
16

Towards a Consistent Interpretation of AIOps Models

YINGZHE LYU, Software Analysis and Intelligence Lab (SAIL), Queen’s University, Canada

GOPI KRISHNAN RAJBAHADUR, DAYI LIN, and BOYUAN CHEN, Centre for Software

Excellence, Huawei Canada, Canada

ZHEN MING (JACK) JIANG, Lassonde School of Engineering, York University, Canada

Artificial Intelligence for IT Operations (AIOps) has been adopted in organizations in various tasks, including

interpreting models to identify indicators of service failures. To avoid misleading practitioners, AIOps model

interpretations should be consistent (i.e., different AIOps models on the same task agree with one another

on feature importance). However, many AIOps studies violate established practices in the machine learning

community when deriving interpretations, such as interpreting models with suboptimal performance, though

the impact of such violations on the interpretation consistency has not been studied.

In this article, we investigate the consistency of AIOps model interpretation along three dimensions:

internal consistency, external consistency, and time consistency. We conduct a case study on two AIOps

tasks: predicting Google cluster job failures and Backblaze hard drive failures. We find that the random-

ness from learners, hyperparameter tuning, and data sampling should be controlled to generate consis-

tent interpretations. AIOps models with AUCs greater than 0.75 yield more consistent interpretation com-

pared to low-performing models. Finally, AIOps models that are constructed with the Sliding Window

or Full History approaches have the most consistent interpretation with the trends presented in the en-

tire datasets. Our study provides valuable guidelines for practitioners to derive consistent AIOps model

interpretation.

CCS Concepts: • Computing methodologies→ Machine learning; • Software and its engineering→
Software maintenance tools; Maintaining software; Software evolution;

Additional Key Words and Phrases: AIOps, model interpretation

ACM Reference format:

Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, Boyuan Chen, and Zhen Ming (Jack) Jiang. 2021. Towards

a Consistent Interpretation of AIOps Models. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 16 (Novem-

ber 2021), 38 pages.

https://doi.org/10.1145/3488269

Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, and Boyuan Chen contributed equally to the work.

Authors’ addresses: Y. Lyu, Software Analysis and Intelligence Lab (SAIL), Queen’s university, 133 Princess St, Kingston,

Kingston, Ontario, Canada, K7L 1A8; email: ylyu@cs.queensu.ca; G. K. Rajbahadur, D. Lin, and B. Chen, Dayi Lin,

Boyuan Chen – Centre for Software Excellence, Huawei, 275 Queen Street, Kingston, Ontario, Canada K7K 3T1; emails:

{gopi.krishnan.rajbahadur1, dayi.lin, boyuan.chen1}@huawei.com; Z. M. (Jack) Jiang, Department of Electrical Engineering

& Computer Science, York University, Toronto, Ontario, Canada M3J 1P3; email: zmjiang@cse.yorku.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/11-ART16 $15.00

https://doi.org/10.1145/3488269

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://doi.org/10.1145/3488269
mailto:permissions@acm.org
https://doi.org/10.1145/3488269
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488269&domain=pdf&date_stamp=2021-11-15

16:2 Y. Lyu et al.

1 INTRODUCTION

Ensuring the quality of service of cloud computing platforms is extremely pivotal. A recent IDG
survey [32] reports that 92% of organizations leverage cloud computing platforms for running their
applications. Therefore, it is extremely important to ensure that these cloud computing platforms
remain highly available and efficient, particularly since failures in cloud computing platforms are
estimated to cost up to $700 billion annually [58]. For instance, a recent survey [4] pegs the average
cost per hour of an organization’s server downtime to be anywhere between $300,001 to $400,000.

Cloud computing platforms generate a tremendous amount of data that is impossible to be an-
alyzed manually. Recently, it has become increasingly common for organizations to use AIOps

(Artificial Intelligence for IT Operations) to leverage such generated data to ensure the qual-
ity of service and high availability of cloud computing platforms [6, 8, 21, 42, 62, 88]. AIOps lever-
ages machine learning learners to construct machine learning models (hereafter AIOps models)
with operations data collected from the cloud computing platforms (e.g., logs and alert signals)
to enable quality assurance tasks such as predicting hard drive failures [42], job termination [22],
service outages [88], and performance issues [44]. Note that we use the term “learner” to refer
to a machine learning algorithm (e.g., Random Forest) and the term “model” to refer to a trained
machine learning model (e.g., a Random Forest model trained on disk failure data).

In addition to using AIOps models to predict failures and outages on a cloud computing plat-
form, several prior studies also interpret AIOps models to identify association between different
factors and occurrences of certain failures or outages to make operational and business decisions.
For instance, Chen et al. [17] interpret their deep learning-based incident prediction model and
find that incident-occurring environment features are one of the most important indicators of a
potential incident happening in their platform. Similarly, Zhao et al. [88] interpret their XGBoost-
based incident prediction model and find that in their systems, database related issues are the root
cause for the incidents. Li et al. [42] interpret their AIOps models to refine their automated alert
management system.

These derived interpretations of AIOps models should be consistent (i.e., the feature impor-
tance ranking from different models’ interpretations agree with one another) to avoid misleading
practitioners. For instance, as we mentioned earlier, Chen et al. [17] derive interpretations from
their deep learning-based incident prediction model. However, if their incident prediction model
is retrained (e.g., on a local instance of the same training data) and it produces a different set of fea-
tures being the most important feature associated with incidents, then the practitioners might not
know which interpretation to trust. Such a case is indeed possible, as Pham et al. [64] show, when
a model is retrained, even on the same training dataset, its performance might change (sometimes
even drastically). Thus, it is possible that the interpretations that are derived from the retrained
incident prediction model might also vary. More generally, recent studies [75, 76] in several do-
mains point out that many factors (e.g., different hyperparameters) could impact the consistency
of derived interpretations of a machine learning model.

However, to the best of our knowledge, none of the prior studies in the field of AIOps investi-
gates the factors that could impact the consistency of the derived interpretations of AIOps models.
Though the factors relating to the consistency of derived interpretations have been explored by a
handful of studies [36, 66, 75, 76] in other domains, it is pivotal to explore them in the context of
AIOps for the following reasons:

• Chen et al. [20] and Dang et al. [21] point out there are several challenges that are unique to
the field of AIOps. These unique challenges might present unique factors (which are typically
not prevalent in other domains such as machine learning) that impact the consistency of
the interpretations derived from AIOps models differently. For instance, as Dang et al. [21]

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:3

explain, AIOps models are constantly updated/retrained to keep up with the rapidly evolving
data. Such rapid retraining of AIOps models could mean that the derived interpretations of an
AIOps model could change with every retraining. However, as we explain earlier, consistency
of derived interpretation is pivotal for practitioners. Therefore, it is important to understand
how the factors that are unique to AIOps impact the consistency of interpretations derived
from AIOps.
• The operations data that is typically used to build AIOps models is very different from the

data used in other domains like machine learning. Operations data is typically a mixture of
temporal (e.g., log data) and spatial (e.g., hardware configurations) data. In addition, it may
also contain a mixture of heterogeneous data types such as numeric, ordinal, and nominal
values, making it starkly different from data used in other machine learning tasks (which is
typically either spatial or temporal in nature).
• As Menzies [57] and Ray et al. [67] show, findings from other domains like machine learn-

ing do not necessarily generalize in software analytics domains like AIOps. For example,
both Menzies [57] and Ray et al. [67] show that language models used in the machine learn-
ing domain typically yield spurious results on software engineering-related data. Further-
more, Menzies [57] warns us that simply using the methods and findings outlined in the
field of machine learning on software engineering data might yield suboptimal results.

Therefore, in our study, we aim to better understand the factors that could impact the consis-
tency and the practical adoption of the derived interpretations of an AIOps model. In our article, we
first propose a set of rigorous criteria to thoroughly assess the consistency of the interpretations
derived from AIOps models. We do so through a case study on two publicly available operations
datasets (the Google cluster trace dataset [68] and the Backblaze hard drive statistics dataset [5])
that have been widely used by many prior studies in AIOps [11, 22, 71]. In particular, our proposed
criteria investigate how different factors impact the AIOps model interpretation along three key
dimensions: Internal consistency, External consistency, and Time consistency.

• Internal consistency [64] (a.k.a. model reproducibility) captures the similarity between the
derived interpretations of an AIOps model trained from the same setup (i.e., same training
data and same implementation) across multiple executions. In other words, internal con-
sistency checks if the interpretations derived from an AIOps model is reproducible. For in-
stance, as Pham et al. [64] show, and a plethora of prior studies [26, 31, 64, 65] warn, unless
randomness involved during the training process of machine learning models is controlled,
the results might not be reproducible. As a result, the derived interpretations might not be
internally consistent, which would make it impossible for the managers and DevOps engi-
neers to choose which interpretation to act on. Despite that, many of the AIOps studies do
not take specific steps to ensure reproducibility. For instance, both Zhao et al. [88] and Li
et al. [42] use deep learning models to construct their AIOps models. However, neither of
those studies take explicit methods to control the randomness involved which could, in turn,
impact the reproducibility of the interpretation derived from these AIOps models. Therefore,
in RQ1 (Are the interpretations from AIOps models internally consistent?), we study the im-
pact of potential sources of randomness during the model training, which can impact the
internal consistency of the derived interpretations of the AIOps models.

Results. All the three studied sources of randomness (i.e., inherent randomness from learn-
ers, randomized hyperparameter tuning, and data sampling randomness) impact the con-
sistency of AIOps model interpretation. Sampling randomness introduces the largest scale
of inconsistency to AIOps model interpretation. When all the three sources are controlled

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:4 Y. Lyu et al.

during the training of an AIOps model, the derived interpretation of an AIOps model is
internally consistent.

• External consistency [66] captures the similarity between the derived interpretations of
similar-performing AIOps models on a given dataset. In other words, external consistency
sanity checks if the models that have the similar performance report similar interpretations
for a dataset. Typically, interpretable models are preferred by the practitioners to derive
interpretations. Several recent studies in AIOps [42] and machine learning [72] argue that
interpretable models even with lower performance are preferred in the AIOps context when
high-performing models are not easily interpretable. Rajbahadur et al. [66] recently showed
that the derived interpretation between different machine learning models could vary con-
siderably. In addition, Lipton [49] and Molnar [61] warn that such inconsistency could be
exacerbated if low-performing models are used to derive interpretations. Intuitively, inter-
pretations derived from a low-performing interpretable model could be trustworthy only
if the interpretable model has the same interpretation as other machine learning models
on a given dataset (at least among the similar-performing models). In other words, differ-
ent models at the same performance level should generate similar interpretations. However,
there are no studies that examine the relation between the model performance and model
interpretations. In particular, it is not clear if using high-performing models would yield
more consistent interpretations than using low-performing models. Hence, in this article,
we assess and compare the external consistency of the interpretations from models at dif-
ferent performance levels (i.e., similarities of model interpretations among low-performing
models vs. similarities of model interpretations among high-performing models). Such study
is even more important for low-performing models, since several prior studies question if
low-performing models might generate inconsistent interpretations [37, 49, 61]. Otherwise,
interchangeably using models to derive interpretations might be misleading and might re-
sult in misguided decisions. Therefore, in RQ2 (Are the interpretations from AIOps models
externally consistent?), we investigate the external consistency of derived interpretations of
AIOps models at different performance levels.

Results. The interpretations derived from high-performing AIOps models (with a minimum
acceptable AUC of 0.75) are more consistent than those from low-performing AIOps mod-
els. The interpretations derived from high-performing AIOps models exhibit strong external
consistency.

• Time consistency [42] captures the similarity between the derived interpretations of an
AIOps model across different time periods (i.e., as the AIOps models evolve). In other words,
time consistency checks if the interpretation derived from an AIOps model remains gen-
eralizable across time. Interpretations derived from AIOps models may be used to make
business decisions and process optimizations that have a long-lasting effect. Hence, it is piv-
otal that the interpretation of an AIOps model should not only just reflect the trend from
the most recent data on which it was trained, but also should capture and reflect the trends
observed over a longer period of time. However, previous works in defect prediction [7] and
AIOps [42] show machine learning models trained on one time period do not generalize
well when tested on a different time period and their derived interpretations could also vary
depending on the size of the training data. Therefore, in RQ3 (Are the interpretations from
AIOps models consistent across time (i.e., time consistent)?), we examine which of the com-
monly used model updating approaches allows the interpretations of the updated models to
be consistent over long periods of time.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:5

Results. The derived interpretations from AIOps models constructed with the Sliding Win-
dow and Full History approaches best capture the trends present across time periods in the
entire dataset and exhibit strong time consistency.

The main contributions of our article are the following:

(1) This is the first work that studies the factors that impact the consistency of AIOps model
interpretations.

(2) We propose a set of rigorous criteria that enables researchers and practitioners to assess the
consistency of their derived interpretations from AIOps models.

(3) We provide several actionable guidelines to improve the consistency of interpretations de-
rived from AIOps models.

(4) To foster replicability of our findings and promote open science, we make the datasets and
the code to conduct our study publicly available.

Paper organization. The rest of the article is organized as follows: In Section 2, we present a mo-
tivational example that motivates the need for our study in AIOps. In Section 3, we provide the
background and related work of AIOps and introduce the research questions that we investigate
in our article. In Section 4, we explain our case study setup. Section 5, Section 6, and Section 7
present each of our RQs. Section 8 discusses the results, limitations of the results, and potential
future areas for investigation. In Section 9, based on our findings from the results of the studied
RQs, we outline several practical guidelines for AIOps researchers and practitioners. In Section 10,
we discuss the threats to validity of our study. In Section 11, we conclude our study.

2 A MOTIVATIONAL EXAMPLE

Lei is a DevOps engineer. They are responsible for monitoring and maintaining a batch processing
job that runs daily. The batch processing job runs on a cluster and can take hours to finish. In the
past, they have noticed that the job may randomly fail and they would need to re-submit the job
for execution. Recently the analytics team helped Lei build an AIOps model, which uses the traces
collected from the cluster to predict if the job is going to fail in the next half hour. This model is
selected from a pool of best-performing candidate models by the analytics team after considering
various aspects such as performance and training costs. The analytics team advised Lei to use the
AIOps model in two ways:

(1) Predictive: When the model predicts the job is going to fail in the next half hour with high
confidence, they can manually terminate and re-submit the job to save execution time.

(2) Explanatory: By interpreting the trained model, the analytics team advised them that the
model learned that one of the most impactful factors that is associated with the job failure
is the launch of a specific competing job from another team. Therefore, from an operations
perspective they should contact the other team to schedule the competing job at a different
time of the day.

Scenario 1: To productionize the model, the analytics team provided Lei with the data and
code used to train the model. Lei executed the provided training code on the same data, only to
realize that the model they trained provided a different interpretation compared to that of the
model trained by the analytics team. In particular, the model they trained does not consider the
competing job as an important factor. Lei is confused about which interpretation to trust and
whether they should reschedule the competing job with the other team. In this scenario, Lei is
concerned about the internal consistency of the AIOps model.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:6 Y. Lyu et al.

Scenario 2: To avoid performance drift of the model in production, the model needs to be
periodically retrained with latest data. However the current model provided by the analytics team
is too costly to retrain. Lei asked the analytics team if there is any alternative candidate model that
is cheaper to retrain. The analytics team sent over a new, lighter model, which is cheaper to retrain
albeit at a slightly reduced performance. However, Lei realized that even though the new model
was trained on the same data as the current one, it provides a different interpretation and does
not consider the competing job as an important factor, posing a dilemma for Lei about whether
to reschedule the competing job with the other team. In this scenario, Lei is concerned about the
external consistency of the AIOps model.

Scenario 3: The model was deployed in production and was scheduled to be retrained with new
data every day at midnight. Lei contacted the other team about rescheduling the competing job, as
advised by the analytics team based on the interpretation of the deployed model. Rescheduling jobs
may lead to a lot of downstream administrative and operative changes and therefore is expensive
to communicate and perform. However, in just a few days, before the rescheduling was scheduled
to take effect, Lei noticed that the recently updated model no longer considers the competing job
as an important factor. Such drastic changes in the model interpretation led to a lot of confusion
among teams and wasted effort in rescheduling jobs. In this scenario, Lei is concerned about the
time consistency of the AIOps model.

3 BACKGROUND

In this section, we first describe the existing work on AIOps. Then, we present the current practices
of deriving AIOps interpretation. Finally, we present our criteria for assessing the consistency of
AIOps interpretation.

3.1 Existing Work on AIOps

We first introduce the common AIOps applications. Then, we discuss the existing work on AIOps
interpretation. Finally, we present the reproducibility concerns in general machine learning tasks.

3.1.1 AIOps Applications. Although huge efforts have been devoted to cloud computing sys-
tems for ensuring the quality of services, various types of issues (e.g., job termination, hard drive
failure, and performance anomalies) are unavoidable. To ensure the reliability of online services,
we must resolve and manage these issues in a timely manner, as failing to do so might cause unavail-
able services and huge financial losses. AIOps solutions contribute to issue management in two
phases: (1) AIOps solutions aim to predict whether certain issues would occur by learning from the
historical data; and (2) after the issues occur, AIOps solutions aim to help mitigate the issues (e.g.,
automated problem diagnosis) or provide suggestions to the domain experts (e.g., incident triage).

Issue Prediction. Many of the prior works focus on analyzing monitoring data for predicting the
occurrence of various types of issues [11, 19, 22, 29, 40–42, 44, 47, 56, 71, 82, 88].

Lin et al. [47] and Li et al. [42] predict node failures in large-scale cloud computing platforms
by building machine learning models from temporal (e.g., CPU utilization metrics), spatial (e.g.,
location of a node), and config data (e.g., build data). Similarly, Li et al. [40, 41] build tree-based
models to predict hard drive failures. Botezaku et al. [11], Mahdisoltani et al. [56], and Xu et al. [82]
leverage SMART-based analysis to build a machine learning pipeline for predicting hard drive
failures in large-scale cloud computing platforms. Chen et al. [19] collect and analyze the alert
data and its dependencies to predict outages in the whole cloud systems. Zhao et al. [88] propose a
deep learning-based approach, eWarn, which leverages textual (e.g., keywords in incident tickets)
and statistical features (e.g, alert count) to predict incident occurrences. El-Sayed et al. [22] and
Rosa et al. [71] predict job failures from trace data collected from Google cloud computing platform.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:7

Lim et al. [44] leverage performance metrics to cluster performance issues into the recurrent and
unknown ones.

Issue Mitigation. Issues in online services need to be mitigated in a timely manner. Many of the
prior works focus on triaging [8, 16, 17], diagnosing [6, 18, 33, 53, 87], and managing issues [35,
48, 50, 51, 83, 84], which benefit the mitigation process.
Triaging. Chen et al. [16] propose a deep learning-based technique to improve the current incident
triage process (e.g., distributing the new incident to the responsible team). Chen et al. [17] perform
an empirical study on characterizing incidents in online systems and propose DeepIP, a technique
to detect incidental incidents (i.e., incidents that are less severe and last for a short period of time),
which can reduce the incident triage efforts. Bansal et al. [8] propose DeCaf, a Random Forest-based
framework to correlate telemetry data with performance regressions. In addition, the detected
performance regressions are automatically triaged to on-site engineering team.
Diagnosing. Zhang et al. [87] propose an ensemble of models to automatically diagnose perfor-
mance problems. Chen et al. [18] propose LiDAR, a deep learning-based approach to linking simi-
lar incidents based on historical information. Luo et al. [53] mine time-series data and event data to
discover correlations between them, which could improve the incident diagnosis process. Baner-
jee et al. [6] discuss challenges in performance diagnosis in a hybrid-cloud enterprise software
environment. Jehangiri et al. [33] present techniques to diagnose performance anomalies using
time-series datasets.
Managing. Jiang et al. [35] analyze the similarity between incident descriptions and their corre-
sponding troubleshooting guide to facilitate incident management. Lou et al. [50, 51] develop a
software analytic-based system to resolve scalability, reliability, and maintainability of data-driven
incident management systems. Xue et al. [83, 84] proactively reduce performance tickets by pre-
dicting usage series in cloud data centers. Lin et al. [48] propose a data mining-based technique to
detect emerging issues (a sudden burst of new issues) by analyzing historical issues.

3.1.2 AIOps Interpretation. The importance of interpretability of machine learning-based sys-
tems has drawn increasing attention recently as it is related to the trustworthiness, reliability, and
quality of the systems. In the context of AIOps, it is essential that we can reason about the model
recommendations to make business decisions (e.g., replacing failing hard drives) and improve the
status quo (e.g., improving monitoring infrastructure). Here, we discuss prior studies on interpre-
tations of AIOps solutions.

Li et al. [42] study the importance scores of a random forest-based model and find that alert
data is the most important feature set for node failure prediction. Zhao et al. [88] leverage a model-
agnostic technique, LIME [69], to generate interpretable report for incident prediction. This tech-
nique is mainly used for interpreting each individual prediction. Bansal et al. [8] propose a tech-
nique to extract ranked list of rules from random forest-based models, which can be used to explain
predicted performance regression. Li et al. [40, 41] present that by using interpretable models (e.g.,
regression tree-based models), users can derive more meaningful decisions in reducing the hard
drive failure rate, which is preferred over ANN-based models in such context. Chen et al. [16]
and Jiang et al. [35] all leverage deep learning-based systems for mitigating incidents. The deep
learning-based systems contain multiple components for reducing the data noise and adjusting
loss functions. They interpret the importance of these components by comparing the performance
before and after enabling these services.

3.1.3 Reproducibility of Machine Learning. Recent studies [26, 31] have shown that repro-
ducibility has drawn increasing attention in the machine learning field in recent years. Many
research papers did not include sufficient information (e.g., dataset and experiment code), which

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:8 Y. Lyu et al.

makes it difficult for other researchers to reproduce the experiment results. Furthermore, even with
the same experiment setup, there is still variance in the outcomes due to the stochastic nature of
machine learning applications [64]. Hence, huge efforts have been devoted to evaluating and im-
proving the reproducibility in the machine learning field. Pham et al. [64] study the variance of
deep learning applications and find that non-implementation level factors can cause the accuracy
and training time to fluctuate. Pineau et al. [65] propose a reproducibility checklist before sub-
mitting papers to NeurIPS to improve the quality of scientific contributions. Various guidelines
(e.g., Model Cards [60] and Datasheets [25]) have also been proposed to help practitioners and
researchers to improve the reproducibility of their machine learning applications.

The interpretation of machine learning applications also suffers from the reproducibility issues.
Fan et al. [23] assess the quality of five interpretation techniques in Android malware analysis
applications, where they evaluate the stability, robustness, and effectiveness of the interpretations.
Warnecke et al. [81] also study the similar dimensions of interpretation in security domain. They
both find that different interpretation techniques could generate different interpretation results
for the same prediction result. Other studies [3, 14, 85] also indicate that the interpretation results
cannot be trusted when the results cannot be reproduced.

Our study is different from the previous work in three aspects: (1) our study focuses on the
consistency of AIOps interpretation—in particular, we study the internal, external, and time con-
sistency by leveraging one interpretation technique; (2) we leverage the model-level interpretation
technique, i.e., the feature importance ranking, to extract the general trend and knowledge in the
AIOps model, where previous studies mostly focus on instance-level interpretation; and (3) our
work is conducted in the AIOps domain with constantly evolving data, which requires the inter-
pretation to be able to capture the general trends across time.

3.2 The Current Practices of Deriving Interpretations from AIOps Models

We first introduce the the overall process of deriving interpretations from AIOps models. Then,
we discuss the potential issues with recent AIOps studies.

3.2.1 The Overall Process. As we discussed in the previous section, AIOps solutions have been
used extensively for a variety of tasks (e.g., incident prediction [42, 88], performance analysis [6, 8],
anomaly detection [62], and business decision making [21]). The quality of AIOps solutions is
evaluated from various dimensions such as performance, scalability, and maintainability. Although
many studies leverage the interpretations of AIOps models to support critical decisions, few studies
have been done to systematically assess the quality of interpretations of AIOps models.

Figure 1 shows an overall process of deriving interpretations from AIOps models. We divide the
pipeline into four major phases:

(1) The Preprocessing phase refers to the process of continuously collecting monitoring data and
transforming it into readily available features as inputs for ML models. This is a common
practice adopted in many AIOps solutions [42, 55]. In this phase, the training dataset is
generated.

(2) The Model Training phase refers to the process of training ML models using preprocessed
features. It consists of three steps: data sampling, ML learner fitting, and hyperparameter
tuning. Data sampling is for selecting a representative subset of a large dataset. ML learner
fitting is to select the appropriate learner for the task and fit a model with the learner. Hyper-
parameter tuning is to find the optimal parameters for the models. In this phase, the trained
models are generated.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:9

Fig. 1. An overall process of deriving interpretations from AIOps models. Our criteria for assessing the con-

sistency of AIOps model interpretation is highlighted along the process.

(3) The Model Evaluation phase refers to evaluating the performance of the trained models using
the testing dataset. The testing dataset is not seen by the model during the model training
phase to prevent data leakage. In this phase, the evaluated models are generated.

(4) The Model Evolution phase refers to the practice of deploying the models and constantly
updating models. Various model update strategies are applied to reflect the trends contained
in the newly available period of monitoring data and mitigate the impact of concept drift [24,
28]. In this phase, the updated models are generated.

The overall process is iteratively conducted until the model performance is above a certain
threshold. The interpretation can be derived from the trained models, evaluated models, and the
updated models. There are two general approaches to interpret machine learning models: the
model-specific approach and the model-agnostic approach. The model-specific approach is mainly
used with models that are intrinsically interpretable. Examples of intrinsically interpretable models
include linear regression models and decision tree-based models. However, some machine learn-
ing models are difficult to interpret due to their complex internal structures (e.g., deep neural
networks). To interpret these models, practitioners mainly use the model-agnostic approach that
explains the models in a post hoc manner. There are many model-agnostic techniques in the ex-
isting literature, such as LIME [69] and permutation feature importance. There are two types of
interpretation results that could be produced: model-level interpretation and instance-level inter-
pretation. The model-level interpretation is to understand how the models work internally, while
the instance-level interpretation is to explain each single prediction. In this article, we use the per-
mutation feature importance, which is a model-level, model-agnostic interpretation approach, to
interpret all the studied AIOps models. We explain the approach and rationale in detail in Section 4.

3.2.2 Potential Issues with Recent AIOps Studies. To understand whether the recent AIOps stud-
ies account for the three aforementioned key dimensions along the interpretation consistency, we
conducted a literature survey of AIOps studies that derive interpretations from their AIOps mod-
els. To survey the literature, we searched Google Scholar with terms including “AIOps,” “Software
Engineering,” “Hard Drive Failures,” and “Incident Prediction” to collect the initial set of studies.
We then filtered these studies to keep the ones that were published in the past seven years (i.e.,
after 2014). In the end, 11 studies that we included in our survey were carefully examined by one
of the authors. The results are shown in Table 1.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:10 Y. Lyu et al.

Table 1. The Potential Neglected Key Dimensions of Interpretation Consistency

Paper Internal Consistency External Consistency Time Consistency

P1 [42] ✕ ✕ ✕
P2 [88] ✕
P3 [8] ✕ ✕
P4 [40] ✕
P5 [41] ✕ ✕
P6 [30] ✕ ✕
P7 [86] ✕ ✕
P8 [17] ✕
P9 [35] ✕ ✕
P10 [16] ✕ ✕
P11 [47] ✕ ✕

According to our survey, none of the surveyed papers explicitly mentioned that they control the
randomness from the learners, data sampling, and hyperparameter tuning, where applicable. Two
out of 11 studies suggested interpreting low-performing models to derive interpretations, while
7 out of 11 studies did not consider or discuss the impact of periodic retraining strategies on the
interpretation consistency.

Our summary by no means intends to criticize the prior studies, but to raise awareness that there
is currently a gap between recent AIOps studies and the commonly followed practices (e.g., con-
trolling the randomness) in the machine learning community. It is important to take into account
if the interpretations derived from AIOps models are internally consistent, externally consistent,
or time consistent to avoid misleading decisions from being made by practitioners.

3.3 Our Criteria for Assessing the Consistency of AIOps Interpretation

Here, we describe the motivation of assessing each dimension of AIOps model interpretation con-
sistency in details and formulate the corresponding RQs.

Internal Consistency. Prior work has shown the impact of different random factors (e.g., ran-
dom sampling of the same dataset and different random seeds for fitting ML learner) in the repro-
ducibility of predictive software engineering [43] and deep learning [64] research, with the focus
on model performance reproducibility. As a result, the derived interpretations might not be repro-
ducible (a.k.a. internally consistent). Despite that, many of the AIOps studies did not take actions
to ensure reproducibility. To investigate how the randomness from the three steps in the model
training phase (highlighted in Figure 1) impacts the internal consistency of interpretations derived
from trained models, we formulate the following research question:

(RQ1) Are the interpretations from AIOps models internally consistent?

External Consistency. Many existing studies use interpretable models to compute feature im-
portance ranks without taking into consideration the performance of these interpretable models.
The assumption is that these interpretable models are able to capture the general trends in the
data despite their lower performance. However, several studies already hint that such a practice
could cause inconsistency in the computed insights [49, 61, 66]. Hence, in the model evaluation
phase (highlighted in Figure 1), to assess the consistency of the interpretations derived from the
evaluated models, we formulate the following research question:

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:11

(RQ2) Are the interpretations from AIOps models externally consistent?

Time Consistency. The workloads of large cloud computing platforms are highly dynamic and
they tend to evolve significantly throughout its lifetime [42, 47]. To keep up with the constantly
evolving, temporal nature of the data, prior studies typically use several model update approaches
to keep their AIOps models current and relevant. For instance, some studies periodically retrain
their AIOps models on new data [42, 47] or construct time-based ensemble approaches that ag-
gregate local AIOps models trained on small time periods [73, 80]. These models are typically in-
terpreted to make operational decisions [42, 72]. However, the temporal nature of the data might
make it hard for the different model update approaches to update the AIOps models to accurately
generalize to the underlying trends while still yielding high performance on the most recent data.
Hence, to avoid misleading operational decisions, it is important to prevent these updated AIOps
models from losing sight of the historical trends in data and overfitting to the most recent time
period.

To examine which of the commonly used model updating approaches allows the interpretations
of updated models to have the highest time consistency in the model evolution phase (highlighted
in Figure 1), we formulate the following research question:

(RQ3) Are the interpretations from AIOps models consistent across time (i.e., time consistent)?

4 CASE STUDY SETUP

In this section, we describe the setup of our case study in detail.

4.1 Studied AIOps Datasets

To understand the challenges of reliably interpreting AIOps models, we perform a case study on
two large-scale public AIOps datasets that have been commonly used in prior work [11, 22, 55, 56,
71, 82]: the Google cluster trace dataset [68] (hereinafter referred to as the Google dataset) and the
Backblaze hard drive statistics dataset [5] (hereinafter referred to as the Backblaze dataset).

4.1.1 The Google Dataset. The Google dataset contains the trace information of job runs on
a large-scale cluster at Google. In this study, we use the second version of the dataset1 that was
collected on May 2011, containing 29 days of trace information from a cluster of about 12.5K ma-
chines. The dataset includes information about the machines in the cluster, the jobs executed on
the cluster, and the tasks under each job. In total, there are 670K jobs and 26M tasks in the dataset.
There are four possible states of a job in its lifecycle: unsubmitted, pending, running, and dead.
Throughout the lifecycle, a job triggers multiple events that are recorded in the dataset, including
submit, schedule, evict, fail, kill, finish, lost, and update.

4.1.2 The Backblaze Dataset. The Backblaze dataset contains daily snapshot of statistics of the
hard drives in the Backblaze data center. The Backblaze dataset includes hard drive information
(e.g., the model and capacity of the hard drive) and SMART (Self-Monitoring, Analysis and

Reporting Technology) metrics of the hard drives. SMART is a hard drive monitoring system
that monitors various indicators of drive reliability to identify imminent hard drive failures. In this
study, we use 36 months of Backblaze snapshot data collected from 2015 to 2017, containing 72M
records.

1https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

16:12 Y. Lyu et al.

Table 2. Description of Metrics for Google Cluster Job Failure Prediction

Metric Description

Scheduling class A number that affects policies for resource access.
Num Tasks The number of tasks in a job.
Priority The priority of the job.
Different machine Whether a task must be scheduled to execute on a different machine

than any other currently running task in the job.
Requested CPU Requested CPU resources.
Requested Disk Requested disk space resources.
Mean CPU usage Mean CPU usage over 5 minutes after job submission.
Mean Memory usage Mean memory usage over 5 minutes after job submission.
Mean Disk Usage Mean disk usage over 5 minutes after job submission.
Sd Memory usage Standard variation of the memory usage over 5 minutes after job

submission.

4.2 Experiment Context

In this case study, we focus on two AIOps applications: cluster job failure prediction on the Google
dataset and hard drive failure prediction on the Backblaze dataset. The interpretation of cluster
job failure prediction models can help practitioners identify factors that increase the likelihood
of job failure, apply fail-safe mechanisms at the time of job submission, and investigate methods
to reduce the occurrence of such risky factors. The interpretation of hard drive failure prediction
models can help practitioners understand the early indicators of hard drive failures and improve
monitoring infrastructure around the early indicators. Below, we describe the general experiment
context of our case study. We describe the RQ-specific experiment designs in the sections of each
RQ. A replication package of our experiments and analysis are also provided.2

4.2.1 Data Preprocessing. Here, we discuss the data preprocessing steps for two datasets
separately.

Google cluster job failure prediction: To predict job failures on the Google dataset, we need
to first identify whether a job in the dataset finished successfully or not. Such information is not
directly provided in the dataset. We use the events of jobs in the dataset as indications for such
information. Specifically, we consider a job as failed if its last event in the dataset is a “fail” event.
To avoid mislabelling jobs that have not finished running at the time of data collection, we exclude
the jobs that started on the last day available in the dataset.

Similar to prior work [22, 55], we extract a set of temporal and configuration metrics as candidate
features for training the predictive models. Tantithamthavorn and Hassan [74] stated that highly
correlated features should not be used to construct models for interpretation. Therefore, to remove
the correlated and redundant features, we use the varclus function and the redun function in
the Hmisc R package to identify and remove metrics that show high Spearman correlation and
multicollinearity. Table 2 provides a description of metrics used in our study for Google cluster job
failure prediction.

We then divide the dataset into subsets with equal time intervals (i.e., periods), based on the
date when the job is created. In total, we divide the dataset into 28 one-day periods.

2https://github.com/YingzheLyu/AIOpsInterpretation. The replication package is set to be private during the review period

and will be made public once the article is accepted. Please use the following GitHub account to view the repository in the

meanwhile. Username: reviewer-AIOpsInterpretation, Password: gUU!9sL9UDPT

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://github.com/YingzheLyu/AIOpsInterpretation

Towards a Consistent Interpretation of AIOps Models 16:13

Table 3. Description of Metrics for Backblaze Disk Failure Prediction

Metric Description
Read Error Rate Frequency of errors while reading raw data from a disk.
Start/Stop Count1 Number of spindle start/stop cycles.
Reallocated Sectors Count Quantity of remapped sectors.
Seek Error Rate Frequency of errors while positioning.
Power-On Hours Number of hours elapsed in the power-on state.
Power Cycle Count Number of power-on events.
Reported Uncorrectable Errors Number of reported uncorrectable errors, the definition is

vendor-specific.
Load Cycle Count Number of cycles into landing zone position.
HDA Temperature Temperature of a hard disk assembly.
Current Pending Sector Count Number of unstable sectors (waiting for remapping).
UltraDMC CRC Error Count Number of CRC errors during UDMA mode.

1For cumulative SMART attributes, we extract both their raw value from the last day and the difference during the

training period as features, following the setup of Lyu et al. [55].

Backblaze hard drive failure prediction: To predict hard drive failures on the Backblaze
dataset, we extract the same set of metrics as prior work [55] as candidate features. The dataset is
divided into subsets of one-month intervals (i.e., periods) to allow us label the hard drives that fail
in the next period and associate them with their metrics in the current period. In total, we obtained
36 one-month periods, with the metrics of each hard drive in the period, and whether each hard
drive fails in the next period.

Similar to the Google dataset, we remove metrics that show high Spearman correlation and
multicollinearity. Table 3 provides a description of metrics used in our study for Backblaze hard
drive failure prediction.

4.2.2 Model Training. To ensure the result of our case study is generalizable, we include a vari-
ety of learners in our study that have been used in literature [11, 22, 55, 56]: Linear Discriminant

Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Classi-

fication And Regression Tree (CART), Gradient Boosting Decision Tree (GBDT), Random

Forest (RF), and Multi-layer Perceptron Neural Network (NN).
To mitigate the impact of different scales of metrics on model performance and interpretation,

we perform data standardization on each metric in the training dataset by removing the mean of
the metric and scaling the metric to its unit variance, using the StandardScaler function in the
scikit-learn Python package.

We observe that the dataset is extremely imbalanced, with only 1% failed jobs in the Google
dataset and 0.1% failed hard drives in the Backblaze dataset. To mitigate the impact of imbalanced
dataset on model performance, we downsample the majority class (i.e., succeed jobs in the Google
dataset and normal hard drives in the Backblaze dataset) in the training dataset to a success-to-fail
ratio of 10:1 prior to training the model.

The detailed configuration of the model training process is described in sections of each RQ.

4.2.3 Model Evaluation. Prior work [74] shows that one should use threshold-independent met-
rics such as Area Under the ROC Curve (AUC) in lieu of threshold-dependent metrics such as
Precision, Recall, or F-measure to evaluate model performance. Therefore, in this case study, we
use AUC to evaluate the performance of each trained model.

Because of the temporal nature of AIOps datasets, traditional evaluation methods such as cross
validation may result in data leakage and therefore lead to inaccurate performance evaluation [55].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:14 Y. Lyu et al.

In this case study, we evaluate a model that is trained on a specific period of dataset using data in
the next period as the testing dataset.

To prepare the testing dataset, we apply the same data scaler that was fitted on the training
dataset on the testing dataset. It is worth noting that although we rebalance the training dataset
by downsampling the majority class, we do not perform such downsampling on testing dataset.

4.2.4 Model Interpretation. There are two types of model interpretation: model-level interpre-
tation (i.e., identifying the features that have the biggest impact on a model’s predictions) and
instance-level interpretation (i.e., identifying the reason that a model predicts a specific input to
be a specific outcome). In this case study, we focus on model-level interpretation, because prior
work on AIOps mostly focuses on model-level interpretation [8, 16, 35, 40–42].

In particular, we use permutation feature importance, a model-agnostic approach to derive the
importance of features in a machine learning model in our study. Permutation feature importance
evaluates the importance of a feature by randomly shuffling the value of the feature on the testing
dataset and measuring the drop of model performance due to such shuffling. We use permutation
feature importance in our case study because: (1) some of our studied learners are not intrinsically
interpretable; (2) permutation feature importance offers a consistent way to compare across all the
models; and (3) many existing studies use permutation feature importance on the interpretations
of machine learning models [66, 75]. To control the impact of randomness in permutation feature
importance calculation on our case study results, we fix the random seed of the permutation feature
importance calculation.

In the rest of the article, we will use the term interpretation and feature importance ranks inter-
changeably.

4.2.5 Similarity Measurement of Model Interpretation. To compare the similarity of interpreta-
tions among two or more models, we use the following measurements:

• Kendall’s Tau: a non-parametric measure of the similarity between two rankings. Kendall’s
Tau ranges from 0 (no agreement) to 1 (complete agreement). We use the same interpretation
schema from prior work [66] to interpret Kendall’s Tau in our study:

Kendall’s Tau Agreement =
⎧⎪⎪⎨
⎪⎪
⎩

Weak if 0 ≤ Tau ≤ 0.3.
Moderate if 0.3 < Tau ≤ 0.6.
Strong if 0.6 < Tau ≤ 1.

• Kendall’s W: a non-parametric measure of the similarity among multiple rankings. Similar
to Kendall’s Tau, Kendall’s W also ranges from 0 (no agreement) to 1 (complete agreement).
We use the same interpretation schema that we use for Kendall’s Tau.
• Top K Overlap Score: after filtering out features with a negligible importance score (i.e.,

permutation feature importance score lower than 0.0001), we use the same definition of the
Top K Overlap Score as prior work [66]:

Top K Overlap Score =
∩n

i≥2 Most important K features for model i

∪n
i≥2 Most important K features for model i

,

where n is the number of models for comparison.

5 (RQ1) ARE THE INTERPRETATIONS FROM AIOPS MODELS INTERNALLY

CONSISTENT?

In this section, we evaluate the internal consistency of AIOps model interpretation.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:15

5.1 Approach

Figure 1 shows three components involved in the model training phase of AIOps pipeline: data
sampling, hyperparameter tuning, and ML learner. Prior work [43, 64] shows that randomness
in the model training phase leads to inconsistent model performance. In this RQ, we hypothesize
that randomness in the model training phase also leads to inconsistent model interpretations. In
particular, the fitting algorithm of the ML learner may have inherent randomness; the randomized
hyperparameter tuning contains randomness; and the random sampling of training dataset also
introduces randomness to the model training phase [64].

To validate our hypothesis, we conduct a set of controlled experiments in this RQ: for each of
the potential sources of randomness, we control for the other sources of randomness and train the
seven studied learners on the two datasets. More specifically:

(1) To evaluate the impact of the inherent randomness from the learner on the internal con-
sistency of AIOps model interpretations, we control for the hyperparameters and the
training dataset, i.e., we fix the hyperparameters of each learner to its default hyperpa-
rameters and train a model for each studied learner using all data in a given time pe-
riod and dataset without controlling for the random seed of the learner’s fitting algo-
rithm. The process is repeated 10 times, and the interpretation similarity measurements
among the 10 iterations are calculated for each learner on each dataset and its each time
period.

(2) To evaluate the impact of the randomness from randomized hyperparameter tuning on the
internal consistency of AIOps model interpretations, we control for the inherent randomness
from the learner and the training dataset, i.e., for each studied learner, we train a model
with randomized search on optimal hyperparameters, using all data in a given time period
and dataset, with a fixed random seed for the learner’s fitting algorithm. The process is
repeated 10 times for each dataset and its each time period, and the interpretation similarity
measurements among the 10 iterations are calculated for each learner on each dataset and
its each time period.

(3) To evaluate the impact of the randomness from data sampling, we control for the inher-
ent randomness from the learner and the hyperparameters, i.e., for each studied learner,
we fix the hyperparameters of the learner to its default hyperparameters, and the random
seed for the learner’s fitting algorithm, and train a model using a bootstrapped sample in a
given time period and dataset. Unlike in Experiments 1, 3, and 4, where we use the same
training data (i.e., all data in a given time period) for all iterations to control for train-
ing data randomness, here through bootstrapping a different sample of training data in
each iteration to intentionally introduce data randomness. The process is repeated 10 times
for each dataset and its each time period, and the interpretation similarity measurements
among the 10 iterations are calculated for each learner on each dataset and its each time
period.

(4) Finally, to evaluate if we can derive an internally consistent interpretation of an AIOps model
when controlling for all the above three factors, we conduct a fully controlled experiment:
We fix the hyperparameters of each learner to its default hyperparameters and train a model
for each studied learner using all data in a given time period and dataset, with a fixed random
seed for the learner’s fitting algorithm. The process is repeated 10 times, and the interpre-
tation similarity measurements among the 10 iterations are calculated for each learner on
each dataset and its each time period.

Table 4 shows an overview of our controlled experiment setup.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:16 Y. Lyu et al.

Table 4. Controlled Experiment Setup for RQ1

Experiment
Potential source of randomness

ML learner Hyperparameter tuning Data sampling

1 ✕ ✓ ✓
2 ✓ ✕ ✓
3 ✓ ✓ ✕
4 ✓ ✓ ✓

✓ - Controlled; ✕ - Not Controlled.

Fig. 2. Consistency of the AIOps model interpretations across iterations under the impact of inherent ran-

domness from learners.

5.2 Results

Inherent randomness from learners introduces inconsistencies to the derived interpreta-

tions of an AIOps model. Figure 2 shows the interpretation consistency among iterations when
controlling for the hyperparameters and the training dataset. As shown in Figure 2, learners such
as NN, RF, and CART show inconsistent interpretation among iterations, while LDA, QDA, LR,
and GBDT do not show inconsistent interpretation among iterations. It is worth noting that the
degree of inherent randomness of a learner’s fitting algorithm depends on the specific implemen-
tation of such algorithm. While scikit-learn’s implementation of LDA and QDA do not involve ran-
dom states,3 scikit-learn provides multiple solvers for LR, among which some involve randomness
(sag, saga, or liblinear) while others do not.4 Similarly, XGBoost’s implementation of GBDT
supports multiple boosters and only shows non-deterministic behavior when a gblinear booster
(i.e., Hogwild algorithm) is used.5 In our study, we used the default solver for LR (i.e., lbfgs) and
the default booster for GBDT (i.e., gbtree), both of which do not involve randomness. Hence, the
apparent stability in Figure 2 may be dependent on the implementation of the learners that we
used and may not be generalizable to other implementations.

Randomized hyperparameter searching introduces inconsistencies to the interpreta-

tion of AIOps models. Figure 3 shows the interpretation consistency among iterations when
controlling for the inherent randomness from the learner and the training dataset. As shown in
Figure 3, randomized hyperparameter searching introduces inconsistent interpretation among it-
erations across all studied learners.

3https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/discriminant_analysis.py.
4https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/linear_model/_logistic.py.
5https://xgboost.readthedocs.io/en/latest/python/python_api.html.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/linear_model/_logistic.py
https://xgboost.readthedocs.io/en/latest/python/python_api.html

Towards a Consistent Interpretation of AIOps Models 16:17

Fig. 3. Consistency of the AIOps model interpretations across iterations under the impact of randomized

hyperparameter searching.

Fig. 4. Consistency of the AIOps model interpretations across iterations under the impact of sampling

randomness.

Sampling randomness introduces inconsistencies to the interpretation of AIOps mod-

els. Figure 4 shows the interpretation consistency among iterations when controlling for the inher-
ent randomness from the learner and the hyperparameters. As shown in Figure 4, sampling (with
bootstrap) introduces inconsistent interpretation among iterations across all studied learners.

When controlling all three sources of randomness, AIOps model interpretations are in-

ternally consistent. Figure 5 shows the interpretation consistency among iterations when con-
trolling for all three sources of randomness. As shown in Figure 5, all learners in every period
of both datasets yield identical interpretations across iterations. The result indicates that when
the randomnesses of learner, data sampling, and hyperparameter tuning are all controlled, AIOps
model interpretation becomes internally consistent.

The randomness from data sampling introduces the largest scale of inconsistency

to AIOps model interpretation. Figure 6 provides an aggregated view of the distribution of
Kendall’s W when different sources of randomness are not controlled, in comparison to a con-
trolled group with all sources of randomness controlled. It can be observed from Figure 6 that
generally when randomness from data sampling is introduced, the interpretation of AIOps models
show the lowest consistency; followed by hyperparameter tuning, which shows the second-lowest
consistency among model interpretations. The ML learner’s inherent randomness appears to intro-
duce the least inconsistency to AIOps model interpretation. Such observation is consistent across
most learners and datasets, except for Multi-layer Perceptron Neural Network (NN)—in the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:18 Y. Lyu et al.

Fig. 5. Consistency of the AIOps model interpretations across iterations when controlling all three sources

of randomness.

Fig. 6. The interpretation consistency (measured by Kendall’s W) of models when different sources of ran-

domness are not controlled. Each subplot has four boxplots, from left to right, representing the control group

(all sources of randomness controlled), randomness from ML learner, hyperparameter tuning, and data sam-

pling. See Table 4 for detailed setup.

case of NN, hyperparameter tuning introduces comparable interpretation inconsistency to data
sampling. A possible explanation is that for NN, the architecture of the network (e.g., the size of
hidden layers) are tuned as a group of hyperparameters, which may result in significant difference
in the architecture of the trained models. Because of the wide adoption of Neural-Network-based
learners in AIOps research (e.g., Deep Neural Network (DNN)), future work is needed to further
explore the impact of hyperparameter tuning randomness on DNN model interpretation.

: Summary of RQ1

Inherent randomness from learners, randomized hyperparameter searching, and sampling
randomness all result in AIOps models yielding different interpretations across different
repeated runs. Sampling randomness introduces the largest scale of inconsistency to AIOps
model interpretation. By controlling the randomness from the learner, hyperparameter
tuning, and data sampling, we are able to derive internally consistent interpretations for
AIOps models.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:19

6 (RQ2) ARE THE INTERPRETATIONS FROM AIOPS MODELS EXTERNALLY

CONSISTENT?

In this section, we evaluate the external consistency of AIOps model interpretation.

6.1 Approach

Our approach to evaluate the external consistency of AIOps model interpretation consists of three
steps: (1) model generation; (2) model clustering; and (3) interpretation comparison.

Step 1: Model generation. In Section 5, we find that the randomness existing in hyperparam-
eter tuning, data sampling, and ML learners themselves would lead to a large variety of models
being generated. To preserve the randomness and generate models in different performance scales,
we train models on bootstrapped dataset samples with randomized hyperparameter searching. For
each of the learners at each period, we repeat the model training process for 10 iterations. Dur-
ing each iteration, a bootstrapped dataset sample is randomly generated without setting explicit
random seeds. We apply this process to both studied datasets. In the end, for each dataset and
each period, we generated 70 models. For example, the Google dataset contains data of 28 periods,
hence, we generated 27 × 70 = 1, 890 models. We did not use the data from the last period for
training, as there would be no available data for testing the performance of models.

Step 2: Model clustering. In this step, we cluster the models trained with the data in same
periods based on the model performance (i.e., the AUC metric). We use a widely adopted one-
dimensional clustering technique called Jenks natural breaks optimization [34]. To decide the opti-
mal number of clusters, we first conducted the elbow method. The elbow method [78] visualizes the
relationship between the number of clusters and the evaluation metric. It is a heuristic commonly
used in cluster analysis to decide the optimal number of clusters. The elbow method considers
the number of clusters to be optimal if increasing the number of clusters has little impact on the
evaluation metrics. In this study, we use Within Sum of Square (WSS) as the evaluation metric.
WSS is to measure the variability of observations in each cluster and is calculated based on the
clustering technique (i.e., Jenks natural breaks optimization in our case). As the number of clus-
ters increases, the WSS will decrease as the variation in each cluster decreases. The optimal cluster
number is the cutoff point where increasing cluster number has little impact on WSS.

Figure 7 shows the relations between WSS and the number of clusters for both Google and Back-
blaze datasets. The x-axis shows the parameters we use in the Jenk natural breaks optimization.
For example, k_2 represents the final number of cluster is one. From the visualization, we decide
that the optimal number of clusters for the Google dataset is 4 (i.e., k_5 is the elbow point) and the
optimal number of clusters for the Backblaze dataset is 2 (i.e., k_3 is the elbow point).

We then apply Jenks natural breaks optimization to the 70 models in each period of each dataset,
with the chosen optimal number of clusters, to group the models into different clusters based on
their performance. We noticed that Jenks natural breaks cannot divide the models in Backblaze
period 12 into two clusters with at least 2 models in each cluster. We therefore removed Backblaze
period 12 from our analysis in the rest of this RQ.

Step 3: Interpretation comparison. In this step, we calculate the interpretation similarity
measurements within each of the clusters to check if the interpretations of models in the same
performance group are externally consistent. As described in Section 4, we use three types of
similarity metrics to measure the consistency of interpretations: the Kendall’s W, Top 3 overlap
score, and Top 5 overlap score.

To statistically compare the interpretation consistency in different performance groups, we per-
form the Wilcoxon Rank Sum (WRS) test. The Wilcoxon Rank Sum test is an unpaired, non-

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:20 Y. Lyu et al.

Fig. 7. Elbow graph of performance clustering for deciding the optimal number of clusters.

parametric test commonly used in literature [15, 45, 46], of which the null hypothesis is that for
randomly selected values X and Y from two distributions, the probability of X being greater than
Y is equal to the probability of Y being greater than X. In this RQ, to confirm if the interpretation
consistency of group X is statistically significantly higher than group Y, we use a one-sided alter-
native hypothesis of X being shifted to the right of Y. Therefore, if the p-value of the Wilcoxon
Rank Sum test is less than 0.05, then we conclude that group X has more consistent interpretations
within the group than group Y.

To mitigate the threat of false positives during multiple comparisons, we use Bonferroni correc-
tion [59] to correct the p-value before concluding a Wilcoxon Rank Sum test where applicable.

The Wilcoxon Rank Sum test only shows whether two distributions are different, but not the
magnitude of the difference. To assess the magnitude of the differences, we also calculate the effect
size using Cliff’s Delta d . We use the following schema for interpreting d , which is widely used in
prior work [15, 45, 46]:

Cliff’s Delta d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Negligible (N) if 0 ≤ |d | ≤ 0.147.
Small (S) if 0.147 < |d | ≤ 0.33.
Medium (M) if 0.33 < |d | ≤ 0.474.
Large (L) if 0.474 < |d | ≤ 1.

6.2 Results

RF and GBDT are the top two best-performing learners for the studied AIOps context.

Figure 8 shows the percentage of models trained with each learner in the best-performing clusters.
For the Google dataset, Figure 8 shows that RF and GBDT perform much better than other learners.
The median percentage of RF and GBDT are around 50%, and the percentage of other five learners
are all below 1%. Similarly, the results on the Backblaze dataset show that RF and GBDT are still
the top two learners among all seven learners. Different from the results on the Google dataset,
the performance of models trained using LDA, QDA, LR, and NN are comparable to those trained
using RF and GBDT. In general, none of the other five learners generate more than 25% of models
in the best-performing cluster.

The findings suggest that we should consider using RF and GBDT as the preferred learners
in the context of studied AIOps applications and datasets, as they consistently perform the best
among all studied learners. In addition, the performance of learners may vary due to different

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:21

Fig. 8. Percentage of models trained with each learner in the best-performing clusters.

characteristics of different datasets. Future work should further explore the correlation between
the AIOps dataset characteristics and performance of different learners.
Models in the highest-performed clusters tend to have more consistent interpretation

results compared to lower-performed clusters. Figure 9 shows the three types of similarity
measurements for clusters in different performance ranks.

For the Google dataset, the top 1 ranked cluster has higher values in all the three measurements
compared to other clusters. For example, the median of Kendall’s W in top 1 ranked cluster is
0.81, while the median of Kendall’s W in other clusters is only between 0.47 and 0.53. Table 5
presents the detailed results of the comparison. For all three types of measurements, the values of
the cluster in rank 1 are statistically higher than the clusters in rank 2, 3, and 4 (corrected p-value
<0.05). Furthermore, the results show that all the effect sizes are large. We also observe that the
highest-performed cluster in the Google dataset have much more consistent interpretations.

For the Backblaze dataset, there are only two performance clusters: rank 1 and rank 2. We ob-
serve that, for the measurements of top 5 overlap score and top 3 overlap score, the differences
between rank 1 cluster and rank 2 cluster are significantly different (corrected p-value <0.05). The
magnitude of differences are either small or medium. However, for the measurement of Kendall’s
W, we find that the difference is insignificant. We further investigate the reason for insignificant
results of Kendall’s W. We notice that the AUCs of the models trained on Backblaze dataset are
mostly above 0.75. Based on such observations, we hypothesize that the insignificant difference
may be due to the fact that all the trained models have relatively high performance. To verify
our hypothesis, we further explore the relationship between performance (i.e., AUC) and within-
cluster interpretation similarity measurements (e.g., Kendall’s W).
Models that have an AUC of at least 0.75 tend to have high consistency among their in-

terpretation. Figure 10 shows the relationship between a cluster’s median AUC value and its
within-cluster interpretation consistency represented by Kendall’s W value. The blue line is fitted
using a Local Polynomial Regression, and the grey area represents a 95% confidence interval. The
red line indicates the threshold of Kendall’s W (0.6) where the consistency is considered to be high.
Note that for the Backblaze dataset, all clusters have a median AUC above 0.70, with the majority
of them above 0.75, while for Google dataset, the median AUCs span across 0.5 to 0.95. For the
figure of the Google dataset in Figure 10(a), we observe that the within-cluster interpretation simi-
larity begins to increase after AUC is over 0.7 and exceeds a Kendall’s W of 0.6 when AUC is larger
than 0.75.

From Figure 10(b), we observe that most of the clusters’ median AUC values are higher than 0.75,
and Kendall’s W is consistently above the high agreement threshold. While it is unclear whether

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:22 Y. Lyu et al.

Fig. 9. Distribution of similarity measurements for clusters with different performance ranks.

Table 5. Comparing the Similarity Measurement among Clusters in Different Performance Ranks

Measurement Dataset Rank X Rank Y
Corrected p-value

for WRS+
Cliff’s d∗

Kendall’s W
Google

1 2 < 0.01 0.71 (L)
1 3 < 0.01 0.84 (L)
1 4 < 0.01 0.89 (L)

Backblaze 1 2 0.91 - (N/A)

Top 5 Overlap Score
Google

1 2 < 0.01 0.73 (L)
1 3 < 0.01 0.69 (L)
1 4 < 0.01 0.74 (L)

Backblaze 1 2 0.01 0.32 (S)

Top 3 Overlap Score
Google

1 2 < 0.01 0.59 (L)
1 3 < 0.01 0.55 (L)
1 4 < 0.01 0.60 (L)

Backblaze 1 2 < 0.01 0.45 (M)

+ p < 0.05 - Significant; p ≥ 0.05 - Insignificant.
∗ N/A - Not Applicable; N - Negligible; S - Small; M - Medium; L- Large.

the lower AUC values can still result in high Kendalls’W (i.e., > 0.6), from the observable trends
in both datasets, we draw a conservative conclusion that models that have an AUC of at least
0.75 tend to have high consistency among their interpretations, and their interpretations are more
reliable than models with AUCs less than 0.75.

: Summary of RQ2

RF and GBDT are the top two best-performing learners for the studied AIOps context. Mod-
els in the best performing cluster tend to have more externally consistent interpretations
compared to other groups. When the AUC scores are greater than 0.75, the interpretations
of AIOps models are externally consistent.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:23

Fig. 10. Relationship between a cluster’s median AUC value and its within-cluster interpretation similarity,

measured by Kendall’s W. The red dashed line marks a Kendall’s W of 0.6 (a strong agreement), while the

green solid line marks an AUC of 0.75. The blue curve is fitted using a Local Polynomial Regression, and the

grey area represents a 95% confidence interval of the fit.

ALGORITHM 1: Streaming Ensemble Algorithm (SEA)

1: no_o f _learners_in_ensemble ←− 0

2: E ←− ∅ E is the ensemble

3: time_periods ←− time_periods_in_a_дiven_dataset
4: n ←− number_o f _time_periods
5: ensemble_size ←− n/2
6: while k in time_periods do

7: Train learner Li on k i

8: candidate ←− MeanSquaredError (Li-1,k i)
9: if no_o f _learners_in_ensemble ≤ ensemble_size then

10: Add Li-1 to E
11: else

12: while e in E do

13: if candidate < MeanSquaredError (e j,k i) then

14: replace e j with candidate
15: end if

16: end while

17: end if

18: end while

7 (RQ3) ARE THE INTERPRETATIONS FROM AIOPS MODELS CONSISTENT ACROSS

TIME (I.E., TIME CONSISTENT)?

In this section, we evaluate the time consistency of AIOps model interpretation.

7.1 Approach

To understand how the temporal nature of AIOps data affects the generalizability of the derived
interpretation of models updated with different approaches, we first divide the studied datasets
into multiple time periods. We divide the Google dataset into 28 one-day time periods and the
Backblaze dataset into 36 one-month time periods, as we outline in Section 4.2.1. We then simu-
late the event of updating the constructed AIOps models to predict the outcome when the last time

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:24 Y. Lyu et al.

Fig. 11. Overview of Step 1: Test model generation. FH stands for Full History, SEA stands for Streaming

Ensemble Algorithm, AWE stands for Accuracy Weighted Ensemble, and SW stands for Sliding Window.

period becomes available (i.e., the 28th and 36th time periods of Google and Backblaze datasets,
respectively). Unlike previous RQs, here, we consider the available data from all the time periods
(prior to the last time period) to update the AIOps model. We consider four approaches for updat-
ing the AIOps models, including two periodic model retraining approaches (i.e., Sliding Window
approach and Full History approach) and two time-based ensemble approaches (i.e., Accuracy

Weighted Ensemble (AWE) and Streaming Ensemble Algorithm (SEA)). Finally, we compare
if the derived interpretation of the AIOps models updated with these studied approaches capture
the historic trends present in the data through the following three steps: (1) Test model generation,
(2) Ground truth extraction, and (3) Interpretation comparison.

Step 1: Test model generation. In this step, we first construct the AIOps models (whose in-
terpretation we test) using data points from all the time periods (except the last one) to predict
the outcome of data points on the last time period of the studied datasets. Figure 11 presents an
overview of our test model generation step. We construct these AIOps models with all the seven
learners we outline in Section 4.2.2 and update them using the four model updating approaches. For
each learner, we update the associated models with one of the studied model updating approaches,
the process is repeated for 10 iterations (with bootstrap sampling), resulting in 70 models being
constructed. We do so across both the studied datasets. Among the 70 generated models for each
model updating approach, we choose the best-performing model (i.e., the model with the highest
AUC on the last time period of each of the studied dataset, a.k.a. test dataset). We then derive the
interpretation of the chosen best-performing model (i.e., the test model). At the end, we obtain four
derived interpretations from four test models, each from one of the four studied model updating
approaches. We describe how each of the studied model updating approaches leverage the historic
data and update the model below.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:25

Periodic model retraining approaches. These approaches typically retrain the model whenever
data from a new time period becomes available. In our case study, we update the studied AIOps
models to predict on the 28th and 36th time periods of Google and Backblaze datasets, respectively.

• Sliding window approach (SW): When updating the AIOps model with an SW approach, we
retrain the model with n/2 time periods (i.e., half of the available time periods). For instance,
when updating an AIOps model to predict the outcome on 28th time period in Google dataset,
we use the last 14 time periods to retrain the model.
• Full history approach (FH): We use all the data available to retrain the AIOps model. For

instance, when retraining an AIOps model to predict the outcome on 28th time period in
Google dataset, we use all the last 27 time periods.

The time-based ensemble approaches. Instead of updating a single AIOps model, the time-
based ensembles combine several AIOps models trained on short periods of time (e.g., models
trained on each time period (local models)) in an ensemble [73, 80]. We then use this ensemble
model to predict the outcome on future instances. For both the ensemble approaches that we use
in this study, we set the ensemble size (i.e., the number of local models that we ensemble together)
at n/2, similar to the SW approach. Below, we describe the two ensemble approaches that we
consider in our study.

• Streaming Ensemble Algorithm (SEA) combines multiple local models using a majority vote.
Algorithm 1 presents the working of the SEA. To update the ensemble, SEA replaces the
weakest model in the ensemble by observing which of the local models perform the worst in
the latest time period for which the SEA is updated. The SEA ensembles multiple learners as
follows: When data points from a time period k become available, a new learner Li (e.g., RF
learner) is trained on these data points to build a local model (please see line 7 in Algorithm 1).
Then, these data points are used to evaluate the model Li-1 trained on the previous time
period ki-1 (please see line 8 in Algorithm 1). If the number of models in the ensemble has
not reached the predetermined ensemble size (n/2 in our case), then the model Li-1 is simply
appended to the ensemble (please see lines 9–10 in Algorithm 1). Else, the Mean Squared

Error (MSE) of the model Li-1 is compared to all the models in the ensemble. If the MSE of the
model Li-1 is lower than that of all the models in the ensemble, then the model Li-1 replaces the
weak learner; if not, the model Li-1 is discarded (please see lines 10–16 in Algorithm 1). When
the next new set of data points becomes available for training, the model Li pertaining to the
current time period becomes the one that is tested against the other models in the ensemble.
• Accuracy weighted ensemble (AWE) is similar to the SEA except on two key points. First,

instead of using a majority vote, AWE assigned weights to each model in the ensemble (we
detail the weight assignment below). Second, when data from a new time period k becomes
available for training, SEA determines if models trained in the previous time period (Li-1)
should be kept or removed from the ensemble. Whereas, in AWE, we evaluate if the models
(Li) should be kept or discarded.

The weight for each model in the ensemble is assigned by calculating its prediction error on
the latest training data time period ki. More specifically, we calculate the MSE of each model in
the ensemble on the latest training data time period ki. The MSE for each learner is calculated by
computing the difference between the predicted probability of the given model and the observed
outcome class (either 0 or 1) in ki. We note it as MSEi. The weight for each model in the ensemble
is then given by wi = MSEr-MSEi, where MSEr is the MSE value of a model that predicts randomly
(i.e., MSEr = 0.25). The models in the ensemble that perform worse than the MSEr are removed
from the ensemble. We use a 10-fold cross-validation to estimate the MSE.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:26 Y. Lyu et al.

Fig. 12. Overview of Step 2: Ground truth extraction. FH stands for Full History, SEA stands for Streaming

Ensemble Algorithm, AWE stands for Accuracy Weighted Ensemble, and SW stands for Sliding Window.

Step 2: Ground truth extraction. In this step, we extract the actual trends (i.e., ground truth)
encapsulated in each time period of the studied datasets. Figure 12 presents an overview of our
ground truth extraction step. We do so to verify if the derived interpretation of the test models
obtained from the previous step are faithful to the historic data. While it is impossible to accu-
rately know what features were the key drivers in prior time periods, as RQ2 results suggest, the
interpretation of models in the high-performing clusters are generally consistent. Furthermore,
several prior studies also suggest that high-performing models can typically be interpreted reli-
ably [49, 66]. Therefore, to approximate the ground truth of each time period, we pick the best-
performing model in that time period and obtain its derived interpretation. For instance, to extract
the ground truth of a given time period n-1, we pick the model that is trained on n-1-th time period
(or on all the time periods before it) and has the best performance on the nth time period. We then
derive the interpretation of this best-performing model as a proxy for the ground truth contained
in the time period n-1. For example, in Google dataset, if we were to extract the ground truth for
time period 25, then we consider the local models trained on 25th time period and models trained
on 25th time period that are updated with the studied AIOps model updating approaches. Among
these constructed models, if we were to find that the RF model updated with FH approach to be the
best-performing model on the 26th time period, we then derive the interpretation of this model.
We consider this derived interpretation as the ground truth of the 25th time period.

We compute the ground truth from n/2 to n-1 (where n=#time periods) time periods for each
of the studied datasets by extracting the derived interpretation of the best-performing model in
the given time period. We do not compute the ground truth on the nthtime period, as we are only

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:27

Fig. 13. Overview of Step 3: Test model generation. FH stands for Full History, SEA stands for Streaming

Ensemble Algorithm, AWE stands for Accuracy Weighted Ensemble, and SW stands for Sliding Window.

trying to observe how faithful the best-performing model on nth time period is to the ground
truth available in time periods n/2 to n-1. Furthermore, instead of computing the ground truth on
all the time periods starting from 1, we do only from (n/2)th time period, as we include both the
AIOps models trained only on one time period (similar to RQ2) and AIOps models trained using
the studied model updating approaches. However, the SW approach requires 1 to n/2 time periods
to train. For instance, in Google dataset, for a learner to be updated with SW approach, the first
13 time periods are required to update the model trained on 14th time period. We include both
the models trained only on one time period and models trained using the studied model updating
approaches, since we want to maximize the chance of finding the best-performing model in each
time period.

We train all the studied learners that we outline in Section 4.2.2 on time periods n/2 to n-1 of the
studied datasets. We first train them using the same approach that we outline in RQ2. On each of
the time periods between n/2 and n-1, we first end up with 70 models. Next, we train our studied
learners with the four model updating approaches first using time periods 1 to n/2 as the training
data to predict on the outcome on (n/2+1)-th time period. We incrementally add each time period
from (n/2+1)th until n-1-th time period to the training data. For instance, in the Google dataset,
we first build AIOps models on the 14th time period, then we incrementally train models from the
14th to the 27th time period. Therefore, on each time period, we end up with 280 models. Finally,
among these 280 + 70 = 350 ground truth candidate models constructed for each time period
between n/2 to n-1, we compute the best-performing model and interpret it. We consider derived
interpretation of the best-performing model in each time period as ground truth for the given time
period. We do so because it best captures the variation of the dataset during that period.

Step 3: Interpretation comparison. To observe if the derived interpretations of the test mod-
els are impacted by the temporal nature of the AIOps data, we compare its derived interpretation
with the ground truth extracted in each prior time period. Figure 13 presents an overview of our
interpretation comparison step. We do so by computing the similarity between the derived inter-
pretation of test models (please note that four test models given by each studied model updating
approach) and ground truth of each historic time period in terms of Kendall’s Tau. We assert that
temporal nature of the AIOps data does not impact the derived interpretation of test models if the
similarity scores given by Kendall’s Tau is consistently strong across all historic time periods (i.e.,
n/2th to n-1-th time periods).

Next, we seek to observe if the derived interpretation of a test model exhibits higher similarity
to the ground truth across all the historic time periods compared to the others. If it does, then
the model updating approach of the given test model can be thought of as being the most faith-
ful to the trends present in the prior data. To compute that, we conduct a paired Kruskall-Wallis

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:28 Y. Lyu et al.

Fig. 14. Similarity measurement (Kendall’s Tau) between the interpretation of studied AIOps modelling ap-

proaches and estimated ground truth. The red dashed line marks a Kendall’s Tau of 0.6 (a strong agreement).

Table 6. Comparing the Difference in Similarity Measurements

Update Approach Dataset

FH SEA AWE

Corrected

p-value+
Cliff’s d∗

Corrected

p-value+
Cliff’s d∗

Corrected

p-value+
Cliff’s d∗

SW
Google 0.86 - (N/A) < 0.01 0.47 (L) < 0.01 0.69 (L)

Backblaze 0.35 - (N/A) < 0.01 0.49 (L) 0.02 0.64 (L)

+p < 0.05 - Significant; p ≥ 0.05 - Insignificant.
∗N/A - Not Applicable; N - Negligible; S - Small; M - Medium; L- Large.

(i.e., the similarity between the ground truth interpretation and derived interpretation of an AIOps model updated with

the given update approach) between the derived interpretation for AIOps models updated with SW approach and the

AIOps models updated with the other studied approaches.

H-test [39] between the computed similarity scores of the test models across all the time periods.
A p-value ≤ 0.05 on the Kruskall-Wallis H-test indicates that at least one of test models produces
interpretation that has consistently higher similarity with the ground truth across the historic time
periods. For instance, best-performing test model updated by SEA to predict the outcome on 28th
time period would have 14 similarity scores in the Google dataset. Similarly, the best-performing
test model updated by the other studied model updating approaches would also have 14 similarity
scores associated with each of them. We would then compute a Kruskall-Wallis H-test between
these four similarity score distributions to see if the distribution associated with any one of the
studied approaches is higher than the others.

If the Kurskall-Wallis test indicates that at least one of the test model has a different similarity
score distribution than others on a given dataset, then we also conduct a pairwise Wilcoxon-rank
sum test and Cliff’s delta effect size test similar to RQ2. We do so to identify the best model updating
approach(es) that yield(s) a significantly superior similarity with the ground truth in comparison
to the other studied model updating approaches.

7.2 Results

The temporal nature of the AIOps data impact the similarity between the ground truth

and the derived interpretation of the AIOps models updated using the studied model

updating approaches. From Figure 14, we observe that similarity between the ground truth and
derived interpretation of the test models fluctuates across all the time periods for both studied

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:29

Table 7. Comparing the Difference in Similarity Measurements

Update Approach Dataset

SW SEA AWE

Corrected

p-value+
Cliff’s d∗

Corrected

p-value+
Cliff’s d∗

Corrected

p-value+
Cliff’s d∗

FH
Google 2.19 - (N/A) 0.001 0.47 (L) 0.001 0.63 (L)

Backblaze 2.68 - (N/A) 0.006 0.57 (L) 0.03 0.40 (L)

+p < 0.05 - Significant; p ≥ 0.05 - Insignificant.
∗N/A - Not Applicable; N - Negligible; S - Small; M - Medium; L- Large.

(i.e., the similarity between the ground truth interpretation and derived interpretation of an AIOps model updated with

the given update approach) between the derived interpretation for AIOps models updated with FH approach and the

AIOps models updated with the other studied approaches.

datasets. In particular, except for three instances, none of the AIOps models constructed with the
studied approaches have a similarity score of 1 (i.e., a perfect reflection of the ground truth) with
the ground truth observed in the studied periods across both studied datasets.

The derived interpretation of AIOps models updated with SW approach and FH ap-

proach have consistently higher similarity scores with the ground truth across all his-

toric time periods than models updated with other studied approaches. Figure 14 shows
that across the studied time periods, derived interpretation of test models trained with SW and FH
approaches have a higher similarity score with the ground truth than the two time-based ensem-
bles. In addition, we also observe that, on Backblaze dataset, test models updated with AWE and
SEA approaches have a strong similarity with ground truth only on 4 out of 18 and 1 out of 18
time periods, respectively.

The Kruskall-Wallis test on the computed agreements between the interpretations of the test
models and the ground truth resulted in significant p-values (p < 0.05) across both datasets. Such
a result indicates that at least the similarity scores between the derived interpretation of the test
models updated with one the studied model updating approach is significantly different from the
similarity measurements produced by the other studied approaches.

Table 6 and Table 7 present the p-values of a pairwise Wilcoxon-rank sum test (p-value cor-
rected) between the similarity scores of test models updated with SW and FH approaches against
the computed similarity scores of test models updated with the other studied approaches. From
Table 6 and Table 7, we find that the derived interpretation of best-performing test models trained
with both the SW model and the FH model produces significantly higher similarity with the ground
truth than the test models updated with time-based ensembles approaches across both the studied
datasets. Furthermore, we find that the magnitude of effect sizes is consistently large. However,
we do not observe significant differences between the similarity measurements of the SW and FH
models across either of the studied datasets.

: Summary of RQ3

The temporal nature of the AIOps data indeed impacts the similarity between the interpre-
tation of the AIOps models and the ground truth. Among the commonly used approaches to
update AIOps models, we find that the derived interpretations from AIOps models updated
with SW and FH approaches are the closest to the ground truth across all time periods.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:30 Y. Lyu et al.

8 DISCUSSIONS AND FUTURE WORK

In this section, we first discuss potential alternative experiment setups that could be applicable to
our study and then highlight the gap between AIOps studies and the reproducibility guidelines in
the machine learning community. We would like to emphasize that the goal of our study is not to
propose an optimal and improved AIOps model, but rather to reveal the threats or pitfalls of prior
work’s practices when interpreting AIOps models. Therefore, we keep the setup of the study close
to prior work. Nevertheless, the alternative experiment setups discussed below can be examined
in future work to confirm the generalizability of our findings under different setups.

8.1 Training Setups

In this study, we make several experimental choices in the training setups that we use to train our
AIOps models. More specifically,

(1) We choose to standardize the independent metrics before training a model;
(2) We downsample the training dataset prior to training the model;
(3) We do not use any synthetic class rebalancing method like SMOTE.

We do so for two reasons. First, as we mentioned earlier, we wish to keep our AIOps model train-
ing setup as close to prior work as possible. All of the aforementioned experimental choices were
used in prior work in the field of AIOps. For instance, Lyu et al. [54] standardized the independent
metrics of their input data before building their AIOps models. Similarly, several prior studies in
AIOps [11, 56] tend to use a downsampling strategy similar to ours.

Second, the experimental choices that we make to build our AIOps models are quite robust.
Though we tried to keep the setup of our study as close to prior work as possible, we took care
to ensure that the experimental choices that we make are not sub-optimal. As Thomas et al. [77]
and Bring [13] state, the derived interpretations of a model are not impacted by the standardiza-
tion methods such as StandardScaler. Similarly, we do not use advanced class rebalancing meth-
ods SMOTE to rebalance our datasets. Several prior studies [74, 75, 79] show that rebalancing
the datasets with techniques like SMOTE shifts the distribution of training data and impacts the
derived interpretations. Since our study focuses on evaluating the consistency of interpretations
derived from AIOps models, we avoided experimental choices that may impact the derived inter-
pretations of a model. However, we highly encourage future research to study the impact of dif-
ferent experimental choices on the consistency of the interpretation derived from AIOps models
using the rigorous set of criteria that we outline in our study.

8.2 Evaluation Setups

In this study, we used AUC as the metric to evaluate the performance of models. As stated in
Section 4.2.3, we selected AUC as the evaluation metric, because prior work [74] has shown
that threshold-independent metrics such as AUC provides more stable evaluation results than
threshold-dependent metrics such as precision, recall and F-measure.

In particular, we used Area Under ROC Curve (AUROC) in our study. ROC curve, or Receiver
Operating Characteristic curve, is a curve that describes the relationship between a model’s true
positive rate and false positive rate [10]. The AUROC value has a clear interpretation schema. An
AUROC value of 0.5 indicates a model performance that is equivalent to random guessing, while
an AUROC value of 1 indicates a model that can provide perfect prediction with 0 error rate under
a certain threshold. However, when a given dataset is extremely imbalanced (like in many AIOps
datasets), AUROC can potentially produce over-optimistic evaluation results.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:31

An alternative metric that is insensitive to imbalanced data is Area Under Precision-Recall

Curve (AUPRC), which describes the relationship between a model’s precision and recall. How-
ever, unlike AUROC, which has a fixed baseline of 0.5, AUPRC does not have a fixed baseline for
comparison. In contrast, the baseline to evaluate whether an AUPRC value is good depends on the
ratio of positive samples in the dataset [12]. In RQ2, we studied the relationships between model
performance and external consistency of the interpretation. To study such relationships, we com-
pared and clustered many different models that are not necessarily trained on the same sample of
the dataset. In cases such as those, it is not practical to use AUPRC in our study setup to conduct a
fair comparison across models (since AUPRC does not have a fixed baseline for different datasets
like AUROC). In addition, using AUPRC would not let us suggest a general acceptable threshold
as a guideline for AIOps model interpretation.

8.3 Interpretation Levels

In this study, we used a model-level, model-agnostic approach (i.e., the permutation feature im-
portance) to interpret AIOps models, as prior work on AIOps mostly focus on model-level inter-
pretation. However, in some cases, an instance-level interpretation could be useful for improving
the model quality and enhancing the trustworthiness of AIOps models. For example, it is possible
that, although two instances have similar features, the prediction results differ (e.g., one predicted
as a successful job run and the other predicted as a failed job run). In such cases, it is important to
understand the rationale behind the predictions, which could provide insights on how to improve
the performance of the AIOps model in the future.

Recently, many instance-level interpretation techniques (e.g., LIME [69], Anchor [70], and
SHAP [52]) have been proposed in the research literature [27, 52, 63, 69, 70]. The general idea
of instance-level interpretation techniques is to first use local surrogate models (e.g., a linear re-
gression model) to approximate the predictions made by complex models (e.g., a deep neural net-
work model), and then derive interpretations from the local surrogate models that are inherently
interpretable. There are two common types of derived interpretations for a prediction: the fea-
ture importance ranks and a set of rules and depending on the need both of these can be useful.
For instance, Zhao et al. [88] applied LIME to generate a visualized report for AIOps engineers to
understand each incident prediction result.

While it is possible (and useful) to apply instance-level interpretation in AIOps models, a recent
study [23] in the malware detection domain evaluated five instance-level interpretation techniques.
They found that the derived interpretations are not consistent even if the prediction is made by the
same model with the same input. Within the five studied instance-level interpretation techniques,
LIME [69] achieves the most stable results when the model is slightly changed. Such findings in-
dicate a need for a study similar to ours to provide guidelines to ensure consistent interpretations
can be obtained from AIOps models. However, since our study only focused on model-level in-
terpretation, it remains unknown whether our findings apply to instance-level interpretations in
general, and we suggest that future work should explore this in detail.

8.4 The Gap between Reproducibility Guidelines in the Machine Learning

Community and AIOps Studies

There is a well-accepted reproducibility checklist [65] proposed in the machine learning commu-
nity that outlines the requirements when submitting research manuscripts to support better re-
producibility of the important findings. The checklist contains 21 guidelines that are listed in the
appendix of this article. There are five categories of the 21 guidelines: models/algorithms, theo-
retical claims, datasets, shared code, and experimental results. To understand whether the recent

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:32 Y. Lyu et al.

AIOps studies follow the guidelines proposed in the machine learning community, we revisited
the 11 previously surveyed AIOps studies in Section 3.2.2.

All the studies that we included in our survey have followed the models/algorithms-related
guidelines presented in the reproducibility guideline. None of the surveyed studies propose any
theoretical claims, hence guidelines No. 4 and No. 5 do not apply. For the guidelines related to
datasets, only 2 out of the 11 studies provided a downloadable link for the dataset that they use in
their study. Six out of the 11 studies did not explain the detailed process on how they collect the
data if newly presented against guideline No.10. For the guidelines related to shared code, 10 out
of 11 studies fail to provide training code, evaluation code, or (pre-) trained models, which goes
against guideline Nos. 12, 13, and 14. None of the surveyed studies provide precise commands in
the README file to reproduce the results, which goes against guideline No. 15. For the experi-
mental result part, 5 out of 11 studies did not mention the approaches that they use for selecting
the hyperparameters. Seven out of 11 studies did not specify the exact number of training and
evaluation runs.

Our results show that there is currently a gap between recent AIOps studies and the repro-
ducibility guidelines in the machine learning community. Even though it is understandable that
the guidelines are not explicitly followed (for example, for guideline No. 9, it is reasonable that cer-
tain datasets cannot be disclosed due to company policies, and the guidelines were only introduced
in 2019), it is concerning to find that so many studies violate the guidelines for reproducibility. In
addition, even by following the reproducibility guidelines, the results might not be reproducible
due to uncontrolled randomness (as we show in RQ1). Hence, our first guideline regarding the
internal consistency complements the reproducibility checklist. It is crucial for the future AIOps
studies to start accounting for both the reproducibility guidelines and our guidelines to address
reproducibility concerns and subsequently achieve the internal consistency of interpretations.

9 GUIDELINES TO PRACTITIONERS

In this section, based on our findings, we recommend the following practical guidelines for AIOps
researchers and practitioners to reliably interpret their AIOps models:

[Guideline 1]: Always find ways to expose and record the random seeds used to control

the non-determinism from the learner, hyperparameter tuning, and data sampling when

building an AIOps model. From the results presented in Section 5, we observe that identical and
internally consistent interpretations could be derived from the constructed AIOps models only
when common sources of non-determinism were controlled. It is important to ensure the internal
consistency of the derived interpretations of an AIOps model to enable managers and DevOps
engineers to act based on these interpretations. For instance, if a DevOps engineer gets a different
feature as the source of a problem every time the an AIOps model is retrained (even on the same
setup), then it would be impossible to act upon. More importantly, as Krishna and Menzies [38]
outline, the DevOps engineer would lose trust in the constructed AIOps model when obtained
insights are not consistent.

[Guideline 2]: Only use AIOps models with a minimum acceptable performance (i.e., AUC

greater than 0.75) to derive interpretations. From the results presented in Section 6, we note
that derived interpretations of models with low performance (i.e., AUC less than 0.75) exhibit very
low external consistency. Only when the model’s performance in terms of AUC is greater than
0.75 the derived interpretations among similarly performing models start to become consistent. In
light of these findings, we caution against the usage of lower-performing interpretable models in
lieu of higher-performing ones for deriving interpretations [42]. Particularly, since interpretations
derived from such models may not accurately reflect the ground truth.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

Towards a Consistent Interpretation of AIOps Models 16:33

[Guideline 3]: When using AIOps models to derive interpretations, to update them when

new data becomes available, use periodic retraining strategies such as Sliding Window and

Full History approaches. As we mention in Section 9, it is common for AIOps researchers and
practitioners to update their trained AIOps models to keep up with the constant evolution of the
AIOps data. When doing so, as we observe from the results presented in Section 7, it is possible
for the updated models to lose sight of the historic trends. Only the models updated with Sliding
Window and Full History approaches consistently exhibit high similarity with the historic ground
truth present in the data.

10 THREATS TO VALIDITY

In this section, we discuss the threats to validity of our case study.

10.1 Internal Validity

In this article, we studied four different AIOps model update approaches and compared their in-
terpretation. The window size of the sliding window approach is set to be a half of the number of
total time period, which is consistent with prior work [55].

10.2 External Validity

In this article, we used seven learners on two datasets and leveraged the permutation feature scores
for interpretation. The two datasets (the Google cluster trace dataset and the Backblaze hard drive
statistics dataset) and the seven learners are widely adopted in previous AIOps studies [42, 55].
Although our results might not generalize when using other learners, datasets, and interpretation
methods, our case study setup is generic and can be applied to other types of predictive AIOps
tasks in future work.

For AIOps tasks that leverage other types of machine learning algorithms such as unsupervised
learning, active learning, or reinforcement learning, the generalizability of our findings should be
examined in future work. In addition, our study only focuses on AIOps tasks. Hence, generalizabil-
ity of our guidelines should be examined in other domains.

In RQ2, we derive a conclusion that models with a minimum AUC value of 0.75 tend to have high
consistency among their interpretations. This conclusion is based on the empirical observations
made on the two studied datasets. For other datasets and tasks, it is possible that models that do
not reach the minimum AUC value threshold (i.e., 0.75) could also have high consistency among
their interpretations. Future work is needed to study the generalizability of our conclusions

We implemented our experiments using Python and the 0.24.0 version of scikit-learn API. We
did not investigate the impact of different implementations in other programming languages (e.g.,
R, C++) and other popular machine learning frameworks such as Weka and tensorflow. In addi-
tion, we only used the permutation feature importance scores provided by the scikit-learn API
to derive the interpretations from each model while there are other implementations [1, 2]. Al-
though we think this technique fits best in our context, there might be other techniques available
to quantitatively derive the interpretations. Future study is encouraged to investigate this matter.

10.3 Construct Validity

In the setting of all RQs, we downsample the majority class in the training set so the success-to-
fail ratio is 10:1, which may present a threat to our construct validity. However, this process is
consistent with prior work to mitigate the imbalance of the dataset [11, 56].

In the setting of RQ1, we repeat the model training process for at least 10 times for each learner
to observe the impact of randomness. Similarly, in RQ2, the performance threshold of produc-
ing consistent interpretation might be impacted by the characteristics of the randomly sampled

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

16:34 Y. Lyu et al.

datasets. We repeated the training task for each learner in each period of data for at least 10 times
to increase the variety of sampled dataset and trained models and mitigate the risk.

To measure the consistency of the interpretations, we used three types of similarity measure-
ments: the Kendall’s W, top-five overlap score, and top-three overlap score. These measurements
have been widely used in previous studies [55, 66].

We applied an automated process (i.e., randomized search) for hyperparameter tuning in the
training process and set the iteration times to be 100. We choose this method over manually tuning,
as it would be impractical to manually tune every model with randomly sampled data. In addition,
Bergstra and Bengio [9] show that randomized search is efficient in locating the optimal hyperpa-
rameters. Even though we cannot guarantee that we extract the best set of hyperparameters, the
impact on our study results is limited, since our experiments are conducted on two datasets and
seven learners, and our findings do not rely on the hyperparameters being the most optimal.

11 CONCLUSIONS

In this article, we study the consistency of interpretation of AIOps models through a case study
on two popular AIOps use cases: (1) job failure prediction using the Google cluster trace dataset;
and (2) hard drive failure prediction using the Backblaze hard drive statistic dataset. We assess the
consistency of AIOps model interpretation along three dimensions: internal consistency, external
consistency, and time consistency. Our results show that inherent randomness from learners, ran-
domized hyperparameter searching, and sampling randomness can lead to internally inconsistent
interpretations of AIOps models. In addition, we observe that the performance of AIOps models
impact the external consistency of interpretations—the interpretations of AIOps models in the
highest-performing clusters tend to be more consistent than those of other models. Finally, we
find that AIOps models built using Sliding Window and Full History approaches have the most
consistent interpretations to the evolving ground truths.

In light of these findings, we suggest the AIOps researchers and practitioners to: (1) Always
control the non-determinism from the learner, hyperparameter tuning, and data sampling by ex-
posing and recording random seeds; (2) Use models with high performance (i.e., AUC greater than
0.75) to derive interpretations; and (3) Use either a Sliding Window or Full History approach to
update the model when using the updated model to derive interpretations. Our findings and guide-
lines can help AIOps researchers and practitioners derive consistent interpretations from AIOps
models. For the AIOps applications such as issue prediction and the issue mitigation, by following
our guidelines, practitioners can derive more reliable and consistent interpretations that explain
the occurrence of failures or outages in the field, which can help them make better managerial
decisions that have long-lasting effects and develop better tooling support that saves maintenance
efforts.

In the future, we plan to extend our study to more types of AIOps tasks such as performance
anomaly detection and diagnosis and other types of interpretation techniques, such as instance-
level interpretations. In addition, future work can compare the interpretation between manually
tuned models and automated tuned models. We are also interested in applying quality assurance
techniques such as metamorphic testing and differential testing to further verify the quality of the
model interpretations within the AIOps context.

REFERENCES

[1] Mikhail Korobov, Konstantin Lopuhin. 2021. ELI5. Read The Docs. Retrieved from https://eli5.readthedocs.io/en/latest/

overview.html.

[2] Ender Celik. 2021. PIMP - R implementation for permutation importance score. RDocumentation. Retrieved from

https://www.rdocumentation.org/packages/vita/versions/1.0.0/topics/PIMP.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://eli5.readthedocs.io/en/latest/overview.html
https://www.rdocumentation.org/packages/vita/versions/1.0.0/topics/PIMP

Towards a Consistent Interpretation of AIOps Models 16:35

[3] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, and Been Kim. 2018. Sanity checks

for saliency maps. In Proceedings of the Conference on Neural Information Processing Systems.

[4] Thomas Alsop. 2020. Global hourly enterprise server downtime cost 2019. Retrieved from https://www.statista.com/

statistics/753938/worldwide-enterprise-serverhourly-downtime-cost/.

[5] Backblaze. 2020. Hard Drive Data and Stats. Retrieved from https://www.backblaze.com/b2/hard-drive-test-data.

html.

[6] Amitabha Banerjee, Chien-Chia Chen, Chien-Chun Hung, Xiaobo Huang, Yifan Wang, and Razvan Chevesaran. 2020.

Challenges and experiences with MLOps for performance diagnostics in hybrid-cloud enterprise software deploy-

ments. In Proceedings of the USENIX Conference on Operational Machine Learning.

[7] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. 2020. On the time-based conclusion stability of

cross-project defect prediction models. Empir. Softw. Eng. 25, 6 (2020), 5047–5083.

[8] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and Mathru Janakiraman. 2020. DeCaf:

Diagnosing and triaging performance issues in large-scale cloud services. In Proceedings of the 42nd International

Conference on Software Engineering, Software Engineering in Practice.

[9] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. (2012).

[10] Viv Bewick, Liz Cheek, and Jonathan Ball. 2004. Statistics review 13: Receiver operating characteristic curves. Crit.

Care (2004).

[11] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bogojeska, and Dorothea Wiesmann. 2016. Predicting disk replace-

ment towards reliable data centers. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

[12] Kendrick Boyd, Vitor Santos Costa, Jesse Davis, and C. David Page. 2012. Unachievable region in precision-recall

space and its effect on empirical evaluation. In Proceedings of the 29th International Conference on Machine Learning.

[13] Johan Bring. 1995. Variable importance by partitioning R 2. Qual. Quant. (1995).

[14] Oana-Maria Camburu, Eleonora Giunchiglia, Jakob Foerster, Thomas Lukasiewicz, and Phil Blunsom. 2019. Can I trust

the explainer? Verifying post-hoc explanatory methods. CoRR abs/1910.02065 (2019).

[15] Boyuan Chen and Zhen Ming Jack Jiang. 2019. Extracting and studying the logging-code-issue-introducing changes

in Java-based large-scale open source software systems. Empir. Softw. Eng. (2019).

[16] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang, and

Dongmei Zhang. 2019. Continuous incident triage for large-scale online service systems. In Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineering.

[17] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang, Feng Gao, Zhangwei Xu,

Yingnong Dang, and Dongmei Zhang. 2020. How incidental are the incidents? Characterizing and prioritizing inci-

dents for large-scale online service systems. In Proceedings of the 35th IEEE/ACM International Conference on Auto-

mated Software Engineering.

[18] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin, Junjie Chen, Pu Zhao, Yu Kang, Feng

Gao, Zhangwei Xu, and Dongmei Zhang. 2020. Identifying linked incidents in large-scale online service systems. In

Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of

Software Engineering.

[19] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu, Yingnong Dang, Dongmei Zhang,

Hang Dong, Yong Xu, Hao Li, and Yu Kang. 2019. Outage prediction and diagnosis for cloud service systems. In

Proceedings of the World Wide Web Conference. 2659–2665.

[20] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan Zhou, Li Yang, Jeffrey Sun, Zhangwei

Xu et al. 2020. Towards intelligent incident management: Why we need it and how we make it. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 1487–1497.

[21] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: Real-world challenges and research innovations. In

Proceedings of the 41st International Conference on Software Engineering.

[22] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder. 2017. Learning from failure across multiple clusters: A trace-

driven approach to understanding, predicting, and mitigating job terminations. In Proceedings of the IEEE 37th Inter-

national Conference on Distributed Computing Systems (ICDCS).

[23] Ming Fan, Wenying Wei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and Ting Liu. 2021. Can we trust your explanations?

Sanity checks for interpreters in Android malware analysis. IEEE Trans. Inf. Forens. Secur. (2021).

[24] João Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues. 2004. Learning with drift detection. In Pro-

ceedings of the 17th Brazilian Symposium on Artificial Intelligence.

[25] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna M. Wallach, Hal Daumé III,

and Kate Crawford. 2018. Datasheets for datasets. CoRR abs/1803.09010 (2018).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://www.statista.com/statistics/753938/worldwide-enterprise-serverhourly-downtime-cost/
https://www.backblaze.com/b2/hard-drive-test-data.html

16:36 Y. Lyu et al.

[26] Odd Erik Gundersen and Sigbjørn Kjensmo. 2018. State of the art: Reproducibility in artificial intelligence. In Pro-

ceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial

Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18).

[27] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. Lemna: Explaining deep learning

based security applications. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.

[28] Maayan Harel, Shie Mannor, Ran El-Yaniv, and Koby Crammer. 2014. Concept drift detection through resampling. In

Proceedings of the 31st International Conference on Machine Learning.

[29] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang. 2018. Identifying

impactful service system problems via log analysis. In Proceedings of the ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.

[30] Reyhane Askari Hemmat and Abdelhakim Hafid. 2016. SLA violation prediction in cloud computing: A machine

learning perspective. CoRR arXiv:1611.10338. https://arxiv.org/abs/1611.10338.

[31] Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Science (2018).

[32] IDG. 2020. 2020 Cloud Computing Study. Retrieved from https://www.idg.com/tools-for-marketers/2020-cloud-

computing-study/.

[33] Ali Imran Jehangiri, Ramin Yahyapour, Philipp Wieder, Edwin Yaqub, and Kuan Lu. 2014. Diagnosing cloud perfor-

mance anomalies using large time series dataset analysis. In Proceedings of the 7th International Conference on Cloud

Computing.

[34] George Jenks. 1967. The data model concept in statistical mapping. In International Yearbook of Cartography. George

Philip.

[35] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu Zhang, Yingfei Xiong, Feng Gao,

Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020. How to mitigate the incident? An effective troubleshooting

guide recommendation technique for online service systems. In Proceedings of the 28th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.

[36] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Hoa Khanh Dam, and John Grundy. 2020. An empirical study of

model-agnostic techniques for defect prediction models. IEEE Trans. Softw. Eng. (2020).

[37] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude. 2020. The impact of automated feature selec-

tion techniques on the interpretation of defect models. Empir. Softw. Eng. 25, 5 (2020), 3590–3638.

[38] Rahul Krishna and Tim Menzies. 2018. Bellwethers: A baseline method for transfer learning. IEEE Trans. Softw. Eng.

(2018).

[39] William H. Kruskal and W. Allen Wallis. 1952. Use of ranks in one-criterion variance analysis. J. Amer. Statist. Assoc.

47, 260 (1952), 583–621.

[40] Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, Gang Wang, Zhongwei Li, and Xiaoguang Liu. 2014. Hard drive failure

prediction using classification and regression trees. In Proceedings of the 44th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks.

[41] Jing Li, Rebecca J. Stones, Gang Wang, Xiaoguang Liu, Zhongwei Li, and Ming Xu. 2017. Hard drive failure prediction

using Decision Trees. Reliab. Eng. Syst. Saf. (2017).

[42] Yangguang Li, Zhen Ming (Jack) Jiang, Heng Li, Ahmed E. Hassan, Cheng He, Ruirui Huang, Zhengda Zeng, Mian

Wang, and Pinan Chen. 2020. Predicting node failures in an ultra-large-scale cloud computing platform: An AIOps

solution. ACM Trans. Softw. Eng. Methodol. (2020).

[43] Cynthia C. S. Liem and Annibale Panichella. 2020. Run, forest, run? On randomization and reproducibility in predictive

software engineering. arXiv:2012.08387 (2020).

[44] Meng-Hui Lim, Jian-Guang Lou, Hongyu Zhang, Qiang Fu, Andrew Beng Jin Teoh, Qingwei Lin, Rui Ding, and Dong-

mei Zhang. 2014. Identifying recurrent and unknown performance issues. In Proceedings of the IEEE International

Conference on Data Mining. 320–329.

[45] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2018. An empirical study of early access games on the Steam

platform. Empir. Softw. Eng. (2018).

[46] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2019. Identifying gameplay videos that exhibit bugs in computer

games. Empir. Softw. Eng. (2019).

[47] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong Xu, Jian-Guang Lou, Chenggang Li,

Youjiang Wu, Randolph Yao, Murali Chintalapati, and Dongmei Zhang. 2018. Predicting node failure in cloud ser-

vice systems. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering.

[48] Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, and Dongmei Zhang. 2016. iDice: Problem identification for emerging

issues. In Proceedings of the 38th International Conference on Software Engineering.

[49] Zachary C. Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is

both important and slippery. Queue (2018).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://arxiv.org/abs/1611.10338
https://www.idg.com/tools-for-marketers/2020-cloud-computing-study/

Towards a Consistent Interpretation of AIOps Models 16:37

[50] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie. 2013. Software analytics for incident

management of online services: An experience report. In Proceedings of the 28th IEEE/ACM International Conference

on Automated Software Engineering.

[51] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie. 2017. Experience report on applying

software analytics in incident management of online service. Autom. Softw. Eng. (2017).

[52] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the

31st International Conference on Neural Information Processing Systems.

[53] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang, and Zhe Wang. 2014. Correlating

events with time series for incident diagnosis. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining.

[54] Yingzhe Lyu. 2021. Replication Package for an Empirical Study of the Impact of Data Splitting Decisions on the

Performance of AIOps Solutions. Retrieved from https://github.com/SAILResearch/suppmaterial-19-yingzhe-aiops_

data_splitting.

[55] Yingzhe Lyu, Heng Li, Mohammed Sayagh, Zhenming (Jack) Jiang, and Ahmed E. Hassan. 2021. An empirical study

of the impact of data splitting decisions on the performance of AIOps solutions. ACM Trans. Softw. Eng. Methodol.

(2021).

[56] Farzaneh Mahdisoltani, Ioan A. Stefanovici, and Bianca Schroeder. 2017. Proactive error prediction to improve storage

system reliability. In Proceedings of the USENIX Annual Technical Conference. 391–402.

[57] Tim Menzies. 2019. The five laws of SE for AI. IEEE Softw. 37, 1 (2019), 81–85.

[58] Kit Merker. 2020. Council Post: How to Optimize Gross Margins For Digital Services. Retrieved from

https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2020/12/03/how-to-optimize-gross-margins-

for-digital-services/?sh=13d62bb130c3.

[59] Rupert G. Miller. 2012. Simultaneous Statistical Inference. Springer Science & Business Media.

[60] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,

Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model cards for model reporting. In Proceedings of the Conference on

Fairness, Accountability, and Transparency.

[61] Christoph Molnar. 2019. Interpretable Machine Learning. Retrieved from https://christophm.github.io/interpretable-

ml-book/.

[62] Sasho Nedelkoski, Jorge S. Cardoso, and Odej Kao. 2019. Anomaly detection and classification using distributed tracing

and deep learning. In Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

[63] Dino Pedreschi, Fosca Giannotti, Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, and Franco Turini. 2019.

Meaningful explanations of Black Box AI decision systems. In Proceedings of the AAAI Conference on Artificial Intelli-

gence.

[64] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and

Nachiappan Nagappan. 2020. Problems and opportunities in training deep learning software systems: An analysis of

variance. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[65] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d’Alché Buc,

Emily Fox, and Hugo Larochelle. 2020. Improving Reproducibility in Machine Learning Research (A Report from the

NeurIPS 2019 Reproducibility Program). arXiv:2003.12206 [cs.LG]

[66] Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo A. Oliva, Yasutaka Kamei, and Ahmed E. Hassan. 2021. The

impact of feature importance methods on the interpretation of defect classifiers. In IEEE Trans. Softw. Eng.

[67] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and Premkumar Devanbu.

2016. On the “naturalness” of buggy code. In Proceedings of the IEEE/ACM 38th International Conference on Software

Engineering (ICSE). IEEE, 428–439.

[68] John Wilkes. 2020. Google Cluster-Usage Traces V3. Technical Report. Google Inc. Posted at https://github.com/google/

cluster-data/blob/master/ClusterData2019.md.

[69] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust you?”: Explaining the predictions

of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining.

[70] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-precision model-agnostic explanations.

In Proceedings of the AAAI Conference on Artificial Intelligence.

[71] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2015. Catching failures of failures at big-data clusters: A two-level

neural network approach. In Proceedings of the 23rd IEEE International Symposium on Quality of Service.

[72] Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use inter-

pretable models instead. Nat. Mach. Intell. (2019).

[73] W. Nick Street and YongSeog Kim. 2001. A streaming ensemble algorithm (SEA) for large-scale classification. In Pro-

ceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

https://github.com/SAILResearch/suppmaterial-19-yingzhe-aiops_data_splitting
https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2020/12/03/how-to-optimize-gross-margins-for-digital-services/?sh=13d62bb130c3
https://christophm.github.io/interpretable-ml-book/
http://arxiv.org/abs/2003.12206
https://github.com/google/cluster-data/blob/master/ ClusterData2019.md

16:38 Y. Lyu et al.

[74] Chakkrit Tantithamthavorn and Ahmed E. Hassan. 2018. An experience report on defect modelling in practice: Pitfalls

and challenges. In Proceedings of the International Conference on Software Engineering: Software Engineering in Practice

Track (ICSE-SEIP’18).

[75] Chakkrit Tantithamthavorn, Ahmed E. Hassan, and Kenichi Matsumoto. 2018. The impact of class rebalancing tech-

niques on the performance and interpretation of defect prediction models. IEEE Trans. Softw. Eng. 46, 11 (2018),

1200–1219.

[76] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. 2018. The impact of auto-

mated parameter optimization on defect prediction models. IEEE Trans. Softw. Eng. 45, 7 (2018), 683–711.

[77] D. Roland Thomas, Edward Hughes, and Bruno D. Zumbo. 1998. On variable importance in linear regression. Soc.

Indic. Res. (1998).

[78] Robert L. Thorndike. 1953. Who belongs in the family. Psychometrika (1953).

[79] Burak Turhan. 2012. On the dataset shift problem in software engineering prediction models. Empir. Softw. Eng. (2012).

[80] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. 2003. Mining concept-drifting data streams using ensemble

classifiers. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[81] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. 2020. Evaluating explanation methods

for deep learning in security. In Proceedings of the IEEE European Symposium on Security and Privacy.

[82] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang, Wenchi

Zhang, Jian-Guang Lou, Murali Chintalapati, and Dongmei Zhang. 2018. Improving service availability of cloud sys-

tems by predicting disk error. In Proceedings of the USENIX Annual Technical Conference.

[83] Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2016. Managing data center tickets: Prediction and active

sizing. In Proceedings of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

[84] Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2018. Spatial-temporal prediction models for active ticket

managing in data centers. IEEE Trans. Netw. Serv. Manag. (2018).

[85] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and Pradeep Ravikumar. 2019. On the (In)fidelity

and sensitivity of explanations. In Proceedings of the Annual Conference on Neural Information Processing Systems.

[86] Xuezhi Zeng, Saurabh Garg, Mutaz Barika, Sanat Kumar Bista, Deepak Puthal, Albert Y. Zomaya, and Rajiv Ranjan.

2021. Detection of SLA violation for big data analytics applications in cloud. IEEE Trans. Comput. (2021).

[87] Steve Zhang, Ira Cohen, Moisés Goldszmidt, Julie Symons, and Armando Fox. 2005. Ensembles of models for auto-

mated diagnosis of system performance problems. In Proceedings of the International Conference on Dependable Systems

and Networks.

[88] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong Wu, Fang Zhou, Zhen Feng, Xiaohui Nie,

Wenchi Zhang, Kaixin Sui, and Dan Pei. 2020. Real-time incident prediction for online service systems. In Proceed-

ings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software

Engineering.

Received March 2021; revised June 2021; accepted August 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 16. Publication date: November 2021.

