estimates of the system
performance under load or to verify that the SUT
is deadlock-free) and testing budget (e.g., limited
testing time). There are two approaches proposed
in the literature to design realistic testing loads as
categorized in [53]:

a) The aggqregate-workload based load design approach. The
aggregate-workload based load design approach
aims to generate the individual target request rates.
For example, an e-commerce system is expected to
handle three types of requests with different transac-
tion rates: ten thousand purchasing requests per sec-
ond, three million browsing requests per second,
and five hundred registration requests per second.
The resulting load, using the aggregate-workload
based load design approach, should resemble these
transaction rates.

b) The use-case based load design approach. The use-case
(also called user equivalent in [53]) based approach is
more focused on generating requests that are
derived from realistic use cases. For example, in the
aforementioned e-commerce system, an individual
user would alternate between submitting page
requests (browsing, searching and purchasing) and
being idle (reading the webpage or thinking). In

1095

addition, a user cannot purchase an item before he/
she logs into the system.

2) Designing fault-inducing loads. Another school of
thought aims to design loads, which are likely
to cause functional or non-functional problems
under load. Compared to realistic loads, the test
duration using faulting-inducing loads are usually
deterministic and the test results are easier to ana-
lyze. The test durations in these cases are the time
taken for the SUT to enumerate through the loads
or the time until the SUT encounters a functional
or non-functional problem.

There are two approaches proposed in the literature for

designing fault-inducing loads:

a) Deriving fault-inducing loads by analyzing the source
code. This approach uncovers various functional and
non-functional problems under load by systemati-
cally analyzing the source code of the SUT. For
example, by analyzing the source code of our moti-
vating e-commerce system example, load testing
practitioners can derive loads that exercise these
potential functional (e.g., memory leaks) and non-
functional (e.g., performance issues) weak spots
under load.

b) Deriving fault-inducing loads by building and analyzing
system models. Various system models abstract differ-
ent aspects of system behavior (e.g., performance
models for the performance aspects). By systemati-
cally analyzing these models, potential weak spots
can be revealed. For example, load testing practi-
tioners can build performance models in the afore-
mentioned e-commerce system, and discover loads
that could potentially lead to performance problems
(higher than expected response time).

We introduce the following dimensions to compare

among various load design techniques as shown in Table 2:

o Techniques refer to the names of the load design tech-
niques (e.g., step-wise load);

e Objectives refer to the goals of the load (e.g., detecting
performance problems);

e Data sources refer to the artifacts used in each load
design technique. Examples of artifacts can be past
field data or operational profiles. Past field data could
include web access logs, which record the identities
the visitors and their visited sites, and database
auditing logs, which show the various database
interactions. An Operational Profile describes the
expected field usage once the system is operational
in the field [23]. For example, an operational profile
for an e-commerce system would describe the num-
ber of concurrent requests (e.g., browsing and pur-
chasing) that the system would experience during a
day. The process of extracting and representing the
expected workload (operational profile) in the field
is called Workload Characterization [89]. The goal of
workload characterization is to extract the expected
usage from hundreds or millions hours of past field
data. Various workload characterization techniques
have been surveyed in [89], [90], [91].

1096

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

TABLE 2
Load Design Techniques

NO. 11,

NOVEMBER 2015

Techniques Objectives Data Sources Output References
Realistic Load Design - (1) Aggregate-Workload Based Load Design Approach (Section 3.1.1)
Steady Load . . Operational Profiles, | One Configuration of Work- | [45], [92]
Detecting Functional | p;q¢ Usage Data load Mix and Workload In-
and Non-Functional tensity
Step-wise Load Problems Under Operational Profiles, | Multiple Configurations of | [30], [93],
Load Past Usage Data Workload Mixed and Work- | [36], [94],
load Intensities [95], [96],
[97], [98]
Extrapolated Load Beta-user Usage Data, | One or More Configura- | [44], [99]

Interviewing Domain
Experts and Competi-
tions Data

tions of Workload Mix and
Workload Intensities

Realistic Load Design - (2) Use-Case

Based Load Design Approach (Section 3.1.2)

Testing Loads Derived using UML
Models

Detecting Functional
and Non-Functional

UML Use Case Di-
agrams, UML Activ-
ity Diagrams, Opera-

UML Diagrams
with Request Rates

Tagged

[1007, T101],
[102], [103]

Problems tional Profile

Testing Loads Derived using Past Usage Data Markov Chain Models [104], [105],
Markov Models [16]
Testing Loads Derived using Operational Stochastic ~ Form-oriented | [106], [107]
Stochastic Form-oriented Models Profile, Business | Models

Requirements, User

configurations
Testing Loads Derived using Prob- User Configurations Probabilistic Timed | [108], [109],
abilistic Timed Automata Automata [110]

Fault-Inducing Load Design - (1) Deriving Load from Analyzing the Source Code (Section 3.2.1)

Testing Loads Derived using Data | Detecting Functional | Source Code Testing Loads Lead to Code | [18]

response time)

Flow Analysis Problems (memory Paths with Memory Leaks

leaks)
Testing Loads Derived using Sym- | Detecting Functional | Source Code, | Testing Loads Lead to Prob- | [111], [29]
bolic Execution Problems (high | Symbolic Execution | lematic Code Paths with

memory usage) | Analysis Tools Performance Problems

and Performance

Problems (high

Fault-Inducing Load Design - (2) Deriving Load from Building and Analyzing System Models (Section 3.2.2)

Testing Loads Lead to
Performance Problems
(high response time)

[38], [54]

response time)

Testing Loads Derived using Linear | Detecting Resource Usage Per
Programs Performance Request
Problems (audio
and video not in
sync)
Testing Loads Derived using Ge- | Detecting Resource Usage and
netic Algorithms Performance Response Time Per
Problems (high | Task

[T12], T113]

o Output refers to the types of output from each
load design technique. Examples can be workload
configurations or usage models. Workload configu-
ration refers to one set of workload mix and work-
load intensity (covered in Section 3.1.1). Models
refer to various abstracted system usage models
(e.g., the Markov chain).

e References refer to the list of literatures, which pro-
pose each technique.

Both load design schools of thought (realistic versus
fault-inducing load designs) have their advantages and
disadvantages: In general, loads resulting from realistic-
load based design techniques can be used to detect both
functional and non-functional problems. However, the test
durations are usually longer and the test analysis is
more difficult, as the load testing practitioners have to
search through large amounts of data to detect load-related
problems. Conversely, although loads resulting from fault-

inducing load design techniques take less time to uncover
potential functional and non-functional problems, the
resulting loads usually only cover a small portion of the
testing objectives (e.g., only detecting the violations in
the performance requirements). Thus, there are load optimi-
zation and reduction techniques proposed to mitigate the
deficiencies of each load design technique.

This section is organized as follows: Section 3.1 covers
the realistic load design techniques. Section 3.2 covers the
fault-inducing load design techniques. Section 3.3 discusses
the test optimization and reduction techniques used in the
load design phase. Section 3.4 summarizes the load design
techniques and proposes a few open problems.

3.1 Designing Realistic Loads

In this section, we discuss the techniques used to design
loads, which resemble the realistic usage once the system is
operational in the field. Sections 3.1.1 and 3.1.2 cover the

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

techniques from the Aggregate-Workload and the Use-Case
based load design approaches, respectively.

3.1.1 Aggregate-Workload Based Load Design

Techniques

Aggregate-workload based load design techniques charac-
terize loads along two dimensions: (1) Workload Intensity,
and (2) Workload Mix:

e The Workload Intensity refers to the rate of the incom-
ing requests (e.g., browsing, purchasing and search-
ing), or the number of concurrent users;

e The Workload Mix refers to the ratios among differ-
ent types of requests (e.g., 30 percent browsing,
10 percent purchasing and 60 percent searching).

Three load design techniques have been proposed to

characterize loads with various workload intensity and
workload mix:

1) Steady load. The most straightforward aggregate-
workload based load design technique is to devise a
steady load, which contains only one configuration
of the workload intensity and workload mix
throughout the entire load test [45]. A steady load
can be inferred from past data or based on an exist-
ing operational profile. This steady load could be the
normal expected usage or the peak time usage
depending on the testing objectives. Running the
SUT using a steady load can be used to verify the
system resource requirements (e.g., memory, CPU
and response time) [92] and to identify resource
usage problems (e.g., memory leaks) [45].

2) Step-wise load. A system in the field normally under-
goes varying load characteristics throughout a nor-
mal day. There are periods of light usage (e.g., early
in the morning or late at night), normal usage (e.g.,
during the working hours), and peak usages (e.g.,
during lunch time). It might not be possible to load
test a system using a single type of steady load. Step-
wise load design techniques would devise loads
consisting of multiple types of load, to model the
light/normal/peak usage expected in the field.

Step-wise load testing keeps the workload mix the
same throughout the test, while increasing the work-
load intensity periodically [30], [36], [93], [94], [95],
[96], [97], [98]. Step-wise load testing, in essence, con-
sists of multiple levels of steady load. Similar to the
steady load approach, the workload mix can be
derived using the past field data or an operational
profile. The workload intensity varies from system
to system. For example, the workload intensity can
be the number of users, the normal and peak load
usages, or even the amount of results returned from
web search engines.

3) Load extrapolation based on partial or incomplete data.
The steady load and the step-wise load design tech-
niques require an existing operational profile or past
field data. However, such data might not be avail-
able in some cases: For example, newly developed
systems or systems with new features have no
existing operational profile or past usage data. Also,

1097

some past usage data may not be available due to

privacy concerns. To cope with these limitations,

loads are extrapolated from the following sources:

e Beta-usage data. Savoia [99] proposes to analyze
log files from a limited beta usage and to extrap-
olate the load based on the number of expected
users in the actual field deployment.

e Interviews with domain experts. Domain experts
like system administrators, who monitor and
manage deployed systems in the field, generally
have a sense of system usage patterns. Barber [44]
suggests to obtain a rough estimate of the
expected field usage by interviewing such
domain experts.

e Extrapolation from using competitors’ data. Bar-
ber [44] argues that in many cases, new systems
likely do not have a beta program due to limited
time and budgets and interviewing domain
experts might be challenging. Therefore, he
proposes an even less formal approach to charac-
terize the load based on checking out published
competitors” usage data, if such data exists.

3.1.2 Use-Case Based Load Design Techniques

The main problem associated with the aggregate-workload
based load design approach is that the loads might not be
realistic/feasible in practice, because the resulting requests
might not reflect individual use cases. For example,
although the load can generate one million purchasing
requests per second, some of these requests would fail due
to invalid user states (e.g., some users do not have items
added to their shopping carts yet).

However, designing loads reflecting realistic use-cases
could be challenging, as there may be too many use cases
available for the SUT. Continuing with our motivating
example of the e-commerce system, different users can
follow different navigation patterns: some users may
directly locate items and purchase them. Some users may
prefer to browse through a few items before buying the
items. Some other users may just browse the catalogs
without buying. It would not be possible to cover all the
combinations of these sequences. Therefore, various
usage models are proposed to abstract the use cases from
thousands and millions of user-system interactions. In the
rest of this section, we discuss four load design techni-
ques based on usage models.

1) Testing loads derived using UML models. UML dia-
grams, like Activity Diagrams and Use Case Dia-
grams, illustrate detailed user interactions in the
system. One of the most straight forward use-case
based load design techniques is to tag load infor-
mation on the UML Activity Diagram [100], [101],
[102] or Use Case Diagram [100], [103] with prob-
abilities. For example, the probability beside each
use case is the likelihood that a user triggers that
action [103]. For example, a user is more likely to
navigate around (40 percent probability) than to
delete a file (10 percent probability).

2) Testing loads derived using Markov Chain models. The
problem with the UML-based testing load is that the

1098

3)

4)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

UML Diagrams may not be available or such infor-
mation may be too detailed (e.g., hundreds of use
cases). Therefore, techniques are needed to abstract
load information from other sources. A Markov
Chain, which is also called the User Behavior
Graph [16], consists of a finite number of states and a
set of state transition probabilities between these
states. Each state has a steady state probability asso-
ciated with it. If two states are connected, there is a
transition probability between these two states.

Markov Chains are widely used to generate load
for web-based e-commerce applications [16], [104],
[105], since Markov chains can be easily derived
from the past field data (web access logs [16]). Each
entry of the log is a URL, which consists of the
requested webpages and “parameter name = param-
eter value” pairs. Therefore, sequences of user ses-
sions can be recovered by grouping sequences of
request types belonging to the same session. Each
URL requested becomes one state in the generated
Markov chain. Transition probabilities between
states represent real user navigation patterns, which
are derived using the probabilities of a user clicking
page B when he/she is on page A.

During the course of a load test, user action

sequences are generated based on the probabilities
modeled in the Markov chain. The think time
between successive actions is usually generated ran-
domly based on a probabilistic distribution (e.g., a
normal distribution or an exponential distribu-
tion) [16], [105]. As the probability in the Markov
chain only reflects the average behavior of a certain
period of time, Barros et al. [104] recommend the
periodical updating of the Markov chain based on
the field data in order to ensure that load testing
reflects the actual field behavior.
Testing loads derived using stochastic form-oriented mod-
els. Stochastic Form-oriented Model is another tech-
nique used to model a sequence of actions performed
by users. Compared to the testing loads represented
by the Markov Chain models, a Stochastic Form-
oriented model is richer in modeling user interactions
in web-based applications [106]. For example, a user
login action can either be a successful login and a
redirect to the overview page, or a failure login and a
redirect back to the login page. Such user behavior is
difficult to model in a Markov chain [106], [107].

Cai et al. [114], [115] propose a toolset that auto-
matically generates a load for a web application using
a three-step process: First, the website is crawled by a
third party web crawler and the website’s structural
data is recovered. Then, their proposed toolset lays
out the crawled web structure using a Stochastic
Form-Oriented Model and prompts the performance
engineer to manually specify the probabilities
between the pages and actions based on an opera-
tional profile.

Testing loads derived using probabilistic timed automata.
Compared to the Markov Chain and the Stochastic
Form-oriented Models, Probability Timed Automata
is an abstraction which provides support for user

NO. 11, NOVEMBER 2015
action modeling as well as timing delays [108], [109],
[110]. Similar to the Markov chain model, a Probabi-
listic Timed Automata contains a set of states and
transition probabilities between states. In addition,
for each transition, a Probabilistic Timed Automata
contains the time delays before firing the transition.
The timing delays are useful for modeling realistic
user behaviors. For example, a user could pause for a
few seconds (e.g., reading the page contents) before
triggering the next action (e.g., purchasing the items).

3.2 Designing Fault-Inducing Loads

In this section, we cover the load design technique from the
school of fault-inducing load design. There are two
approaches proposed to devise potential fault-inducing test-
ing loads: (1) by analyzing the source code (Section 3.2.1),
and (2) by building and analyzing various system models
(Section 3.2.2).

3.2.1 Deriving Fault-Inducing Loads via Source Code

Analysis

There are two techniques proposed to automatically
analyze the source code for specific problems. The first
technique is trying to locate specific code patterns, which
lead to known load-related problems (e.g., memory alloca-
tion patterns for memory allocation problems). The second
technique uses model checkers to systematically look for
memory and performance problems. In this section, we
only look at the techniques which analyze the source code
statically. There are also load generation techniques which
leverage dynamic analysis techniques. However, these
techniques are tightly coupled with the load execution: the
system behavior is monitored and analyzed, while new
loads are generated. We have categorized such techniques
as “dynamic-feedback-based load generation and termina-
tion techniques” in Section 4.2.3.

1) Testing loads derived using data flow analysis. Load
sensitive regions are code segments, whose correct-
ness depends on the amount of input data and the
duration of testing [18]. Examples of load sensitive
regions can be code dealing with various types of
resource accesses (e.g., memory, thread pools and
database accesses). Yang et al. [18] use data flow
analysis of the system’s source code to generate
loads, which exercise the load sensitive regions.
Their technique detects memory related faults (e.g.,
memory allocation, memory deallocation and
pointers referencing).

2) Testing loads derived using symbolic executions.
Rather than matching the code for specific patterns
(e.g., the resource accesses patterns in [18]), Zhang
et al. [29], [111] use symbolic test execution techni-
ques to generate loads, which can cause memory
or performance problems. Symbolic execution is a
program analysis technique, which can automati-
cally generates input values corresponding to dif-
ferent code paths.

Zhang et al. use the symbolic execution to
derive two types of loads:

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

a) Testing loads causing large response time. Zhang et al.
assign a time value for each step along the code path
(e.g., 10 for an invoking routing and 1 for other rou-
tines). Therefore, by summing up the costs for each
code path, they can identify the paths that lead to the
longest response time. The values that satisfy the
path constraints form the loads.

b) Testing loads causing large memory consumptions.
Rather than tracking the time, Zhang et al. track the
memory usage at each step along the code path. The
memory footprint information is available through a
Symbolic Execution tool, (e.g., the Java Path Finder
(JPF)). Zhang et al. use the JPF’s built-in object life
cycle listener mechanism to track the heap size of
each path. Paths leading to large memory consump-
tion are identified and values satisfying such code
paths form the loads.

3.2.2 Deriving Fault-Inducing Loads by Building and
Analyzing System Models

In the previous section, we have presented load design tech-
niques which analyze the source code of a system to explore
potential problematic regions/paths. However, some of
those techniques only work for a particular type of systems.
For example, [29], [111] only work for Java-based systems.
In addition, in some cases, source code might not be directly
accessible. Hence, there are also techniques that have been
proposed to automatically search for potential problematic
loads using various system models.

1) Testing loads derived using petri nets and linear programs.
Online multimedia systems have various temporal
requirements: (1) Timing requirements: audio and
video data streams should be delivered in sequence
and following strict timing deadlines; (2) Synchroniza-
tion requirements: video and audio data should be in
synch with each other; (3) Functional requirements:
some videos can only be displayed after collecting fee.

Zhang et al. [38], [54] propose a two-step tech-
nique that automatically generates loads, which
can cause a system to violate the synchronization
and responsive requirements while satisfying the
business requirements. Their idea is based on the
belief that timing and synchronization require-
ments usually fail when the SUT’s resources are
saturated. For example, if the memory is used up,
the SUT would slow down due to paging.

a) Identify data flows using a Petri Net. The online multi-
media system is modeled using a Petri Net, which is
a technique that models the temporal constraints of a
system. All possible user action sequences can be
generated by conducting reachability analysis,
which explores all the possible paths, on the Petri
Net. For example, a new video action C cannot be
fired until the previous video action A and audio
action B are both completed.
b) Formulate system behavior into a linear program in order
to identify performance problems.
Linear programming is used to identify the sequen-
ces of user actions, which can trigger performance

1099

problems. Linear programming systematically
searches for optimal solutions based on certain
constraints. A linear program contains the following
two types of artifacts: an objective function (the opti-
mal criteria) and a set of constraints. The objective
function is to maximize or minimize a linear equation.
The constraints are a set of linear equations or inequal-
ities. The sequence of arrivals of the user action
sequences is formulated using linear constraints.
There are two types of constraint functions: One con-
straint function ensures the total testing time is within
a pre-specified value (the test will not run for too
long). The rest of the constraint functions formulate
the temporal requirements derived using the possible
user action sequences, as the resource requirements
(e.g., CPU, memory, network bandwidth) associated
with each multimedia object (video or audio) are
assumed to be known. The objective function is set to
evaluate whether the arrival time sequence would
cause the saturations of one or more system resources
(CPU and network).

(2) Testing loads derived using genetic algorithms. An SLA,
Service Level Agreement, is a contract with potential
users on the non-functional properties like response
time and reliability as well as other requirements
like costs. Penta et al. [113] and Gu and Ge [112] uses
Genetic Algorithms to derive loads causing SLA or
quality of service (QoS) requirement violations (e.g.,
response time) in service-oriented systems. Like
linear programming, Genetic Algorithms, is a search
algorithm, which mimics the process of natural
evolution for locating optimal solutions towards a
specific goal.

The genetic algorithms are applied twice to derive poten-
tial performance sensitive loads:

a) Penta et al. [113] use the genetic algorithm technique
that is proposed by Canfora et al. [116], in order to
identify risky workflows within a service. The
response time for the risky workflows should be as
close to the SLA (high response time) as possible.

b) Penta et al. [113] apply the genetic algorithm to
generate loads that cover the identified risky work-
flow and violate the SLA.

3.3 Load Design Optimization and Reduction
Techniques

In this section, we discuss two classes of load design opti-

mization and reduction techniques aimed at improving

various aspects of load design techniques. Both classes of

techniques are aimed at improving the realistic load

design techniques.

e Hybrid load optimization techniques. The aggregate-
workload based techniques focus on generating the
desired workload, but fail to mimic realistic user
behavior. The user-equivalent based techniques
focus on mimicking the individual user behaviour,
but fail to match the expected overall workload. The
hybrid load optimization techniques (Section 3.3.1)

1100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.41, NO.11, NOVEMBER 2015

TABLE 3
Test Reduction and Optimization Techniques that Are Used in the Load Design Phase
Techniques Target Load Design Optimizing and Reducing Data Sources References
Techniques Aspects

Hybrid Load All Realistic Load Design Combining the strength of Past usage data [51], [53], [117]
Optimization Techniques aggregate-workload and

use-case based load design

techniques
Extrapolation Step-wise Load Design Reducing the number of Step-wise testing loads, past [15], [16], [118],

workload intensity levels usage data [119]
Deterministic All Realistic Load Design Reducing repeated execu- Realistic testing loads [21], [22], [23]
State Techniques tion of the same scenarios

aim to combine the strength of the aggregate-work-
load and use-case based load design approaches. For
example, for our example e-commerce system, the
resulting load should resemble the targeted transac-
tion rates and mimic real user behavior.

o Optimizing and reducing the duration of a load test. One
major problem with loads derived from realistic load
testing is that the test durations in these testing loads
are usually not clearly defined (i.e., no clear stopping
rules). The same scenarios are repeatedly-executed
over several hours or days.

Table 3 compares the various load design optimization

and reduction techniques along the following dimensions:

o Techniques refer to the used load design optimization
and reduction techniques (e.g., the hybrid load opti-
mization techniques).

o Target load design techniques refer to the load design
techniques that the reduction or optimization techni-
ques are intended to improve. For example, the
hybrid load optimization techniques combine the
strength of aggregate-workload and use-case based
load design techniques.

o Optimization and reducing aspects refer to the aspects
of the current load design that the optimization and
reduction techniques attempt to improve. One exam-
ple is to reduce the test duration.

e References refer to the list of literatures, which pro-
pose each technique.

3.3.1 Hybrid Load Optimization Techniques

Hybrid load optimization techniques aim to better model
the realistic load for web-based e-commerce systems [53],
[117]. These techniques consist of the following three steps:

o Step 1—Extracting Realistic Individual User Behavior
From Past Data. Most of the e-commerce systems
record past usage data in the form of web access
logs. Each time a user hits a webpage, an entry is
recorded in the web access logs. Each log entry is
usually a URL (e.g., the browse page or the login
page), combined with some user identification data
(e.g., session IDs). Therefore, individual user action
sequences, which describe the step-by-step user
actions, can be recovered by grouping the log entries
with user identification data.

e Step 2—Deriving Targeted Aggregate Load By Carefully
Arranging the User Action Sequence Data. The

aggregate load is achieved by carefully arranging
and stacking up the user action sequences (e.g., two
concurrent requests are generated from two individ-
ual user action sequences). There are two proposed
techniques to calculate user action sequences:

1) Matching the peak load by compressing multiple
hours worth of load. Burstiness refers to short
uneven spikes of requests. One type of burstiness
is caused by the flash crowd. The phenomenon
where a website suddenly experiences a heavier
than expected request rate. An example of flash
crowd includes when many users flocked to the
news sites like CNN.com during the 9/11 inci-
dent, or during the World Cup period, the FIFA
website was often more loaded when a goal was
scored. During the flash crowd incident, the load
could be several times higher than the expected
normal load. Incorporating realistic burstiness
into load testing is important to verify the capac-
ity of a system [120].

Maccabee and Ma [117] squeeze multiple
one-hour user action sequences together into
one-hour testing load to generate a realistic
peak load, which is several times higher than
the normal load.

2) Matching the specific request rates by linear programs.
Maccabee and Ma’s [117] technique is simple and
can generate higher than normal load to verify
the system capacity and guard against problems
like a flash crowd. However, their technique has
problems like coarse-grained aggregate load,
which cannot reflect the normal expected field
usage. For example, the individual requests rates
(e.g., browsing or purchasing rates) might not
match with the targeting request rates. Krishna-
murthy et al. [52] use linear programming to sys-
tematically arrange user action sequences, which
match with the desired workload.

Step 3—Specifying the inter-arrival time between user
actions. There is a delay between each user action,
when the user is either reading the page or thinking
about what to do next. This delay is called the “think
time” or the “inter-arrival time” between actions.
The think time distribution among the user action
sequences is specified manually in [52], [53]. Casale
et al. [51] extend the technique in [52], [53] to create
realistic burstiness. They use a burstiness level

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

metrics, called the Index of Dispersion [120], which can
be calculated based on the inter-arrival time between
requests. They use the same constraint functions
as [52], [53], but a different non-linear objective func-
tion. The goal of the objective function is to find the
optimal session mix, whose index of dispersion is as
close to the real-time value as possible.

The hybrid technique outputs the exact individual user
actions during the course of the actions. The advantage of
such output is to avoid some of the unexpected system fail-
ures from other techniques like the Markov chains [53].
However, special load generators are required to take such
input and generate the testing loads. In addition, the scal-
ability of the approach would be limited by the machine’s
memory, as the load generators need to read in all the input
data (testing user actions at each time instance) at once.

3.3.2 Optimizing and Reducing the Duration of a Load
Test

Two techniques have been proposed to systematically opti-
mize and reduce the load test duration for the realistic-load-
based techniques. One technique aims at reducing a particu-
lar load design technique (step-wise load testing). The other
technique aims at optimizing and reducing the realistic load
design techniques by adding determinism.

1) Load test reduction by extrapolation. Load testing needs
to be conducted at various load levels (e.g., number
of user levels) for step-wise load testing. Rather than
examining the system behavior under all load levels,
Menasce et al. [15], [16] propose to only test a few
load levels and extrapolate the system performance
at other load levels. Weyuker et al. [119] propose a
metric, called the Performance Nonscalability Likeli-
hood (PNL). The PNL metric is derived from the
past usage data and can be used to predict the work-
load, which will likely cause performance problems.

Furthermore, Leganza [118] proposes to extrapo-
late the load testing data from the results conducted
on a lower number of users onto the actual produc-
tion workload (300 users in testing versus 1,500
users in production) to verify whether the current
SUT and hardware infrastructure can handle the
desired workload.

2) Load test optimization and reduction by deterministic
states. Rather than repeatedly executing a set of sce-
narios over and over, like many of the aggregate-
workload based load design techniques (e.g., steady
load and Markov-chain), Avritzer et al. [10], [21],
[22], [23] propose a load optimization technique,
called the Deterministic State Testing, which ensures
each type of load is only executed once.

Avritzer et al. characterize the testing load using
states. Each state measures the number of different
active processing jobs at the moment. Each number
in the state represents the number of active requests
of a particular request. Suppose our e-commerce sys-
tem consists of four scenarios: registration, browsing,
purchasing and searching. The state (1,0, 0, 1) would
indicate that currently only there is one registration
request and one search request active and the state

1101

(0,0,0,0) would indicate that the system is idle. The
probability of these states, called “Probability Mass
Coverage”, measures the likelihood that the testing
states is going to be covered in the field. These prob-
abilities are calculated based on the production data.
The higher the probability of one particular state, the
more likely it is going to happen in the field.

Load test optimization can also be achieved by
making use of the probability associated with each
state to prioritize tests. If time is limited, only a small
set of states with a high probability of occurrence in
the field can be selected.

In addition to reducing the test durations, deter-
ministic state testing is very good at detecting and
reproducing resource allocation failures (e.g., mem-
ory leaks and deadlocks).

3.4 Summary and Open Problems

There are two schools of thought for load design:
(1) Designing loads, which mimic realistic usage; and
(2) Designing loads, which are likely to trigger functional
and non-functional failures. Realistic Load Design techni-
ques are more general, but the resulting loads can take a
long time to execute. Results of a load test are harder to
analyze (due to the large volume of data). On the contrary,
Fault-Inducing Load Design techniques are more nar-
rowly focused on a few objectives (i.e., you will not detect
unexpected problems), but the test duration is usually
deterministic and shorter. The test results are usually eas-
ier to analyze.

However, a few issues are still not explored thoroughly:

o Optimal test duration for the realistic load design. One
unanswered question among all the realistic load
design techniques is how to identify the optimal test
duration, which is the shortest test duration while
still covering all the test objectives. This problem is
very similar as determining the optimal simulation
duration for the discrete event simulation experi-
ments. Recently, there have been works [121], [122]
proposed to leverage statistical techniques to limit
the duration of the simulation runs by determining
the number of sample observations required to reach
certain accuracy in the output metrics. Similar tech-
niques may be used to help determine the optimal
test duration of the realistic load design.

e Benchmarking & empirical studies of the effectiveness of
various techniques. Among the load design techni-
ques, the effectiveness of these techniques, in terms
of scale and coverage, is not clear. In large-scale
industrial systems, which are not web-based sys-
tems, can we still apply techniques like Stochastic
Form-oriented Models? A benchmark suite (like the
Siemens benchmark suite for functional bug detec-
tion [123]) is needed to systematical evaluate the
scale and coverage of these techniques.

o Test coverage metrics. Unlike functional testing suites,
which have various metrics (e.g., code coverage) to
measure the test coverage. There are few load test-
ing coverage metrics other than the “Probability
Mass Coverage” metric, which is proposed by

1102

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

TABLE 4

NO. 11, NOVEMBER 2015

Load Execution Techniques

Load Test Execution
Approaches

Live-user based
Execution

Emulation based
Execution

Driver based
Execution

Aspect 1. Setup

Setup Activities

System Deployment

System installation and
configuration in the
field /field-like/lab

environment

System installation and
configurations in the
field /field-like/lab
environment

System deployment on
the special platforms

Tester Recruitment and

Test Execution Setup

Training, Test

Load Driver
Installation and
Configurations, Test

Load Driver
Installation and

Environment . - .
Configurations Environment Configurations
8 Configurations
Aspect 2. Load Generation and Terminations
Options for Load | Static Configurations v v v
Generation and | Dynamic X v X
Termination Deterministic X X v
Aspect 3. Test Monitoring and Analysis
Functional Problems v v v
Types of System | Execution Logs v v v
Behavior Data Performance Metrics v v X
System Snapshots X v v

Avritzer et al. [10], [21], [22], [23]. This metric only
captures the workload coverage in terms of aggre-
gate workload. We need more metrics to capture
other aspects of the system behavior. For example,
we need new metrics to capture the coverage of dif-
ferent types of users (a.k.a., use-case based loads).

Testing loads evolution and maintenance. There is no
existing work aimed at maintaining and evolving
the resulting loads. Below we provide two examples
where the evolution of the load is likely to play an

1)

important role:

1) Realistic loads: As users get more familiar with the
system, usage patterns are likely to change. How
much change would merit an update to a realis-
tic-based testing loads?

2) Fault-inducing loads: As the system evolve over
time, can we improve the model building of
fault-inducing loads by incrementally analyzing
the system internals (e.g., changed source code
or changed features)?

4 RESEARCH QUESTION 2: HOW IS A LOAD TEST

EXECUTED?

2)

Once a proper load is designed, a load test is executed.
The load test execution phase consists of the following
three main aspects: (1) Setup, which includes system
deployment and test execution setup; (2) Load Generation
and Termination, which consists of generating the load
according to the configurations and terminating the load
when the load test is completed; and (3) Test Monitoring
and Data Collection, which includes recording the system
behavior (e.g., execution logs and performance metrics)
during execution. The recorded data is then used in the

Test Analysis phase.

As shown in Table 4, there are three general approaches

of load test executions:

Live-user based executions. A load test examines a SUT’s
behavior when the SUT is simultaneously used by
many users. Therefore, one of the most intuitive load
test execution approach is to execute a load test by
employing a group of human testers [19], [118], [124].
Individual users (testers) are selected based on the
testing requirements (e.g., locations and browsers).

The live-user based execution approach reflects the
most realistic user behaviors. In addition, this
approach can obtain real user feedbacks on aspects
like acceptable request performance (e.g., whether
certain requests are taking too long) and functional
correctness (e.g., a movie or a figure is not displaying
properly). However, the live-user based execution
approach cannot scale well, as the approach is limited
by the number of recruited testers and the test dura-
tion [118]. Furthermore, the approach cannot explore
various timing issues due to complexity of manual
coordination of many testers. Finally, the load tests
that are executed by the live users cannot be repro-
duced or repeated exactly as they occurred.
Driver based executions. To overcome the scalability
issue of the live-user based approach, the driver
based execution approach is introduced to automati-
cally generate thousands or millions of concurrent
requests for a long period of time. Compared to the
live-user based executions, where individual testers
are selected and trained, driver based executions
require setup and configuration of the load drivers.
Therefore, a new challenge in driver based execution
is the configuration of load drivers to properly pro-
duce the load. In addition, some system behavior
(e.g., the movie or image display) cannot be easily
tracked, as it is hard for the load driver to judge the
audio or video quality.

Different from existing driver based surveys
[125], [126], [127], which focus on comparing the

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

a)

b)

c)

3)

capabilities of various load drivers, our survey of
driver based execution focuses on the techniques
used by the load drivers. Comparing the load driver
techniques, as opposed to capabilities, has the fol-
lowing two advantages in terms of knowledge con-
tributions: (1) Avoid Repetitions: Tools from different
vendors can adopt similar techniques. For example,
WebLoad [128] and HP LoadRunner [129] both sup-
port the store-and-replay test configuration tech-
nique. (2) Tool Evolution: The evolution of such load
drivers is not tracked in the driver based surveys.
Some tools get decommissioned over time. For
example, tools like Microsoft's Web App Stress Tool
surveyed in [127], no longer exist. New features (e.g.,
supported protocols) are constantly added into the
load testing tools over time. For example, Apache
JMeter [130] has recently added support for model-
based testing (e.g., Markov-chain models).
There are three categories of load drivers:

Benchmark Suite is a specialized load driver, designed
for one type of system. For example, LoadGen [131]
is a load driver used to specifically load test the
Microsoft Exchange MailServer. Benchmark suites
are also used to measure and compare the perfor-
mance of different versions of software and/or hard-
ware setup (called Benchmarking). Practitioners
specify the rate of requests as well as test duration.
Such load drivers are usually customized and can
only be used to load test one type of system [131],
[132], [133], [134].

In comparison to benchmark suites, the following
two categories of load drivers (centralized and peer-
to-peer load drivers) are more generic (applicable for
many systems).

Centralized load drivers refer to a single load driver,
which generates the load [128], [129].

Peer-to-peer load drivers refer to a set of load drivers,
which collectively generate the target testing load.
Peer-to-peer load drivers usually have a controller
component, which coordinates the load generation
among the peer load drivers [135], [136], [137].

Centralized load drivers are better at generating
targeted load, as there is only one single load driver
to control the traffic. Peer-to-peer load drivers can
generate larger scale load (more scalable), as central-
ized load drivers are limited by processing and stor-
age capabilities of a single machine.

Emulation based executions. The previous two load test
execution (live-user based and driver based execu-
tion) approaches require a fully functional system.
Moreover, they conduct load testing in the field or in
a field-like environment. The techniques that use
the emulation based load test execution approach
conduct the load testing on special platforms. In this
survey, we focus on two types of special platforms:
a) Special platforms enabling early and continuous
examination of system behavior under load. In
the development of large distributed software
systems (e.g., service-oriented systems), many

1103

components like the application-level entities
and the infrastructure-level entities are devel-
oped and validated during different phases of
the software lifecycle. This development process
creates serialized-phasing problem, as the end-to-
end functional and quality-of-service aspects
cannot be evaluated until late in the software life
cycle (e.g., at the system integration time) [39],
[40], [41], [42], [138]. Emulation based execution
can emulate parts of the system that are not read-
ily available. Such execution techniques can be
used to examine the system’s functional and
non-functional behavior under load throughout
the software development lifecycle, even before
the system is completely developed.

b) Special platforms enabling deterministic execution.
Reporting and reproducing problems like dead-
locks or high response time are much easier on
these special platforms, as these platforms can
provide fine-grained controls on method and
thread inter-leavings. When problems occur,
such platforms can provide more insights on the
exact system state [34].

Live-user based and driver based executions require
deploying the SUT and running the test in the field or field-
like environment. Both approaches need to face the chal-
lenge of setting up realistic test environment (e.g., with
proper network latency mimicking distributed locations).
Running the SUT on special platforms avoids such compli-
cations. However, emulation based executions usually focus
on a few test objectives (e.g., functional problems under
load), which are not general purposes like the live-user
based and driver based executions. In addition, like driver
based executions, emulation based executions use load driv-
ers to automatically generate the testing load.

Among the three main aspects of the load test execution
phase, Table 4 outlines the similarities and differences
among the aforementioned three load test execution
approaches. For example, there are two distinct setup activi-
ties in the Setup aspect: System Deployment and Test
Execution Setup. Some setup activities would contain differ-
ent aspects for the three test execution approaches (e.g., dur-
ing the test execution setup activity). Some other activities
would be similar (e.g., the system deployment activity is the
same for live-user and driver based executions).

In the next three sections, we compare and contrast the
different techniques applied in the three aspects of the load
execution phase: Section 4.1 explains the setup techniques,
Section 4.2 discusses the load generation and termination
techniques. Section 4.3 describes the test monitoring and
data collection techniques. Section 4.4 summaries the load
test execution techniques and lists some open problems.

41 Setup
As shown in Table 4, there are two setup activities in the
Setup aspect:

e System deployment refers to deploying the SUT in the
proper test environment and making the SUT opera-
tional. Examples can include installing the SUT and

1104

4.1.1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

configuring the associated third party components
(e.g., the mail server and the database server).

Test execution setup refers to setting up and configur-
ing the load testing tools (for driver based and emu-
lation based executions), or recruiting and training
testers (for live-user based executions) and con-
figuring the test environment to reflect the field envi-
ronment (e.g., increasing network latency for long
distance communication).

System Deployment

The system deployment process is the same for the live-user
based and driver based executions, but different from the
emulation based executions.

System installation and configuration for the live-user
based and driver based executions. For live-user based
and driver based executions, it is recommended to
perform the load testing on the actual field environ-
ment, although the testing time can be limited and
there could be high cost associated [99]. However, in
many cases, load tests are conducted in a lab envi-
ronment due to accessibility and cost concerns, as it
is often difficult and costly to access the actual
production environment) [44], [99], [118], [139]. This
lab environment can be built from the dedicated
computing hardware purchased in-house [118],
[139] or by renting the readily available cloud infra-
structures (Testing-as-a-Service) [140], [141]. The
system deployed in the lab could behave differently
compared to the field environment, due to issues
like unexpected resource fluctuations in the cloud
environment [142]. Hence, extra efforts are required
to configure the lab environment to reflect the most
relevant field characteristics.

The SUT and its associated components (e.g.,
database and mail servers) are deployed in a
field-like setting. One of the important aspects
mentioned in the load testing literature is creating
realistic databases, which have a size and struc-
ture similar to the field setting. It would be ideal
to have a copy of the field database. However,
sometimes no such data is available or the field
database cannot be directly used due to security
or privacy concerns. There are two proposed
techniques to create field-like test databases: (1)
importing raw data, which shares the same char-
acteristics (e.g., size and structure) as the field
data [31]; (2) sanitizating the field database so
that certain sensitive information (e.g., customer
information) is removed or anonymized [104],
[143], [144].

System deployment for the emulation based executions.
For the emulation based executions, the SUT needs
to be deployed on the special platforms, in which the
load test is to be executed. The deployment techni-
ques for the two types of special platforms men-
tioned above are different:
o Automated code generation for the incomplete sys-
tem components. The automated code generation
for the incomplete system components is

NO. 11, NOVEMBER 2015
achieved using model-driven engineering plat-
forms. Rather than implementing the actual
system components via programming, devel-
opers can work at a higher level of abstraction
in a model-driven engineering setup (e.g.,
using domain-specific modeling languages or
visual representations). Concrete code artifacts
and system configurations are generated based
on the model interpreter [39], [40], [41], [42],
[138] or the code factory [145]. The overall
system is implemented using a model-based
engineering framework in Domain-specific
modeling languages. For the components,
which are not available yet, the framework
interpreter will automatically generate mock
objects (method stubs) based on the model
specifications. These mock objects, which con-
form to the interface of the actual components,
emulate the actual component functionality.
In order to support a new environment (e.g.,
middleware or operating system), the model
interpreter needs to be adapted for various
middleware or operating systems, but no
change to the upper level model specifications
is required.

e Special profiling and scheduling platform. In order to
provide more detailed information on the SUT’s
state when a problem occurs (e.g., deadlocks or
racing), special platforms (e.g., the CHESS plat-
form [34]), which control the inter-leaving of
threads are used. The SUT needs to be run under
a development IDE (Microsoft Visual Studio)
with a specific scheduling in CHESS. In this way,
the CHESS scheduler, rather than the operating
system, can control the inter-leaving of threads.

4.1.2 Test Execution Setup

The test execution setup activity includes two parts: (1)
setting up and configuring the test components: testers
(for live-user based executions) or load drivers (for driver
based and emulation based executions); and (2) configuring
the test environment.

Setting up and configuring the test components. Depending
on the execution approaches, the test components for setup
and configuration are different:

Tester recruitment, setup and training (live-user based
executions). For live-user based executions, the three
main steps involved in the test execution setup and
configuration aspects [19], [118] are:

1) Tester recruitment. Testers are hired to perform
load tests. There are specific criteria to select live
users depending on the testing objectives and
type of system. For example, for web-applica-
tions, individual users are picked based on fac-
tors like geographical locations, languages,
operating systems and browsers;

2) Tester setup. Necessary procedures are carried
out to enable testers to access the SUTs (e.g., net-
work permission, account permission, monitor-
ing and data recording software installation);

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS 1105

3)

Tester training. The selected testers are trained to
be familiar with the SUT and their testing
scenarios.

e Load driver deployment (driver based and emulation based
executions). Deploying the load drivers involves the
installation and configuration of load drivers:

1)

2)

Installation of load drivers. The load drivers are
usually installed on different machines from the
SUT to avoid confounding of measurements and
resource usage. The machines which have load
drivers installed should have enough computing
resources such that they do not saturate during a
load test.

The installation of load drivers is usually

straight-forward [128], [129], except for peer-to-
peer load drivers. Dumitrescu et al. [135] imple-
ment a framework to automatically push the
peer load drivers to different machines for load
testing Grid systems. The framework picks one
machine in the Grid to act as a controller. The
controller pushes the peer load driver to other
machines, which are responsible for requesting
web services under test.
Configuration of load drivers. The configuration of
load drivers is the process of encoding the load
as inputs, which the load drivers can under-
stand. There are currently four general load
driver configuration techniques:

a) Simple GUI configuration. Some load drivers
(especially the benchmark suites like [131])
provide a simple graphical user interface
for load test practitioners to specify the
rate of the requests as well as test
durations.

b) Programable configuration. Many of the gen-
eral purpose load drivers let load test prac-
titioners encode the testing load using
programming languages. The choice of
programming languages varies between
load drivers. For example, the language
could be generic programming languages
like C++ [129], Javascript [128], Java [146]
or XML [147]; or domain specific lan-
guages, which enable easy specifications of
test environment components like the
setup/configration of database, network
and storage [148] and or for specialized
systems (e.g., TTCN-3 for telecommunica-
tion systems [28]).

c) Store-and-replay configuration. Rather than
directly encoding the load via coding,
many load drivers support store-and-
replay to reduce the programming efforts.
Store-and-replay load driver configuration
techniques are used in web-based applica-
tions [102], [128], [129], [149] and distrib-
uted telecommunication applications [150],
[151]. This configuration technique consists
of the following three steps:

i) The storing phase: During the storing
phase, load test practitioners perform

i)

ii)

a sequence of actions for each sce-
nario. For example, in a web-based
system, a user would first login to the
system, browse a few catalogs then
logout. A probe, which is included in
the load drivers, is used to capture all
incoming and outgoing data. For
example, all HTTP requests can be
captured by either implementing a
probe at the client browser side (e.g.,
browser proxy in WebLoad [128],
[129]) or at the network packet level
using a packet analyzer like Wire-
shark [152]. The recorded scenarios
are encoded in load-driver specific
programming languages (e.g., C+
+ [129] and Javascript [128]).

Rich Internet applications (RIA)
dynamically update parts of the web-
page based on the user actions. There-
fore, the user action sequences cannot
be easily used in record-and-replay
via URL editing. Instead, The store-
and-replay is achieved via using GUI
automation tools like Selenium [153]
to record user actions instead.

ii) The editing phase: The recorded data
needs to be edited and customized by
load test practitioners in order to be
properly executed by the load driver.
The stored data is usually edited to
remove runtime-specific values (e.g.,
session IDs and user IDs).

iii) The replaying phase: Once load test
practitioners finish editing, they need
to identify the replay rates of these
scenarios, the delay between individ-
ual requests and the test duration.

d) Model configuration. Section 3.1.2
explains realistic load design techni-
ques via usage models. There are two
approaches to translate the usage
models into load driver inputs: on
one hand, many load drivers can
directly take usage models as their
inputs. On the other hand, research
works have been proposed to auto-
matically generate load driver config-
uration code based on usage models.

Readily supported models: Test cases formulated in
Markov chain can be directly used in load test execu-
tion tools like LoadRunner [129] and Apache JMe-
ter [130] (through plugin) or research tools like [154].
Automated generation of load driver configuration code:
Many techniques have been proposed to automati-
cally generate load driver configuration code from
usage models. LoadRunner scripts can be automati-
cally generated from UML diagrams (e.g., activity
diagrams and sequence diagrams) [100], [101]. The
Stochastic Form Charts can be automatically
encoded into JMeter scripts [114], [115].

1106

Configuring the Test Environment. As mentioned above,
live-user based and driver based executions usually take
place in a lab environment. Extra care is needed to configure
the test environment to be as realistic as possible.

First, it is important to understand the implication of
the hardware platforms. Netto et al. [155] and White and
Pilbeam [156] evaluate the stability of the generated load
under virtualized environments (e.g., virtual machines).
They find that the system throughput sometimes might
not produce stable load on virtual machines. Second,
additional operating system configurations might need
to be tuned. For example, Kim [157] reports that extra
settings need to be specified in Windows platforms in
order to generate hundreds or millions of concurrent
connections. Last, it is crucial to make network behavior
as realistic as possible. The realism of the network is
covered in two aspects:

1) Network latency. Many load-driver based test execu-
tion techniques are conducted within a local area
network, where packets are delivered swiftly and
reliably. The case of no/little packet latency is usu-
ally not applicable in the field, as packets may be
delayed, dropped or corrupted. IP Network Emula-
tor Tools like Shunra [158], [159] are used in load
testing to create a realistic load testing network
environment [27].

2) Network spoofing. Routers sometimes attempt to opti-
mize the overall network throughput by caching the
source and destination. If the requests come from the
same IP address, the network latency measure won’t
be as realistic. In addition, some systems perform
traffic controls based on requests from different net-
work addresses (IP addresses) for purposes like
guarding against denial of service (DoS) attacks or
providing different quality of services. IP Spoofing
in a load test refers to the practice of generating
different IP addresses for workload requests coming
from different simulated wusers. IP Spoofing is
needed to properly load test some web-based sys-
tems using the driver based executions, as these sys-
tems usually deny large volume of requests from the
same IP addresses to protect against the DoS attacks.
IP spoofing is usually configured in supported load
drivers (e.g., [129]).

4.2 Load Generation and Termination

This section covers three categories of load generation
and termination techniques: manual load generation and
termination techniques (Section 4.2.1), load generation and
termination based on static configurations (Section 4.2.2),
and load generation and termination techniques based on
dynamic system feedback (Section 4.2.3).

4.2.1 Manual Load Generation and (Timer-Based)

Termination Techniques
Each user repeatedly conducts a sequence of actions over a
fixed period of time. Sometimes, actions among different

live users need to be coordinated in order to reach the
desired load.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015

4.2.2 Static-Configuration-Based Load Generation and
Termination Techniques

Each load driver has a controller component to generate the
specified load based on the configurations [104], [128],
[129]. If the load drivers are installed on multiple machines,
the controller needs to send messages among distributed
components to coordinate among the load drivers to gener-
ate the desired load [135].

Each specific request is either generated based on a ran-
dom number during runtime (e.g., 10 percent of the time
user A is browsing) [104], [129] or based on a specific pre-
defined schedule (e.g., during the first five minutes, user B
is browsing) [52], [53].

There are four types of load termination techniques
based on pre-defined static configurations. The first three
techniques (continuous, timer-driven and counter-driven)
exist in many existing load drivers [151]. The fourth tech-
nique (statistic-driven) was recently introduced [92], [159]
to ensure the validity or accuracy of the data collected.

1) Continuous: A load test runs continuously until the
load test practitioners manually stop it;

2) Timer-driven: A load test runs for a pre-specified test
duration then stops;

3) Counter-driven: A load test runs continuously until a
pre-specified number of requests have been proc-
essed or sent; and

4) Statistic-driven: A load test is terminated once the
performance metrics of interest (e.g., response
time, CPU and memory) are statistically stable.
This means the metrics of interest yield high con-
fidence interval to estimate such value or have
small standard deviations among the collected
data points [92], [159].

4.2.3 Dynamic-Feedback-Based Load Generation and
Termination Techniques

Rather than generating and terminating a load test based on
static configurations, techniques have been proposed to
dynamically steer the load based on the system feed-
back [11], [17], [24], [25], [160].

Depending on the load testing objectives, the definition
of important inputs can vary. For example, one goal is to
detect memory leaks [17]. Thus, input parameters that sig-
nificantly impact the system memory usage, are considered
as important parameters. Other goals can be to find/verify
the maximum number of users that the SUT can support
before the response time degrades [17] or to locate software
performance bottleneck [24], [25], [160]. Thus, important
inputs are the ones that significantly impact the testing
objectives (e.g., performance objectives like the response
time or throughput). There are three proposed techniques
to locate the important inputs.

1) System identification technique. Bayan and Cangussu
calculate the important inputs using the System
Identification Technique [161], [162]. The general
idea is as follows: the metric mentioned in the
objectives is considered as the output variable (e.g.,
memory usage or response time). Different combina-
tions of input parameters lead to different values in

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

the output variable. A series of random testing runs,
which measure the system performance using ran-
domly generated inputs, would create a set of linear
equations with the output variable on one side and
various combinations of input variables on the other
side. Thus, locating the resource impacting inputs is
equivalent to solving these linear equations and
identifying the inputs, which are large (i.e., sensitive
to the resources of interest).

2) Analytical queuing modeling. Compared with the Sys-
tem Identification Technique, which calculates the
important inputs before load test execution starts,
Branal et al. dynamically model the SUT using a
two-layer queuing model and use analytical techni-
ques to find the workload mixes that change the bot-
tlenecks in the SUT. Branal et al. iteratively tune the
analytical queuing model based on the system per-
formance metrics (e.g.,, CPU, disk and memory).
Through iteratively driving load, their model gradu-
ally narrows down the bottleneck/important inputs.

3) Machine learning technique. Similar to [161], [162], Gre-
chanik et al. first apply random testing to monitor the
system behavior with respect to a set of randomly
selected inputs. Then they apply machine learning
techniques to derive performance rules, which
describe the characteristics of user inputs causing bad
performance (e.g., long response time). The load test-
ing is conducted adaptively, so that only new inputs
are passed into the SUT. During the adaptive load
testing process, execution traces (method entry/exit),
software performance metrics (e.g., response time)
are recorded and the performance rules are re-
learned. The adaptive load testing is stopped when
there are no new performance rules discovered.

Once these important inputs are identified, the load driver
automatically generates the target load to detect memory
leaks [17], to verify system performance requirements [11],
or to identify software bottlenecks [24], [25], [160].

4.2.4 Deterministic Load Generation and Termination
Techniques

Even though all of these load test execution techniques
manage to inject many concurrent requests into the SUT,
none of those techniques can guarantee to explore all the
possible inter-leavings of threads and timing of asyn-
chronous events. Such system state information is impor-
tant, as some thread inter-leaving events could lead to
hard to catch and reproduce problems like deadlocks or
racing conditions.

As we mentioned in the beginning of this section, the
CHESS platform [34] can be used to deterministically exe-
cute a test based on all the possible event inter-leavings. The
deterministic inter-leaving execution is achieved by the
scheduling component, as the actual scheduling during the
test execution is controlled by the tool scheduler rather than
the OS scheduler. The CHESS scheduler understands the
semantics of all non-deterministic APIs and provides an
alternative implementation of these APIs. By picking differ-
ent threads to block at different execution points, the CHESS
scheduler is able to deterministically explore all the possible

1107

inter-leavings of task executions. The test stops when the
scheduler explores all the task inter-leavings. During this
process, the CHESS platform automatically reports when
there is a deadlock or race conditions, along with the exact
execution context (e.g., thread interleaving and events).

4.3 Test Monitoring and Data Collection
The system behavior under load is monitored and
recorded during the course of the load test execution.
There is a tradeoff between the level of monitoring details
and monitoring overhead. Detailed monitoring has a huge
performance overhead, which may slow down the system
execution and may even alter the system behavior [163].
Therefore, probing techniques for load testing are usually
light weight and are intended to impose minimal over-
head to the overall system.

In general, there are four categories of collected data in
the research literature: Metrics, Execution Logs, Functional
Failures, and System Snapshots.

4.3.1 Monitoring and Collecting Metrics

Metrics are tracked by recruited testers in the live-user
based executions [19], [164], by load drivers in the driver
based and emulation based executions [13], [15], [49], [50],
[128], [129], [165], or by light weight system monitoring
tools like PerfMon [166], pidstats [164], Munin [167], and
SNMP MIBs [168].

In general, there are two types of metrics that are
monitored and collected during the course of the load
test execution phase: Throughput Metrics (“Number of
Pass/Fail Requests”) and Performance Metrics (“End-to-
End Response Time” and “Resource Usage Metrics”).

1) Number of passed and failed requests. Once the load is
terminated, the number of passed and failed
requests are collected from live users. This metric
can either be recorded periodically (the number of
pass and fail requests at this interval) or recorded
once at the end of the load test (the total number of
pass and failed requests).

2) End-to-end response time. The end-to-end response
time (or just response time) is the time that it takes to
complete one individual request.

3) Resource usage metrics. System resource usage met-
rics like CPU, memory, disk and network usage,
are collected for the system under load. These
resource usage metrics are usually collected and
recorded at a fixed time interval. Similar to the
end-to-end metrics, depending on the specifica-
tions, the recorded data can either be aggregated
values or a sampled value at that particular time
instance. System resource usage metrics can either
be collected through system monitoring tools like
PerfMon in Windows or pidstats in Unix/Linux.
Such resource usage metrics are usually collected
both for the SUT and its associated components
(e.g., databases and mail servers).

Emulation-based test executions typically do not track

these metrics, as the systems are deployed on specialized
platforms which are not reflective of the actual field behavior.

1108

4.3.2 Instrumenting and Collecting Execution Logs

Execution logs are generated by the instrumentation of
code that developers insert into the source code. Execution
logs record the runtime behavior of the system under test.
However, excessive instrumentation is not recommended,
as contention for outputting the logs could slow down
the application under test [169]. There are three types of
instrumentation mechanisms: (1) ad-hoc debug statements,
like printf or System.out, (2) general instrumentation
frameworks, like Log4j [170], and (3) through specialized
instrumentation frameworks like Application Response
Measurement (ARM) [171]:

1) Ad-hoc logging: The ad-hoc logging mechanism is the
most commonly used, as developers insert output
statements (e.g., printf or System.out) into the source
code for debugging purposes [39]. However, extra
care is required to (1) minimize the amount of infor-
mation generated, and to (2) to make sure that
the statements are not garbled as multiple logging
threads attempt to write to the same file concurrently.

2) General instrumentation framework: General instru-
mentation frameworks, like Log4j [170], address the
two limitations in the ad-hoc mechanism. The instru-
mentation framework provides a platform to sup-
port thread-safe logging and fine-grained control of
information. Thread-safe logging makes sure that each
logging thread serially accesses the single log file for
multi-threaded systems. Fine-grained logging control
enables developers to specify logging at various lev-
els. For example, there can be many levels of logging
suited for various purposes, like information level
logs for monitoring and legal compliances [172], and
debug level logs for debugging purposes. During
load tests and actual field deployments, only higher
level logging (e.g., at the information level) is gener-
ated to minimize overhead.

3) Specialized instrumentation framework: Specialized
instrumentation frameworks like ARM [171] can
facilitate the process of gathering performance infor-
mation from running programs.

4.3.3 Monitoring and Collecting Functional Failures

Live-user based and emulation based executions record
functional problems, whenever the failure occurs. For each
request that a live user executes, he/she records whether
the request has completed successfully. If not, he/she will
note the problem areas (e.g., flash content is not displayed
properly [19]).

4.3.4 Monitoring System Behavior and Collecting
System Snapshots

Rather than capturing information throughout the course of
the load test, Bertolino et al. [165] propose a technique that
captures a snapshot of the entire test environment as well as
the system state when a problem arises. Whenever the SUT’s
overall QoS is below some threshold, all network requests as
well as snapshot of the system state are saved. This snapshot
can be replayed later for debugging purposes. For the deter-
ministic emulation based execution (e.g., in the case of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015
CHESS platform), the detailed system state is recorded when
the deadlock or race conditions occur.

4.4 Summary and Open Problems
There are three general load test execution approaches:
(1) the live-user based executions, where recruited testers
manually generate the testing load; (2) the driver based exe-
cutions, where the testing load is automatically generated;
and (3) the emulation based executions, where the SUT is
executed on top of special platforms. Live-user based execu-
tions provide the most realistic feedback on the system
behavior, but suffer from scalability issues. Driver based
executions can scale to large testing load and test durations,
but require substantial efforts to deploy and configure the
load drives for the targeted testing load. Emulation based
executions provide special capacities over the other two
execution approaches: (1) early examination of system
behavior before SUT is fully implemented, (2) easy detec-
tion and reporting of load problems. However, emulation
based execution techniques can only focus on a small subset
of the load testing objectives.

Here, we list two open problems, which are still not
explored thoroughly:

o Encoding testing loads into testing tools. It is not
straight-forward to translate the designed load into
inputs used by load drivers. For example, the load
resulted from hybrid load optimization techni-
ques [53] is in the form of traces. Therefore, load
drivers need to be modified to take these traces as
inputs and replay the exact order of these sequences.
However, if the size of traces becomes large, the load
driver might not be able to handle traces. Similarity,
testing load derived from deterministic state test-
ing [10], [85] is not easily realized in existing load
drivers, either.

o System monitoring details and load testing analysis. On
one hand, it is important to minimize the system mon-
itoring overhead during the execution of a load test.
On the other hand, the recorded data might not be suf-
ficient (or straight-forward) for load testing analysis.
For example, recorded data (e.g., metrics and logs)
can be too large to be examined manually for prob-
lems. Additional work is needed to find proper sys-
tem monitoring data suited for load testing.

5 RESEARCH QUESTION 3: HOw IS THE RESULT
OF A LOAD TEST ANALYZED?

During the load test execution phase, the system behavior
(e.g., logs and metrics) is recorded. Such data must be ana-
lyzed to decide whether the SUT has met the test objectives.
Different types of data and analysis techniques are needed
to validate different test objectives.

As discussed in Section 4.3, there are four categories of
system behavior data: metrics, execution logs, functional
failures and system snapshots. All of the research litera-
ture focuses on the analysis and reporting techniques
that are used for working with metrics and execution
logs. (It is relatively straight-forward to handle the func-
tional failure data by reporting them to the development

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

team, and there is no further discussion on how to ana-
lyze system snapshots [165]).

There are three categories of load testing analysis
approaches:

1) Verifying against threshold values. Some system
requirements under load (especially non-functional
requirements) are defined using threshold values.
One example is the system resource requirements.
The CPU and memory usage cannot be too high dur-
ing the course of a load test, otherwise the request
processing can hang and system performance can be
unstable [173]. Another example is the reliability
requirement for safety critical and telecommunica-
tion systems [10], [85]. The reliability requirements
are usually specified as “three-nines” or “five-nines”,
which means the system reliability cannot be lower
than 99.9 percent (for “three-nines”) and 99.999 per-
cent (for “five-nines”). The most intuitive load test
analysis technique is to summarize the system
behavior into one number and verify this number
against a threshold. The usual output for such analy-
sis is simply pass/fail.

2) Detecting known types of problems. Another general
category of load test analysis is examining the sys-
tem behavior to locate patterns of known problems;
as some problems are buried in the data and cannot
be found based on threshold values, but can be spot-
ted by known patterns. One example of such analy-
sis approach is to check the memory growth trend
over time for memory leaks. The usual output for
such analysis is a list of detected problems.

3) Detecting anomalous behavior. Unfortunately, not
all problems can be specified using patterns and
certainly not all problems have been detected
previously. In addition, the volume of recorded
system behavior is too large for manual examina-
tion. Therefore, automated techniques have been
proposed to systematically analyze the system
behavior to uncover anomalous behavior. These
techniques automatically derive “normal/expected
behavior” and flag “anomalous behavior” from the
data. However, the accuracy of such techniques
might not be as high as the above two approaches,
as the “anomalous behavior” are merely hints of
potential problems under load. The output for
such analysis is usually the anomalous behavior
and some reasoning/diagnosis on the potential
problematic behavior.

All three aforementioned techniques can analyze differ-
ent categories of data to verify a range of objectives (detect-
ing functional problems and non-functional problems).
These load test analysis techniques can be used individually
or together based on the types of data available and the
available time. For example, if time permits, load testing
practitioners can verify against known requirements based
on thresholds, locate problems based on specific patterns
and run the automated anomaly detection techniques just to
check if there are any more problems. We categorize the
various load test analysis techniques into the following six
dimensions as shown in Table 5.

1109

e Approaches refer to one of the above three load test
analysis approaches.

o Techniques refer to the load test analysis technique
like memory leak detection.

e Data refers to the types of system behavior data that
the test analysis technique can analyze. Examples
are execution logs and performance metrics like
response time.

o Test objectives refer to the goal or goals of load test
objectives (e.g., detecting performance problems),
which the test analysis technique achieves.

e Reported results refer to the types of reported out-
comes, which can simply be pass/fail or detailed
problem diagnoses.

e References refer to the list of literatures, which pro-
pose each technique.

This section is organized as follows: The next three
sections describe the three categories of load testing anal-
ysis techniques respectively: Section 5.1 explains the tech-
niques of verifying load test results against threshold
values, Section 5.2 describes the techniques of detecting
known types of problems, and Section 5.3 explains the
techniques of automated anomaly detection and diagno-
sis. Section 5.4 summarizes the load test analysis techni-
ques and highlights some open problems.

5.1 Verifying against Threshold Values

The threshold-based test analysis approach can be further
broken down into three techniques based on the availability
of the data and threshold values.

5.1.1 Straight-Forward Comparison

When the data is available and the threshold requirement is
clearly defined, load testing practitioners can perform a
straight-forward comparison between the data and the
threshold values. One example is throughput analysis.
Throughput, which is the rate of successful requests com-
pleted, can be used to compare against the load to validate
whether the SUT’s functionality scales under load [174],
[175], [176].

5.1.2 Comparing against Processed Data

If the system resources, like CPU and memory utilization
are too high, the system performance may not be stable [173]
and user experience could degrade (e.g., slow response
time) [27], [43], [93], [95], [191].

There can be many formats of system behavior. One
example is resource usage data, which is sampled at a fixed
interval. Another example is the end-to-end response time,
which is recorded as response time for each individual
request. These types of data need to be processed before
comparing against threshold values. On one hand, as Bondi
points out [45], system resources may fluctuate during the
startup time for warmup and cooldown periods. Hence, it is
important to only focus on the system behavior once
the system reaches a stabilized state. On the other hand, a
proper data summarization technique is needed to describe
these many data instances into one number. There are three
types of data summarization techniques proposed in the

1110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.41, NO.11, NOVEMBER 2015
TABLE 5
Load Test Analysis Techniques
Approaches Techniques Data Test Objectives Reported Results References
Verifying Straight-forward Performance metrics ~ Detecting violations in Pass/Fail [174], [175],
Against Comparison performance and scal- [176]
Threshold ability requirements
Values Comparing Against Periodic sampling Detecting violations in [15], [38], [39],
Processed Data (Max, metrics performance require- [40], [41], [42],
median or 90-percen- ments [135], [173],
tile values) [174], [177],
[178]
Comparing Against Number of pass/fail ~ Detecting violations in [15], [16], [26],
Derived (Threshold requests, past performance and reli- [179]
and/or target) Data performance metrics ability requirements
Detecting Detecting Memory Memory usage Detecting load-related Pass/Fail [9], [17], [45]
Known Types Leaks metrics functional problems
of Problems Locating Error Execution logs Detecting functional ~ Error log lines and [180]
Keywords problems error types
Detecting Deadlocks CPU Detecting load-related Pass/Fail [9]
functional problems
and violations in scal-
ability requirements
Detecting Unhealthy CPU, Response Time Detecting load-related Pass/Fail [9]
System States and Workload functional problems
and violations in per-
formance require-
ments
Detecting Throughput Throughput, response Detecting load-related Pass/Fail [159]
Problems time metrics functional problems
and violations in scal-
ability requirements
Detecting Detecting Anomalous ~ Performance metrics Detecting perfor- Anomalous [86], [181],
Anomalous Behavior using Perfor- mance problems performance metrics [182], [183],
Behavior mance Metrics [184], [185],
[186], [187],
[188], [189]
Detecting Anomalous ~ Execution logs Detecting functional ~ Log sequences with [87], [88]

Behavior using Execu-
tion Logs

Detecting Anomalous
Behavior using Execu-
tion Logs and Perfor-
mance Metrics

Execution logs and
performance metrics

and performance
problems

Detecting memory-
related problems

anomalous functional
or performance
behaviors

Potential problematic
log lines causing
memory-related
problems

[190]

literature. We use response time analysis as an example to
describe the proposed data summarization techniques:

5.1.3 Comparing against Derived Data

1)

2)

3)

Maximum values. For online distributed multi-media
systems, if any video and audio packets are out of
sync or not delivered in time, it is considered a fail-
ure [38]. Therefore, the inability of the end-to-end
response time to meet a specific threshold (e.g.,
video buffering period) is considered as a failure.
Average or median values. The average or median
response time summarizes the majority of the
response times during the load test and is used to
evaluate the overall system performance under
load [15], [39], [40], [41], [42], [135], [174].
90-percentile values. Some researchers advocate that
the 90-percentile response time is a better measure-
ment than the average/median response time [173],
[177], [178], as 90-percentile response time accounts
for most of the peaks, while eliminating the outliers.

In some cases, either the data (e.g., the reliability) to com-
pare or the threshold value is not directly available. Extra
steps need to be taken to derive this data before analysis.

Deriving thresholds. Some other threshold values for
non-functional requirements are informally defined.
One example is the “no-worse-than-before” princi-
ple when verifying the overall system performance.

The “no-worse-than-before” principle states that the

average response time (system performance require-

ments) for the current version should be at least as

good as prior versions [26].

Deriving target data. There are two methods for deriv-

ing the target data to be analyzed:

o Through extrapolation. ~As mentioned in
Section 3.3.2, due to time or cost limitations,
sometimes it is not possible to run the targeted
load, but we might run tests with lower load

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

levels (same workload mix but different inten-
sity). Based on the performance of these lower
workload intensity level tests, load test practi-
tioners can extrapolate the performance metrics
at the targeted load [15], [16], [179]. If certain
resource metrics are higher than the hardware
limits (e.g., requires more memory than pro-
vided or CPU utilization is greater than 100 per-
cent) based on the extrapolation, scalability
problems are noted.

o Through Bayesian network. Software reliability is
defined as the probability of failure-free opera-
tion for a period of time, under certain condi-
tions. Mission critical systems usually have very
strict reliability requirements. Avritzer et al. [23],
[85] use the Bayesian Network to estimate the
system reliability from the load test data. Avrit-
zer et al. use the failure probability of each type
of load (workload mix and workload intensity)
and the likelihood of these types of load occur-
ring in the field. Load test practitioners can then
use such reliability estimates to track the quality
of the SUT across various builds and decide
whether the SUT is ready for release.

5.2 Detecting Known Types of Problems

There are five known load related problems, which can be
analyzed using patterns: detection of memory leaks
(Section 5.2.1), locating error keywords (Section 5.2.2),
detecting deadlocks (Section 5.2.3), detecting unhealthy sys-
tem states (Section 5.2.4), and detecting throughput prob-
lems using queuing theory (Section 5.2.5).

5.2.1 Detecting Memory Leaks

Memory leaks can cause long running systems to crash.
Memory leak problems can be detected if there is an
upward trend of the memory footprint throughout the
course of load testing [9], [17], [45].

5.2.2 Locating Error Keywords

Execution logs, generated by code instrumentations, pro-
vide textual descriptions of the system behavior during run-
time. Compared to system resource usage data, which are
structural and easy to analyze, execution logs are more diffi-
cult to analyze, but provide more in-depth knowledge.

One of the challenges of analyzing execution logs is the
size of the data. At the end of a load test, the size of execu-
tion logs can be several hundred megabytes or gigabytes.
Therefore, automatic log analysis techniques are needed to
scan through logs to detect problems.

Load testing practitioners can search for specific key-
words like “errors”, “failures”, “crash” or “restart” in the
execution logs [88]. Once these log lines are found, load test
practitioners need to analyze the context of the matched log
lines to determine whether they indicate problems or not.
One of the challenges of performing a simple keyword
search is that the data is not categorized. There can be hun-
dreds of “error” log lines belonging to several different types
of errors. Jiang et al. [180] extend this approach to further cat-
egorize these log lines into various types of errors or failures.

1111

They accomplish this by first abstracting each execution log
line into an execution event where the runtime data is
parameterized. Then, they group these execution events by
their associated keywords like “failures” or “errors”. A log
summary report is then produced with a clear breakdown of
the types of “failures” and “errors”, their frequencies and
examples of their occurrence in the logs.

5.2.3 Detecting Deadlocks

Deadlocks can cause CPU resource to deviate from normal
levels [9]. A typical pattern would be CPU resource repeat-
edly drops below normal levels (indicating deadlock) and
returns to normal levels (indicating lock releases).

5.2.4 Detecting Unhealthy System States

Avritzer and Bondi [9] observe that under normal condi-
tions the CPU resource has a linear relation with the work-
load and that the response time should be stable over time.
However, when such observations (a.k.a., the linear rela-
tionship among the CPU resource, the workload and the
stable response time) no longer hold, then the SUT might
have performance problems (e.g., software bottlenecks or
concurrency problems).

5.2.5 Detecting Throughput Problems

Mansharamani et al. [159] use Little’s Law from Queuing
Theory to validate the load test results:

Number of users

Th hput = ’
roughpu Response Time + Average Think Time

If there is a big difference between the calculated and
measured throughput, there could be failure in the transac-
tions or load variations (e.g., during warm up or cool down)
or load generation errors (e.g., load generation machines
cannot keep up with the specified loads).

5.3 Detecting Anomalous Behavior

Depending on the types of data available, the automated
anomaly detection approach can be further broken down
into two groups of techniques: (1) techniques based on met-
rics; and (2) techniques based on execution logs.

5.3.1 Anomaly Detection Using Performance Metrics

The proposed techniques based on metric-based anomaly
detection are focused on analyzing the resource usage data.
There are six techniques proposed to derive the “expected/
normal” behavior and flag “anomalous” behavior based on
resource usage data:

1) Deriving and Comparing Clusters

As noted by Georges et al. [163], [192], it is impor-
tant to execute the same tests multiple times to gain
a better view of the system performance due to
issues like system warmup and memory layouts.
Bulej et al. [56] propose the use of statistical techni-
ques to detect performance regressions (performance
degradations in the context of regression testing).
Bulej et al. repeatedly execute the same tests multiple
times. Then, they group the response time for each

1112

2)

3)

4)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

request into clusters and compare the response time
distributions cluster-by-cluster. They have used vari-
ous statistical tests (Student-t test, Kolmogorov-
Smirnov Test, Wilcoxon test, Kruskal-Wallis test) to
compare the response time distributions between the
current release and prior releases. The results of their
case studies show that these statistical tests yield
similar results.

Deriving clusters and finding outliers. Rather than
comparing the resulting clusters as in [56], Syer
et al. [86], [189] use a hierarchical clustering tech-
nique to identify outliers, which represent threads
with deviating behavior in a thread pool. A thread
pool, which is a popular design pattern for large-
scale software systems, contains a collection of
threads available to perform the same type of
computational tasks. Each thread in the thread pool
performs similar tasks and should exhibit similar
behavior with respect to resource usage metric, such
as CPU and memory usage. Threads with perfor-
mance deviations likely indicate problems, such as
deadlock or memory leaks.

Deriving performance ranges. A control chart consists
of three parts: a control line (center line), a lower con-
trol limit (LCL) and an upper control limit. If a point
lies outside the controlled regions (between the
upper and lower limits), the point is counted as a
violation. Control charts are used widely in the
manufacturing process to detect anomalies. Nguyen
et al. [188] use control charts to flag anomalous
resource usage metrics. There are several assump-
tions associated with applying control chart: (1) the
collected data is normally distributed; (2) the testing
loads should be constant or linearly correlated with
the system performance metrics; and (3) the perfor-
mance metrics should be independent of each other.

For each recorded resource usage metrics,

Nguyen et al. derive the “expected behavior” in the
form of control chart limits based on prior good tests.
For tests whose loads are not constant, Nguyen et al.
use linear extrapolation to transform the perfor-
mance metrics data. Then current test data is over-
layed on the control chart. If the examined
performance metric (e.g., subsystem CPU) has a high
number of violations, this metric is flagged as an
anomaly and is reported to the development team
for further analysis.
Deriving performance rules. Nguyen et al. [188] treat
each metric separately and derive range boundary
values for each of these metrics. However, in many
cases the assumptions of control chart may not hold
by the performance metrics data. For example, when
the SUT is processing a large number of requests, the
CPU usage and memory usage could be high.

Foo et al. [181] build performance rules, and flag
metrics, which violate these rules. A performance
rule groups a set of correlating metrics. For example,
a large number of requests imply high CPU and
memory usage. For all the past tests, Foo et al. first
categorize each metrics into one of high/median/
low categories, then derive performance rules by

5)

NO. 11, NOVEMBER 2015
applying an artificial intelligence technique, called
Association Rule mining. The performance rules
(association rules) are derived by finding frequent
co-occurred metrics. For example, if high browsing
requests, high Database CPU and high web server
memory footprint always appear together, Browsing/
DB CPU/Web Server Memory form a set (called
“frequent-item-set”). Based on the frequent-item-set,
association rules can be formed (e.g., high browsing
requests and high web server memory implies high
database CPU). Metrics from the current test are
matched against these rules. Metrics (e.g., low data-
base CPU), which violate these rules, are flagged as
“anomalous behavior”.

Deriving performance signatures. Rather than deriving
performance rules [181], Malik et al. [184], [185],
[186], [187] select the most important metrics among
hundreds or thousands of metrics and group these
metrics into relevant groups, called “Performance
Signatures”. Malik et al. propose two main types of
performance signature generation techniques: an
unsupervised learning approach and a supervised
learning approach.

If the past performance tests are not clearly
labeled with pass/fail information, Malik et al.
use an unsupervised learning technique, called
Principal Component Analysis (PCA) [184], [185],
[186], [187]. First, Malik et al. normalize all met-
rics into values between 0 and 1. Then PCA is
applied to show the relationship between metrics.
PCA groups metrics into groups, called Principle
Components (PC). Each group has a value called
variance, which explains the importance/rele-
vance of the group to explain the overall data.
The higher the variance values of the groups, the
more relevant these groups are. Furthermore,
each metric is a member of all the PCs, but the
importance of the metrics within one group
varies. The higher the eigenvalue of a metric
within one group, the more important the metric
is to the group. Malik et al. select first N Principle
Components with then largest variance. Then
within each Principle Component, Malik et al.
select important counters by calculating pair-wise
correlations between counters. These important
counters forms the “Performance Signatures”. The
performance signatures are calculated on the past
good tests and the current test, respectively. The
discrepancies between the performance signatures
are flagged as “Anomalous Behavior”.

If the past performance tests are labeled with as
pass/fail, Malik et al. recommend to use a supervised
learning approach to pin-point performance prob-
lems over the aforementioned unsupervised learning
approach, as the supervised learning approach yields
better results. In [184], they first use a machine learn-
ing technique called the Wrapped-based attribute
selection technique to pick the top N performance
counters, which best characterizes the performance
behavior of the SUT under load. Then they build
a logistic regression model with these signature

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

performance counters. The performance counter data
from the new test is passed into a logistic regression
model to identify whether they are anomalous or not.

6) Deriving transaction profiles (TPs). The aforemen-
tioned five techniques uses data mining techniques
to derive the expected behavior and flag the anom-
alously behavior, Ghaith et al. use queuing net-
work model to derive the expected behavior,
called the Transaction Profiles [182], [183]. A TP
represents the service demands on all resources
when processing a particular transaction. For
example, in a web-based application, the TP for a
single “Browsing” transaction would be 0.1 sec-
onds of server CPU, 0.2 seconds of server disk and
0.05 seconds of client CPU. Ideally, the perfor-
mance of each transaction would be identical
regardless of the system load, if the SUT does not
experience any performance bottleneck. Hence, the
TP would be identical for a particular transaction
type regardless of the load. If the TP deviates from
one release to another, the SUT might have a per-
formance regression problem. Ghaith et al. derive
TPs from the performance data on previous
releases and compares again the current release. If
the TPs differ, the new release might have perfor-
mance regression problems.

5.3.2 Anomaly Detection Using Execution Logs

There are two proposed log-based anomaly detection tech-
niques. One technique is focused on detecting anomalous
functional behavior, the other one is focused on detecting
anomalous performance (i.e., non-functional) behavior.

1) Detecting anomalous functional behavior. There are lim-
itations associated with keyword-based analysis
approaches described in Section 5.2.2: First, not all
log lines with the keywords correspond to failures.
For example, the log line, “Failure to locate item in
the cache”, contains the “failure” keyword, it is not
an anomalous log line worthy of investigation. Sec-
ond, not all log lines without such keywords are fail-
ure free. For example, the log line, “Internal message
queue is full”, does not contain the word failure,
though it is an indication of anomalous situation that
should be investigated.

Jiang et al. [88] propose a technique that detects
the anomalous execution sequences in the execution
logs, instead of relying on the log keywords. The
main intuition behind this work is that a load test
repeatedly executes a set of scenarios over a period
of time. The applications should follow the same
behavior (e.g., generating the same logs) when the
scenario is executed each time. As load testing is con-
ducted after the functional tests are completed, the
dominant behavior is usually the normal (i.e., cor-
rect) behavior and the minority (i.e., deviated)
behaviors are likely troublesome and worth investi-
gating. For example, the database disconnects and
reconnects with the SUT intermittently throughout
the test. These types of anomalous behavior should
be raised for further investigation.

1113

Similar as in Section 5.2.2, Jiang et al. first abstract
each log line into an execution event, then group
these log lines into pairs (based on runtime informa-
tion like session IDs or thread IDs). Then, Jiang et al.
group these event pairs and flag small deviations.
For example, if 99 percent of the time a lock-open
event is followed by a lock-close event and 1 percent
of the time lock open is followed by something else;
such deviated behavior should be flagged as an
“anomalous behavior”.

2) Detecting anomalous performance behavior (response
time). As a regular load test simulates periods of
peak usage and periods of off-hour usage, the same
workload is usually applied across load tests, so that
the results of prior load tests are used as an informal
baseline and compared against the current run. If the
current run has scenarios, which follow a different
response time distribution than the baseline, this run
is probably troublesome and worth investigating.
Jiang et al. proposed an approach, which analyzes
the response time extracted from the execution
logs [87]. Jiang et al. recover the scenario sequences
by linking the corresponding identifiers (e.g., session
IDs). In this way, both the end-to-end and step-wise
response times are extracted for each scenario. By
comparing the distribution of end-to-end and step-
wise response times, this approach reports scenarios
with performance problems and pin-points perfor-
mance bottlenecks within these scenarios.

5.3.3 Anomaly Detection Using Execution Logs and
Performance Metrics

All the aforementioned anomaly detection techniques only
examine one type of system behavior data (execution logs
or performance metrics), Syer et al. [190] analyze both exe-
cution logs and performance metrics for memory-related
problems. Ideally, same set of log lines (a.k.a., same work-
load) would lead to similar system resource usage levels
(e.g., similar CPU and memory usages). Otherwise, scenar-
ios corresponding to these log lines might lead to potential
performance problems. Syer et al. first divide the logs and
memory usage data into equal time intervals and combine
these two types of system behavior data into profiles. Then
these profiles are clustered based on the similarity of logs.
Finally, outliers within these clusters are identified by the
deviation of their memory footprints. Scenarios correspond-
ing to the outlier clusters could lead to potential memory-
related problems (e.g., memory leaks).

5.4 Summary and Open Problems

Depending on the types of data and test objectives, there are
different load test analysis techniques that have been
proposed. There are three general test analysis approaches:
verifying the test data against fixed threshold values,
searching through the test data for known problem patterns
and automated detection of anomalous behaviors.

Below are a few open problems:

e Can we use system monitoring techniques to analyze load
test data? Many research ideas in production system

1114

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

monitoring may be applicable for load testing analy-
sis. For example, approaches (e.g., [20], [193], [194],
[195]) have been proposed to build performance sig-
natures based on the past failures, so that whenever
such symptoms occur in the field, the problems can
be detected and notified right away. Analogously,
we can formulate our performance signature based
on mining the past load testing history and use these
performance signatures to detect recurrent problems
in load tests. A promising research area is to explore
the applicability and ease of adapting system moni-
toring techniques for the analysis of load tests.
Scalable and efficient analysis of the results of load tests.
As load tests generate large volumes of data, the
load test analysis techniques need to be scalable and
efficient. However, as data grows larger (e.g., bigger
than one machine’s hard-drive to store), many of the
test analysis techniques may not scale well. It is very
important to explore scalable test analysis techni-
ques, which can automatically examine gigabytes or
terabyte of system behavior data efficiently.

6 SURVEY CONCLUSION

To ensure the quality of large scale systems, load testing is
required in addition to conventional functional testing pro-
cedures. Furthermore, load testing is becoming more impor-
tant, as an increasing number of services are being offered
in the cloud to millions of users. However, as observed by
Visser [196], load testing is a difficult task requiring a great
understanding of the SUT. In this paper, we have surveyed
techniques that are used in the three phases of load testing:
the load design phase, the load execution phase, and the
load test analysis phase. We compared and contrasted these
techniques and provided a few open research problems for
each phase of the load testing problem.

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]
(7]

(8]

[9]

“Applied performance management survey,” Oct. 2007.

E. J. Weyuker and F. I. Vokolos, “Experience with performance
testing of software systems: Issues, an approach, and case
study,” IEEE Trans. Softw. Eng., vol. 26, no. 12, pp. 1147-1156,
Dec. 2000.

Firefox download stunt sets record for quickest meltdown
[Online]. Available: http://www siliconbeat.com/2008/06/17/
firefox-download-stunt-sets-record-for-quickest-meltdown/,
2015.

Steve Jobs on MobileMe [Online]. Available: http://arstechnica.
com/journals/apple.ars/2008/08 /05 /steve-jobs-on-mobi leme-
the-full-e-mail

S. G. Stolberg and M. D. Shear. (2013). Inside the race to rescue a
health care site, and Obama [Online]. Available: http://www.
nytimes.com/2013/12/01/us/politics /inside-the-race-to-rescue
-a-health-site-and-obama.html

M. J. Harrold, “Testing: A roadmap,” in Proc. Conf. Future Softw.
Eng., 2000, pp. 61-72.

C.-W. Ho, L. Williams, and A. I. Anton, “Improving performance
requirements specification from field failure reports,” in Proc.
IEEE 15th Int. Requirements Eng. Conf., 2007, pp. 79-88.

C.-W. Ho, L. Williams, and B. Robinson, “Examining the rela-
tionships between performance requirements and ‘not a prob-
lem’ defect reports,” in Proc. 16th IEEE Int. Requirements Eng.
Conf., 2008, pp. 135-144.

A. Avritzer and A. B. Bondi, “Resilience assessment based on
performance testing,” in Resilience Assessment and Evaluation of
Computing Systems, K. Wolter, A. Avritzer, M. Vieira, and A.
van Moorsel, Eds. Berlin, Germany: Springer, 2012, pp. 305-322.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

NO. 11, NOVEMBER 2015

A. Avritzer, J. P. Ros, and E.]. Weyuker, “Reliability testing of
rule-based systems,” IEEE Softw., vol. 13, no. 5, pp. 76-82,
Sep. 1996.

M. S. Bayan and J. W. Cangussu, “Automatic feedback, control-
based, stress and load testing,” in Proc. ACM Symp. Appl.
Comput., 2008, pp. 661-666.

G. Gheorghiu. (2005). Performance vs. load vs. stress testing
[Online]. Available: http://agiletesting.blogspot.com/2005/02/
performance-vs-load-vs-stress- testing.html

J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea. (1997, Sep.).
Performance testing guidance for web applications - patterns &
practices [Online]. Available: http://msdn.microsoft.com/en-
us/library/bb924375.aspx

B. Dillenseger, “Clif, a framework based on fractal for flexible, dis-
tributed load testing,” Ann. Telecommun., vol. 64, pp. 101-120, 2009.
D. A. Menasce, “Load testing, benchmarking, and application
performance management for the web,” in Proc. Comput. Manag.
Group Conf., 2002, pp. 271-281.

D. A. Menasce, “Load testing of web sites,” IEEE Internet Com-
put., vol. 6, no. 4, pp. 70-74, Jul./ Aug. 2002.

M. S. Bayan and J. W. Cangussu, “Automatic stress and load
testing for embedded systems,” in Proc. 30th Annu. Int. Comput.
Softw. Appl. Conf., 2006, pp. 229-233.

C.-S. D. Yang and L. L. Pollock, “Towards a structural load test-
ing tool,” in Proc. ACM SIGSOFT Int. Symp. Softw. Testing Anal.,
1996, pp. 201-208.

uTest - Load Testing Services [Online]. Available: http://www.
utest.com/load-testing, 2013.

M. Acharya and V. Kommineni, “Mining health models for
performance monitoring of services,” in Proc. IEEE/ACM Int.
Conf. Automated Softw. Eng., 2009, pp. 409-420.

A. Avritzer and B. B. Larson, “Load testing software using deter-
ministic state testing,” in Proc. ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 1993, pp. 82-88.

A. Avritzer and E.]. Weyuker, “Generating test suites for soft-
ware load testing,” in Proc. ACM SIGSOFT Int. Symp. Softw. Test-
ing Anal., 1994, pp. 44-57.

A. Avritzer and E.]. Weyuker, “The automatic generation of load
test suites and the assessment of the resulting software,” IEEE
Trans. Softw. Eng., vol. 21, no. 9, pp. 705-716, Sep. 1995.

C. Barna, M. Litoiu, and H. Ghanbari, “Autonomic load-testing
framework,” in Proc. 8th ACM Int. Conf. Autonomic Comput., 2011,
pp- 91-100.

C. Barna, M. Litoiu, and H. Ghanbari, “Model-based perfor-
mance testing (NIER track),” in Proc. 33rd Int. Conf. Softw. Eng.,
2011, pp. 872-875.

F. Huebner, K. S. Meier-Hellstern, and P. Reeser, “Performance
testing for IP services and systems,” in Performance Eng., State of
the Art and Current Trends. New York, NY, USA: Springer, 2001,
pp- 283-299.

B. Lim, J. Kim, and K. Shim, “Hierarchical load testing architec-
ture using large scale virtual clients,” in Proc. IEEE Int. Cof. Multi-
media Expo, 2006, pp. 581-584.

I. Schieferdecker, G. Din, and D. Apostolidis, “Distributed func-
tional and load tests for web services,” Int. |. Softw. Tools for Tech-
nol. Transfer, vol. 7, pp. 351-360, 2005.

P. Zhang, S. G. Elbaum, and M. B. Dwyer, “Automatic generation
of load tests,” in Proc. 26th IEEEJACM Int. Conf. Automated Softw.
Eng., Nov. 2011, pp. 43-52.

S. Abu-Nimeh, S. Nair, and M. Marchetti, “Avoiding denial of
service via stress testing,” in Proc. IEEE Int. Conf. Comput. Syst.
Appl., 2006, pp. 300-307.

D. Bainbridge, I. H. Witten, S. Boddie, and J. Thompson, “Stress-
testing general purpose digital library software,” in Research and
Advanced Technology for Digital Libraries. New York, NY, USA:
Springer, 2009, pp. 203-214.

L. C. Briand, Y. Labiche, and M. Shousha, “Stress testing real-
time systems with genetic algorithms,” in Proc. Conf. Genetic Evo-
lutionary Comput., 2005, pp. 1021-1028.

C. D. Grosso, G. Antoniol, M. D. Penta, P. Galinier, and E. Merlo,
“Improving network applications security: A new heuristic to
generate stress testing data,” in Proc. Conf. Genetic Evolutionary
Comput., 2005, pp. 1037-1043.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent
programs,” in Proc. 8th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2008, pp. 267-280.

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

F.1. Vokolos and E.]. Weyuker, “Performance testing of software
systems,” in Proc. 1st Int. Workshop Softw. Perform., 1998, pp. 80-87.
A. Chakravarty, “Stress testing an Al based web service: A case
study,” in Proc. 7th Int. Conf. Inf. Technol.: New Generations, Apr.
2010, pp. 1004-1008.

M. Kalita and T. Bezboruah, “Investigation on performance testing
and evaluation of prewebd: A .net technique for implementing
web application,” IET Softw., vol. 5, no. 4, pp. 357-365, Aug. 2011.

J. Zhang and S. C. Cheung, “Automated test case generation for
the stress testing of multimedia systems,” Softw. - Practice Experi-
ence, vol. 32, no. 15, pp. 1411-1435, 2002.

J. Hill, D. Schmidt, J. Edmondson, and A. Gokhale, “Tools for
continuously evaluating distributed system qualities,” IEEE
Softw., vol. 27, no. 4, pp. 65-71, Jul./ Aug. 2010.

J. H. Hill, “An architecture independent approach to emulating
computation intensive workload for early integration testing of
enterprise DRE systems,” in Proc. Confederated Int. Conf., CooplS,
DOA, IS, and ODBASE 2009 On the Move to Meaningful Internet
Syst., 2009, pp. 744-759.

J. H. Hill, D. C. Schmidt, A. A. Porter, and]. M. Slaby, “Cicuts:
Combining system execution modeling tools with continuous
integration environments,” in Proc. 15th Annu. IEEE Int. Conf.
Workshop Eng. Comput. Based Syst., 2008, pp. 66-75.

J. H. Hill, S. Tambe, and A. Gokhale, “Model-driven engineering
for development-time qos validation of component-based soft-
ware systems,” in Proc. 14th Annu. IEEE Int. Conf. Workshops Eng.
Comput.-Based Syst., 2007, pp. 307-316.

A. Avritzer,]. Kondek, D. Liu, and E.]. Weyuker, “Software per-
formance testing based on workload characterization,” in Proc.
3rd Int. Workshop Softw. Perform., 2002, pp. 17-24.

S. Barber, “Creating effective load models for performance test-
ing with incomplete empirical data,” in Proc. 6th IEEE Int. Work-
shop Web Site Evolution, 2004, pp. 51-59.

A. B. Bondi, “Automating the analysis of load test results to
assess the scalability and stability of a component,” in Proc. Com-
put. Meas. Group Conf., 2007, pp. 133-146.

G. Gheorghiu. (2005). More on performance vs. load testing
[Online]. Available: http:/ /agiletesting.blogspot.com/2005/04/
more-on-performance-vs-load-te sting.html

D. A. Menasce and V. A. F. Almeida, Scaling for E Business: Tech-
nologies, Models, Performance, and Capacity Planning. Upper Saddle
River, NJ, USA: Prentice-Hall, 2000.

B. A. Pozin and I. V. Galakhov, “Models in performance testing,”
Program. Comput. Softw., vol. 37, no. 1, pp. 15-25, Jan. 2011.

M. Woodside, G. Franks, and D. C. Petriu, “The future of soft-
ware performance engineering,” in Proc. Int. Conf. Softw. Eng.
Future Softw. Eng. Track, 2007, pp. 171-187.

D. A. Menasce, V. A. F. Almeida, R. Fonseca, and M. A.
Mendes, “A methodology for workload characterization of e-
commerce sites,” in Proc. 1st ACM Conf. Electron. Commerce,
1999, pp. 119-128.

G. Casale, A. Kalbasi, D. Krishnamurthy, and]. Rolia,
“Automatic stress testing of multi-tier systems by dynamic
bottleneck switch generation,” in Proc. 10th ACM/IFIP/USENIX
Int. Conf. Middleware, 2009, pp. 1-20.

D. Krishnamurthy, J. Rolia, and S. Majumdar, “Swat: A tool for
stress testing session-based web applications,” in Proc. Comput.
Meas. Group Conf., 2003, pp. 639-649.

D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic
workload generation technique for stress testing session-based
systems,” IEEE Trans. Softw. Eng., vol. 32, no. 11, pp. 868-882,
Nov. 2006.

J. Zhang, S.-C. Cheung, and S. T. Chanson, “Stress testing of
distributed multimedia software systems,” in Proc. IFIP TC6
WG6.1 Joint Int. Conf. Formal Description Techn. Distrib. Syst.
Commun. Protocols Protocol Specification, Testing Verification,
1999, pp. 119-133.

A. F. Karr and A. A. Porter, “Distributed performance testing
using statistical modeling,” in Proc. 1st Int. Workshop Adv. Model-
Based Testing, 2005, pp. 1-7.

L. Bulej, T. Kalibera, and P. Tma, “Repeated results analysis for
middleware regression benchmarking,” Perform. Evaluation,
vol. 60, no. 1-4, pp. 345-358, 2005.

T. Kalibera, L. Bulej, and P. Tuma, “Automated detection of per-
formance regressions: The mono experience,” in Proc. 13th IEEE
Int. Symp. Model., Anal. Simul. Comput. Telecommun. Syst.,
Sep. 27-29, 2005, pp. 183-190.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]
[75]
[76]

[771

[78]

[79]
[80]
[81]
[82]

[83]
[84]

1115

J. W. Cangussu, K. Cooper, and W. E. Wong, “Reducing the
number of test cases for performance evaluation of components,”
in Proc. 19th Int. Conf. Softw. Eng. Knowl. Eng., 2007, pp. 145-150.
J. W. Cangussu, K. Cooper, and W. E. Wong, “A segment based
approach for the reduction of the number of test cases for perfor-
mance evaluation of components,” Int. |. Softw. Eng. Knowl. Eng.,
vol. 19, no. 4, pp. 481-505, 2009.

M. G. Stochel, M. R. Wawrowski, and J.]. Waskiel, “Adaptive
agile performance modeling and testing,” in Proc. IEEE 36th
Annu. Comput. Softw. Appl. Conf. Workshops, 2012, pp. 446-451.

M. J. Johnson, C.-W. Ho, M. E. Maximilien, and L. Williams,
“Incorporating performance testing in test-driven development,”
IEEE Softw., vol. 24, no. 3, pp. 67-73, May /Jun. 2007.

A. Avritzer and E. J. Weyuker, “Deriving workloads for per-
formance testing,” Softw. - Practice Experience, vol. 26, no. 6,
pp. 613-633, 1996.

P. Csurgay and M. Malek, “Performance testing at early design
phases,” in Proc. IFIP TC6 12th Int. Workshop Testing Commun.
Syst., 1999, pp. 317-330.

G. Denaro, A. Polini, and W. Emmerich, “Early performance test-
ing of distributed software applications,” in Proc. 4th Int. Work-
shop Softw. Perform., 2004, pp. 94-103.

G. Denaro, A. Polini, and W. Emmerich, “Performance testing of
distributed component architectures,” in Performance Testing of
Distributed Component Architectures. In Building Quality Into COTS
Components: Testing and Debugging. New York, NY, USA:
Springer-Verlag, 2005.

V. Garousi, “A genetic algorithm-based stress test requirements
generator tool and its empirical evaluation,” IEEE Trans. Softw.
Eng., vol. 36, no. 6, pp. 778-797, Nov./Dec. 2010.

V. Garousi, “Empirical analysis of a genetic algorithm-based
stress test technique,” in Proc. 10th Annu. Conf. Genetic Evolution-
ary Comput., 2008, pp. 1743-1750.

V. Garousi, L. C. Briand, and Y. Labiche, “Traffic-aware stress
testing of distributed systems based on UML models,” in Proc.
28th Int. Conf. Softw. Eng., 2006, pp. 391-400.

V. Garousi, L. C. Briand, and Y. Labiche, “Traffic-aware stress
testing of distributed real-time systems based on UML models
using genetic algorithms,” J. Syst. Softw., vol. 81, no. 2,
pp. 161-185, 2008.

E. Bozdag, A. Mesbah, and A. van Deursen, “Performance test-
ing of data delivery techniques for AJAX applications,” J. Web
Eng., vol. 8, no. 4, pp. 287-315, 2009.

D. S. Hoskins, C. J. Colbourn, and D. C. Montgomery, “Software
performance testing using covering arrays: Efficient screening
designs with categorical factors,” in Proc. 5th Int. Workshop Softw.
Perform., 2005, pp. 131-136.

M. Sopitkamol and D. A. Menascé, “A method for evaluating the
impact of software configuration parameters on e-commerce
sites,” in Proc. 5th Int. Workshop Softw. Perform., 2005, pp. 53-64.
B. Beizer, Software System Testing and Quality Assurance. New
York, NY, USA: Van Nostrand, Mar. 1984.

I. Gorton, Essential Software Architecture. Springer, 2000.

A. Adamoli, D. Zaparanuks, M. Jovic, and M. Hauswirth,
“Automated GUI performance testing,” Softw. Quality Control,
vol. 19, no. 4, pp. 801-839, Dec. 2011.

D. A. Menasce and V. A. F. Almeida, Capacity Planning for Web
Services: Metrics, Models, and Methods. Upper Saddle River, NJ,
USA: Prentice-Hall, 2001.

D. A. Menasce, V. A. Almeida, and L. W. Dowd, Capacity Plan-
ning and Performance Modeling: From Mainframes to Client-Server
Systems. Upper Saddle River, NJ, USA: Prentice-Hall, 1997.

S. Nejati, S. D. Alesio, M. Sabetzadeh, and L. Briand, “Modeling
and analysis of cpu usage in safety-critical embedded systems to
support stress testing,” in Proc. 15th Int. Conf. Model Driven Eng.
Languages Syst., 2012, pp. 759-775.

E. W. Dijkstra, “Notes on structured programming, ” in, Struc-
tured Programming. London, U.K.: Academic, Apr. 1970.
CompleteSearch DBLP [Online]. Available: http://dblp.uni-
trier.de/search/publ, 2015.

Google Scholar [Online]. Available: https://scholar.google.ca/,
2015.

Microsoft Academic Search [Online]. Available: http://aca-
demic.research.microsoft.com/, 2015.

ACM Portal [Online]. Available: http://dl.acm.org/, 2015.

IEEE Explore [Online]. Available: http://ieeexplore.ieee.org/
Xplore/home.jsp, 2015.

1116

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

A. Avritzer, F. P. Duarte, a. Rosa Maria Meri Le, E. de Souza e
Silva, M. Cohen, and D. Costello, “Reliability estimation for large
distributed software systems,” in Proc. Conf. Center Adv. Stud.
Collaborative Res., 2008, pp. 157-165.

M. D. Syer, B. Adams, and A. E. Hassan, “Identifying perfor-
mance deviations in thread pools,” in Proc. 27th IEEE Int. Conf.
Softw. Maintenance, 2011, pp. 83-92.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automated
performance analysis of load tests,” in Proc. 25th IEEE Int. Conf.
Softw. Maintenance, 2009, pp. 125-134.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in Proc. 24th IEEE Int.
Conf. Softw. Maintenance, 2008, pp. 307-316.

R. Jain, The Art of Computer Systems Performance Analysis: Techni-
ques for Experimental Design, Measurement, Simulation, and Model-
ing. New York, NY, USA: Wiley, Apr. 1991.

M. Calzarossa and G. Serazzi, “Workload characterization: A
survey,” Proc. IEEE, vol. 81, no. 8, pp. 1136 -1150, Aug. 1993.

S. Elnaffar and P. Martin, “Characterizing computer systems’
workloads,” Queen’s Univ., Kingston, ON, Canada, Tech. Rep.
2002-461, 2002.

N. Snellman, A. Ashraf, and I. Porres, “Towards automatic per-
formance and scalability testing of rich internet applications in
the cloud,” in Proc. 37th EUROMICRO Conf. Softw. Eng. Adv.
Appl., Sep. 2011, pp. 161-169.

M. Andreolini, M. Colajanni, and P. Valente, “Design and testing
of scalable web-based systems with performance constraints,” in
Proc. Workshop Techn., Methodologies Tools Perform. Evaluation
Complex Syst., 2005, pp. 15-25.

S. Dawar, S. Meer,]J. Keeney, E. Fallon, and T. Bennet,
“Cloudifying mobile network management: Performance tests of
event distribution and rule processing,” in Proc. 5th Int. Conf.
Mobile Netw. Manag., 2013, pp. 94-107.

B. L. Farrell, R. Menninger, and S. G. Strickland, “Performance
testing & analysis of distributed client/server database systems,”
in Proc. Comput. Manag. Group Conf., 1998, pp. 910-921.

R. Hayes, “How to load test e-commerce applications,” in Proc.
Comput. Manag. Group Conf., 2000, pp. 275-282.

J. A. Meira, E. C. de Almeida, G. Suny, Y. L. Traon, and P.
Valduriez, “Stress testing of transactional database systems.” J.
Inf. Data Manag., vol. 4, no. 3, pp. 279294, 2013.

J. K. Merton, “Evolution of performance testing in a distributed
client server environment,” in Proc. Comput. Manag. Group Conf.,
1999, pp. 118-124.

A. Savoia, “Web load test planning: Predicting how your web
site will respond to stress,” STQE Mag., vol. March/April 2001,
pp. 32-37,2001.

L. T. Costa, R. M. Czekster, F. M. de Oliveira, E. de M.
Rodrigues, M. B. da Silveira, and A. F. Zorzo, “Generating
performance test scripts and scenarios based on abstract inter-
mediate models,” in Proc. 24th Int. Conf. Softw. Eng. Knowl.
Eng., 2012, pp. 112-117.

M. B. da Silveira, E. de M. Rodrigues, A. F. Zorzo, L. T. Costa, H.
V. Vieira, and F. M. de Oliveira, “Reusing functional testing in
order to decrease performance and stress testing costs,” in Proc.
23rd Int. Conf. Softw. Eng. Knowl. Eng., 2011, pp. 470-474.

I. de Sousa Santos, A. R. Santos, and P. de Alcantara dos S. Neto,
“Generation of scripts for performance testing based on UML
models,” in Proc. 23rd Int. Conf. Softw. Eng. Knowl. Eng., 2011,
pp. 258-263.

X. Wang, B. Zhou, and W. Li, “Model based load testing of web
applications,” in Proc. Int. Symp. Parallel Distrib. Process. Appl.,
Sep. 2010, pp. 483—-490.

M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J. For-
smann, “Web services wind tunnel: On performance testing
large-scale stateful web services,” in Proc. 37th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., 2007, pp. 612 -617.

K. Kant, V. Tewary, and R. Iyer, “Geist: A web traffic generation
tool,” Computer Performance Evaluation: Modelling Techniques and
Tools, Lecture Notes in Computer Science, vol. 2324, pp. 227-232,
2002.

D. Draheim, J. Grundy, J. Hosking, C. Lutteroth, and G. Weber,
“Realistic load testing of web applications,” in Proc. Conf. Softw.
Maintenance Reeng., 2006, pp. 57-70.

C. Lutteroth and G. Weber, “Modeling a realistic workload for
performance testing,” in Proc. 12th Int. IEEE Enterprise Distrib.
Object Comput. Conf., 2008, pp. 149-158.

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]
[130]

[131]

[132]

NO. 11, NOVEMBER 2015

F. Abbors, T. Ahmad, D. Truscan, and 1. Porres, “Model-based
performance testing in the cloud using the mbpet tool,” in Proc.
4th ACM/SPEC Int. Conf. Perform. Eng., 2013, pp. 423—-424.

A.]. Maalej, M. Hamza, M. Krichen, and M. Jmaiel, “Automated
significant load testing for WS-BPEL compositions,” in Proc.
IEEE 6th Int. Conf. Softw. Testing, Verification Validation Workshops,
Mar. 2013, pp. 144-153.

A.]. Maalej, M. Krichen, and M. Jmaiel, “Conformance testing of
WS-BPEL compositions under various load conditions,” in Proc.
IEEE 36th Annu. Comput. Softw. Appl. Conf., Jul. 2012, pp. 371-371.
P. Zhang, S. Elbaum, and M. B. Dwyer, “Compositional load test
generation for software pipelines,” in Proc. Int. Symp. Softw. Test-
ing Anal., 2012, pp. 89-99.

Y. Gu and Y. Ge, “Search-based performance testing of applica-
tions with composite services,” in Proc. Int. Conf. Web Inf. Syst.
Mining, 2009, pp. 320-324.

M. D. Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno,
“Search-based testing of service level agreements,” in Proc. 9th
Annu. Conf. Genetic Evolutionary Comput., 2007, pp. 1090-1097.

Y. Cai, J. Grundy, and J. Hosking, “Experiences integrating and
scaling a performance test bed generator with an open source
case tool,” in Proc. 19th IEEE Int. Conf. Automated Softw. Eng.,
2004, pp. 36-45.

Y. Cai, J. Grundy, and J. Hosking, “Synthesizing client load mod-
els for performance engineering via web crawling,” in Proc. 22nd
IEEE/ACM Int. Conf. Automated Softw. Eng., 2007, pp. 353-362.

G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “An
approach for QoS-aware service composition based on genetic
algorithms,” in Proc. Conf. Genetic Evolutionary Comput., 2005,
pp- 1069-1075.

M. M. Maccabee and S. Ma, “Web application performance: Real-
istic work load for stress test,” in Proc. Comput. Manag. Group
Conf., 2002, pp. 353-362.

G. M. Leganza, “The stress test tutorial,” in Proc. Comput. Manag.
Group Conf., 1991, pp. 994-1004.

E.]. Weyuker and A. Avritzer, “A metric for predicting the per-
formance of an application under a growing workload,” IBM
Syst.]., vol. 41, no. 1, pp. 45-54, Jan. 2002.

N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness in
multi-tier applications: Symptoms, causes, and new models,”
in Proc. 9th ACM/IFIPJUSENIX Int. Conf. Middleware, 2008,
pp- 265-286.

F. Borges, A. Gutierrez-Milla, R. Suppi, and E. Luque, “Optimal
run length for discrete-event distributed cluster-based simu-
lations,” in Proc. Int. Conf. Comput. Sci., 2014, pp. 73-83.

D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation
infrastructure for data center systems,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2012, pp. 35-45.

M. J. Harrold and G. Rothermel, “Siemens Programs, HR
Variants,” http://www.cc.gatech.edu/aristotle/Tools/subjects/,
Oct. 2013.

G.-H. Kim, Y.-G. Kim, and S.-K. Shin, “Software performance
test automation by using the virtualization,” in IT Convergence
and Security 2012, K. J. Kim and K.-Y. Chung, Eds. Doetin-
chem, Netherlands: Springer Science & Business Medias, 2013,
pp. 1191-1199.

T. Bear. (2006). Shootout: Load Runner vs The Grinder vs Apache
JMeter [Online]. Available: http://blackanvil.blogspot.com/
2006/06/shootout-load-runner-vs-grinder- vs.html

A. Podelko. Load Testing Tools [Online]. Available: http://
alexanderpodelko.com/PerfTesting. html#Load TestingTools, 2015.
C. Vail. (2005). Stress, load, volume, performance, benchmark
and base line testing tool evaluation and comparison [Online].
Available: http://www.vcaa.com/tools/loadtesttoolevaluation-
chart-023.pdf, visited 2014-11-24, 2005.

WebLOAD product overview [Online]. Available: http:/ /www.
radview.com/webload-download/, 2015.

HP LoadRunner software [Online]. Available: http://www8.hp.
com/ca/en/software-solutions/loadrunner-load-testing/, 2015.
Apache JMeter [Online]. Available: http://jakarta.apache.org/
jmeter/, 2015.

Microsoft Exchange Load Generator (LoadGen) [Online]. Avail-
able: http://www.microsoft.com/en-us/download /details.aspx
?id=14060, 2015.

X. Che and S. Maag, “Passive testing on performance require-
ments of network protocols,” in Proc. 27th Int. Conf. Adv. Inf.
Netw. Appl. Workshops, 2013, pp. 1439-1444.

JIANG AND HASSAN: A SURVEY ON LOAD TESTING OF LARGE-SCALE SOFTWARE SYSTEMS

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]
[152]
[153]

[154]

[155]

[156]

[157]

[158]

S. Dimitrov and T. Stoilov, “Loading test of apache HTTP server
by video file and usage measurements of the hardware
components,” in Proc. 14th Int. Conf. Comput. Syst. Technol., 2013,
pp- 59-66.

M. Murth, D. Winkler, S. Biffl, E. Kuhn, and T. Moser,
“Performance testing of semantic publish/subscribe systems,” in
Proc. Int. Conf. On Move Meaningful Internet Syst., 2010, pp. 45-46.
C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster, “Diperf: An
automated distributed performance testing framework,” in Proc.
5th IEEE/ACM Int. Workshop Grid Comput., 2004, pp. 289-296.

J. A. Meira, E. C. de Almeida, Y. L. Traon, and G. Sunye, “Peer-
to-peer load testing,” in Proc. IEEE 5th Int. Conf. Softw. Testing,
Verification Validation, 2012, pp. 642-647.

J. Xie, X. Ye, B. Li, and F. Xie, “A configurable web service perfor-
mance testing framework,” in Proc. 10th IEEE Int. Conf. High
Perform. Comput. Commun., 2008, pp. 312-319.

N. Baltas and T. Field, “Continuous performance testing in vir-
tual time,” in Proc. 9th Int. Conf. Quantitative Evaluation Syst.,
2012, pp. 13-22.

D. A. Menasce, “Workload characterization,” IEEE Internet Com-
put., vol. 7, no. 5, pp. 89-92, Sep./Oct. 2003.

Q. Gao, W. Wang, G. Wu, X. Li,]. Wei, and H. Zhong, “Migrating
load testing to the cloud: A case study,” in Proc. IEEE 7th Int.
Symp. Service Oriented Syst. Eng., Mar. 2013, pp. 429-434.

M. Yan, H. Sun, X. Wang, and X. Liu, “Building a taas platform
for web service load testing,” in Proc. IEEE Int. Conf. Cluster Com-
put., 2012, pp. 576-579.

J. Zhou, S. Li, Z. Zhang, and Z. Ye, “Position paper: Cloud-based
performance testing: Issues and challenges,” in Proc. Int. Work-
shop Hot Topics Cloud Services, 2013, pp. 55-62.

M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy
always good for software testing?” in Proc. IEEE 21st Int. Symp.
Softw. Rel. Eng., Nov. 2010, pp. 368 -377.

Y. Wang, X. Wu, and Y. Zheng, “Efficient evaluation of multifac-
tor dependent system performance using fractional factorial
design,” in Trust and Privacy in Digital Business. New York, NY,
USA: Springer, 2004, pp. 142-151.

A. Bertolino, G. Angelis, A. Marco, P. Inverardi, A. Sabetta, and
M. Tivoli, “A framework for analyzing and testing the perfor-
mance of software services,” in Proc. 3rd Int. Symp. Leveraging
Appl. Formal Methods, Verification Validation, 2009, pp. 206-220.

X. Meng, “Designing approach analysis on small-scale software
performance testing tools,” in Proc. Int. Conf. Electron. Mech. Eng.
Inf. Technol., Aug. 2011, pp. 4254-4257.

C. H. Kao, C. C. Lin, and J.-N. Chen, “Performance testing frame-
work for rest-based web applications,” in Proc. 13th Int. Conf.
Quality Softw., Jul. 2013, pp. 349-354.

S. Dunning and D. Sawyer, “A little language for rapidly con-
structing automated performance tests,” in Proc. 2nd Joint WOSP/
SIPEW Int. Conf. Perform. Eng., 2011, pp. 371-380.

M. Dhote and G. Sarate, “Performance testing complexity analy-
sis on Ajax-based web applications,” IEEE Softw., vol. 30, no. 6,
pp- 70-74, Nov./Dec. 2013.

N. Stankovic, “Distributed tool for performance testing,” in
Softw. Eng. Research and Practice. New York, NY, USA: 2006,
pp- 38-44.

N. Stankovic, “Patterns and tools for performance testing,” in
Proc. IEEE Int. Conf. Electro/Inf. Technol., 2006, pp. 152 -157.
Wireshark - Go Deep [Online]. Available: http://www.
wireshark.org/, 2015.

Selenium - Web Browser Automation [Online].
http:/ /seleniumhgq.org/, 2015.

S.Shirodkar and V. Apte, “Autoperf: An automated load generator
and performance measurement tool for multi-tier software sys-
tems,” in Proc. 16th Int. Conf. World Wide Web, 2007, pp. 1291-1292.
M. A. S. Netto, S. Menon, H. V. Vieira, L. T. Costa, F. M.
de Oliveira, R. Saad, and A. F. Zorzo, “Evaluating load genera-
tion in virtualized environments for software performance
testing,” in Proc. IEEE Int. Symp. Parallel Distrib. Processing Work-
shops PhD Forum, May 2011, pp. 993-1000.

J. White and A. Pilbeam, “A survey of virtualization technologies
with performance testing,” CoRR, vol. abs/1010.3233, 2010.

G.-B. Kim, “A method of generating massive virtual clients and
model-based performance test,” in Proc. 5th Int. Conf. Quality
Softw., 2005, pp. 250-254.

Shunra [Online] Available: http://www8.hp.com/us/en/
software-solutions /network-virtualization/, 2015.

Available:

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]
[168]

[169]

[170]
[171]
[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

1117

R. K. Mansharamani, A. Khanapurkar, B. Mathew, and R. Subra-
manyan, “Performance testing: Far from steady state,” in Proc.
IEEE 34th Annu. Comput. Softw. Appl. Conf. Workshops, Jul. 2010,
pp- 341-346.

M. Grechanik, C. Fu, and Q. Xie, “Automatically finding perfor-
mance problems with feedback-directed learning software
testing,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 156-166.
J.-N. Juang, Applied System Identification, 1st ed. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1993.

L. Ljung, System Identification: Theory for the User. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1987.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Evaluating the accuracy of Java profilers,” in Proc. ACM
SIGPLAN Conf. Program. Language Des. Implementation, 2010,
pp. 187-197.

G. M. Leganza, “Coping with stress tests: Managing the applica-
tion benchmark,” in Proc. Comput. Manag. Group Conf., 1990,
pp- 1018-1026.

A. Bertolino, G. D. Angelis, and A. Sabetta, “VCR: Virtual cap-
ture and replay for performance testing,” in Proc. 23rd IEEE/
ACM Int. Conf. Autom. Softw. Eng., 2008, pp. 399-402.

PerfMon [Online]. Available: http://technet.microsoft.com/en-
us/library/bb490957.aspx, 2015.

Munin [Online]. Available: http://munin-monitoring.org/,
2015.
Net SNMP [Online]. Available: http://www.net-snmp.org/,

2015.

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R.
Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Trans. Softw. Eng., vol. 35,
no. 5, pp. 684-702, Sep./Oct. 2009.

T. A. S. Foundation, Log4j [Online]. Available: http://logging.
apache.org/log4j/2.x/

T. O. Group, Application Response Measurement - ARM [Online].
Available: http:/ /regions.cmg.org/regions/cmgarmw/, 2015.
Sarbanes-Oxley Act of 2002 [Online]. Available: http://www.
soxlaw.com/, 2015.

E. M. Friedman and J. L. Rosenberg, “Web load testing made
easy: Testing with WCAT and WAST for windows applications,”
in Proc. Comput. Manag. Group Conf., 2003, pp. 57-82.

G. Din, L. Schieferdecker, and R. Petre, “Performance test design
process and its implementation patterns for multi-services
systems,” in Proc. 20th IFIP TC 6/WG 6.1 Int. Conf. Testing Softw.
Commun. Syst., 2008, pp. 135-152.

P. Tran, J. Gosper, and I. Gorton, “Evaluating the sustained per-
formance of cots-based messaging systems,” Softw. Testing, Veri-
fication Rel., vol. 13, no. 4, pp. 229-240, 2003.

X. Yang, X. Li, Y. Ji, and M. Sha, “Crownbench: A grid perfor-
mance testing system using customizable synthetic workload,”
in Proc. 10th Asia-Pacific Web Conf. Progress WWW Res. Develop.,
2008, pp. 190-201.

A. L. Glaser, “Load testing in an ir organization: Getting by "with
a little help from my friends’,” in Proc. Comput. Manag. Group
Conf., 1999, pp. 686-698.

D. Grossman, M. C. McCabe, C. Staton, B. Bailey, O. Frieder, and
D. C. Roberts, “Performance testing a large finance application,”
IEEE Softw., vol. 13, no. 5, pp. 50-54, Sep. 1996.

S. Duttagupta and M. Nambiar, “Performance extrapolation for
load testing results of mixture of applications,” in Proc. 5th
UKSim Eur. Symp. Comput. Model. Simul., Nov. 2011, pp. 424-429.
Z. M. Jiang, A. E. Hassa, G. Hamann, and P. Flora, “An auto-
mated approach for abstracting execution logs to execution even-
ts,” . Softw. Maintenance Evolution, vol. 20, pp. 249-267, July 2008.
K. C. Foo, Z. M. Jiang, B. Adams, Y. Z. Ahmed E. Hassan, and P.
Flora, “Mining performance regression testing repositories for
automated performance analysis,” in Proc. 10th Int. Conf. Quality
Softw., Jul. 2010, pp. 32—41.

S. Ghaith, M. Wang, P. Perry, and]J. Murphy, “Profile-based,
load-independent anomaly detection and analysis in perfor-
mance regression testing of software systems,” in Proc. 17th Eur.
Conf. Softw. Maintenance Reeng., 2013, pp. 379-383.

S. Ghaith, “Analysis of performance regression testing data by
transaction profiles,” in Proc. Int. Symp. Softw. Testing Anal., 2013,
pp. 370-373.

H. Malik, H. Hemmati, and A. E. Hassan, “Automatic detection
of performance deviations in the load testing of large scale sys-
tems,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 1012-1021.

1118

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

H. Malik, B. Adams, and A. E. Hassan, “Pinpointing the sub-
systems responsible for the performance deviations in a load
test,” in Proc. IEEE 21st Int. Symp. Softw. Rel. Eng., Nov. 2010,
pp. 201-210.

H. Malik, Bram, Adams, A. E. Hassan, P. Flora, and G. Hamann,
“Using load tests to automatically compare the subsystems of a
large enterprise system,” in Proc. IEEE 34th Annu. Comput. Softw.
Appl. Conf., Jul. 2010, pp. 117-126.

H. Malik, Z. M. Jiang, B. Adams, P. Flora, and G. Hamann,
“Automatic comparison of load tests to support the performance
analysis of large enterprise systems,” in Proc. 14th Eur. Conf.
Softw. Maintenance Reeng., Mar. 2010, pp. 222-231.

T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. N.
Nasser, and P. Flora, “Automated verification of load tests using
control charts,” in Proc. 18th Asia Pacific Softw. Eng. Conf.,
Dec. 2011, pp. 282-289.

M. D. Syer, B. Adams, and A. E. Hassan, “Industrial case study
on supporting the comprehension of system behaviour under
load,” in Proc. IEEE 19th Int. Conf. Program Comprehension, 2011,
pp- 215-216.

M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “Leveraging performance counters and execution
logs to diagnose memory-related performance issues,” in Proc.
IEEE Int. Conf. Softw. Maintenance, 2013, pp. 110-119.

J. K. Merton, “Performance testing in a client-server environ-
ment,” in Proc. Comput. Manag. Group Conf., 1997, pp. 594-601.

A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous
Java performance evaluation,” in Proc. 22nd Annual ACM
SIGPLAN Conf. Object-oriented Programming Syst. Applications,
OOPSLA 07, Montreal, Quebec, Canada, 2007, pp. 57-76.

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A.
Fox, “Capturing, indexing, clustering, and retrieving system his-
tory,” in Proc. 20th ACM Symp. Operating Syst. Principles, 2005,
pp- 105-118.

S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance
debugging in the large via mining millions of stack traces,” in
Proc. 34th Int. Conf. Softw. Eng., Jun. 2012, pp. 145-155.

M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward,
“Detection and diagnosis of recurrent faults in software systems
by invariant analysis,” in Proc. 11th IEEE High Assurance Syst.
Eng. Symp., 2008, pp. 323-332.

W. Visser, “Who really cares if the program crashes?” in Proc.
16th Int. SPIN Workshop Model Checking Softw., 2009, p. 5.

NO. 11, NOVEMBER 2015

Zhen Ming Jiang received the BMath and
MMath degrees in computer science from the
University of Waterloo, and the PhD degree from
the School of Computing at the Queen’s Univer-
sity. He is an assistant professor in the Depart-
ment of Electrical Engineering and Computer
Science, York University. Prior to joining York, he
was at BlackBerry Performance Engineering
Team. His research interests lie within software
engineering and computer systems, with special
interests in software performance engineering,
mining software repositories, source code analysis, software architec-
tural recovery, software visualizations and debugging and monitoring of
distributed systems. Some of his research results are already adopted
and used in practice on a daily basis. He is the cofounder and co-orga-
nizer of the annually held International Workshop on Large-Scale Test-
ing (LT). He also received several Best Paper Awards including ICSE
2015 (SEIP track), ICSE 2013, WCRE 2011, and MSR 2009 (challenge
track). He is a member of the IEEE.

Ahmed E. Hassan received the PhD degree in
computer science from the University of Water-
loo. He is the NSERC/BlackBerry Software
engineering chair at the School of Computing
at Queens University, Canada. His research
interests include mining software repositories,
empirical software engineering, load testing,
and log mining. He spearheaded the creation
of the Mining Software Repositories (MSR)
conference and its research community. He
also serves on the editorial boards of IEEE
Transactions on Software Engineering, Springer Journal of Empirical
Software Engineering, and Springer Journal of Computing. He is a
member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

