
An Exploratory Study on Assessing the Impact of
Environment Variations on the Results of Load Tests

Ruoyu Gao∗ and Zhen Ming (Jack) Jiang†

Software Construction, AnaLytics and Evaluation (SCALE) Lab
York University, Toronto, ON, Canada
{rgao∗, zmjiang†}@cse.yorku.ca

Abstract—Large-scale software systems like Amazon and
healthcare.gov are used by thousands or millions of people every
day. To ensure the quality of these systems, load testing is
a required testing procedure in addition to the conventional
functional testing techniques like unit and system integration
testing. One of the important requirements of load testing is
to create a field-like test environment. Unfortunately, this task is
often very challenging due to reasons like security and rapid field
updates. In this paper, we have conducted an exploratory study
on the impact of environment variations on the results of load
tests. We have run over 110 hours load tests, which examine the
system’s behavior under load with various changes (e.g., installing
an anti-virus program) to the targeted deployment environment.
We call such load tests as environment-variation-based load tests.
Case studies in three open source systems have shown that there
is a clear performance impact on the system’s performance due to
these environment changes. Different scenarios react differently
to the changes in the underlying computing resources. When
predicting the performance of the system under environment
changes that are not previously load tested, our ensemble models
out-perform (24% - 94% better) the baseline models.

I. INTRODUCTION

Load testing is an important type of non-functional testing
technique to ensure the performance and the scalability of
large-scale software systems like AT&T’s telecommunication
systems [1] and Microsoft’s web services [2]. These systems
are used by millions of users concurrently everyday. The
failure to process high volumes of user traffic could result
in catastrophic consequences and unfavorable media coverage
(e.g., the botched launch of US Government’s Health Care
website [3] and the crashes of the Consensus websites for
Statistics Canada [4] and Bureau of Statistics in Australia [5]).

Load testing in general refers to the process of assessing
system behavior under load in a field-like environment [1].
The load drivers are used to generate hundreds or thousands of
concurrent requests, which mimic the realistic user behavior,
to the system under test (SUT). During the course of the
load test, execution logs (e.g., the printf and System.out
statements) and performance counters (e.g., CPU, memory and
disk utilizations) are recorded for further analysis.

Although some load tests are conducted in the field, it
is often very difficult and costly to access the actual field
environment [6], [7]. Most of the load testing is done in
a lab environment [8]. The computing hardware can be
purchased in-house [6] or by renting virtual machines from
cloud computing service providers [9], [10]. However, extra

care should be taken to ensure the lab environment closely
resembles various characteristics of the field environment. For
example, if the database and the web sever are far apart
(e.g., in two different continents), network delays should be
added when deploying the SUT in the lab to simulate cross-
the-continent network latency using Network Virtualization
tools like Shunra [11]. However, re-creating the field-like
environment in the lab is very challenging due to the following
three reasons:

1) Additional Tools: System operators may install addi-
tional tools in the field for security [12] and monitoring
purposes [13] without informing the performance ana-
lysts about these changes.

2) Shared Environment: Many of the systems are installed
in a shared environment (e.g., public cloud or multi-
tenant), in which one or multiple resources are shared by
different users [10], [14]. Deploying in a shared environ-
ment can cause instability of the performance behavior
of the SUT [9], [15] and degrading user experience [16].

3) Rapid Changes: Nowadays, many companies adopt
the Continuous Integration/Continous Delivery (CI/CD)
process, in which software changes and environment
configuration changes are constantly pushed to the field.
Companies like Netflix are constantly updating their
various components in the field [17]. It is not feasible
for them to re-create an up-to-date test environment.

In this paper, we have conducted an exploratory study
on assessing the impact of the environment variations on
the results of load tests. In addition to running load tests
in an ideal environment (a.k.a, a test environment with no
additional software processes running), we have also run
various environment-variation-based load tests. Examples of
the environment-variation-based load tests are running the
SUT in a system deployment environment (SDE) where other
processes (e.g., anti-virus) are active, or running load tests in
an SDE with limited computing resources (e.g., constraining
CPU resource). Our objective is to compare and understand the
performance behavior of the SUT under these tests and try to
model the impact of changes in the SDE on the results of the
load tests. We have proposed and investigated the following
three research questions (RQ):

• RQ1 (Impact Analysis) How different can the results of
a load test be under realistic changes to the SDE? We

have found that there is a clear difference in terms of the
SUT’s performance behavior under load when deploying
in these different environments.

• RQ2 (Sensitivity Analysis) Which test scenarios are
sensitive to the variations in the SDE? We have found
that there is no one-size-fits-all answers to this problem.
Varying the amount of computing resources would have
different performance impact to different scenarios.

• RQ3 (Model-based Analysis) Can we effectively model
the performance impact of the SUT due to the variations
in the SDE? We have developed an ensemble-based
modeling approach, which are trained with the results of
various environment-variation-based load tests, to better
predict the system performance for environment changes
which are not previously assessed.

The contributions of this paper are:
1) This is the first work to assess the impact of the load

testing results with respect to the variations in the SDE.
Compared to the existing field testing techniques like
Chaos Monkeys [17], which assess the SUT behavior by
randomly turning off some processes or machines, our
environment-variation-based load testing can assess the
behavior of the SUT in a more fine-grained manner. The
results of our testing can provide useful suggestions to
the performance analysts and the system operators (e.g.,
process A cannot be co-deployed with the SUT due to
high contention of the CPU resources).

2) We have proposed an ensemble-based performance
model to predict the system performance for changes
to the SUT, which have not been previously tested.
Case studies show that the performance of our ensemble
models is 24% - 94% better than the baseline models.

3) In this paper, we have conducted various environment-
variation-based load tests on three open source systems.
We have made this data (over 110 hours of load testing
data) available online [18] to support replications and to
encourage further research on this topic.

Paper Organization

The rest of the paper is organized as follows: Section II
explains the background and the related work. Section III
provides an overview of our case study setup. Sections IV, V
and VI study the three research questions. Section VII dis-
cusses the threats to validity. Section VIII concludes the paper
and discusses some future work.

II. BACKGROUND AND RELATED WORK

There are three areas of prior works which are related to
this paper: (1) load testing setup, (2) performance monitoring
and field testing, and (3) performance modeling.

A. Load Testing Setup

There are many techniques proposed in the area of design-
ing, execution and analyzing load tests. For details, please refer
to the survey by Jiang and Hassan [8]. In this subsection, we

are only going to discuss one particular related area of load
testing research: setting up a load testing environment.

If possible, it is always recommended to perform load tests
in the actual field [6], [7] to gain the most accurate assessment
of the SUT’s behavior under load. Otherwise, load testing
practitioners need to create a test environment, which closely
mimics the deployment field [19]. There are many works
devoted to mimicking various aspects of the field environment
(e.g., creating the realistic network latency [11], and creating
realistic database [2], [20], [21], [22]). However, it is still not
clear whether all the aspects of the field environment have
been properly captured in the test environment. Furthermore,
the modeling and the configuration of a field-like test environ-
ment becomes increasingly harder nowadays due to the rapid
changes in the field environment introduced by the CI/CD
process [17].

B. Performance Monitoring and Field Testing

Detailed monitoring has a huge performance overhead,
which may slow down the system execution or even alter the
system behavior [23]. It is important to measure the system’s
performance multiple times to avoid measurement noise and
errors [24]. If the SUT is deployed in a shared environment
(e.g., public cloud), the monitored system performance can
be unstable [15]. It is still a challenging area for properly
monitoring and analyzing the results of an SUT in such shared
environment [14]. This paper differs from the above works, as
it tries to empirically assess and model the performance impact
due to the changes in the SDE.

Due to the complexity and the rapid changes of their field
environment, large companies like Amazon [25], Netflix [17]
and Microsoft [26], [27] have recently started to conduct a
new type of field testing, called “Chaos Engineering”. During
testing, system operators or programs, called Chaos Monkeys,
randomly turn off some processes or even machines in the
field environment. The goal of the Chaos Engineering is to
assess the system behavior under various extreme conditions.
As these systems are used by millions of people worldwide,
they have very high requirements in terms of reliability and
robustness. These systems are expected to be still available
for service even when some of their processes got terminated
or even some machines are unresponsive. The environment-
variation-based load testing introduced in this paper is different
from Chaos Engineering as they have different goals. The
goal of our environment-variation-based load tests is to assess
the system’s performance behavior under various realistic
changes to the SDE. The goal of chaos engineering is not
performance assessment, but rather assessing the reliability
and the robustness of the SUT.

C. Performance Modeling

In general, there are three categories of performance model-
ing techniques: analytical queuing-based models, data mining-
based models, and hybrid models.

• Analytical Queuing-based Models: Analytical queuing-
based models apply queuing theory [28] to model the

performance behavior of a system. Queuing models
mimic system resources (e.g., CPU and memory) as
queues, predict the time that different scenarios spend
on different queues and estimates the resource utiliza-
tions and throughput information. In addition to hard-
ware resources, there are also various software resources
(e.g., database or middleware) in a system. The sin-
gle layer queuing models can only be used to model
the performance of hardware resources. To model the
performance of both hardware and software resources,
Layered Queuing Models (LQN) are required [29]. Since
queuing models require the knowledge of the system
internals (e.g., the deployment topology, the queues and
locks involved in a scenario, and whether the call is
synchronous or asynchronous), they are also called white-
box models [30].

• Data Mining-based Models: Compared to LQN, data
mining models treat the system under test as a black box
and do not require the knowledge of the system inter-
nals. Hence, they are also called black-box models [30].
Data mining models rely on various statistical and AI-
based techniques to model the system’s performance
behavior. Most of the data mining-based performance
models discussed in the research literature are regression-
based models (e.g., multiple linear regression-based mod-
els [31], [32], regress tree-based models [32], multivariate
adaptive regression splines (MARS)-based models [33],
and quantile regression-based models [34].

• Hybrid Models: Recently, there are works (e.g., [35],
[30]) which combine the analytical queuing and the data
mining-based models. Studies studies show that the re-
sulting hybrid models yield shorter training time than the
data mining-based models and have better performance
compared to the analytical queuing-based models.

Unfortunately, there are very few empirical studies on
assessing the performance of various performance modeling
techniques (except [36]). In [36], Gao et al. empirically
evaluated the effectiveness of various performance modeling
techniques in terms of detecting load-related problems. How-
ever, there are no works which try to empirically assess the
impact of environment variations on the performance modeling
techniques. This is one of the main objectives of this paper.

III. CASE STUDY SETUP

In this section, we will introduce the setup of our case
studies. In particular, we will describe the motivation and the
descriptions of three research questions, the case study systems
and their testing scenarios, and the load test setup.

A. Research Questions

We have proposed the following three RQs to assess the
system’s performance under different variations to the SDE:

• (RQ1) Impact Analysis: How different can the results
of a load test be under realistic changes to the SDE?
Although many efforts have been made to mimic the lab
environment close to the actual field, in many cases it

TABLE I: Case Study Systems

System Domain Category # of Test SLOCScenarios

DS2 Benchmark application JSP 4 ∼ 100
PET E-commerce Hibernate 15 > 2000
JMS Mail Server Mailet Container 6 > 4,000

is not possible to completely capture all the environment
characteristics in the field. For example, the system oper-
ators might decide to install additional monitoring probes
or anti-virus software in the field for purposes like mon-
itoring and security without informing the performance
analysts. Hence, in this RQ, we want to examine the
degree of performance deviation for SUT when running
under an ideal environment and under an environment
with some realistic changes.

• (RQ2) Sensitivity Analysis: Which test scenarios are
sensitive to the variations in the SDE?
The system consumes different amount of computing
resources, while processing different scenarios. For ex-
ample, the scenario of compressing a file would proba-
bly consume more CPU and disk resources, instead of
memory; whereas uploading an image would probably
consume more disk and network resources, rather than
CPU. In this RQ, we want to perform a sensitivity analy-
sis on the performance impact of different scenarios with
respect to the amount of computing resources allocated.

• (RQ3) Model-based Analysis: Can we effectively model
the performance impact of the SUT due to the variations
in the SDE?
In practice, each software system consumes various
computing resources. The resource consumption patterns
would not be uniform throughout the test. For example,
the amount of the computing resources consumed would
be much higher when an anti-virus program is actively
scanning than the idle period. In addition, due to the
complexity of the field environment, in many cases, it
would not be feasible to exercise all the variations in the
SDE. Some enterprise systems (e.g., SAP’s ERP systems)
are deployed in thousands of customers’ site, each of
which has different field configurations set by the system
operators. Hence, in this RQ, we want to research into
modeling techniques which can effectively predict the
SUT’s performance behavior for changes to the SDE that
are not previously assessed.

B. Target Systems and Test Scenarios

In this paper, we use three open source systems to con-
duct our case study: Dell DVD Store (DS2) [37], Petclinic
(PET) [38] and James Mail Server (JMS) [39]. Each system
has different types of components, configurations and uses dif-
ferent development technologies. Table I shows the summary
of these three systems. Due to space limitations, please refer
to our replication package [40] for the details of our testing
scenarios and testing loads.

• DS2: DS2 is an open source e-commerce website made
by Dell to benchmark the quality of their hardware.
It has two components: web server and database. It is
deployed on the Tomcat as web server, and uses MySQL
as database. The system has four different scenarios:
login, browsing DVD, purchasing items and registrations
for new customers.

• PET: Petclinic is a web application based on Java Spring
framework and Hibernate. Similar to DS2, it also uses
Tomcat as web server and MySQL as database. Petclinic
has 15 different test scenarios related to pet owners (e.g.,
view pet owners, edit owners information), pet (e.g., view
pet, add visit log to pet), and veterinarians (e.g., view list
of veterinarians).

• JMS: The Apache James Mail Server is an open source
mail server written in Java. Different from DS2 and PET,
JMS is a stand-alone system and does not need any other
supporting components. Based on [41], [42], we define
six scenarios with two from each the following three cat-
egories: (1) sending emails with or without attachments;
(2) receiving emails with or without attachments; and (3)
reading only the mail headers or the whole emails.

C. Test Setup

We use two machines to execute our load tests. One machine
is used to deploy the SUT. Its configuration is Intel® CoreTM 2
CPU 2.40 GHz, 2 GB memory and a 160 GB 7200 RPM hard
drive. The other machine is used as a load generator to mimic
the hundreds of users using the system concurrently. The load
generator machine has Intel® CoreTM i7-4790 CPU 3.60 GHz,
16 GB memory and a 2 TB 7200 RPM hard drive. The SUT
and the load generator are deployed on separate machines,
as this is the standard practice to eliminate the performance
interference caused by the load generator [8].

We use an open source tool, called Apache JMeter [43],
as our load generator and pidstat [44] to monitor and record
the performance behavior during the course of a load test. We
use the constant load profile, which generates stable request
rate, to test the target systems. In addition, we also record
the response time logs from JMeter and the access logs from
Tomcat for each load test. The logs are used to extract the
workload and the response time information.

To simulate the variations of the SDE, we have used the
following three tools:

• rsync: Many of the field machines perform period data
backup to avoid potential data losses due to machine
failures or security breaches. In this paper, we use a data
backup utility, called rsync [45], which is used to perform
automated remote data backup during a load test.

• ClamAV: We use an open source anti-virus program,
ClamAV [46] to evaluate the performance impact of SUT
under virus scan.

• stress-ng: The above two applications are used to sim-
ulate realistic changes to the SDE. However, there can
be more variations to the SDE in reality. Hence, we
need to have a way to assess the SUT behavior under

more variations to the SDE (e.g., a different computing
resource usage pattern compared to rsync and ClamAV).
To address this problem, we use an open source applica-
tion, stress-ng [47] to control the amount of available
computing resources in a more fine-grained manner.
Stress-ng can be configured to consume different amount
of computing resources like CPU, memory and disk, and
hence, constraining the SDE that SUT is running under.

While running load tests, all the configurations (e.g., the
load profile and the pidstat setup) are kept the same for
the same target systems, except activating or deactivating
the above the three tools. In total, we have run more than
110 hours of load tests and collected about 150 performance
counters and approximately 10 GB logs from three target
systems. For the details on the experiments, please refer to
the next two sections (Sections IV and IV).

IV. RQ1 - IMPACT ANALYSIS

In many cases, a load test is running in an ideal environment,
in which only the SUT is running. The reasons are two-
fold. First, it is much easier to monitor and analyze the
performance of the SUT under load in a cleaner environment.
Second, the performance analysts are not clear about the
actual characteristics of the field environment. Hence, in this
research question, we want to assess the degree of performance
deviations between load tests running in an ideal environment
and in an realistic environment (e.g., an environment in which
the anti-virus is running along with the SUT).

A. Experiment

The same load tests are executed with varying environment
setup. We have conducted the following four environment-
variation-based load tests for all three target systems:

• Ideal test: First, two load tests, ideal1 and ideal2 , are run
in an ideal environment, where no additional processes
are activated. The reasons for executing the ideal test
twice is to check whether the performance behavior in
the ideal setting is similar to each other.

• Backup test: We run one load test in an environment, in
which rsync is running along with the SUT. This setup
is to simulate the field environment in which remote data
back-up is enabled.

• SScan test: We run another load test in an environment, in
which the anti-virus application ClamAV is running along
with the SUT. The ClamAV is configured to perform anti-
virus scan using only one thread. Both this and the DScan
test below are to simulate the field environment in which
the anti-virus process is running.

• DScan test: This load test setup is the same as the SScan
test, except ClamAV is configured to perform anti-virus
scan using two threads. The goal here is to simulate the
scenario that the operators want to perform a faster anti-
virus scan.

Collectively, we call the Backup test, the SScan test, and
the DScan test as the “realistic runs”. In total, five load tests
are run for each system.

TABLE II: Percentage of test scenarios which have different
performance behavior between the ideal and the realistic runs.

Systems Test Runs
Ideal1 Ideal2 Backup DScan SScan

DS2 Ideal1 - 0.00% 25.00% 50.00% 75.00%
Ideal2 0.00% - 25.00% 100.00% 100.00%

PET Ideal1 - 0.00% 73.33% 93.33% 100.00%
Ideal2 0.00% - 73.33% 100.00% 100.00%

JMS Ideal1 - 0.00% 100.00% 100.00% 100.00%
Ideal2 0.00% - 100.00% 100.00% 100.00%

B. Result Analysis

In order to investigate the impact of variations in the SDE
on model accuracy, we perform the following two types
of analyses: statistical comparison and performance model
assessment.

1) Statistical Comparison: We statistically compare the re-
sponse time between the ideal runs and the three realistic runs
using the Wilcoxon Rank Sum test and Cliff’s Delta (WC).
Wilcoxon Rank Sum (WRS) test is a non-parametric test which
compares the distributions of the two datasets. For example, if
two sets of response time are about one minute (1 minute vs.
1.0006 minute) and the WRS test shows statistical significance
between these two datasets. However, the differences between
the two sets are so small (36 milliseconds), humans would
hardly notice the differences. Hence, to quantify the strength
of the differences between the two distributions, we use Cliff’s
Delta (CD). CD is a non-parametric technique to calculate the
effect size between two distributions [48]. CD quantifies the
level of the differences as follows:

effect size =

trivial if CD < 0.147
small if 0.147 ≤ CD < 0.33
medium if 0.33 ≤ CD < 0.474
large if 0.474 ≤ CD

Table II shows the number of scenarios which are impacted
by realistic changes to the SDE: each cell indicates how
many scenarios have different performance behavior when
comparing one ideal run and one other run. We consider the
differences are significant when the WRS test shows statistical
significance and CD shows medium to large effect sizes. For
example, in DS2, when comparing the ideal

1
and the backup

runs, there is one out of the total four tested scenarios which
have different performance behavior. The cell shows an “-
” when it is compared against itself (e.g., ideal

1
comparing

against ideal1). In general, the performance behavior is the
same for all the scenarios when comparing two ideal runs.
However, there is at least one scenario from all three systems
whose performance behavior is different when comparing
against the ideal and the realistic runs.

2) Performance Model Assessment: As performance re-
quirements are seldom available and up-to-date [49], [50],
performance analysts usually adopt the no-worse-than previous
principle. In other words, performance analysts build perfor-
mance models based on the load testing data from previous

TABLE III: Percentage of test scenarios in which there are
differences between the predicted and the actual values.

Models DS2 PET JMS
Ideal Realistic Ideal Realistic Ideal Realistic

GLM 37.50% 37.50% 43.33% 38.89% 50.00% 66.67%
MARS 12.50% 37.50% 40.00% 45.56% 16.67% 72.22%

RegTree 12.50% 50.00% 3.33% 28.89% 8.33% 94.44%

runs and predict on the current runs. There can be performance
problems, if there is a large deviation between the actual
measurements and the predicted results. Hence, we also build
performance models using the load testing results from the
ideal runs and compare the prediction results on the ideal runs
as well as the realistic runs. Since queuing models cannot
easily model environment variations, in this paper, we are
only going to evaluate the effectiveness of data mining-based
performance models. In particular, we build the following three
data mining-based performance models:

• Generalized Linear Model (GLM) represents the sys-
tem behavior using a global function of workload mixes
and resource usage utilization [51]. Extra care is needed
to ensure the assumptions associated with the GLM
model are met.

• Multivariate Adaptive Regression Splines (MARS) is a
model that can split data with different kinds of behavior
into different sub models using one or more “hinge func-
tion” [33]. Each hinge function is a function indicating
two different behaviors based on certain cut-offs. All the
hinge functions can be automatically produced by the
model, modeling system in different period rather than
as a whole like GLM. We want to use MARS to model
the different phases in a load test (e.g., when anti-virus
program is active vs. idle).

• Regression Tree (RegTree) builds a decision tree model
by splitting the data points into certain leaves. Compared
to GLM, RegTree does not have many assumptions asso-
ciated with the model [32]. Similar to MARS, RegTree
can also model the behavior of the system in different
phases, but in a tree-like manner.

We build the performance models using the results from the
ideal runs. Then we either predict the performance of another
ideal run or the performance of one realistic run. Then we
perform the WC analysis between the predicted values and the
actual measured results. If they are statistically significantly
different by the WRS analysis and have medium to large effect
sizes, this scenario is considered to have large performance
deviations between the predicted values and the actual values.
Table III shows the percentage of scenarios from each system
where there large deviations between the predicted and the
measured values. For example, in DS2, when using RegTree as
the prediction model and trained on the data from the ideal run,
there are 12.50% of the test scenarios which are different when
predicting on another ideal run. However, when predicting on
the realistic runs, 50% of the scenarios have large deviations
between the actual and the predicted values.

In general, the prediction results on the ideal runs are better
than the realistic runs when using MARS or RegTree as the
modeling techniques. This is the opposite when using the
GLM as the modeling technique. We believe this is mainly
due to the performance of the modeling techniques, as the
model performance of the GLM is significantly worse than
the other two techniques. For example, when training on the
ideal run and predicting on another ideal run in DS2, the
performance of GLM is more than three times worse than the
performance of MARS and RegTree. For RegTree, although
it can predict the performance from another ideal run with
the highest performance, the prediction results on the realistic
runs are much worse.

C. Summary

Findings: There is a clear performance impact when in-
corporating realistic changes to the SDE. Consequently, the
performance models built using the ideal runs cannot be
used to accurately predict the behavior of the realistic runs.
Implications: As it can be unavoidable to have variations
to the SDE, there could be large performance deviations
between the load tests running in an ideal environment and
the field. It is worthwhile to conduct environment-variation-
based load testing to assess the impact of the SDE changes.

V. RQ2 - SENSITIVITY ANALYSIS

In the previous RQ, we have demonstrated the need to
conduct environment-variation-based load testing. When the
system contains abundant computing resources, the SUT and
the other applications can run without interfering each other.
However, when the resources are limited, the performance
of the SUT can be impacted if some of its scenarios are
competing for the same computing resources against an-
other application. In this RQ, by leveraging the environment-
variation-based load tests, we want to conduct a sensitivity
analysis on the performance impact of different scenarios with
respect to the amount of available computing resources.

A. Experiment

If one scenario consumes much CPU, limiting the CPU
resource would result in a large increase in its response time.
Otherwise, its performance would not be impacted. Hence, in
order to find out which scenario is sensitive to what kinds
of computing resources, we run the load tests with limited
computing resources. We run load tests along with stress-ng
multiple times. Each time, stress-ng is configured to consume
a different amount of computing resources, which forces the
SUT to be run under different constrained conditions. For
each system, we run ten additional environment-variation-
based load tests apart from the two ideal tests. The details
are as follows:

• Ideal test: We run the load test under the ideal environ-
ment twice. We call these two runs as ideal

1
and ideal

2
.

These two runs are used as our baseline in this RQ.
• CPUStr test: We run the load tests with stress-ng con-

figured to consume different amount of CPU resources.

Two CPUStr tests (CPUStr
1

and CPUStr
2
) are run in this

RQ with with stress-ng configured to consume 30% and
70% of one particular CPU core, respectively.

• DISKStr test: Similar to the CPUStr tests, we run the
load tests with stress-ng configured to perform writes to
the disk with one or two worker threads. We call these
two runs as DISKStr

1
and DISKStr

2
, respectively.

• MEMStr test: Similar to the CPUStr and the DISKStr
tests, we ran the load tests with stress-ng configured to
consume 512 MB or 1 GB of memory. We call these two
runs as MEMStr

1
and MEMStr

2
, respectively.

• Multiple Resource Stress test: In order to assess the
system behavior under more than one types of resource
stresses, we also performed tests which combined two
to three types of low-level resource stresses. For ex-
ample, we combine stress-ng with 30% CPU consump-
tion and stress-ng with 512 MB memory corruption as
CPUMEMstr

1
. We call the runs with all types of resource

(CPU, memory and disk) stressed as ALLStr
1
.

Collectively, we call the CPUStr test, the DISKStr test, and
the MEMStr test and the Combination Stress test as “lab stress
runs”. To distinguish from the multiple resource stress tests,
we refer to the CPUStr test, the DISKStr test, and the MEMStr
test, as the “single resource stress test”.

B. Result Analysis

We use the WC analysis to compare the response time
between the ideal runs and a particular type of lab stress runs.
For example, if WC result of the login scenario shows a large
difference when comparing the ideal run and the CPUStr runs,
the performance of the login scenario is sensitive to the amount
of available CPU resource. The overall WC results are shown
in Table IV. Each row shows the percentage of scenarios from
that subject system which has different response time from the
ideal runs. For example, the third row in the table shows that
75% of the scenarios in DS2 are impacted when running with
lower level CPU stress (CPUStr1).

As expected, the two ideal runs are similar to each other.
Hence, no scenarios are flagged. Generally speaking, lower
level of stress will have less effect to the scenario performance.
But if the scenario heavily relies on certain type of resource,
limiting this resource will have significant a impact on this
scenario. DS2 and PET both use database for information
storage, and JMS needs to access the disk to read and write
emails. Hence, both levels of disk stresses show significant
impact for all three systems. JMS consumes large amount of
memory to store the users’ states and PET uses Hibernate,
which caches the database information to optimize database
performance. Hence, the scenarios from these two systems are
impacted by memory stresses. DS2 is a simple benchmarking
system using the JSP technology. The scenarios from DS2,
which do not consume much memory, are not impacted by
the changes in the memory resource. Compared to DS2 and
PET, the impact of the CPU stress is smaller in JMS.

Compared to single resource stress runs (a.k.a., the CPUStr,
the DISKStr, and the MEMStr runs), multiple resource stress

runs demonstrate a much bigger difference from the ideal
runs. Almost all the scenarios are impacted in all the multiple
resource stress runs. The only exception is DS2 under the
CPUDISKStr test, in which the performance of one scenario
(registrations for new customers) is not impacted. The same
scenario’s performance is not impacted in the CPUStr1 and
MEMStr

1
runs, either.

C. Summary

Findings: Varying the amount of computing resources can
impact the performance behavior of the SUT. However,
since individual scenarios consume varying amount of com-
puting resources, their performance may or may not be
impacted by the underlying changes to the SDE.
Implications: There is a need to create better performance
models to assess the performance implications of different
scenarios with respect to the changes in the SDE.

VI. RQ3 - MODEL-BASED ANALYSIS

RQ2 shows that there is no one-size-fits-all answer to the
relationship between the performance of individual scenarios
and the amount of available computing resources. In this RQ,
we will propose an ensemble-based modeling approach to
systematically assess the performance implications of different
scenarios with respect to the changes in SDE.

A. Ensemble Modeling

Our proposed ensemble models consist of many small
performance models, built using the data from segments of
environment-variation-based load tests. These small perfor-
mance models are called sub-models, which perform their own
predictions. The overall ensemble model output is based on
how close the state of the current test environment and the
environment enclosed in the sub-models. The more similar the
state of the two environments are, the higher weight it should
be given to the prediction results of that sub-model. Figure 1
illustrates the overall process of our ensemble modeling. It
consists of three steps: model building, distance calculation
and model prediction.

Step 1 - Model Building: As the available computing
resources can fluctuate during the course of a load test due the
state of different software processes (e.g., anti-virus actively
scanning vs. anti-virus being idle). Hence, in order to accu-
rately capture the SUT’s behavior under different environment
conditions, we split the load testing data with a moving
window. The window contains data within a fixed time window
size i. Hence, the first window (Training window

1
) contains the

data from time 0 to time i− 1; the second window (Training
window2) contains the data from time 1 to time i, and so
on. For the data within that window, we built performance
models using the data from that window as the training data.
One performance model is built for the response time of each
scenario. For example, the model MscenarioA,i corresponds to
the sub-model built to model the response time of scenarioA
using the training data from Training windowi .

This process is applied on all our executed environment-
variation-based load tests (a.k.a., the ideal runs, the realistic
runs, and the lab stress runs). For the data from each window,
we build three kinds of performance models: GLM-based
models, MARS-based models and RegTree-based models.

Step 2 - Distance Calculation: In the previous step, we
have built many sub-models, which capture the performance
behavior of SUT under different environment variations. The
next step is to defined how to determine the final output from
the ensemble model.

When the ensemble model is used (a.k.a, during the testing
stage), each sub-model would give a prediction value. We need
an approach, which automatically selects the most suitable
sub-model(s) and use their prediction result(s) as the final
ensemble output. Our distance function is defined to measure
the similarity between the training and the testing environment.
If the SUT is run in a test environment similar to the current
target environment, their performance behavior should be
similar. Hence, the prediction results from these sub-models
should be given more trust than other sub-models in the final
ensemble output.

We will explain the calculation of our distance function
with an example. Figure 2 shows an example of the resulting
sub-model built using the regression tree technique. In this
case, the sub-model contains two independent variables: CPU
and disk. Hence, our distance function measures the degree of
similarity of these two counters between the training window
and the current target environment.

Similar to the Training window, we define the Test window
with a fixed time window with a fixed time window size j.
For example, at current time t, the window (Test Window

t
)

consists of the data from t− j − 1 to t (a.k.a., the data from
the past j minutes). Note that the size of the training and the
testing windows are configurable and they are not necessarily
the same. For each prediction, we conduct the WC analysis on
the CPU data between the current (Test Windowt) and all the
(Training Windows). For the details of the WC analysis, please
refer to Section IV. Similarly, the WC analysis is also applied
on the disk data. Hence, for each of the performance models,
we have two WC values: one for the CPU counter and the other
one for the disk counter. The value of the distance function for
this model is the average of the two WC values. For example,
if the WC values for the CPU and the disk counters are 0.4
and 0.6. The resulting distance function for this performance
model is 0.5 (0.4+0.6

2). Different performance models would
have different types of performance counters. For example,
if a MARS-based sub-model contains only one independent
variable: the disk. The distance function for this sub-model is
just the WC values for the disk counter.

Step 3 - Model Prediction: Once we have calculated the
distance functions of all the sub-models, we need to have
a way to combine the prediction results from all these sub-
models into one final output for the ensemble model. In
this paper, we have experimented with the following three
ensemble strategies:

• Mean calculates the average of the prediction results from

TABLE IV: Percentage of test scenarios which are different between the ideal and the lab runs.

Systems Ideal Runs CPU Stress Runs Disk Stress Runs Memory Stress Runs Combination Stress Runs
Ideal1 Ideal2 CPUStr1 CPUStr2 DISKStr1 DISKStr2 MEMStr1 MEMStr2 CPUDISKStr1 CPUMEMStr1 DSKMEMStr1 ALLStr1

DS2 Ideal1 - 0.00% 75.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 75.00% 100.00% 100.00%
Ideal2 0.00% - 75.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 75.00% 100.00% 100.00%

PET Ideal1 - 0.00% 73.33% 93.33% 100.00% 100.00% 0.00% 93.33% 100.00% 100.00% 100.00% 100.00%
Ideal2 0.00% - 66.67% 80.00% 100.00% 100.00% 0.00% 93.33% 100.00% 100.00% 100.00% 100.00%

JMS Ideal1 - 0.00% 16.67% 50.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ideal2 0.00% - 33.33% 66.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Ensemble

Output

Training Window1

Distance1

MscenarioA,1

Distance Calculation
Model Building

Ensemble Strategy

Training Data

Moving Window

PredictionscenarioA,1

Testing Window1

Testing Data

Moving Window

Model Prediction

Fig. 1: Our ensemble-based modeling approach.

CPU > 0.41

Disk > 0.4115

12 10

T

T

F

F

Fig. 2: An example of a regression tree-based performance
model.

all the sub-models. Note that in this case, the values
calculated from the distance functions are not used.

• Winner-takes-all uses the prediction results with the
smallest distance values. If there is a tie, the median of
the prediction results from all the best sub-models is used.

• Weighted Average provides a weight for each of the pre-
diction results and aggregates them. For example, there
are three sub-models, which have WC values 0.2, 0.4, 0.6,

respectively. The prediction results from these three sub-
models are: 0.6, 0.3, and 0.4. The final ensemble output
would be

1
0.2+1

1
0.2+1+

1
0.4+1+

1
0.6+1

×0.6+
1

0.4+1
1

0.2+1+
1

0.4+1+
1

0.6+1

×

0.3 +
1

0.6+1
1

0.2+1+
1

0.4+1+
1

0.6+1

× 0.4 = 0.44. We take the
inverse of WC values, as bigger WC values indicate larger
differences. We also add one to each of the WC values
to avoid the division by zero error.

For each test window, the ensemble model is only going
to predict the last point (a.k.a., the prediction value for the
current time).

B. Evaluation

We evaluate our ensemble models by training on the results
of environment-variation-based load tests and predicting on
the results of three realistic runs (the Backup, the SScan,
and the DScan tests). In order to systematically evaluate our
ensemble modeling technique, we vary the configurations of
our ensemble models in the following three dimensions:

• The size of the training window: we use 10, 15, or
20 minutes as three different window sizes. We fix the
testing window size as 10 minutes in order to compare
the effect of the training window sizes.

• The training dataset: We evaluate our ensemble models
with these five options: (1) ideal runs only, (2) ideal
runs and single resource stress runs, (3) ideal runs and
all the lab stress runs (a.k.a., single resource stress
runs and multiple resource stress runs), (4) ideal runs,
single stress runs, and realistic runs, and (5) all the
runs. There are in total six different kinds of single
resource stress runs as described in Section V: two CPU
stress runs (CPUStr1 and CPUStr2), two memory stress
runs (MEMStr1 and MEMStr2), two disk stress runs
(DISKStr

1
and DISKStr

2
). There are four kinds of multi-

ple resource stress runs (CPUDISKStr
1

, CPUMEMStr
1

,
DISKMEMStr

1
, and ALLStr

1
). For options (4) and (5),

the realistic runs refer to the two out of the three realistic
runs. For example, if we are predicting the results of the
Backup test, the two realistic runs used in option (4) and
(5) would be the DScan test and the SScan test. We call
options (1) - (5) as “Ideal”, “Lab”, “LabCmb”, “All”,
“AllCmb” in the rest of this section and in Table V.

• Ensemble strategies: We use using mean, winner-takes-
all and weighted average as three options to calculate the
final ensemble results.

To demonstrate the effectiveness of our ensemble-based
modeling technique, we compare our results against the base-
line technique, which is the single-model based approach.
The single-model based approach only uses the data from the
ideal run and builds just one performance model. Similar to
the other two RQs, we calculate the percentage of scenarios
whose predicted values and the measured values are different.
In other words, the two sets of data are statistically different
by the WRS test and the CD results shows medium to large
effect sizes. In this case, we consider the performance model
produces “bad prediction results”.

Table V shows the results of the RegTree models. The
bottom row with row name “Baseline” shows the prediction
of baseline model. For example, half of the scenarios in DS2
suffer from bad prediction results when using window size as
20, the weighted average as the ensemble strategy and only
the ideal runs as the training data. Overall, we can see the
results from our ensemble models are the same or better than
the baseline. Among the three ensemble strategies, winner-
takes-all always outperforms the other two under the same
window size and training dataset. If we only compare within
the winner-takes-all strategy, the performance is similar to the
baseline model when simply using the ideal runs as the training
dataset. Comparing among different window sizes, Win15 and
Win20 generally perform the same or better than Win10 .

Generally, adding more single resource stress runs into the
training set would greatly improve the prediction performance.
However, the effect of further adding more realistic runs or
more multiple resource stress runs are mixed. This makes
sense, as adding more single resource stress runs into the
training set will provide more variations of the SUT behavior
due to changes to the SDE. However, since most of the
multiple resource stress runs would overload the system and do
not closely resemble the realistic field behavior, the gain due

to the addition of multiple resource stress runs is not obvious.
Similarity, different realistic runs would have different impact
to the underlying resources (e.g., data backup and anti-virus
scanning consume different amount of computing resources),
the additional of these runs would not further improve the
model performance.

We have also experimented the ensemble-based modeling
techniques using the GLM and the MARS as our modeling
techniques. We analyze RegTree results for the purpose of
illustrating the effectiveness of ensemble modeling approach
compared with baseline approach. Besides, due to space
limitations, we can not included all the results here. Please
refer to [18], if you want the evaluation results for the GLM
and the MARS-based ensemble models.

C. Summary

Findings: When predicting on realistic runs, our ensemble
models generally perform better than the single models
trained using the ideal runs only. Adding results from
the single resource stress runs into the training dataset
would improve the model performance. However, the effect
of adding other environment-variation-based load tests is
mixed. The model built using the larger window sizes (e.g.,
15 or 20 minutes window sizes) are usually better than the
models using smaller window sizes.
Implications: We can better model the performance behav-
ior under realistic changes to the SDE by leveraging the
results from the environment-variation-based tests. How-
ever, different types of environment-variation-based load
tests would have different impact on the model performance.
This motivates the need for further research into other kinds
of environment-variation-based load tests (e.g., stressing the
database component at various levels) and better perfor-
mance modeling techniques.

VII. THREATS TO VALIDITY

In this section, we will discuss the threats to validity.

A. Construct Validity

1) Performance Monitoring Overhead: We monitor the
SUT’s resource usage using an open source performance
monitoring tool, called pidstat. This tool is very low overhead
(< 1% CPU, < 0.1% memory, and very few disk writes). In
addition, we also collect the logs from JMeter and Tomcat to
calculate the workload and the response time. The access logs
for Tomcat are enabled by default. JMeter and the SUT are
run on different machines to avoid resource contention.

2) Evaluation Method: In this paper, we use the WC
method to check whether the predicted results match with the
actual measurements. We flag a prediction model to be bad
if the WRS test shows statistically significant and CD test
shows medium to large effect sizes between the predicted and
the actual measured values.

Mean Percentage Absolute Error (MAPE) is another popular
method to evaluate the quality of the predicted results [52].
The higher the MAPE values, the worse the prediction models

TABLE V: Percentage of scenarios which are different between the predicted results and the actual measurements. To conserve
space, the three model selection techniques, mean, winner-takes-all, and weighted average, are shown as “Mean”, “Winner”
and “Weighted” in the table. Win

10
, Win

15
and Win

20
refer to the three different training window sizes.

Window size Ensemble strategy DS2 PET JMS
Ideal Lab Labcmb All Allcmb Ideal Lab Labcmb All Allcmb Ideal Lab Labcmb All Allcmb

Win10

Mean 58.33% 41.67% 41.67% 41.67% 50.00% 51.11% 33.33% 48.89% 84.44% 95.56% 100.00% 66.67% 66.67% 66.67% 66.67%
Winner 66.67% 16.67% 33.33% 33.33% 58.33% 55.56% 6.67% 15.56% 4.44% 13.33% 100.00% 33.33% 22.22% 22.22% 22.22%

Weighted 58.33% 41.67% 41.67% 41.67% 41.67% 51.11% 15.56% 42.22% 66.67% 88.89% 100.00% 66.67% 66.67% 66.67% 66.67%

Win15

Mean 58.33% 41.67% 41.67% 41.67% 50.00% 51.11% 33.33% 48.89% 84.44% 95.56% 100.00% 66.67% 66.67% 66.67% 66.67%
Winner 66.67% 33.33% 8.33% 16.67% 25.00% 48.89% 6.67% 13.33% 6.67% 13.33% 100.00% 5.56% 0.00% 0.00% 0.00%

Weighted 58.33% 41.67% 41.67% 41.67% 41.67% 51.11% 22.22% 42.22% 75.56% 88.89% 100.00% 66.67% 66.67% 66.67% 66.67%

Win20

Mean 50.00% 41.67% 41.67% 41.67% 41.67% 44.44% 13.33% 44.44% 51.11% 80.00% 100.00% 66.67% 66.67% 66.67% 66.67%
Winner 66.67% 16.67% 33.33% 25.00% 25.00% 64.44% 4.44% 13.33% 6.67% 11.11% 100.00% 72.22% 5.56% 27.78% 5.56%

Weighted 50.00% 41.67% 41.67% 41.67% 41.67% 44.44% 11.11% 37.78% 44.44% 68.89% 100.00% 61.11% 66.67% 66.67% 66.67%
Baseline (50.00%) (28.89%) (94.44%)

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●
●●●

●
●

●

●
●

●
●

●

●●

●●●●●●●●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●●●
●●●

●●●●●●●●●●●
●●●●●●

●●●
●●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

0

30

60

90

120

0 25 50 75
Time

R
es

po
ns

e_
tim

e

Type
●

●

●

actual

prediction 1

prediction 2

Fig. 3: Comparison of the prediction results from two perfor-
mance models.

are. We have tried both the WC and MAPE as our evaluation
methods and have found in certain scenarios MAPE values
cannot highlight the strength and weaknesses of different
models. Figure 3 shows one such example. Prediction 1 (the
model trained with the ideal runs) and prediction 2 (the
ensemble model trained with more tests) have MAPE values of
0.452 and 0.507, respectively. This indicates that the baseline
model is better than the ensemble model. However, by looking
at the graph, the baseline model did not accurately capture the
trend of the data. The reason that the baseline model has a
smaller MAPE is because the baseline model always gives a
small prediction value than the ensemble model. When we use
the WC analysis on these data, the CD values for the baseline
and the ensemble models are 0.435 (medium effect size) and
0 (trivial effect size). This clearly shows that the prediction
results from the baseline model are worse than the ensemble
model’s results.

B. Internal Validity

There are four configurable parameters in our ensemble
models: the ensemble strategy, the training window size, the
test window size, and the type of training data. In RQ3,
we have kept the test window size fixed (10 minutes) and
systematically assess the impact of three other parameters.

C. External Validity

In this paper, we assess the performance impact of environ-
ment changes using three open source systems. These three
open source systems are picked because they are from different
application domains, implemented with different technology,
and have different deployment topologies. However, our find-
ings may not be generalizable to other systems. In addition,
although we have proposed various kinds of environment-
variation-based load tests (e.g., realistic runs and lab stress
runs), there can be more. For example, if the SUT is deployed
in a multi-tenant environment, another type of realistic load
tests can be running the SUT while the database is doing
additional unrelated processing tasks. However, the goal of
this paper is to explore this rarely studied but very important
area and motivates further research into this subject.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the impact of the SDE
variations on the results of load tests. We have run over
110 hours of environment-variation-based load tests on three
different target systems. Our analysis shows that there is a
clear performance impact on the SUT due to SDE changes.
However, not all scenarios react the same to the changes of the
computing resources. We have developed an ensemble-based
modeling technique, which leverages the results of existing
environment-variation-based load tests. Case studies show that
our ensemble models perform better than the baseline models
when predicting the performance of the realistic runs.

In the future, we plan to extend this study by researching
into more types of environment-variation-based load tests and
better performance modeling techniques. In addition, we also
want to investigate techniques which can dynamically adjust
the test environment (e.g., adding or removing computing
resources) based on the performance of the SUT.

REFERENCES

[1] A. Avritzer and E. J. Weyuker, “The Automatic Generation of Load
Test Suites and the Assessment of the Resulting Software,” IEEE
Transactions on Software Engineering, 1995.

[2] M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J. Forsmann,
“Web Services Wind Tunnel: On Performance Testing Large-Scale
Stateful Web Services,” in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2007.

[3] S. G. Stolberg and M. D. Shear, “Inside the Race to Rescue a Health
Care Site, and Obama,” 2013, http://www.nytimes.com/2013/12/01/us/
politics/inside-the-race-to-rescue-a-health-site-and-obama.html, visited
2017-02-09.

[4] D. Beeby, “Design flaws crashed StatsCan’s census website: documents,”
http://www.cbc.ca/news/politics/census-statistics-canada-computers-
online-webpage-1.3649989, visited 2017-02-09.

[5] G. Mitchell, “Census 2016: IT experts say Bureau of Statistics should
have expected website crash,” http://www.smh.com.au/national/census-
2016-it-experts-say-bureau-of-statistics-should-have-expected-website-
crash-20160809-gqosj7.html, visited 2017-02-09.

[6] G. M. Leganza, “The Stress Test Tutorial,” in Proceedings of the 1991
Computer Management Group Conference (CMG), 1991.

[7] A. Savoia, “Web Load Test Planning: Predicting how your Web site will
respond to stress,” STQE Magazine, 2001.

[8] Z. M. Jiang and A. E. Hassan, “A Survey on Load Testing of Large-
Scale Software Systems,” IEEE Transactions on Software Engineering,
2015.

[9] J. Zhou, S. Li, Z. Zhang, and Z. Ye, “Position Paper: Cloud-based
Performance Testing: Issues and Challenges,” in Proceedings of the 2013
International Workshop on Hot Topics in Cloud Services (HotTopiCS),
2013.

[10] M. Yan, H. Sun, X. Wang, and X. Liu, “Building a TaaS Platform
for Web Service Load Testing,” in Proceedings of the 2012 IEEE
International Conference on Cluster Computing (CLUSTER), 2012.

[11] “Shunra Network Virtualization for HP Software,” http://media.shunra.
com/datasheets/ShunraNVforHP.pdf, visited 2017-02-09.

[12] “BlackBerry fixes critical Enterprise Server flaw,” http://www.
itpro.co.uk/630034/blackberry-fixes-critical-enterprise-server-flaw, vis-
ited 2017-02-09.

[13] “Identifying and resolving performance-related issues caused by the
Behavior Monitoring and Device Control,” https://success.trendmicro.
com/solution/1056425-identifying-and-resolving-performance-related-
issues-caused-by-the-behavior-monitoring-and-device-co, visited
2017-02-09.

[14] A. B. Bondi, “Challenges with Applying Performance Testing Methods
for Systems Deployed on Shared Environments with Indeterminate
Competing Workloads: Position Paper,” in Companion Publication for
ACM/SPEC on International Conference on Performance Engineering
(ICPE), 2016.

[15] P. Leitner and J. Cito, “Patterns in the Chaos&Mdash;A Study of
Performance Variation and Predictability in Public IaaS Clouds,” ACM
Transactions on Internet Technology (TOIT), 2016.

[16] X. Sun and A. May, “A Comparison of Field-based and Lab-based Ex-
periments to Evaluate User Experience of Personalised Mobile Devices,”
Advances in Human-Computer Interaction, 2013.

[17] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos Engineering,” IEEE Software,
2016.

[18] “Replication Package,” https://goo.gl/vGk1HV, visited 2017-02-09.
[19] S. Barber, “Creating Effective Load Models for Performance Testing

with Incomplete Empirical Data,” in Proceedings of the Sixth IEEE
International Workshop on the Web Site Evolution (WSE), 2004.

[20] D. Bainbridge, I. H. Witten, S. Boddie, and J. Thompson, Research
and Advanced Technology for Digital Libraries. Springer, 2009, ch.
Stress-Testing General Purpose Digital Library Software.

[21] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is Data Privacy Always
Good for Software Testing?” in Proceedings of the 21st International
Symposium on Software Reliability Engineering (ISSRE),, 2010.

[22] Y. Wang, X. Wu, and Y. Zheng, Trust and Privacy in Digital Business.
Springer, 2004, ch. Efficient Evaluation of Multifactor Dependent Sys-
tem Performance Using Fractional Factorial Design.

[23] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Evaluating
the accuracy of Java profilers,” Proceedings of the ACM SIGPLAN 2010
Conference on Programming Language Design and Implementation
(PLDI), 2010.

[24] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java
Performance Evaluation,” in Proceedings of the 22nd International
Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), 2007.

[25] J. Robbins, K. Krishnan, J. Allspaw, and T. Limoncelli, “Resilience
Engineering: Learning to Embrace Failure,” Queue, 2012.

[26] M. Acharya and V. Kommineni, “Mining Health Models for Perfor-
mance Monitoring of Services,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2009.

[27] H. Nakama, “Inside Azure Search: Chaos Engineering,” 2015,
https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-
engineering/, visited 2016-9-12.

[28] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quanti-
tative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Inc., 1984.

[29] C. Barna, M. Litoiu, and H. Ghanbari, “Autonomic load-testing frame-
work,” in Proceedings of the 8th ACM international conference on
Autonomic computing, 2011.

[30] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing Perfor-
mance Prediction Robustness by Combining Analytical Modeling and
Machine Learning,” in Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering (ICPE), 2015.

[31] W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Automated Detection
of Performance Regressions Using Regression Models on Clustered Per-
formance Counters,” in Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, 2015.

[32] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “vPerfGuard: an automated
model-driven framework for application performance diagnosis in con-
solidated cloud environments,” in Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, 2013.

[33] M. Courtois and M. Woodside, “Using Regression Splines for Software
Performance Analysis,” in Proceedings of the 2nd International Work-
shop on Software and Performance (WOSP), 2000.

[34] A. B. de Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Why you should care about quantile regression,” in Proceed-
ings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2013.

[35] D. Didona and P. Romano, “Performance modelling of partially repli-
cated in-memory transactional stores,” in Proceedings of the 22nd Inter-
national Symposium on Modelling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2014.

[36] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu, “A Framework to Evaluate
the Effectiveness of Different Load Testing Analysis Techniques,” in
Proceedings of the 9th IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2016.

[37] “Dell DVD Store Database Test Suite,” http://linux.dell.com/dvdstore/,
visited 2017-02-09.

[38] “A sample Spring-based application,” https://github.com/spring-projects/
spring-petclinic, visited 2017-02-09.

[39] “Apache James Project,” http://james.apache.org/, visited 2017-02-09.
[40] R. Gao, Z. M. J. Jiang, C. Barna, and M. Litoiu, “Replication Package,”

https://www.dropbox.com/s/1xzfxc28pf2h284/rep package.zip?dl=0.
[41] “Exchange Server 2003 MAPI Messaging Benchmark 3,”

https://technet.microsoft.com/en-us/library/cc164328%28v=exchg.
65%29.aspx?f=255&MSPPError=-2147217396, visited 2017-02-09.

[42] “Playing with Exchange in a Sandbox,” https://technet.microsoft.com/
en-gb/magazine/2006.08.exchangesandbox.aspx, visited 2017-02-09.

[43] “Apache JMeter,” http://jmeter.apache.org/, visited 2015-10-23.
[44] “Performance monitoring tools for Linux,” https://github.com/sysstat/

sysstat, visited 2017-02-09.
[45] “rsync(1) - Linux man page,” http://linux.die.net/man/1/rsync, visited

2017-02-09.
[46] “ClamAV,” https://www.clamav.net/, visited 2017-02-09.
[47] “Stress-ng,” http://kernel.ubuntu.com/∼cking/stress-ng/, visited 2017-

02-09.
[48] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE and other

http://www.nytimes.com/2013/12/01/us/politics/inside-the-race-to-rescue-a-health-site-and-obama.html
http://www.nytimes.com/2013/12/01/us/politics/inside-the-race-to-rescue-a-health-site-and-obama.html
http://www.cbc.ca/news/politics/census-statistics-canada-computers-online-webpage-1.3649989
http://www.cbc.ca/news/politics/census-statistics-canada-computers-online-webpage-1.3649989
http://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-statistics-should-have-expected-website-crash-20160809-gqosj7.html
http://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-statistics-should-have-expected-website-crash-20160809-gqosj7.html
http://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-statistics-should-have-expected-website-crash-20160809-gqosj7.html
http://media.shunra.com/datasheets/ShunraNVforHP.pdf
http://media.shunra.com/datasheets/ShunraNVforHP.pdf
http://www.itpro.co.uk/630034/blackberry-fixes-critical-enterprise-server-flaw
http://www.itpro.co.uk/630034/blackberry-fixes-critical-enterprise-server-flaw
https://success.trendmicro.com/solution/1056425-identifying-and-resolving-performance-related-issues-caused-by-the-behavior-monitoring-and-device-co
https://success.trendmicro.com/solution/1056425-identifying-and-resolving-performance-related-issues-caused-by-the-behavior-monitoring-and-device-co
https://success.trendmicro.com/solution/1056425-identifying-and-resolving-performance-related-issues-caused-by-the-behavior-monitoring-and-device-co
https://goo.gl/vGk1HV
https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-engineering/
https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-engineering/
http://linux.dell.com/dvdstore/
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
http://james.apache.org/
https://www.dropbox.com/s/1xzfxc28pf2h284/rep_package.zip?dl=0
https://technet.microsoft.com/en-us/library/cc164328%28v=exchg.65%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/cc164328%28v=exchg.65%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-gb/magazine/2006.08.exchangesandbox.aspx
https://technet.microsoft.com/en-gb/magazine/2006.08.exchangesandbox.aspx
http://jmeter.apache.org/
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
http://linux.die.net/man/1/rsync
https://www.clamav.net/
http://kernel.ubuntu.com/~cking/stress-ng/

surveys?” in Annual meeting of the Florida Association of Institutional
Research, 2006.

[49] C.-W. Ho, L. Williams, and A. I. Anton, “Improving Performance
Requirements Specification from Field Failure Reports,” in Proceedings
of the 15th IEEE International Requirements Engineering Conference
(RE), 2007.

[50] A. Avritzer and A. B. Bondi, “Resilience Assessment Based on Perfor-
mance Testing,” in Resilience Assessment and Evaluation of Computing
Systems, K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, Eds.
Springer Berlin Heidelberg, 2012.

[51] P. McCullagh and J. A. Nelder, Generalized linear models. Chapman
and Hall/CRC, 1989.

[52] A. Heiat, “Comparison of artificial neural network and regression models
for estimating software development effort,” Information and software
Technology, 2002.

