
Developing Cost-Effective Blockchain-Powered
Applications: A Case Study of the Gas Usage of Smart
Contract Transactions in the Ethereum Blockchain Platform

ABDULLAH A. ZARIR, EconTech team at Amazon, Canada
GUSTAVO A. OLIVA, Software Analysis and Intelligence Lab (SAIL) at Queen’s University, Canada
ZHENM. (JACK) JIANG, Dept. of Electrical Engineering & Computer Science at York University, Canada
AHMED E. HASSAN, Software Analysis and Intelligence Lab (SAIL) at Queen’s University, Canada

Ethereum is a blockchain platform that hosts and executes smart contracts. Executing a function of a smart
contract burns a certain amount of gas units (a.k.a., gas usage). The total gas usage depends on how much
computing power is necessary to carry out the execution of the function. Ethereum follows a free-market
policy for deciding the transaction fee for executing a transaction. More specifically, transaction issuers choose
how much they are willing to pay for each unit of gas (a.k.a., gas price). The final transaction fee corresponds
to the gas price times the gas usage. Miners process transactions to gain mining rewards, which come directly
from these transaction fees. The flexibility and the inherent complexity of the gas system pose challenges to
the development of blockchain-powered applications. Developers of blockchain-powered applications need to
translate requests received in the frontend of their application into one or more smart contract transactions.
Yet, it is unclear how developers should set the gas parameters of these transactions given that (i) miners
are free to prioritize transactions whichever way they wish and (ii) the gas usage of a contract transaction is
only known after the transaction is processed and included in a new block. In this paper, we analyze the gas
usage of Ethereum transactions that were processed between Oct. 2017 and Feb. 2019 (the Byzantium era).
We discover that most miners prioritize transactions based on their gas price only, (ii) 25% of the functions
that received at least 10 transactions have an unstable gas usage (coefficient of variation = 19%), and (iii) a
simple prediction model that operates on the recent gas usage of a function achieves an R-Squared of 0.76 and
a median absolute percentage error of 3.3%. We conclude that (i) blockchain-powered application developers
should be aware that transaction prioritization in Ethereum is frequently done based solely on the gas price of
transactions (e.g., a higher transaction fee does not necessarily imply a higher transaction priority) and act
accordingly and (ii) blockchain-powered application developers can leverage gas usage prediction models
similar to ours to make more informed decisions to set the gas price of their transactions. Lastly, based on our
findings, we list and discuss promising avenues for future research.

CCS Concepts: • General and reference → Empirical studies; Estimation; • Computer systems orga-
nization → Distributed architectures.

Additional Key Words and Phrases: Gas Usage, Smart Contracts, Ethereum, Blockchain

Authors’ addresses: Abdullah A. Zarir, azzarir@amazon.com, EconTech team at Amazon, Vancouver, Canada; Gustavo A.
Oliva, gustavo@cs.queensu.ca, Software Analysis and Intelligence Lab (SAIL) at Queen’s University, Kingston, Canada; Zhen
M. (Jack) Jiang, zmjiang@cse.yorku.ca, Dept. of Electrical Engineering & Computer Science at York University, Toronto,
Canada; Ahmed E. Hassan, ahmed@cs.queensu.ca, Software Analysis and Intelligence Lab (SAIL) at Queen’s University,
Kingston, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1049-331X/2020/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Zarir, et al.

ACM Reference Format:
Abdullah A. Zarir, Gustavo A. Oliva, Zhen M. (Jack) Jiang, and Ahmed E. Hassan. 2020. Developing Cost-
Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract Transactions
in the Ethereum Blockchain Platform. ACM Trans. Softw. Eng. Methodol. 1, 1 (November 2020), 39 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Ethereum is a popular blockchain platform. Different from Bitcoin, Ethereum supports smart
contracts. Smart contracts are general-purpose computer programs that are both hosted and
executed by Ethereum. In practical terms, a smart contract can be thought of as a class (as in
object-oriented programming) that is instantiated once the contract is deployed in Ethereum. Smart
contracts can be written in several languages, including Solidity (the most popular one) and Vyper.
Users interact with Ethereum by sending transactions to other users (to transfer cryptocurrency)
and to smart contracts (to trigger the execution of a function of a contract). In this study we focus
on the latter.
Gas is a measurement unit for computational work in the Ethereum Blockchain. Every com-

putation in Ethereum has an associated cost. The cost is specified in units of gas. The gas that is
burnt as a result of the execution of a transaction is called the gas usage of a transaction. In the
case of smart contract transactions, the gas usage depends on the number and type of instructions
that are executed during runtime, as well as the pieces of information that need to be stored in the
blockchain.
Furthermore, every transaction has to be setup with two parameters before it can be triggered.

The first parameter is called gas limit and it corresponds to the maximum amount of gas units that
are allowed to be burnt by the transaction. An out-of-gas error occurs when the execution of a
transaction surpasses the gas limit (i.e., gas limit < gas usage). The second parameter is called gas
price and corresponds to the per-unit price of gas, which is given in the Ether (ETH) cryptocurrency.
The transaction fee paid by a transaction issuer in order to process a transaction corresponds to gas
usage × gas price. Hence, as opposed to typical cloud services in which users choose a compute
capacity and pay by the hour (pay-as-you-go), transaction fees in Ethereum do not have a fixed
value. Gas prices and transaction fees are usually reported in terms of GWEI, where 1 GWEI = 1e-9
ETH.
Mining is a process carried out by a node (a.k.a miner) in a blockchain network to provide

computational resources to process transactions and append new blocks to the blockchain. The work
done by a miner for each transaction is rewarded with an incentive in the form of a cryptocurrency.
In Ethereum, the reward for mining a block is equivalent to the transaction fees paid by the issuers
of the transactions that were included in the block. The transaction fee corresponds to the amount
of gas burnt by that transaction (gas usage) multiplied by the per-unit price of gas (gas price) chosen
by the issuer of the transaction. Miners are free to select and prioritize transactions whichever
way they wish. More specifically, each miner has a transaction pool, where transactions waiting to
be processed (a.k.a., pending transactions) are kept and ranked according to some prioritization
criterion.

A key characteristic of blockchain technology is that it offers trust and security in maintaining
the growing list of blocks by leveraging a distributed and decentralized network. These benefits,
along with the programmability brought by smart contracts, enabled the development of blockchain-
powered applications. These applications use a blockchain platform (e.g., Ethereum) as their backend.
For instance, a blockchain-powered bank application could implement financial transactions (e.g.,
money transfer between accounts) using smart contract transactions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 3

However, the flexibility of how Ethereum operates poses challenges to blockchain-powered
application developers, particularly with regards to the aforementioned gas system. Assume that an
end-user wants to transfer some money from his bank account to some other account holder using
a blockchain-powered bank application. Once the end-user triggers the money transfer function
on the frontend of the application, such a request needs to be translated into one or more smart
contract transactions to be processed in the blockchain. The question then becomes: how should
developers set the gas parameters (i.e., gas limit and gas price) of these smart contract transactions?

In order to answer such a question, we focus on two key requirements:
i) Blockchain-powered application developers need to know howminers prioritize trans-
actions. As we mentioned before, pending transactions can be prioritized by miners in whichever
way they wish. Nevertheless, miners commonly employ Ethereum clients (a.k.a., mining tools)
such as geth1 and parity2 to mine blocks. These tools provide transaction prioritization strategies
out-of-the-box, which often rely on either gas price, gas limit, or both. Therefore, in RQ1, we
empirically investigate how miners prioritize the mining of pending transactions.
ii) Blockchain-powered application developers need to be able to accurately estimate the
gas usage of transactions. The reason is twofold. First, accurately estimating the gas usage of a
transaction enables developers to set a suitable gas limit for such a transaction (e.g., to avoid running
into out-of-gas errors [22]). Second, accurately estimating the gas usage of a transaction enables
developers to make a more informed gas price choice (since the transaction fee is a function of both
gas usage and gas price). Gas estimation is particularly important in the context of code reuse. More
specifically, given the possibly disastrous consequences of having bugs in smart contracts [28], it is
common for blockchain-powered application developers to reuse smart contracts from reputable
third-parties (e.g., OpenZeppelin3 instead of writing them from scratch. Nevertheless, the gas
usage behavior (e.g., a min-max range) of the functions exposed in the API of reusable contracts is
rarely documented. In fact, determining the gas usage of certain smart contract transactions can be
remarkably challenging. For instance, a function might burn different amounts of gas depending on
the current state of its governing contract. Alternatively, a function might burn different amounts
of gas depending on how much data is provided to it via input parameters during a call (e.g., the
number of elements in an array) [22]. Given these challenges, gas usage prediction models need
to be developed to support the development of cost-effective blockchain-powered applications. In
RQ2, we study the stability of the gas usage of smart contract functions (e.g., if most smart contract
functions have a somewhat constant gas usage, then it becomes trivial to predict their gas usage).
In RQ3, we build models to study our ability to accurately predict the gas usage of smart contract
transactions.

In summary, in this study we leverage the ledger nature of Ethereum to empirically determine (a)
how miners tend to select transactions, (b) the stability of the gas usage of smart contract functions,
and, more practically, (c) whether gas usage can be accurately predicted. More generally, our paper
stands in the realm of blockchain-oriented software engineering (BOSE) [38], which focuses on the
application and definition of software engineering principles and practices that are specific for
blockchain platforms and their supporting technologies (e.g., smart contracts).

Our research questions, along with the key results that we obtained, are listed below.
RQ1) How do miners prioritize pending transactions?We analyzed the ordering of transac-
tions in each block to understand the common strategies behind block creation. We observed that:
Miners tend to prioritize transactions based solely on gas price, which is the default prioritization

1https://geth.ethereum.org
2https://www.parity.io/ethereum
3https://github.com/OpenZeppelin/openzeppelin-contracts

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://geth.ethereum.org
https://www.parity.io/ethereum
https://github.com/OpenZeppelin/openzeppelin-contracts

4 Zarir, et al.

strategy of the two most popular mining tools (geth and parity). Hence, two transactions with the same
exact transaction fee can have different priorities. For example, if transaction t1 has a gas usage of
21,000 units and is set with a gas price of 2 GWEI and t2 has a gas usage of 42,000 units and is set
with a gas price of 1 GWEI, then t1 is more likely to have higher priority than t2, even though the
transaction fee is identical in both cases (i.e., 42,000 GWEI).

RQ2) How stable is the gas usage of smart contract functions? We grouped transactions
based on the smart contract functions that they target. Next, we studied functions that received
at least a certain minimum number of transactions and analyzed the stability of their gas usage.
We observed that: 25% of the studied functions have an unstable gas usage (coefficient of variation
higher than 19%). In particular, these unstable functions received together approximately half of all
transactions sent to these studied functions.

RQ3) How accurately can we predict the gas usage of smart contract transactions? We
built a simple model that leverages the recent historical gas usage of functions in order to produce
predictions. More specifically, we predict the gas usage of a given contract transaction as the
average gas usage computed over the prior 10 transactions sent to the targeted function. Our
hypothesis is that the recent historical gas usage of a function might be relatively stable (e.g., due
to seasonality in the contract’s state or in the values of input parameters sent to the function). We
observed that: Our simple model can predict the gas usage of contract transactions with an RSquared
of 0.76 and a median absolute percentage error of 3.3%.

A supplementary package with our preprocessed data is available online4 in an effort to inspire
others to further study this crucial aspect of the development of blockchain-powered software
applications.
Paper organization. The remainder of this paper is organized as follows. Section 3 explains
the data collection procedures that we employed to answer our research questions. Section 4
presents the motivation, approach, and findings of our research questions. Section 5 discusses
the implications of our findings. Section 6 provides an overview of prior research on the gas
mechanism of Ethereum. Section 7 discusses the threats to the validity of our findings. Finally,
Section 8 concludes the paper by summarizing our key observations.

2 BACKGROUND
This section introduces key concepts that are employed throughout this paper. We note that this
section builds on portions of an appendix published alongside one of our prior studies [33]. Readers
might consider skipping this section (or portions of it) in case they are familiar with smart contracts
and the transaction processing mechanism of Ethereum. A summary is provided at the end of the
section.

2.1 Blockchain
A blockchain is a distributed, chronological database of transactions that is shared and maintained
across nodes that participate in a peer-to-peer network. The name blockchain comes from the
manner in which the data is stored. Roughly speaking, pieces of information are packaged in blocks,
which are linked to one another as a chain. Blocks store a set of uniquely identifiable transactions
(e.g., denoting money transfers). Once a block is appended to the blockchain, its contents cannot
be altered without changing every other block that came after it. In Ethereum, a transaction t
belonging to block b is deemed final and irreversible after n new blocks have been appended after b.
There is no consensus on what the exact value ofn should be. For instance, the Ethereumwhitepaper

4https://github.com/SAILResearch/suppmaterial-18-zarir-ethereum_gas_usage

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://github.com/SAILResearch/suppmaterial-18-zarir-ethereum_gas_usage

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 5

suggests n = 7 [10], which translates to approximately 01m 45s (since blocks are appended every
15s in average).

The Ethereum platform supports two types of accounts: user accounts (a.k.a., externally-owned
accounts) and smart contract accounts. A user account is very simple in structure. A user account
has an address (40-digit hexadecimal ID), a transaction counter, and the ETH balance (ETH is the
official Ethereum cryptocurrency). A smart contract account, in turn, holds the bytecode of a smart
contract in addition to the previously mentioned fields. Blockchain platforms that support smart
contracts accounts are known as programmable blockchains (e.g., Bitcoin is not a programmable
blockchain).

2.2 Smart Contracts
A smart contract is a general-purpose computer program. In practical terms, a smart contract can
be thought of as a class (as in object-oriented programming) that is instantiated once the contract
is deployed in Ethereum. Just like an instantiated object, a deployed smart contract also has a state.
Smart contracts in Ethereum are frequently written in the Solidity5 language. Less popular

languages include Serpent and Vyper. Only the bytecode of a smart contract is stored in the
blockchain (during deployment). The bytecode is executed by the Ethereum Virtual Machine6
(EVM), which runs on the computers of miners. Miners are the entities that effectively process
Ethereum transactions.

2.2.1 Source Code. The syntax of the Solidity language resembles that of Java. A smart contract
is similar to a class (as in object-oriented programming). As such, a smart contract contains state
variables (a.k.a., attributes) and functions (a.k.a., methods). An illustrative example is shown in
Listing 1, which depicts a minimalistic implementation of a coin. Users of this contract can send
coins to one another. This illustrative contract was adapted from a slightly more complex example7
provided as part of the Solidity official documentation.

2.2.2 Interaction Model. Transactions are at the heart of the Ethereum platform. They are the
means through which one interacts with the blockchain. Similarly to Bitcoin, user accounts can send
transactions to other user accounts to transfer cryptocurrency (Ether). However, since Ethereum
is a programmable blockchain, user accounts can also send transactions to deploy contracts and
interact with them.
Deployment. The deployment is done by means of a transaction sent to the blockchain. This
transaction packs the bytecode that describes the contract (a.k.a., the runtime bytecode portion)
and initializes it (a.k.a., the creation bytecode portion). This transaction is commonly referred to as
the contract creation transaction. A smart contract receives its address as a result of the execution
of the contract creation transaction.
Interaction. Once a contract is deployed, users accounts (e.g., developers of blockchain-powered
applications) can interact with it by sending transactions to it. These transactions are known as
contract transactions. Contract transactions always invoke a function from a smart contract. More
specifically, a contract transaction always specifies the address of the targeted contract, the id of the
targeted function (i.e., the function that should be executed), and the values of the input parameters
(if any) to this function. Since contracts are stateful, a contract transaction may modify the state of
a contract.

5https://solidity.readthedocs.io/en/v0.6.11/
6https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List
7https://solidity.readthedocs.io/en/v0.6.11/introduction-to-smart-contracts.html#subcurrency-example

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://solidity.readthedocs.io/en/v0.6.11/
https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List
https://solidity.readthedocs.io/en/v0.6.11/introduction-to-smart-contracts.html#subcurrency-example

6 Zarir, et al.

1 // SPDX-License-Identifier: GPL-3.0
2
3 //Compiler version specification
4 pragma solidity >=0.5.0 <0.7.0;
5
6 contract Coin {
7 // State variables
8 address private minter;
9 mapping (address => uint) private balances;

10
11 // Constructor code is only run when the contract
12 // is created
13 constructor() public {
14 minter = msg.sender;
15 }
16
17 // Sends an amount of newly created coins to an address (receiver)
18 // Can only be called by the contract creator
19 function mint(address receiver, uint amount) public {
20 require(msg.sender == minter);
21 require(amount < 1e60);
22 balances[receiver] += amount;
23 }
24
25 // Sends an amount of existing coins (amount)
26 // from any caller to an address (receiver)
27 function send(address receiver, uint amount) public {
28 require(amount <= balances[msg.sender], "Insufficient balance.");
29 balances[msg.sender] -= amount;
30 balances[receiver] += amount;
31 }
32 }

Listing 1. A minimalistic implementation of a coin in Ethereum.

The details of a real contract transaction are shown in Figure 1. In the transaction’s input data
field, we can see that the targeted function was claimFor(address _user) from the Digix:
Token Sale contract. In Listing 2, we show the source code of the claimFor(address _user)
function.
Finally, we note that only functions defined with the public or external visibility can be the

target of a contract transaction. When no visibility is explicitly specified (as in the case of the
claimFor(address _user) function), the compiler defaults it to public. More details about
function visibility can be seen in the Solidity’s official documentation10.
Interaction between contracts. Contract transactions are always initiated by a user account (i.e.,
the transaction sender is always a user account). Nonetheless, smart contracts themselves can also
(i) deploy other contracts and (ii) invoke functions defined in other smart contracts. These processes
occur through a mechanism popularly known as internal transactions. Internal transactions are
not real transactions, as they are not kept on the blockchain.

In line 20 of the source code shown in Listing 2, the TokenSales smart contract is invoking two
functions (mint(address, uint256) and mintBadge(address, uint256) that are
defined in some other contract. These invocations happen through internal transactions.

2.2.3 Gas usage of contract transactions. Transactions in Ethereum need to be paid for. Ethereum
uses the gas system to charge transaction fees. Cryptocurrency transactions (i.e., transfers of
Ether from one user account to another) have a fixed cost of 21,000 gas units. For smart contract
transactions, it depends on the number and type of bytecode operations that are executed during
runtime (i.e., all bytecode operations associated with the execution of the targeted function). The

8https://etherscan.io/tx/0x7d111d21579c484cef5b768a553afb6cc70b448c7de6abcf07172f8d16929e81.
9https://etherscan.io/address/0xf0160428a8552ac9bb7e050d90eeade4ddd52843#code.
10https://solidity.readthedocs.io/en/v0.6.11/contracts.html#visibility-and-getters

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://etherscan.io/tx/0x7d111d21579c484cef5b768a553afb6cc70b448c7de6abcf07172f8d16929e81
https://etherscan.io/address/0xf0160428a8552ac9bb7e050d90eeade4ddd52843#code
https://solidity.readthedocs.io/en/v0.6.11/contracts.html#visibility-and-getters

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 7

Fig. 1. An example of a smart contract transaction. Image extracted from Etherscan8.

cost of all bytecode operations are described in the Appendix G of the Ethereum yellow paper [45].
For illustrative purposes, we show such an appendix in Figure 2. For instance, a SHA3 bytecode
operation (a hash function) burns 30 gas units (Gsha3). Popular operations such as addition (ADD),
subtraction (SUB), number comparison (e.g., LT, GT), and internal stack operations (e.g., PUSH*)
are included in theWverylow set of operations, which burn 3 gas units (Gverylow). In summary,
the gas usage of a contract transaction is the sum of the gas cost associated with every bytecode
operation that was executed by a miner node in order to run the transaction’s targeted function.
As we described in Section 2.2.2, contracts might call other contracts via internal transactions.

For instance, if line 20 from Listing 2 happens to be executed as the result of a contract trans-
action t targeting function claimFor(address _user), then the total gas usage of t will
also encompass the gas units burnt to execute the functions mint(address, uint256) and
mintBadge(address, uint256) defined in the external contract. In fact, the transaction
shown in Figure 1 does execute line 20. Traces of the internal transactions can be seen by clicking
the Internal Transactions tab in Etherscan (upper-left portion Figure 1, right beside the Overview
tab).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

8 Zarir, et al.

1 contract TokenSales is TokenSalesInterface {
2 ...
3 // Allows user to claim the DGD tokens and badges if the goal is reached or refunds the
4 // ETH contributed if goal is not reached at the end of the crowdsale
5 function claimFor(address _user) returns (bool success) {
6 if ((now < saleConfig.endDate) || (buyers[_user].claimed == true)) {
7 return true;
8 }
9

10 if (!goalReached()) {
11 if (!address(_user).send(buyers[_user].weiTotal)) throw;
12 buyers[_user].claimed = true;
13 return true;
14 }
15
16 if (goalReached()) {
17 address _tokenc = ConfigInterface(config).getConfigAddress("ledger");
18 uint256 _tokens = calcShare(buyers[_user].centsTotal, saleInfo.totalCents);
19 uint256 _badges = buyers[_user].centsTotal / saleConfig.badgeCost;
20 if ((TokenInterface(_tokenc).mint(msg.sender, _tokens)) && (TokenInterface(_tokenc).mintBadge(

_user, _badges))) {
21 saleStatus.releasedTokens += _tokens;
22 saleStatus.releasedBadges += _badges;
23 saleStatus.claimers += 1;
24 buyers[_user].claimed = true;
25 Claim(_user, _tokens, _badges);
26 return true;
27 } else {
28 return false;
29 }
30 }
31 }
32 }

Listing 2. Source code of the claimFor(address _user) function. Source code extracted from
Etherscan9.

2.2.4 Gas price, gas limit, and transaction fees. Every transaction has a specified amount of gas that
can be consumed for its execution. The amount is set in the gas limit transaction argument. The
per unit price of gas, or simply gas price, is also specified for each transaction. Gas price is set in the
Ether (ETH) cryptocurrency. Both gas limit and gas price are set by the issuer of a transaction. If
the execution of a transaction requires the burning of more gas than that specified by the gas limit
parameter, such a transaction fails with an out-of-gas error and gets rolled back. The transaction
fee paid by the issuer of the transaction corresponds to gas usage × gas price. Fees are also paid for
failed transactions, including those that fail with an out-of-gas error. Fees from all the transactions
in a block go to the miner who successfully mined the block. Hence, miners’ reward depends on
both the gas price and the gas usage of each transaction (however, only the former is known before
executing a transaction).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 9

Fig. 2. Appendix G of the Ethereum Yellow Paper showing the gas cost (usage) associated with abstract
bytecode operations.

Summary

• Ethereum is a programmable blockchain (i.e., it supports smart contracts).
• User accounts interact with a smart contract by sending transactions to it. These transactions
are known as contract transactions.
• A contract transaction always targets a public/external function from a smart contract. The
function id and parameter values are encoded in the transaction input data field.
• The sender of a contract transaction is always a user account.
• The gas usage of a contract transaction t corresponds to the sum of the gas units (cost)
associated with each individual bytecode operation that was executed in order to fulfil t .
• Transactions in Ethereum need to be paid for. The transaction fee corresponds to gas price ×
gas usage and only the former is known prior to the execution of the transaction.ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

10 Zarir, et al.

3 DATA COLLECTION
In this section, we describe the data source that we used (Section 3.1), the rationale behind our
choice for the analysis period (Section 3.2), and the data collection steps that we followed in order
to answer our research questions (Section 3.3).

3.1 Data Source
Ethereum dataset on Google BigQuery. Google BigQuery is an online platform for the analysis
of large datasets. The public Ethereum dataset on Google BigQuery11 contains several tables that
store key blockchain-related data, including metadata of transactions, blocks, and contracts. The
dataset is synced daily with nodes in the network that run the parity client software.

3.2 Analysis Period
Ethereum has gone through several hard-forks. A hard-fork can be thought of as a new major
release of Ethereum, which contains radical changes to the protocol of the blockchain. As shown
in Figure 3, the number of received transactions varies significantly per hard-fork. The number
of transactions per hard-fork is as follows (excluding Constantinople, which is not finalized yet):
Frontier (2,317,095, 0.6%), Homestead (10,672,107, 2.6%), Spurious Dragon (54,967,950, 13.8%), and
Byzantium (330,781,145, 83%).

Frontier
Begins

Homestead
Begins

Spurious Dragon
Begins

Byzantium
Begins

Constantinople
Begins

0e+00

2e+05

4e+05

6e+05

Aug
 20

15

Nov
 20

15

Feb
 20

16

May
 20

16

Aug
 20

16

Nov
 20

16

Feb
 20

17

May
 20

17

Aug
 20

17

Nov
 20

17

Feb
 20

18

May
 20

18

Aug
 20

18

Nov
 20

18

Feb
 20

19

May
 20

19

Aug
 20

19

Time

T
xs

 C
ou

nt

Fig. 3. Daily transaction count of Ethereum Blockchain.

In this study, we analyze transactions from the Byzantium hard-fork only. The Byzantium hard-
fork took place on 16 Oct 2017 (Block No 4,370,000) and lasted until 28 Feb 2019 (Block No 7,280,000).
The span of the Byzantium era is exactly 500 days. Our justification for analyzing the Byzantium era
is threefold. First, this period received the largest amount of transactions. Second, it the most recent
finalized hard-fork. And finally, the release of each hard-fork brings new features and architectural
changes to the platform that are likely to affect the behavior of users and miners. For instance,
the newest hard-fork Constantinople provides native bitwise shifting operations at a low gas cost.
Hence, contracts created during the Constantinople era can leverage this function to implement
more gas-efficient functions. Hence, by focusing our analysis on a single hard-fork, we ensure that
all gas rules remain the same.

3.3 Approach
In this section, we describe our data collection approach. An overview is shown in Figure 4. In the
following, we describe each data collection step in more detail:
11https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 11

Fig. 4. Flowchart summarizing our data collection approach.

Step 1: Retrieve block metadata. We extract block metadata from the blocks table. More
specifically, we retrieve block numbers, the address of the miner who mined each block, and the
timestamp at which each block was mined. These pieces of information support the investigation
block mining strategies (RQ1).

Step 2: Retrieve transactionmetadata.Weextract transactionmetadata from thetransactions
table. More specifically, we retrieve gas-related information (e.g., gas usage, gas limit, and gas
price), the transaction nonce (a transaction counter for each transaction issuer), the destination
address (which can be either a smart contract or a user account), the input data (which encodes a
function call in the case of a contract transaction), the timestamp at which the transaction was
mined, and the index (order) of the transaction within the block. Similarly to the block metadata,
the transaction metadata also supports answering RQ1. For instance, we investigate the transaction
index to understand how miners prioritize pending transactions.

Step 3: Retrieve contract hash. From the contracts table, we extract the contract hash (ad-
dress) of all deployed contracts in Ethereum.

Step 4: Discover contract transactions. We match the contract hashes (retrieved in step 3) with
the destination address of transactions (retrieved in step 2) in order to discover contract transactions.
We rely on these contract transactions and their associated metadata (e.g., gas usage, gas limit, and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

12 Zarir, et al.

transaction timestamp) to study the stability of the gas usage of contract functions (RQ2) and to
build a gas usage prediction model (RQ3).
Summary

• Data collection day: March 1st, 2019.
• Data source: Ethereum dataset on Google BigQuery.
• Data period: Ethereum Byzantium
• Pieces of collected data: Metadata for transactions, blocks, and smart contracts.

4 FINDINGS
In the following, for each research question, we describe our motivation for studying it, the approach
that we employed to answer it, and the findings that we observed. In Section 5, we discuss the
implications of our findings.

4.1 RQ1: How do miners prioritize pending transactions?
Motivation. Blockchain-powered application developers need to translate requests captured in the
frontend of their applications into or more smart contract transactions. In turn, these transactions
are processed by miners, who are free to prioritize pending transactions whichever way they wish.
Hence, it is imperative that developers know the typical prioritization criterion in use (if any). In
particular, developers might want to offer contractual Quality of Service (QoS) for their applications.
For instance, in the bank example discussed in Section 1, a developer might want to ensure that
their blockchain-powered bank application processes 95% of the money transfers in at most 1
minute.

Approach. To determine how miners prioritize transactions, we first started with simple online
searches on the Stack Exchange platform. From a post on the Ethereum Exchange, we observed
anecdotal evidence that miners prioritize transactions based solely on the gas price of transactions12.
We then decided to explore the codebase of the two most popular13 Ethereum clients, namely geth
(from the Ethereum Foundation) and parity (third party). We observed that the default setting,
in both tools, is to indeed prioritize transactions solely based on gas price. We refer to this strategy
as the gas price prioritization strategy.
We decided to investigate more closely how geth (the official reference client) implements

the gas price prioritization strategy. We noticed that, over the course of the Byzantium era, two
versions of the strategy were implemented. These versions differ in how they deal with the nonce
transaction parameter. The nonce transaction parameter records the number of previously sent
transactions by the transaction issuer (i.e., every time someone sends a new transaction, their
nonce is increased by 1). This parameter exists to preserve transaction ordering. For instance, a
transaction with nonce 3 cannot be mined before a transaction with nonce 2. The two versions of
the price ranking strategy differ in how they deal with the nonce parameter. A summary is shown
in Figure 5.

LetT = ⟨sender ,nonce,price⟩ be a tuple that describes a transaction, where sender is the address
of the transaction issuer, nonce is the transaction nonce, and price is the transaction gas price.
Assume that the list of transactions that need to be ranked is the one shown in step 1 of both
versions of the algorithm. In version 1 of the algorithm, step 2 consists of selecting the transactions
12https://ethereum.stackexchange.com/questions/1113
13The market share of Ethereum clients can be seen in the Etherscan Node Tracker webpage at https://etherscan.io/
nodetracker. As of September 30th 2019, geth holds 42% of the market share, while parity holds 38%.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://ethereum.stackexchange.com/questions/1113
https://etherscan.io/nodetracker
https://etherscan.io/nodetracker

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 13

with the lowest nonce from each sender (a.k.a., the head transactions). In step 3 these heads are
sorted by price (descending order) and processed. Step 4 consists of repeating steps 2 and 3 until no
more transactions are available. In version 2 of the algorithm, steps 1 and 2 are identical to those of
version 1. However, in step 3, instead of sorting and processing all head transactions, only the top
one is processed. In step 4, the processed transaction is replaced with the subsequent transaction
from the same sender (if it exists) and transactions are sorted again by gas price. Steps 3 and 4 are
repeated until all transactions are processed.

<S1,0,10>

<S1,1,20>

<S2,0,15>

<S2,1,50>

<S3,0,12>

<S1,0,10>

<S1,1,20>

<S2,0,15>

<S2,1,50>

<S3,0,12>

<S1,0,10>

<S2,0,15>

<S3,0,12> <S1,1,20>

<S2,1,50>

<S1,0,10>

<S1,1,20>

<S2,0,15>

<S2,1,50>

<S3,0,12>

<S1,0,10>

<S1,1,20>

<S2,0,15>

<S2,1,50>

<S3,0,12>

<S1,0,10>

<S2,0,15>

<S3,0,12>

<S1,0,10>

<S3,0,12>

<S2,1,50>

<S1,0,10>

<S3,0,12> <S1,0,10> <S1,1,20>

Version 1

Version 2

Step 1 Step 2 Step 3 Step 4

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Fig. 5. The two versions of the gas price ranking method implemented in Geth during the Byzantium period.
They differ in how the nonce parameter is dealt with.

Therefore, to answer this RQ, we investigate historical transaction data and determine how
frequently miners have used the gas price prioritization strategy. We proceed as follows. First, we
extract the actual index of each transaction in a given blockb as recorded in the Ethereum blockchain.
Next, we apply the gas price prioritization strategy of geth using the two aforementioned versions
of the algorithm and record the transaction indexes for each version. As a result, we obtain
three ranked lists of transactions for each block: one with the actual ordering (as recorded in the
blockchain), another with the first version of the algorithm, and the last one with the second version
of the algorithm. Finally, we say that a block b was sorted based on gas price only if the actual
ordering of transactions matches that produced by either version 1 or version 2 of the algorithm.
Given the large number of blocks in the Byzantium hard-fork, we draw a statistically representative
sample of blocks (99% confidence level, confidence interval of 1) and analyze this sample.

After determining how frequently miners employ the gas price prioritization strategy, we inves-
tigate how concentrated block mining is across all miners. We simply calculate the percentage of
mined blocks per miner, sort the distribution in descending order, and plot the relationship between
the percentage of miners and the percentage of mined blocks.
Findings. Observation 1) Two-thirds of the blocks were mined based on the gas price pri-
oritization strategy. We observe that 66.5% of the blocks mined during the Byzantium hard-fork

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

14 Zarir, et al.

contain a set of transactions whose ordering matches that of the gas price prioritization strategy.
We find this result rather surprising, since miners profit from transaction fees and, in turn, the fee
of a transaction is calculated as a function of both gas price and gas usage. That is, if a transaction
has a high gas price, it does not necessarily mean that the transaction fee will be high.

In order to better understand the prevalence of the gas price prioritization strategy, we studied its
usage over time. The results are depicted in Figure 6. The red dashed line denotes the aforementioned
66.5% value. Although there seems to be a small downward trend in the usage of the gas price
prioritization strategy, we observe that the actual percentage of blocks that are sorted according to
this strategy was never lower than 57.4%.

66.5

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

20
17

.10

20
17

.11

20
17

.12

20
18

.01

20
18

.02

20
18

.03

20
18

.04

20
18

.05

20
18

.06

20
18

.07

20
18

.08

20
18

.09

20
18

.10

20
18

.11

20
18

.12

20
19

.01

20
19

.02

P
er

ce
nt

ag
e

of
 b

lo
ck

s
in

 w
hi

ch

tx
s.

 a
re

 s
or

te
d

by
 p

ric
e

Fig. 6. Usage of the gas price prioritization strategy over time.

Observation 2) The manner in which transactions are prioritized is mostly in the hands
of only 13 miners. From Figure 7, we observe that the ratio of blocks per miner is heavily skewed.
In particular, 90% of the blocks were mined by only 1% (13) of the miners. This disproportionate
distribution of blocks per miner indicates that a very small group of miners dictated the manner
in which transactions were prioritized during the Byzantium era (i.e., the gas price prioritization
strategy).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 15

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 10
0

Percentage of Miners (%)

P
er

ce
nt

ag
e

of
 B

lo
ck

s
(%

)

Fig. 7. The percentage of miners corresponding to the ratio of blocks that they mined.

RQ1: How do miners prioritize pending transactions?

Miners prioritize transactions based exclusively on their gas price in two-thirds of the cases.
In particular:
• The gas price prioritization strategy is the default transaction prioritization strategy for both
geth and parity.
• A very small group of miners (13) mined 90% of the blocks. Consequently, this small group
dictated how transactions were prioritized during the Byzantium era.

4.2 RQ2: How stable is the gas usage of smart contract functions?
Motivation. From RQ1, we observed that miners frequently prioritize transactions based on
their gas prices. Therefore, setting a proper gas price is crucial for the development of cost-
effective blockchain-powered applications. That is, gas prices should be set in such a way that the
trade-off between transaction processing times (which influences the end-user final experience)
and transaction cost (which influences the cost of offering a blockchain-powered application) is
optimized.
The fee of a transaction corresponds to gas price × gas usage. Therefore, one has to reason

about gas usage in order to set the gas price parameter. Nevertheless, the actual gas usage of
a transaction can only be known after such a transaction is processed. This cyclic dependency
makes it challenging for blockchain-powered application developers to set optimal gas prices.
As we mentioned in the introduction (Section 1), this challenge is particularly relevant when
blockchain-powered application developers wish to integrate third-party smart contracts into their
application.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

16 Zarir, et al.

To overcome the aforementioned challenge, gas usage prediction models are needed. As a first
step, in this research question we investigate the stability of the gas usage of smart contract
functions. If the gas usage is stable for most functions, then devising a prediction model becomes
trivial. On the other hand, if gas usage tends to be unstable for most functions, then devising a
prediction model becomes more complex.

Approach. First, we determine the stability of the gas usage of each function. We operationalize
the notion of stability using the coefficient of variation (CoV) metric. The CoV is defined as the
ratio of the standard deviation to the mean. The CoV can be thought of as a normalized standard
deviation. Such a property allows us to compare the stability of gas usage across different functions.
We study functions that received at least 10 transactions.

Next, we analyze the distribution of gas usage CoV per function. After reasoning about gas usage
stability, we investigate how it relates to the popularity of a function. We define popularity as the
number of received transactions for a function.

Finally, we perform statistical tests to compare distributions. If we observe a statistically signifi-
cant difference, we compute the Cliff’s Delta (δ) effect-size score to better understand the practical
significance of this difference. We assess Cliff’s Delta using the following thresholds [39]: negligible
for |δ | ≤ 0.147, small for 0.147 < |δ | ≤ 0.33, medium for 0.33 < |δ | ≤ 0.474, and large otherwise.

Findings. Observation 3) 50% of the functions have a stable gas usage, 25% have an un-
stable gas usage, and the remaining 25% are inconclusive. Figure 8 shows the distribution of
gas usage CoV per function using a violin plot.

The blob in the left-most part of the violin plot indicates that several functions have a gas usage
CoV close to zero (i.e., their gas usage is almost constant). More specifically, 50% of the functions
have a gas usage CoV that is less than or equal to 0.8%. As an illustrative example, the gas usage
distribution shown below belongs to a studied function whose gas usage CoV is 0.8% (note how
values are almost constant):

• Function 0xa9059cbb from contract 0x88f70a4aadfe8898d7942944c2d5263f771edc1f
GasUsage(0xa9059cbb) = {52682,52554,52810,53649,53649,52682,52682,52682,52682,52682}

Around the third quartile (19%), we notice the existence of another blob. At this point, there
is already a more perceivable variation in the gas usage. As another illustrative example, the gas
usage distribution shown below belongs to a studied function whose gas usage CoV is 19% (note
the two spikes in gas usage):

• Function 0x23b872dd from contract 0x2d36e20eae9182f1853788bfc341ad433a311dea
GasUsage(0x23b872dd) = {30199,30199,45199,30199,30199,45135,30199,30199,30135,30199}

Indeed, the distribution shown in Figure 8 has a large amplitude, containing also very large
numbers (maximum = 635.5%). These large numbers denote functions with extremely unstable gas
usage. Hence, we conclude that 25% of the functions have an unstable gas usage (i.e., those above
Q3).
We consider the interval from 0.8% (median) until 19% (Q3) to be a grey area. Functions with a

CoV close to 0.8% are very stable, while functions with a CoV close to 19% already show perceivable
variation. In addition, due to the very definition of the coefficient of variation, it is not possible to
derive one simple characterization for the distributions that lie in the aforementioned grey area.
For instance, the following three studied functions received exactly 10 transactions and have a gas
usage CoV of 11% ± 0.3%. Yet, their gas usage distributions have different characteristics:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 17

0 1 2 4 8 16 32 64 128 256 512
Gas Usage CoV per function

Fig. 8. Gas usage CoV of all studied functions (i.e., those that received at least 10 transactions). Horizontal
axis uses a log(1+x) scale.

• Function 0x9dabff25 from contract 0x3d1f1573e757c66f2c3517d1b1713c5ed3b06fcc. This function
has a smooth initial decline in gas usage and then becomes constant:
GasUsage(0x9dabff25) = {28637,25131,23148,18055,25131,25131,25131,25131,25131,25131}
• Function 0x59d667a5 from contract 0x634b07a0959599a81ce33a04800f81a341bd70a1. This function
has fluctuating gas usage around the median (104556):
GasUsage(0x59d667a5) = {132169,104159,119492,91482,117233,104556,117233,104556,102169,101275}
• Function 0x6ea056a9 from contract 0x60cd2a6e8547b4ef92e22136ced200dcd1ab99ee. The gas
usage distribution of this function has repeated values:
GasUsage(0x6ea056a9) = {49993,49993,49993,49993,37837,50057,46569,41159,41159,41159}

Observation 4) Unstable functions received approximately half of all transactions sent to
the studied functions. Given the wide range of gas usage CoV, we wanted to evaluate how such
variable relates to function popularity. This relation is explored in Figure 9 by means of a heatmap.
We choose a heatmap in order to handle the excessive overplotting (i.e., several observations with
the same (x,y) coordinate). The dashed black lines serve as reference points that separate functions
into groups that have unstable, inconclusive, and stable gas usage CoV.
A visual inspection of Figure 9 reveals that the gas usage CoV of a function is not associated

with popularity. We conduct a two-tailed Mann-Whitney test (α = 0.05) to determine whether
unstable functions (i.e., those above the upper dashed line) have different popularity compared
to stable functions (i.e., those below the lower dashed line). The result indicates that there is a
statistically significant difference (p-value < 2.2e-16). Yet, a calculation of Cliff’s Delta reveals that
the magnitude of the difference is negligible (0.11). Therefore, we conclude that stable and unstable
functions have similar popularity. That is, unstable functions are not being particularly ignored or
abandoned. Indeed, despite the general concentration of functions in the left-most part of the map,
there are unstable functions with very high popularity (e.g., more than 100k received transactions).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

18 Zarir, et al.

0

1

2

4

8

16

32

64

128

256

512

10 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Number of received transactions

G
as

 U
sa

ge
 C

oV

count

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

Fig. 9. Number of received transactions (popularity) vs gas usage CoV. Both axes use a log(1+x) scale.

RQ2: How stable is the gas usage of smart contract functions?

Of all studied functions, we conclude that 50% of them have a stable gas usage, 25% have an
unstable gas usage, and the remaining 25% are somewhere in between. Hence, it is not trivial
to predict the gas usage of all studied functions. We also note that:
• Functions that we classified as stable have a gas usage CoV lower than or equal to 0.8%
• Functions that we classified as unstable have a gas usage CoV higher than or equal to 19%.
• Unstable functions are as popular as stable functions.

4.3 RQ3: How accurately can we predict the gas usage of smart contract transactions?
Motivation. Observations from RQ2 indicate that several functions are popular yet unstable in
terms of gas usage. Such instability makes it harder for blockchain-powered application developers
to predict the gas usage of contract transactions sent to those functions.

Approach. The gas usage of a transaction depends on which bytecode instructions are executed
during runtime, which in turn depends essentially on the values of the input parameters of the
function and the state of the contract (e.g., attribute values). However, decoding input parameters
requires access to the smart contract ABI, which is not always publicly available on platforms such
as Etherscan. The ABI (application binary interface) defines how functions should be called, i.e.,
how the transaction input data (a hex string) translates into a function call with specific parameter

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 19

1 pragma solidity ^0.4.21;
2
3 contract AuctusWhitelist {
4
5 ...
6 mapping(address => WhitelistInfo) public whitelist;
7
8 ...
9 struct WhitelistInfo {

10 bool _whitelisted;
11 bool _unlimited;
12 bool _doubleValue;
13 bool _shouldWaitGuaranteedPeriod;
14 }
15
16 ...
17 function listAddresses(bool whitelisted, bool unlimited, bool doubleValue, bool shouldWait, address[]

_addresses) public {
18 require(canListAddress[msg.sender]);
19 for (uint256 i = 0; i < _addresses.length; i++) {
20 whitelist[_addresses[i]] = WhitelistInfo(whitelisted, unlimited, doubleValue, shouldWait);
21 }
22 }
23 ...
24 }

Listing 3. Excerpt of the AuctusWhitelist smart contract.

values and types. In addition, reading the state of a given contract and tracing its changes over
time becomes particularly challenging when the source of the contract is not available. Hence, in
this RQ, we explore a lightweight prediction model that does not rely on the contract code.
We hypothesize that there might be historical patterns in how functions burn gas. For example,

assume that a function adds an element to a list and then performs an operation on each element of
this list. Thus, each new execution of this function burns more gas than the previous execution. If
we analyze the whole history of this function, we might obtain a high gas usage CoV. If we instead
analyze only the recent history of this functions (e.g., the last 10 executions), we might obtain a
substantially smaller CoV. For example, the CoV of a hypothetical distribution D = {1, 2, ..., 100} is
57.4%. In contrast, the CoV of a hypothetical distribution Dr ecent = {90, 91, ..., 100} is 3.5%. As a
consequence, predicting the gas usage of a function based on its recent gas usage history might
yield accurate results.
Historical patterns in how functions burn gas might arise due to how transaction issuers in-

teract with a function (and not because of the function implementation itself). As a concrete
real-world example, consider the AuctusWhitelist14 smart contract shown in Listing 3. The function
listAddresses is simple. For each address in the array of addresses (_addresses parameter),
a WhitelistInfo object is instantiated and then stored in a key-value map (key is the address
and value is the WhitelistInfo object). Hence, the higher the number of addresses passed to
the function, the larger the map gets. In other words, the higher the number of addresses passed to
the function, the higher the gas usage of the transaction.
Figure 10 depicts the historical gas usage of the listAddresses function. Analysis of the

curve indicates that the first transactions sent to the function had a remarkably high gas usage
(frequently in the range of 2.8M gas units). Starting from the 80th transaction, the vast majority of
transactions had a gas usage of only 60.8k gas units. Upon closer manual inspection, we observed
that the older transactions were providing a large array of addresses to the function, whereas the
more recent transactions commonly included only one address in the array. It is thus clear that there
is a historical pattern in how the listAddresses function has been used and, consequently, in
how it has burnt gas. In particular, a gas usage CoV computed over a few prior transactions is going
14https://etherscan.io/address/0xa6e728e524c1d7a65fe5193ca1636265de9bc982#code

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://etherscan.io/address/0xa6e728e524c1d7a65fe5193ca1636265de9bc982#code

20 Zarir, et al.

to be much lower than a gas usage CoV computed over all past transactions sent to this function. In
other words, a gas usage prediction model that operates on recent gas usages (e.g., those from a few
prior transactions) would likely provide accurate estimates for the listAddresses function.

21000

32768

65536

131072

262144

524288

1048576

2097152

4194304

0 100 200 300 400 500
Transaction sequence

G
as

 u
sa

ge

Fig. 10. Line plot depicting the historical gas usage of the function (smoothing applied using loess). The
y-axis is on a log10 scale.

In light of the aforementioned discussion, in this research question we investigate whether the
recent gas usage of a function f can be used to accurately predict the gas usage of an upcoming
transaction sent to f . We thus build a simple model that predicts the gas usage of a contract
transaction as the mean gas usage computed over the prior 10 transactions sent to the targeted
function. Formally, for a targeted function f at a transaction tj , our predicted gas usage is:�дas_usaдe(f , tj) =

∑j−1
i=j−10 дas_usaдe(f , ti)

10
(1)

We emphasize that such a prediction model also leverages the fact that some functions simply
have a very stable gas usage. Indeed, in RQ2 we observed that approximately half of the functions
that received at least 10 transactions have an almost constant gas usage. From a computational
perspective, however, there are corner cases that we need to deal with. First, we only take into
account the prior 10 transactions that have already been processed (i.e., that have already been
included in blocks), otherwise our model would be unrealistic. If the history of already processed
transactions of a given function includes k transactions and k < 10, then we compute the average
over these k transactions. For the very first transaction sent to a function (i.e., when no transactional
history exists), we output the gas limit of the transaction as the predicted gas usage.
Since our simple model solely depends on historical gas usage, it can be applied to any smart

contract function (regardless of whether its source is available or not). Hence, to evaluate our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 21

approach, we consider all contract transactions of the Byzantium period. The only exception is
failed transactions. A failed transaction results in premature termination of the function execution,
commonly resulting in much smaller gas usage. We interpret these failed transactions as a con-
founding factor and we thus preemptively remove them before conducting our study. The final
dataset resulted in 161.6M transactions.

We evaluate the accuracy of our model as follows. For each transaction, we calculate the absolute
percentage error (APE). This metric corresponds to |actual−predicted |

actual ∗ 100 and indicates how off a
prediction is compared to the actual value. In our context, actual refers to the blockchain-recorded
gas usage and predicted refers to our prediction of gas usage (Equation 1). Next, we perform two
analyses. In our first analysis, we simply investigate the APE distribution, which indicates how
accurate themodel is from a global perspective.We also estimate its goodness of fit using the RSquared
measure. In our second analysis, we group transactions based on their target function. Afterwards,
for each function, we calculate its median APE. Subsequently, we analyze the distribution of median
APEs. This latter analysis indicates how accurate the model is for each function in our studied
sample.
Lastly, in order to better understand the benefit of using recent gas usage to predict current

gas usage, we compare our results to those produced by a baseline model. We define this baseline
model as one that predicts gas usage as the mean gas usage computed over the entire history of
transactions (i.e., all prior already-processed transactions in lieu of the prior 10 only). Similarly to
RQ2, when convenient, we perform statistical tests and compute effect sizes.

Findings. Observation 5) From a global perspective, recent gas usage is a remarkably good
predictor of gas usage (RSquared = 0.76, median APE = 3.3%). The APE distribution of the
recent gas usage model is illustrated by the left-most violin plot in Figure 11. We note that 50%
of the predictions are at most 3.3% off. As another point of reference, 75% of the predictions are
at most 16.9% off. Nevertheless, we observe outliers in the distribution, indicating that the model
performs poorly for a few transactions.
Visual analysis of Figure 11 indicates that the recent gas usage model performs better than

the all-history gas usage model. A two-tailed Wilcoxon test (alpha = 0.05) indicates that there
is a statistically significant difference between the distributions (p-value < 2.2e-16), which is not
surprising given the very large size of our distributions. A Cliff’s Delta effect size test indicates
that the magnitude of the difference is small (-0.21), albeit non-negligible.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

22 Zarir, et al.

0

1
2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

Recent
 gas usage model

All−history
 gas usage model

A
bs

ol
ut

e
pe

rc
en

ta
ge

 e
rr

or
 (

%
)

Fig. 11. Violin plot depicting the APE distribution.

Observation 6) The recent gas usage model performs well for functions that received at
least 3 transactions (medianAPE is atmost 11.6% for 75% of these functions). The prediction
accuracy per function is depicted in Figure 12. Analysis of the figure reveals that the two models
perform poorly.

In order to better understand why the models perform poorly, we control for function popularity
(i.e., their number of received transactions). The results are depicted in Figure 13. We reach the
following conclusions from analyzing the figure: (a) the two models perform similarly, (b) the
performance of the models increase drastically when functions with less than 3 transactions
are discarded, and (c) the performance stabilizes when functions with at least 3 transactions are
considered. In particular, conclusion (b) implies that the model performs poorly for functions with
less than 3 transactions and that many of the functions have less than 3 transactions. Indeed, further
investigation revealed that 55.1% of the transactions received only one transaction and 17.3% of the
functions received 2 transactions (i.e., 72.4% of the transactions received less than 3 transactions).
In both models, we use the gas limit as a prediction for the very first transaction received by a
function. Our results thus suggest that gas limit is a poor predictor for gas usage (more details in
Section 4.3.1).
For functions that received at least 3 transactions, we observe that the two models perform

equally well. Their median APE is at most 12% for 75% of these functions. The reason why the two
models perform identically for these functions is twofold. First, several of these functions have a
very stable gas usage (as we observed in RQ2). Second, the distribution of received transactions
per function is extremely skewed (Figure 14). That is, the vast majority of functions received very
few transactions. By construction, the models perform identically for functions that received at
most ten transactions. Therefore, in order to better understand how the models compare to each

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 23

0

1
2
4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

Recent
gas usage model

All−history
gas usage model

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

Fig. 12. Violin plot depicting the median APE per function.

other, we filtered in only unstable functions (i.e., those with gas usage CoV higher than 19%) and
compared the performance of the two models across several degrees of function popularity. The
results are shown in Table 1.

Table 1. Comparison of the two models for unstable functions and different degrees of function popularity.

Number of
transactions ≥ t

Number of
functions

Median model performance Statistically significant
perf. difference (α < 0.05)

Effect Size
(Cliff’s Delta)Recent history All history

t = 3 162983 67.6 60.7 Yes negligible (0.02)
t = 4 125761 58.4 53.8 Yes negligible (0.01)
t = 8 62407 36.3 39.4 Yes negligible (-0.05)
t = 16 35805 23.3 28.5 Yes negligible (-0.11)
t = 32 22683 18.5 24.6 Yes small (-0.17)
t = 64 14798 15.9 21.2 Yes small (-0.24)
t = 128 9874 14.2 19.4 Yes small (-0.30)
t = 256 7201 13.0 18.9 Yes medium (-0.35)
t = 512 5236 12.2 18.4 Yes medium (-0.40)
t = 1024 3860 12.0 18.3 Yes medium (-0.42)
t = 2048 2781 11.9 18.0 Yes medium (-0.44)
t = 4096 1915 11.9 18.0 Yes medium (-0.45)
t = 8192 1235 12.0 18.4 Yes medium (-0.46)
t = 16384 754 12.1 18.6 Yes medium (-0.45)
t = 32768 406 12.6 18.7 Yes medium (-0.44)
t = 65536 181 14.2 18.3 Yes medium (-0.37)
t = 131072 90 15.7 18.5 Yes medium (-0.37)
t = 262144 32 14.4 17.5 Yes medium (-0.38)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

24 Zarir, et al.

At least 1 tx(s)

Recent
gas usage model

All−history
gas usage model

0

1
2
4
8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

At least 2 tx(s)

Recent
gas usage model

All−history
gas usage model

0

1
2
4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

At least 3 tx(s)

Recent
gas usage model

All−history
gas usage model

0

1
2
4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

At least 4 tx(s)

Recent
gas usage model

All−history
gas usage model

0

1
2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

At least 5 tx(s)

Recent
gas usage model

All−history
gas usage model

0

1
2

4

8

16

32

64

128

256

512

1024

2048

4096

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

At least 6 tx(s)

Recent
gas usage model

All−history
gas usage model

0

1
2

4

8

16

32

64

128

256

512

1024

2048

M
ed

ia
n

A
P

E
 p

er
 fu

nc
tio

n
(%

)

Fig. 13. Violin plot depicting the median APE per function (controlled by function popularity).

Table 1 indicates that the recent history model outperforms the all-history model for unstable
functions that received at least 32 transactions (small effect size). The difference in performance
becomes larger for functions that received at least 256 transactions (medium effect size). This result
provides evidence that indeed there are patterns in how certain functions burn gas.

4.3.1 On the predictive power of gas limit. As described in Section 2, gas limit is a parameter that
needs to be set by transaction issuers for every transaction. Gas limit corresponds to the maximum
amount of gas units that are allowed to be burnt by a transaction.

We used the gas limit to predict the gas usage of the first transaction sent to a function. Yet, the
left-most violin plots shown in Figure 13 suggests that gas limit is a poor predictor of gas usage
(despite the intrinsic relationship between the two).

We built a trivial model that takes the gas limit of a transaction as input and outputs this very
same limit as the predicted gas usage. In other words: �дas_usaдe = дas_limit .

Observation 7) Gas limit is a poor predictor of gas usage (RSquared = -4.72, median APE =
96.62%). The APE distribution is shown in Figure 15. Analysis of the figure indicates that 75% of
the predictions are at least 39% off. That is, the gas limit parameter set by transaction issuers is
commonly not very “tight”. As a consequence, gas limit cannot by itself predict gas usage accurately.
Indeed, the RSquared of the model is -4.72.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 25

0.00

0.25

0.50

0.75

1.00

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Number of transactions per function

E
C

D
F

 o
f t

he
 n

um
be

r
of

tr

an
sa

ct
io

ns
 p

er
 fu

nc
tio

n

Fig. 14. Empirical cumulative distribution (ECDF) of the number of received transactions per function.

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Absolute percentage error (%)

Fig. 15. Violin plot depicting the APE distribution of the gas limit model.

RQ3: How accurately can we predict the gas usage of smart contract transactions?

We can predict the gas usage of contract transactions with an RSquared of 0.76 and a median
absolute percentage error (APE) of 3.3% by means of a very simple model that relies on the
recent gas usage of functions. We also observe that:
• Our recent history model performs well for functions that received at least 3 transactions
(median APE is at most 11.6% for 75% of these functions).
• Our recent history model outperforms the all-history model (baseline) for unstable functions
that received at least 32 transactions (small effect size). The difference in performance becomes
larger for functions that received at least 256 transactions (medium effect size).
• The gas limit is a poor predictor of gas usage (RSquared = -4.72, median APE = 96.2%)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

26 Zarir, et al.

5 DISCUSSION
5.1 Implications
In the following, we discuss the implications of our findings. We focus on developers of blockchain-
powered applications (Section 5.1.1), but also briefly discuss implications to other stakeholders as a
side product of this study (Section 5.1.2).

5.1.1 Implications to Developers of Blockchain-Powered Applications. Implication 1) Blockchain-
powered application developers should be aware that transactions tend to be prioritized
solely based on their gas prices. Observation 2 notes that the majority of blocks are mined based
on the default strategy offered out-of-the-box by geth and parity, which consists of prioritizing
transactions solely based on gas price. Such an observation has strong practical consequences for
blockchain-powered application developers. Assume that Charlie developed a blockchain-powered
bank application. Also assume that a money transfer operation from one bank account to another
is done in the blockchain, which involves submitting a transaction to a smart contract function that
always burns a large amount of gas units. In this scenario, Charlie cannot engineer or configure the
application to always issue that transaction with a very high gas price, otherwise the transaction
could end up costing toomuch and rendering the bank application economically unviable. Given that
miners frequently rank transactions based on gas price only, Charlie’s cheaper-priced transaction
is likely going to sit in pending pools for a certain time (despite the large revenue that a miner
would get from processing such a heavyweight transaction).

To circumvent the problem, blockchain-powered application developers should thus avoid de-
veloping (or reusing) functions that burn high amounts of gas (e.g., those that perform too much
computation or store too many values), as sending transactions with high gas price to these
functions might be economically unfeasible in practice. Instead, blockchain-powered application
developers should consider engineering applications in such a way that an application request can
be converted into multiple smart contract transactions that (i) are set with high gas prices and (b)
target one or more low-gas-usage functions.

Implication 2) Blockchain-powered application developers can leverage a simple gas usage
prediction model to facilitate integration with third-party smart contracts. In observation
3, we note that 50% of the studied functions (i.e., those that received at least 10 transactions) have a
very stable gas usage (CoV ≤ 0.8%). Therefore, one can get a very precise estimate of the gas usage
for many functions by simply checking their last gas usage. Yet, we also note that 25% of the studied
functions have an unstable gas usage (CoV ≥ 19%). Most importantly, we note in observation 4 that
these unstable functions account for approximately half of all contract transactions that were sent
to the studied functions. Hence, if our blockchain-powered application developer, Charlie, wants to
integrate any of these smart contract functions into an application, then Charlie will have a hard
time determining the optimal gas price to be used in transactions towards these functions (since
the gas usage of these functions is not only unknown a priori but also unstable).

In observation 6, we note that a simple prediction model based on recent gas usage can already
achieve a median APE per function that is at most 11.6% for 75% of all functions that received more
than 2 transactions. We highlight that our model does not rely on source code features, thus it can
be built even for non-verified smart contracts. Our model is also conceptually straightforward, as
checking the recent gas usage of a function is something that practitioners might consider doing
in practice when gas consumption is undocumented or when the source code of the governing
contract is unavailable. Therefore, Charlie can leverage models similar to ours to predict the gas
usage of the transactions that need to be submitted to third-party contract functions (even if the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 27

source code of these contracts is not available). Having good gas usage estimates will help Charlie
determine an optimal gas price.

Implication 3) Blockchain-powered application developers should be aware that Ethereum
is not as decentralized as they might think. Observation 1 indicates that there is a heavy
centralization of the mining activity. Despite claims regarding the decentralized nature of Ethereum
and its peer-to-peer network, the decisions dictating which transactions should be processed first
are in the hands of a few mining clusters. Therefore, in practice, Ethereum is less decentralized
than most people might think. Consequently, blockchain-powered application developers should
be aware that the prioritization of transactions and, more generally, the dynamics of transaction
processing in Ethereum are mostly governed by only 13 miners.

5.1.2 Implications to other stakeholders. In this paper, we focus on blockchain-powered application
developers. Yet, as a side-result of our study, we also derive implications to other stakeholders,
namely miners and end-users. These implications are discussed below.

Implication 4) Miner’s revenue is suboptimal. From the miner perspective, relying solely on
gas price yields suboptimal rewards. This result follows by construction, since the mining reward
is a function of both gas price and gas usage. Therefore, miners could also leverage our gas usage
prediction model discussed in RQ3 as a cheap way to estimate the gas usage of a contract transaction,
ultimately optimizing their transaction ranking strategy and increasing their revenue. We also note
in observation 7 that gas limit is a poor predictor of gas price. We conjecture that this is the reason
why miners rank transactions mostly based on the gas price only (i.e., in lieu of employing the
other out-of-the-box transaction ranking strategies that rely on gas limit).

Implication 5) End-users of simple blockchain-powered applications should also be aware
of how the gas system operates and how transactions are prioritized. Simple blockchain-
powered applications expose the complex blockchain interaction model to the end-users. End-users
of games like CryptoKitties15 have to install a wallet such as Metamask and submit blockchain
transactions themselves. Most importantly from the perspective of our study here, users also have
to fill in the gas parameters. Hence, implications 2 and 3 discussed in the previous section also apply
to these end-users. Advanced end-users can even leverage the model discussed in RQ3 to make
more informed decisions about gas price when issuing transactions to smart contract functions.

5.2 Actionable Items for Smart Contract Developers and Tool Developers
Nowadays, blockchain-powered application developers are left in the dark regarding the gas usage
of third-party smart contract functions. In the following, we propose a list of actionable items for
smart contract developers and tool developers that would assist blockchain-powered application
developers in setting the gas price of transactions.

Actionable Item 1) Smart contract developers should provide gas usage information as
part of the API documentation. If a smart contract is developed with reuse in mind (e.g., those
distributed by the OpenZeppelin project16), then such a smart contract should include gas usage
information in their API documentation. Providing a min-max range of gas usage (e.g., determined
based on testing the smart contract) would already help blockchain-powered application developers
to integrate these third-party contracts into their application. Such documentation is particularly
important when the source code of a smart contract is not available, since its absence leaves

15https://www.cryptokitties.co
16https://github.com/OpenZeppelin/openzeppelin-contracts

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://www.cryptokitties.co
https://github.com/OpenZeppelin/openzeppelin-contracts

28 Zarir, et al.

blockchain-powered application developers wondering which and how many instructions are
typically processed by a given function.

Actionable Item 2) Etherscan and Metamask should consider providing historical gas us-
age information. For every smart contract, Etherscan now has an Analytics tab in which they
show historical information of ether balance, transactions, and token transfers. Etherscan should
considering adding a gas usage item in which they could simply show the historical gas usage of the
functions of a given contract. Indeed, we noted in observation 3 that 50% of the studied functions
(i.e., those that received at least 10 transactions) have a very stable gas usage. Hence, just being able
to quickly check the historical gas usage information of a function would already be beneficial in
several cases. Etherscan could even categorize the gas usage of functions according to their stability
(e.g., by means of the coefficient of variation, as we did in RQ2). Wallets such as Metamask could
also provide historical gas usage information (e.g., as a line graph) to help end-users make more
informed decisions regarding gas prices.

5.3 Avenues for Future Research
In the following, we discuss avenues for future research that derive from our study.

5.3.1 Why do certain functions have an unstable gas usage? In RQ2, we observed that certain
functions have a remarkably unstable gas usage. Future research should investigate the reasons
behind such instability. Nonetheless, given that (i) contracts are stateful, (ii) can call each other, and
(iii) their source code is not always available, determining the rationale behind gas usage instability
is far from trivial. Our hypotheses for gas usage instability include:
• The function has one or more gas leaks, such as an unbounded mass operation [22]. An example
of an unbounded mass operation is a for loop whose number of iterations depend on the number
of elements provided as part of the transaction data (i.e., the input parameters to the triggered
function). The function shown in Listing 3 contains an unbounded mass operation (lines 19 to 21).
• The function has high cyclomatic complexity. The higher the cyclomatic complexity of a func-
tion, the higher the number of possible execution paths. Individual execution paths might burn
considerably different amounts of gas units.
• The function calls functions from other contracts, which in turn might call functions from other
contracts. Since each contract has a state, these chains of calls might lead to an unstable gas usage.
We believe that examining the stack traces of function executions would enable an initial

investigation of the aforementioned hypotheses. Therefore, we also encourage future research to
leverage and improve upon existing smart contract profiling tools [37].
Preliminary study. One of our hypotheses is that the gas usage stability of a function is associated
with the cyclomatic complexity of that function. Since we cannot extract the function bytecode from
the contract bytecode without having access to the contract’s ABI, we investigate a slightly different
hypothesis in this preliminary study. We study whether the gas usage stability of a function is
associated with the cyclomatic complexity of the contract holding this function. While cyclomatic
complexity cannot be computed from the bytecode of a contract, we observed in our prior work
that cyclomatic complexity is often correlated with size [33]. Therefore, we use size in place of
cyclomatic complexity.

Figure 16 shows a heatmap that relates the gas usage CoV to contract bytecode size for functions
that received at least 10 transactions. We do not see any clear pattern in the relationship between
these variables. We calculated the Spearman correlation (ρ) between the two variables and obtained
a score of ρ = 0.38. According to the criteria listed in Evans [19], this score refers to a weak
correlation (0.20 ≤ |ρ | ≤ 0.39). Therefore, we conclude that the contract bytecode size, by itself,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 29

cannot accurately determine the stability of the gas usage of a function. Nevertheless, we highlight
that this preliminary study only investigated the bytecode size of the contract holding the function
that is being targeted in a transaction. Given that functions can call other functions (including
those defined in other contracts), future correlation studies should account for chains of function
calls (c.f., the hypotheses defined at the beginning of this section).

0

1

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Bytecode Size

G
as

 u
sa

ge
 C

oV

count

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

6000

Fig. 16. Heatmap showing the relationship between a function’s gas usage CoV and the size of its parent
contract.

5.3.2 Devising more accurate gas usage prediction models. In RQ3, we evaluate the performance
of our model for gas usage prediction. Figure 13 indicates that a massive number of functions in
Ethereum received only either 1 or 2 transactions. Our model performs poorly for these functions.
However, the practical relevance of these functions is unclear. Since Ethereum is an open platform,
anyone can deploy and trigger contract transactions. Hence, we conjecture that a significant pro-
portion of these rarely used functions refer to toy examples and tests of the platform. Indeed, Oliva
et al. [33] also observe that 94.7% of the contracts in Ethereum received less than 10 transactions
(analysis period: July 30th 2015 until September 15th 2018). Therefore, further research is necessary
to determine the relevance of very low activity contracts and functions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

30 Zarir, et al.

The Ethereum’s official JSON-RPC API17 contains a function eth_estimateGas that returns
a gas usage estimate for a given transaction. The function operates by running the provided
transaction on the blockchain. Yet, the transaction is never actually added to the blockchain. Despite
being convenient and popular, the API documentation acknowledges that the eth_estimateGas
function may provide estimates that are “significantly more than the amount of gas actually used by
the transaction.” (Figure 17). Such an acknowledgement of overestimation was one of the reasons
behind the proposal of our own prediction model in RQ3. In addition, our model is more lightweight
(e.g., does not require a blockchain infrastructure) and does not require the source code or ABI of a
smart contract. Nevertheless, our model is only a very first attempt of approaching the problem of
gas usage prediction from a different angle. We expect that future research will build on our results
and improve upon them. More specifically, promising research avenues include: (a) empirically
investigating the accuracy of the eth_estimateGas function, (b) comparing the accuracy of
the eth_estimateGas function to that of other estimators (e.g., our historical model proposed
in RQ3), and (c) combining existing estimators into a single one (e.g., a machine learning model
that uses the predictions of each estimator as a feature).

Fig. 17. Screenshot from the Ethereum’s official JSON-RPC API.

Preliminary study 1. We conduct a preliminary study in which we compare the accuracy of the
eth_estimateGas function with that of the prediction model that we propose in RQ3. In the
following, we summarize the main steps that of our comparison approach:
1) Obtaining the set of transactions to be tested.We start with the set of functions that received at
least 100 transactions. Next, we randomly draw one transaction per function. As a result, we obtain
a set T of 37,728 transactions.
2) Obtaining the gas usage prediction from eth_estimateGas.Aswe described above, theeth_estimateGas
function operates by replaying transactions. The set of input parameters to this function thus
correspond to the set of parameters needed to issue a transaction in Ethereum (Figure 18). There-
fore, we call the eth_estimateGas function for each transaction t in T using the same original
parameters of t . However, in order to call such a function, we need an easy to use interface to
Ethereum. The two most popular interfaces to Ethereum that implement the JSON-RPC API are
17https://eth.wiki/json-rpc/API

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://eth.wiki/json-rpc/API

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 31

Etherscan18 and Infura19. We choose the latter for this study, as it provides a more generous quota
of requests per second. However, there is one caveat. Neither of the two interfaces support the
specification of the block number in the call to eth_estimateGas (see parameter 2 in Figure
18). This implies that the gas usage estimate that we receive from the eth_estimateGas is
calculated based on the current state of the contract in the blockchain (i.e., the latest mined block as
of the time of the call to the function). Hence, the results that we show for this preliminary study
should be taken with a grain of salt. In addition, due to the different state of contracts, 33.9% of the
calls to eth_estimateGas failed with the message “gas required exceeds allowance or always failing
transaction”. When either Etherscan or Infura implements the block parameter in the future, this
study can be replicated and the estimates obtained from eth_estimateGas will likely be more
accurate.

Fig. 18. Parameters to the eth_estimateGas function.

3) Obtaining the gas usage prediction from our model. We obtain the gas usage prediction from our
model for each transaction t in T that also got a successful estimate from eth_estimateGas.
The results that we obtained are shown in Figure 19. As the figure indicates, our model clearly

outperforms the eth_estimateGas function. To better understand the difference in perfor-
mance, we run a Wilcoxon signed-rank test (α = 0.05) and compute the Cliff’s Delta effect size
measure. Results indicate that the difference is statistically significant (p-value < 2.2e-16) and that
the effect size is medium 0.44 [39].
Preliminary study 2. As described in Section 2, the gas usage depends on the number and type
of bytecode operations that are executed during runtime. It is thus reasonable to hypothesize that
the gas usage of a function might be correlated with the bytecode size of the contract holding such
a function. Figure 20 shows a heatmap that relates the median gas usage per function to contract
bytecode size. We do not see any discernible pattern in the relationship between the two variables.
We calculated the Spearman correlation (ρ) between the two variables and obtained a score of
ρ = 0.11. According to the criteria listed in Evans [19], this score refers to a very weak correlation
(ρ ≤ 0.19). Therefore, we conclude that the contract bytecode size, by itself, cannot be used to
accurately predict the gas usage of a function. Nonetheless, we emphasize that this preliminary
study only investigated the bytecode size of the contract holding the function that is being targeted
in a transaction. As we mentioned in Section 5.3.1, functions defined in a smart contract can call
other functions during runtime. Hence, future correlation studies should account for chains of
function calls.

18https://etherscan.io/apis#proxy
19https://infura.io/docs/ethereum/json-rpc

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://etherscan.io/apis#proxy
https://infura.io/docs/ethereum/json-rpc

32 Zarir, et al.

0

1
2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

eth_estimateGas Our prediction model

A
bs

ol
ut

e
pe

rc
en

ta
ge

 e
rr

or
 (

%
)

Fig. 19. Absolute percentage error (APE) of the eth_estimateGas function and our prediction model.

5.3.3 Leveraging gas usage history to understand the suitability of gas limit choices. Gas usage and
gas limit are two interrelated concepts. As we discuss in Section 2.2.4, the gas limit is a parameter
that transaction issuers have to specify for all transactions in Ethereum. The gas limit corresponds
to the maximum number of units of gas that the transaction issuer is willing to pay for. If the
transaction requires more gas to run than the specified gas limit, the transaction fails with an out-
of-gas error (and the transaction issuer still pays for the transaction, since miners spent resources
to execute it).
Understanding how transaction issuers choose gas limits and assisting them in setting up

adequate values is a challenging task. In particular, determining what an adequate value actually
means is far from trivial. A transaction can run out of gas either because (i) the transaction issuer
inadvertently set a gas limit that is too low (i.e., lower than what the function normally burns) or
because (ii) the function has a gas leak [22] that makes the transaction burn an abnormally high
amount of gas units. In the first case, the transaction should not fail. In the second case, however, it
is a positive outcome that the transaction failed – the gas limit safeguarded the transaction issuer
from spending more money than he/she wanted (which is the very reason behind the existence
of the gas limit concept). In summary, failures due to gas exhaustion should not necessarily be
avoided.

We thus consider that a deeper understanding of the interplay between gas usage and gas limit is
a fruitful research avenue. For instance, the existence of spikes in the gas usage history of a function
might point to the existence of gas leaks. Moreover, functions with an unstable gas usage might

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 33

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Bytecode Size

M
ed

ia
n

ga
s

us
ag

e
pe

r
fu

nc
tio

n

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

300000

Fig. 20. Correlation between the median gas usage per function and contract size. Log1p scale applied to
both axes.

entice transaction issuers to use abnormally high gas limit values, ultimately making transaction
issuers more susceptible to paying higher transaction fees in the case of gas leaks.

6 RELATEDWORK
Due to the financial aspect of blockchain platforms, a substantial portion of research has been
devoted to the discovery and prevention of vulnerabilities in smart contracts [9, 15, 17, 20, 21, 23,
25, 26, 28, 30–32, 34, 35, 41, 42, 46]. However, only few studies have explored the gas system of
Ethereum and its impact on the dynamics of the platform. In the following, we discuss prior work
regarding the gas system of Ethereum.
Estimation of gas usage. Zou et al. [47] conducted semi-structured interviews and an online
survey with smart contract developers to uncover the key challenges and opportunities in the
development of contracts. According to the authors, the majority of interviewees mentioned that
gas usage deserves special attention. Moreover, 86.2% of the survey respondents also declared that
they frequently take gas usage into consideration when developing smart contracts. The reason
is twofold: “gas is money” and “transaction failure due to insufficient amount of gas”. In terms of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

34 Zarir, et al.

challenges, the authors highlight that “there is a need for source-code-level gas-estimation and
optimization tools that consider code readability.”, since most gas-optimization tools operate at the
bytecode level (e.g., Remix20). Although the goal of our paper is not to derive source-code-level
gas estimations and optimizations, our model from RQ3 indicates that gas usage tends to be stable
when inspecting recent transactional history. Developers can leverage this fact to design tests that
can show the typical range of gas usage of a function. This range can then serve as a baseline when
experimenting with different possibilities of gas optimizations to the source code.

Prior studies have also tried to estimate the gas usage of smart contract functions. We distinguish
between two types of studies. The first type of study focuses on estimating upper bounds for the
gas usage of a given function (i.e., worst-case gas consumption), such that out-of-gas errors can
be prevented. For instance, Marescotti et al. [29] conduct a feasibility study in which they aim
to uncover the worst-case gas usage of a given contract transaction. The authors introduce the
concept of gas consumption paths (GCPs), which maps gas consumptions to execution paths of
a function. The authors examine the GCPs of a function using two symbolic methods in order
to derive exact worst-case gas estimations. The two symbolic methods build on the theory of
symbolic bounded model checking [8] and use efficient SMT solvers. Despite theoretically solid,
the proposed estimation model is only evaluated on a single example contract. In the same vein,
Albert et al. [4] propose a tool called Gasol that takes as input (i) a smart contract (either in EVM,
disassembled EVM, or in Solidity source code), (ii) a selection of a cost model, and (iii) a selected
public function, and it infers an upper bound for the gas usage of the selected function. As opposed
to their prior work [5], the cost model of Gasol is highly configurable. In simple terms, Gasol relies
on several tools to extract control flow graphs from smart contracts, which are then decompiled
into a high-level representation from which upper bounds can be calculated using a combination
of static analyzers and solvers [3]. Gasol is implemented as an Eclipse plug-in, making it suitable
for development time use. No evaluation of the proposed tool is conducted.
The second type of study focuses on exact estimations of gas usage (similarly to us). To the

best of our knowledge, there is only one study of this type. Das and Qadeer [16] propose a tool
called GasBoX that takes a smart contract function and an initial gas bound as input (e.g., the gas
limit) and verifies that the bound is either exact or returns the program location where the virtual
machine would run out of gas. The tool is also designed to be efficient, running with complexity in
linear-time in the size of the program. GasBoX works by instrumenting the smart contract code
with specific instructions that keep track of gas consumption. GasBoX applies a Hoare-logic style
gas-analysis framework to determine gas estimation (the Hoare logic is a formal system with a
set of logical rules for reasoning rigorously about the correctness of computer programs). Despite
the theoretical soundness of their proposed tool, such a tool has three important limitations: (i) it
does not account for function arguments and the state of contracts and (ii) it operates on contracts
written in a simplified version of Move21, which is a programming language in prototypal phase,
and (iii) it is evaluated on 13 examples contracts written by the authors.

Differently from all of the aforementioned approaches, our proposed model in RQ3 (i) does not
rely on the source code of the contract under investigation, (ii) has been thoroughly evaluated on all
successful contract transactions that happened during Ethereum Byzantium (161.6M transactions),
and (iii) yields accurate results despite its inherent simplicity.

20http://remix.ethereum.org
21Move is the smart contract programming language under development by Facebook, to be used in their Libra blockchain
platform. The language’s definition can be seen at https://developers.libra.org/docs/assets/papers/libra-move-a-language-
with-programmable-resources/2020-05-26.pdf

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

http://remix.ethereum.org
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources/2020-05-26.pdf
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources/2020-05-26.pdf

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 35

Transaction fees. Chen et al. [12] investigated the efficiency of smart contracts by analyzing
the bytecode produced by the Solidity compiler. The authors observed that the compiler fails to
optimize several gas-costly programming patterns, resulting in higher gas usage (and consequently,
higher transaction fees). The authors introduce a tool called GASPER, which can detect several gas
costly patterns automatically.
Signer [43] studied the gas cost of different parts of a smart contract code by executing trans-

actions with semi-random data. He deployed and executed the transactions in a local simulation
of Ethereum blockchain based on the Truffle IDE and solc compiler. With each execution of a
transaction, he collected data and mapped to the corresponding section of an abstract syntax tree
(AST) of the Solidity source code. He proposed Visualgas, a tool that provides developers with gas
cost insights and that directly links to the source code.
Gas-related vulnerabilities. Grech et al. [22] analyzed gas-focused vulnerabilities in Ethereum,
which “exploit undesired behavior when a contract (directly or through other interacting contracts)
runs out of gas”. The authors propose a static analysis program tool called MadMax to automatically
detect gas-focused vulnerabilities in Ethereum. The authors analyzed the bytecode of all smart
contracts deployed in Ethereum as of Apr. 9th, 2018 and they were able to identify vulnerabilities
in contracts that hold together approximately US$2.8B. Through manual inspection of a sample,
the authors observed that 81% of the flagged contracts indeed were indeed vulnerable.
Due to the financial aspect of blockchain platforms, Ethereum is constantly subject to hacking

activity [6]. To understand the role of gas in these attacks, Chen et al. [13] designed an emulation
based framework to automatically measure the gas consumption of EVM operations. They observed
that, with a fixed cost of operations, the network can be exploited using under-priced operations.
As a solution, they proposed a dynamic cost mechanism for EVM operations that will prevent
possible DoS attacks.
Miners perspective on transaction fees. Blockchain platforms such as Bitcoin and Ethereum
are designed to discontinue the block reward and keep only the transaction fee at a later point
in their development roadmap. To understand the impact of such an event, Carlsten et al. [11]
conducted game-theory based simulations to observe the possible outcomes. They concluded that
a transaction-fee based system would allow the deviant miners to cause severe instability to the
blockchain ecosystem, causing the network to be more vulnerable to a 51% attack.
With further game theory simulations, Tsabary and Eyal [44] investigates the validity of the

claims made by Carlsten et al. [11]. They devised a game called The Gap Game for their simulation.
They found that the claims are valid and that there exist gaps in the mining strategy of the miner,
with selfish miners prioritizing these gaps to maximize profit. They also observed that larger
mining pools lead to centralization, threatening the fundamental design of a blockchain system. To
avoid the selfish mining problem, Abraham et al. [1] proposed a new blockchain platform where a
hierarchy is introduced among the miner nodes.
Gas usage parallels in software engineering. Parallels can be drawn between gas usage and
several other topics in software engineering for non-blockchain applications. The first parallel that
we draw refers to the payment system of cloud computing serves. While several cloud platforms
rely on the pas-as-you-go mechanism, transaction cost in Ethereum is a function of both gas price
and gas usage. Furthermore, gas price influences transaction processing time. Hence, albeit being
more flexible, the gas payment system of Ethereum is sensibly more complex than that of typical
cloud services.

The second parallel that we draw refers to the energy consumption of software applications. In
recent years, the popularity of mobile apps bootstrapped research in energy measurement [7, 24],
energy estimation and modeling [2, 14, 18, 36], and code optimizations aimed at lowering energy

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

36 Zarir, et al.

consumption [27, 40]. Gas usage, in turn, can be interpreted as a measure of the computing power
required to process a given transaction (function call). Given that this computing power needs to be
paid for by the transaction issuer, it is also critical to develop mechanisms to measure, estimate, and
optimize the gas usage of smart contracts. Indeed, as we discussed before, the survey conducted
Zou et al. [47] highlights how important these aspects are for developers of blockchain-powered
applications. As also indicated by the survey, the trade-off between code readability and low-level
code optimizations is particularly relevant in the blockchain domain.

7 THREATS TO VALIDITY
Construct Validity. In RQ3, we used a threshold of 10 past transactions to denote the notion of
recency. It is possible that other threshold values would yield models with different performances.
Nevertheless, in a practical scenario, blockchain-powered application developers can fine-tune this
threshold for a set of specific functions that they are interested in. Our key contribution is to show
that (i) historical gas usage data can be used as a lightweight approach to predict gas usage and
that (ii) recent gas usage more closely resembles the current gas usage compared to the entire gas
usage history of a function.
Internal Validity. In this study, we are interested in understanding the gas usage of smart contract
functions and in trying to predict it. To achieve these goals, we extract, postprocess, and analyze
transactional data extracted from the Ethereum blockchain via the Google BigQuery dataset.
However, since we identify smart contract functions based on the collected transactional data, we
only study the gas usage of those functions that received at least one transaction. As a consequence,
in RQ3, we only investigate the accuracy of our method for functions that received at least one
transaction. We do not perceive it as a significant limitation, since public/external functions that
have never received any transactions are of questionable relevance.

Furthermore, In RQ3 we hypothesize that there are historical patterns in how certain functions
burn gas. Indeed, our results from RQ3 indicate that a predictor that operates on recent gas usage
outperforms a baseline predictor that operates on all-history gas usage. However, we note that gas
usage patterns might exist due to extraneous factors that do not relate to the contract itself (e.g.,
the amount of data that a given function normally processes). In addition, gas usage patterns might
also abruptly change (e.g., a business-driven sudden increase in the amount of data that a given
function needs to process daily). Further research is required in order to characterize the different
types of historical patterns in gas usage, their rationale, and their susceptibility to change.
External Validity. In this study, we analyzed the Byzantium hard-fork of the Ethereum platform,
which was the first hard-fork to contain significant transactional activity (Figure 3). Since hard-forks
can introduce different rules to gas consumption, it is possible that our results might not fully hold
in more recent hard-forks of Ethereum. We thus encourage future studies to reevaluate our results
in more recent hard-fork of the platforms. In addition, we encourage future studies to explore the
promising research avenues discussed in Section 5.3. Finally, we emphasize that our results are
specific to the Ethereum platform and likely do not generalize to other platforms. Nevertheless, as
of June 2020, Ethereum is the most popular platform for the development of blockchain-powered
applications according to State of the DApps22.

8 CONCLUSION
Ethereum is a blockchain platform that supports the development of blockchain-powered appli-
cations. When building blockchain-powered applications, developers need to translate requests
captured in the frontend of their application (e.g., transfer money from one bank account to another)
22https://www.stateofthedapps.com/stats

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://www.stateofthedapps.com/stats

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 37

into one or more smart contract transactions. In particular, developers need to specify the gas
price of these contract transactions. Such a task is challenging because (i) miners can prioritize
transactions whichever way they wish and (ii) the gas usage of a contract transaction is only known
after the transaction is processed and included in a new block.

In this paper, we analyzed the historical transaction metadata from the Byzantium era in order to
shed light into the aforementioned challenges. We observed that (i) miners prioritize transactions
based exclusively on their gas price in two-thirds of the cases, (ii) 25% of the functions that received
at least 10 transactions have an unstable gas usage history, and (iii) the gas usage of contract
transactions can be predicted with an RSquared of 0.76 and a median absolute percentage error
(APE) of 3.3% by means of a very simple model that relies on the recent gas usage of functions.

Hence, blockchain-powered application developers should be aware that a heavy transaction
(i.e., high gas usage) will frequently have the same priority as a lightweight transaction (i.e., low
gas usage) when these two transactions are issued with the same gas price (despite the difference
in transaction fees). Furthermore, blockchain-powered application developers can leverage gas
usage prediction models similar to ours to make more informed decisions regarding gas price.
Such prediction models are particularly useful for facilitating the integration of third-party smart
contracts in a blockchain-powered application. Finally, as actionable insights, we conclude that (i)
smart contract developers should provide gas usage information as part of the API documentation
and (ii) Etherscan and wallets (e.g., Metamask) should consider providing historical gas usage
information for smart contract functions.

REFERENCES
[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. 2016. Solidus: An incentive-

compatible cryptocurrency based on permissionless byzantine consensus. CoRR, abs/1612.02916 (2016).
[2] K. Aggarwal, A. Hindle, and E. Stroulia. 2015. GreenAdvisor: A tool for analyzing the impact of software evolution on

energy consumption. In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME). 311–320.
[3] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. 2008. Automatic Inference of Upper Bounds for

Recurrence Relations in Cost Analysis. In Static Analysis, María Alpuente and Germán Vidal (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 221–237.

[4] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert Rubio. 2020. GASOL: Gas Analysis
and Optimization for Ethereum Smart Contracts. In Tools and Algorithms for the Construction and Analysis of Systems,
Armin Biere and David Parker (Eds.). Springer International Publishing, Cham, 118–125.

[5] Elvira Albert, Pablo Gordillo, Albert Rubio, and Ilya Sergey. 2019. Running on Fumes. In Verification and Evaluation of
Computer and Communication Systems, Pierre Ganty and Mohamed Kaâniche (Eds.). Springer International Publishing,
Cham, 63–78.

[6] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks on ethereum smart contracts (sok). In
International Conference on Principles of Security and Trust. Springer, 164–186.

[7] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoudhury. 2014. Detecting Energy Bugs
and Hotspots in Mobile Apps. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2014). Association for Computing Machinery, New York, NY, USA, 588–598. https:
//doi.org/10.1145/2635868.2635871

[8] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without
BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS ’99). Springer-Verlag, Berlin, Heidelberg, 193–207.

[9] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard
Scholz. 2018. Vandal: A Scalable Security Analysis Framework for Smart Contracts. arXiv:1809.03981 [cs] (Sept. 2018).

[10] Vitalik Buterin et al. 2013. Ethereum white paper. URL https://github.com/ethereum/wiki/wiki/White-Paper (2013).
[11] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. 2016. On the instability of bitcoin

without the block reward. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 154–167.

[12] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized smart contracts devour your money. In
2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 442–446.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/2635868.2635871
https://doi.org/10.1145/2635868.2635871

38 Zarir, et al.

[13] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo, Man Ho Au, and Xiaosong Zhang. 2017. An
adaptive gas cost mechanism for ethereum to defend against under-priced DoS attacks. In International Conference on
Information Security Practice and Experience. Springer, 3–24.

[14] Shaiful Alam Chowdhury and Abram Hindle. 2016. GreenOracle: Estimating Software Energy Consumption with
Energy Measurement Corpora. In Proceedings of the 13th International Conference on Mining Software Repositories (MSR
’16). Association for Computing Machinery, New York, NY, USA, 49–60. https://doi.org/10.1145/2901739.2901763

[15] Christian Colombo, Joshua Ellul, and Gordon J. Pace. 2018. Contracts over Smart Contracts: Recovering from Violations
Dynamically. In Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice, Tiziana
Margaria and Bernhard Steffen (Eds.). Springer International Publishing, Cham, 300–315.

[16] Ankush Das and Shaz Qadeer. 2020. Exact and Linear-Time Gas-Cost Analysis. In Proceedings of the 27th Static Analysis
Symposium (SAS). To appear.

[17] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons. 2018. Smart contracts vulnerabilities: a
call for blockchain software engineering?. In 2018 International Workshop on Blockchain Oriented Software Engineering
(IWBOSE). 19–25.

[18] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lucia. 2017. Software-based energy profiling of
Android apps: Simple, efficient and reliable?. In 2017 IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 103–114.

[19] James D. Evans. 1995. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Pub Co.
[20] Josselin Feist, Gustavo Greico, and Alex Groce. 2019. Slither: A Static Analysis Framework for Smart Contracts. In

Proceedings of the 2Nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB ’19).
IEEE Press, Piscataway, NJ, USA, 8–15.

[21] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy. 2020. Checking Smart Contracts with Structural Code Embedding. IEEE
Transactions on Software Engineering (2020), 1–1.

[22] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. Madmax:
Surviving out-of-gas conditions in ethereum smart contracts. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 116.

[23] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic Framework for the Security Analysis of
Ethereum Smart Contracts. In Principles of Security and Trust, Lujo Bauer and Ralf Küsters (Eds.). Springer International
Publishing, Cham, 243–269.

[24] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles Campbell, and Stephen Romansky.
2014. GreenMiner: A Hardware Based Mining Software Repositories Software Energy Consumption Framework. In
Proceedings of the 11th Working Conference on Mining Software Repositories (MSR 2014). Association for Computing
Machinery, New York, NY, USA, 12–21. https://doi.org/10.1145/2597073.2597097

[25] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE 2018). ACM, New
York, NY, USA, 259–269.

[26] Johannes Krupp and Christian Rossow. 2018. TEETHER: Gnawing at Ethereum to Automatically Exploit Smart
Contracts. In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18). USENIX Association, Berkeley,
CA, USA, 1317–1333.

[27] Mario Linares-Vásquez, Christopher Vendome, Michele Tufano, and Denys Poshyvanyk. 2017. How developers micro-
optimize Android apps. Journal of Systems and Software 130 (2017), 1 – 23. https://doi.org/10.1016/j.jss.2017.04.018

[28] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018. ReGuard: Finding Reentrancy Bugs
in Smart Contracts. In Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings
(ICSE ’18). ACM, New York, NY, USA, 65–68.

[29] Matteo Marescotti, Martin Blicha, Antti E. J. Hyvärinen, Sepideh Asadi, and Natasha Sharygina. 2018. Computing
Exact Worst-Case Gas Consumption for Smart Contracts. In Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice, Tiziana Margaria and Bernhard Steffen (Eds.). Springer International Publishing,
Cham, 450–465.

[30] Anastasia Mavridou and Aron Laszka. 2017. Designing Secure Ethereum Smart Contracts: A Finite State Machine
Based Approach. arXiv:1711.09327 [cs] (Nov. 2017).

[31] Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek Dubey. 2019. VeriSolid: Correct-by-Design
Smart Contracts for Ethereum. In Financial Cryptography and Data Security, Ian Goldberg and Tyler Moore (Eds.).
Springer International Publishing, Cham, 446–465.

[32] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding The Greedy, Prodigal,
and Suicidal Contracts at Scale. In Proceedings of the 34th Annual Computer Security Applications Conference (ACSAC
’18). ACM, New York, NY, USA, 653–663.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/2901739.2901763
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1016/j.jss.2017.04.018

Developing Cost-Effective Blockchain-Powered Applications: A Case Study of the Gas Usage of Smart Contract
Transactions in the Ethereum Blockchain Platform 39

[33] Gustavo A. Oliva, Ahmed E. Hassan, and Zhen Ming (Jack) Jiang. 2020. An exploratory study of smart contracts in the
Ethereum blockchain platform. Empirical Software Engineering 25 (2020). Issue 3.

[34] Reza M. Parizi, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Amritraj Singh. 2018. Empirical Vulnerability
Analysis of Automated Smart Contracts Security Testing on Blockchains. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering (CASCON ’18). IBM Corp., Riverton, NJ, USA, 103–113.

[35] Reza M. Parizi, Amritraj Singh, and Ali Dehghantanha. 2018. Smart Contract Programming Languages on Blockchains:
An Empirical Evaluation of Usability and Security. In Blockchain – ICBC 2018, Shiping Chen, Harry Wang, and Liang-Jie
Zhang (Eds.). Springer International Publishing, Cham, 75–91.

[36] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. 2011. Fine-Grained Power Modeling
for Smartphones Using System Call Tracing. In Proceedings of the Sixth Conference on Computer Systems (EuroSys ’11).
Association for Computing Machinery, New York, NY, USA, 153–168. https://doi.org/10.1145/1966445.1966460

[37] C. Peng, S. Akca, and A. Rajan. 2019. SIF: A Framework for Solidity Contract Instrumentation and Analysis. In 2019
26th Asia-Pacific Software Engineering Conference (APSEC). 466–473.

[38] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli. 2017. Blockchain-Oriented Software Engineering: Challenges and New
Directions. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). 169–171.

[39] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. 2006. Appropriate statistics for ordinal level data: Should
we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?. In Annual
meeting of the Florida Association of Institutional Research. 1–3.

[40] Cagri Sahin, Lori Pollock, and James Clause. 2016. From benchmarks to real apps: Exploring the energy impacts of
performance-directed changes. Journal of Systems and Software 117 (2016), 307 – 316. https://doi.org/10.1016/j.jss.
2016.03.031

[41] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. 2018. Writing Safe Smart Contracts in Flint. In Conference
Companion of the 2nd International Conference on Art, Science, and Engineering of Programming (Programming18
Companion). ACM, New York, NY, USA, 218–219.

[42] Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Contracts. In Financial Cryptography and
Data Security, Michael Brenner, Kurt Rohloff, Joseph Bonneau, AndrewMiller, Peter Y.A. Ryan, Vanessa Teague, Andrea
Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson (Eds.). Springer International Publishing, Cham,
478–493.

[43] Christopher Signer. 2018. Gas Cost Analysis for Ethereum Smart Contracts. Master’s thesis. ETH Zurich, Department of
Computer Science.

[44] Itay Tsabary and Ittay Eyal. 2018. The gap game. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 713–728.

[45] Gavin Wood, Nick Savers, and Community. 2018. Ethereum: A Secure Decentralised Generalised Transaction Ledger -
Byzantium Version. https://github.com/ethereum/yellowpaper/tree/byzantium. [Online; accessed 02-March-2020].

[46] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun. 2019. Potential Risks of Hyperledger Fabric Smart Contracts. In
2019 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE). 1–10.

[47] W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen, and B. Xu. 2019. Smart Contract Development:
Challenges and Opportunities. IEEE Transactions on Software Engineering (2019), 1–1. Early Access.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1016/j.jss.2016.03.031
https://doi.org/10.1016/j.jss.2016.03.031
https://github.com/ethereum/yellowpaper/tree/byzantium

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Smart Contracts

	3 Data Collection
	3.1 Data Source
	3.2 Analysis Period
	3.3 Approach

	4 Findings
	4.1 RQ1: How do miners prioritize pending transactions?
	4.2 RQ2: How stable is the gas usage of smart contract functions?
	4.3 RQ3: How accurately can we predict the gas usage of smart contract transactions?

	5 Discussion
	5.1 Implications
	5.2 Actionable Items for Smart Contract Developers and Tool Developers
	5.3 Avenues for Future Research

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	References

