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Abstract—The backbone of cloud computing platforms like
Amazon S3 and Salesforce is formed by Ultra-Large-Scale
(ULS) systems, i.e., complex, globally distributed infrastructure
consisting of heterogeneous sets of software and hardware nodes.
To ensure that a ULS system can scale to handle increasing
service demand, it is important to understand the system’s
performance behaviour, for example to pro-actively plan for
hardware upgrades. A good performance model should ad-
dress concerns from all stakeholders at the level appropriate
to their knowledge, interest, and experience. However, this is
not straightforward, since stakeholders of ULS systems have a
wide range of backgrounds and concerns: software developers
are more interested in the performance of individual software
components in the system, whereas managers are concerned
about the performance of the entire system in different con-
figurations. In this paper, we adapt the “4+1 View” model for
software architecture to performance analysis models by building
simulation models with multiple layers of abstraction. As a
proof-of-concept, we conducted case studies on an open source
RSS (Really Simple Syndication) Cloud system that actively
delivers notifications of newly published content to subscribers,
and on a hypothetical, industry-inspired performance monitor
for ULS systems. We show that our layered simulation models
are effective in identifying performance bottlenecks and optimal
system configurations, balancing across performance objectives.

Index Terms—ULS, layered performance simulation, 4+1 view

I. INTRODUCTION

Today’s cloud computing platforms, such as Amazon
S3/EC2 or Salesforce, are driven by Ultra-Large-Scale (ULS)
systems, i.e., complex infrastructure that is distributed across
the world and consist of thousands of heterogeneous software
and hardware nodes [10]. Millions of people use, and typ-
ically depend on, such ULS systems, whereas thousands of
developers are needed to maintain and develop them. Since
software failure is a fact, not a risk in ULS systems, ensuring
the performance of ULS systems is a top priority for cloud
computing vendors. However, because of the complexity of
ULS systems, it is typically impossible to have a dedicated
system running in a lab environment for performance testing.
As a result, organizations perform performance modeling to
help them determine if their systems can scale with the growth
in demand for cloud capacity.

Performance modeling is a structured and repeatable process
of modeling the performance-related aspects of the design

of a software system [18]. By solving or simulating the
performance models, performance engineers can obtain esti-
mates of, for example, response time and resource utilization
at various arrival rates. Performance modeling can provide
valuable information for system architects to catch bad designs
early, and for developers to make informed decisions about
potential performance hotspots [9], [18].

A good performance model should enable different stake-
holders, each having different backgrounds and interests, to
understand the performance of a software system without
getting overwhelmed with unnecessary information [20]. Fur-
thermore, visualization of the model is also important to
improve the understandability of the program design. However,
the current two major classes of performance models, i.e.,
analytical and discrete-event simulation models, do not support
these two requirements.

Analytical performance models such as Layered Queueing
Networks (LQN) use mathematical equations and statistical
concepts to model the performance of software systems. The
inputs of an analytical model are the average arrival rate
of requests and a set of average values that represent the
(hardware and software) resource usage of each request [9].
Outputs are the performance behaviour and resource utiliza-
tion. The construction and usage of analytical models demand
a substantial level of expertise [21]. Some techniques can
automatically construct models based on representative run-
time traces of a software system [6], but those are typically
not available in ULS systems.

In contrast to analytical models, discrete-event simulation
models capture the behaviour of a software system as a
chronological sequence of events [12]. Performance statistics,
such as the response time for each request, can be obtained
by executing the simulation model against a simulation clock,
which allows simulation of an 8-hour work day in a couple
of minutes. Simulation models are usually created to test
specific performance aspects for specific stakeholders, e.g., the
performance impact of the Java garbage collection. Although
dedicated libraries (e.g., [11]) exist to implement and visualize
simulation models, the size and complexity of ULS systems
prohibit the development of one global simulation model
supporting all stakeholders.



Development
ViewLogical View

Process View Physical View

Scenario
View

Fig. 1. The “4+1 View” model.

TABLE I
PERFORMANCE CHARACTERISTICS OF STAKEHOLDERS.

Stakeholder Performance Concerns
End user Overall system performance for various configurations
Developer Organization and performance of system modules

System Engineer Hardware resource utilization of the system
System Integrator Performance of high-level components

In order to construct, in a systematic way, ULS simulation
models that can address the performance concerns of multiple
stakeholders of a cloud-based systems, we propose to incor-
porate the principles of the “4+1 View” Model for software
architecture into layer-based simulation models. Similar to
the “4+1 View” Model, our simulation model consists of
multiple layers of different granularity, each targeting different
performance concerns for different stakeholders. For example,
system architects can use the model with rough estimates
of resource requirements to evaluate different design options
at the beginning of the development. Later on, performance
analysts can use our layered simulation model with concrete
resource consumption measurements to recommend optimal
system configurations for different deployment scenarios.

Our main contributions are as follows:
• Our layered simulation models provide a clear separation

of different aspects of a software system to aid stakehold-
ers in understanding the performance of a system.

• We conducted two case studies to demonstrate the pro-
cess of constructing layered simulation models, and to
show that the models are useful in both discovering
performance bottlenecks and selecting the optimal system
configuration for ULS systems.

The paper is organized as follows. Section II reviews the
“4+1 View” Model for software architecture from which our
layered model is derived. Section III presents our layered mod-
els, whereas Section IV discusses their construction. Section V
presents two case studies to demonstrate how to use layered
simulation models to select optimal system configurations.
Section VI discusses our approach and findings. Section VII
presents related work and Section VIII concludes the paper.

II. “4+1 VIEW” MODEL FOR SOFTWARE ARCHITECTURE

ULS systems forming the backbone of cloud computing
infrastructure are often too complex to be represented by a
single architectural diagram [3], [4]. Currently, a variety of

TABLE II
MAPPING OF OUR SIMULATION MODELS TO THE “4+1 VIEW” MODEL.

Stakeholder Layer in Our Model “4+1 View” Model
Architects, Managers

World View Layer Logical ViewEnd users
Sales Representatives

Developers Component Layer Development View
System Integrators Process View
System Engineers Physical Layer Physical View
All Stakeholders Scenario Scenario

formalisms is available to model different aspects of a software
system. For example, developers use UML class diagrams
to document system functionality, while system integrators
use UML activity diagrams to represent the system runtime
behaviour. Each notation describes the parts of the system that
are of particular interest to a stakeholder.

In order to maintain a complete description of a software
system, Kruchten proposed the “4+1 View” model [7]. This
model contains five concurrent views (Figure 1), each repre-
senting the viewpoint of a particular stakeholder:

• The logical view focuses on the functional requirements
of a software system, and primarily targets the concerns
of end users.

• The process view addresses the concerns of system in-
tegrators, who specialize in bringing together different
components of a software system. This view concerns
the run-time behaviour of the system, e.g., concurrency,
performance, and scalability.

• The development view considers the organization of
software modules and mainly targets the concerns of
developers and software managers.

• The physical view illustrates the software system from
a system engineer’s perspective. This view describes
how the software system is deployed and takes into
account non-functional requirements such as reliability,
availability and scalability.

• The “plus-one” view consists of a set of test cases and
scenarios to show how the elements identified by the other
four views work together. The plus-one view validates the
software design.

Similar to software architecture, different stakeholders of
a software system also have different performance concerns
(Table I). For example, system engineers typically focus on
optimal usage of the available hardware resources, whereas
end users are interested in the general responsiveness of
the system. A good simulation model should address each
stakeholder’s concerns separately, without overloading stake-
holders with unnecessary details. Inspired by the “4+1 View”
model, this paper proposes a software simulation model that
decomposes the performance of a software system into a
three-layer hierarchy, with an additional layer to describe the
different usage scenarios.

III. LAYERED SIMULATION MODEL

This section presents the concept of layered simulation
models, whereas the next section discusses the construction
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TABLE III
COMPONENTS AND CONNECTIONS IN FIGURE 2.

Layer Component Connected to

World view layer Users, blogs RSS server
RSS server Users, blogs

Component layer
In/out queues Application logic

Application logic In/out queues, Hardware
Hardware Application logic

Physical layer Hardware allocator CPU, RAM, Disk
CPU, RAM, Disk Hardware allocator

of such models. As shown in Table II, each layer in a
layered simulation model addresses the concerns of a group of
stakeholders. The layers roughly correspond to the five views
in the “4+1 View” model. The process and development views
in the “4+1 View” are combined into a single layer (compo-
nent layer) that captures the integration and performance of
individual components in a software system.

System integrators can examine the dynamic aspects of
the system by monitoring the communication between the
simulated components of the system, even across different
layers. The layers in our simulation model are linked to each
other and can be constructed incrementally from high to low
level of abstraction as details about the software become
available. A partially complete model, e.g., a model that only
contains high-level components such as databases and servers,
can be used to guide the software design at the early stages
of development. The following sections discuss in detail the
purpose of each layer.

A. World View Layer

The world view layer represents the high-level system com-
ponents and their relations as a network of nodes and edges.
This layer is the top and most abstract layer in our model. It
addresses high-level, often business-oriented, concerns such as
evaluating whether the current infrastructure of the software
system can support the projected growth in the customer base.

Initially, each high-level component in the world view layer
represents a place-holder for the logic that will be added by
lower layers. Performance analysts can assign rough resource
estimates to these place-holders for initial analysis. Later
on, in a complete model, the world view layer can still
be used to measure the performance impact of adding new
nodes to a distributed system or to test different deployment
scenarios, since it hides the details of the underlying layers
while transparently leveraging the detailed performance logic
of those layers (if available).

Figure 2 shows an example layered simulation model con-
structed for an RSS Cloud system. RSS [14] is a format
for delivering frequently-updated content to subscribers. In an
RSS Cloud system, an RSS server actively pushes notifications
of new content to the users. Table III summarizes the different
components in each layer and the connections between them.

Figure 2a shows the world view layer of the RSS Cloud
system. The simulation model consists of three high-level
components, i.e., the websites that publish personal journals
(blogs), the users that subscribe to the blogs, and the RSS

server through which each blog is connected to its users.
The bidirectional arrows in Figure 2a depict the two-way
communication between components.

B. Component Layer

The component layer decomposes each high-level compo-
nent defined in the world view layer into logical entities.
Similar to the world view layer, the components and the
communication between them are represented as a network
of nodes and edges (Figure 2b).

For example, the RSS server in Figure 2a can be broken
down into a number of components: the software component
that represents the software logic, and the input and output
queues that act as communication channels from the server
to other high-level components defined in the world view
layer. Performance analysts can define different processing
requirements to each layer component, for instance the time
required to process different types of service request, and the
capacity of various logical resources, such as the thread pool
and queues.

Developers can leverage the component layer to understand
the communication patterns in a software system, to grasp
the performance ramifications of handling different mixes of
service request types, or to study the performance of different
threading models. During the execution of a simulation model,
performance analysts can temporarily stop the simulation
program and examine internal information such as queue size
or network bandwidth consumption.

C. Physical Layer

The physical layer connects the logical components in the
component layer to the underlying hardware resources. The
physical layer mainly targets the concerns of system engineers.
Figure 2c shows three hardware resources in the RSS server:
CPU, Memory, and Disk. Performance analysts can specify
the hardware resource requirements for each type of service
request. For example, a request to submit a new blog post may
consume 50 kilobyte of Memory while the request is being
processed. Using the Physical Layer, system engineers can
study the behaviour of resource utilization at different request
rates. Furthermore, system engineers can use this view to
determine the performance bottleneck of the system at higher
request rates.

D. Scenario Layer

The scenario layer uses a set of test case scenarios to
show how the elements defined in the three other layers work
together. Scenarios from the end user’s point of view include
the different deployment scenarios and the composition of
different types of service requests passed to the software
system. For the example in Figure 2, one scenario could
specify that there are four blogs connected to the RSS server,
50% of which are located in North America with an average
bandwidth of 2 Megabit/second, and the rest are located in
Europe with an average bandwidth of 1 Megabit/second. The
scenarios define how the software components are deployed,
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Figure 1: Example of Layered Simulation Model for a RSS Server. Fig. 2. Example Layered Simulation Model for an RSS Cloud Server.

and what workload is used in the simulation to estimate the
system performance.

IV. MODEL CONSTRUCTION

The construction of a layered simulation model is an
iterative process. The three layers in our proposed model
can be constructed in a top-down fashion during different
stages of the software development life cycle. For example,
performance analysts would start with the world view layer
to model the general deployment scenario of the software
system. The world view layer can initially be constructed
according to the system specification or to similar products
in the market. Estimates of resource requirements are given
to each high-level component. The partial simulation model
is run with the request arrival rates that are either observed
from similar systems or derived from existing benchmarking
standards. Such a partial simulation model is similar to the
Software Execution Model [18], [17], which is typically used
in the early stages of software development, when only limited
processing requirements are available. Similar to that kind of
model, the accuracy of our partial simulation model should
reflect the resource utilization and response time within 10%
and 30% accuracy, respectively.

As more details become available, performance analysts
can improve the simulation model by extending each high-
level component with the component and physical layers,
and by giving better resource estimates for different request
types. Such an incremental model building approach requires
programming libraries that support modular development of
simulation models. With such programming libraries, one can
initially use place-holders to represent high-level components.
As more details become available, each place-holder can be
expanded to model the logical and hardware resources.

All layers of the model are interconnected. As a request
flows through the model, the request is passed between the
layers transparently. For example in Figure 2, a request is first
generated by a blog and passed to the internal components
that make up the RSS server. The left- and right-most arrows
in Figure 2b represent the incoming and outgoing ports of the
RSS server for communication with other high-level compo-
nents, such as the blogs and users.

V. CASE STUDIES

We conducted two separate case studies using our layered
simulation models. In the first case study, we demonstrate (1)
the construction of a layered simulation model for an RSS
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Cloud system and (2) how performance data can be extracted
from the model. In the second case study, we show how our
layer-based simulation model can be used to detect problems
in ULS systems by helping to evaluate different design options.

To build our layered simulation models, we use the OM-
Net++ framework [11]. OMNet++’s compound modules pro-
vide the run-time infrastructure to perform discrete event
simulation and the means to implement the three hierarchical
layers in our model. Each layer of a software system comprises
a collection of entities. Each entity contains a set of state
variables to reflect the properties of the entity at any point in
time during the simulation. The collection of state variables
from all entities represents the overall state of the system.

Case Study 1: Modeling an RSS Cloud

In this case study, we demonstrate the process of con-
structing a simulation model for the RSS cloud system in
Figure 2. We use the performance information obtained from
our simulation model to determine the performance bottle-
necks. A performance bottleneck is a phenomenon where the
performance of the entire system is limited by a single compo-
nent. For example, if a server CPU would be the performance
bottleneck, the notification request rate may overwhelm that
server’s CPU capacity, resulting in a continuous growth of the
request buffer usage. As a result, the average response time
and throughput in the system would suffer.

1) System Description: In order to model an RSS cloud,
we need to better understand the RSS communication proto-
col. The RSS protocol is heavily used by blogging service
providers such as Wordpress.com [23] to publish new web
content. The traditional “pull” mechanism used by RSS readers
periodically queries the RSS server for updates of a specific
feed. The pull mechanism introduces latency between the
publication of new content and the reception of this content
by the RSS readers. To eliminate the latency introduced
by pulling, the RSS cloud [15] – an extension to RSS –
actively delivers notifications of newly published items to feed
subscribers. This mechanism is known as “push”.

Because the RSS cloud requires the hosting server to
actively send notifications for each new item, the push mech-
anism puts a heavy resource requirement on the blogging
service provider’s infrastructure. For example, each time new
content is published, the hosting server must initiate a separate
connection to each subscriber to send a notification. For a
service provider hosting hundreds of thousands of blogs with
possibly millions of subscribers, the resource requirements of
sending notifications would potentially exceed the available
capacity. Furthermore, the large number of notifications may
overwhelm online feed aggregator services such as Google
Reader [5] that automatically download feed content for hun-
dreds of thousands of users. The sections below document our
experience of constructing a layered simulation model for the
RSS cloud.

2) World View Layer of the RSS Cloud System: Figure 2a
shows the world view layer for the simulation model of the
RSS cloud. In this layer, the service provider, which supports

the RSS cloud extension, connects the various blogs to the
subscribing users. When new content is published, the service
provider will send a fixed-size (e.g., 5 kilobyte) notification to
all subscribers. To simplify our simulation, we vary the number
of subscribers in a normally distributed fashion around a mean
of 20 subscribers per feed.

To ensure reliability, subscribers acknowledge to the RSS
server the reception of the content update notification. To
monitor the delivery of the notification, the RSS server uses
an internal timer. If an acknowledgment is not received before
the timer expires, the RSS server assumes that the message
is lost and will automatically resend the notification until the
maximum number of resends for a subscriber is reached.

The network connections between all entities are charac-
terized by two parameters: bandwidth and latency. We vary
these two parameters to model a realistic environment where
subscribers and blogs are globally distributed.

3) Component Layer of the RSS Cloud System: Figure 2b
shows the component layer of the RSS server. The RSS server
has four major logical components: two pairs of IN and OUT
queues that buffer the communication between the subscribers
and the blogs, the “app logic” component, which abstracts
away the system logic of the RSS server, and the “hw core”
component, which represents the physical hardware platform
on which the RSS server resides.

Two types of resources are required to process a notification
in the RSS Cloud system:

• Logical resources In our simulation model, there is one
logical resource, i.e., the thread pool in the RSS server.
The threads in this pool will process each notification
request. If all threads in the pool are busy, the request
will wait in the buffer of the input queue until a thread
becomes available.

• Hardware resources Each notification request received
from the blog will consume a specific number of units
from each hardware resource. If all resources are used
up, the request will wait in the buffer until the required
resources become available.

The overall resident time of a notification request in the RSS
server is the sum of the wait time in the RSS server’s queue
for acquiring the resources and the processing time required
by the RSS server.

4) Physical Layer of the RSS Cloud System: Figure 2c
shows the hardware platform of the RSS server. In our simula-
tion, we assume that each notification request will compete for
three physical resources: CPU, disk and memory. Each request
will require a certain number of units from each resource while
the request is being processed. For example, we can specify
in the simulation that our RSS server has access to 1 gigabyte
of memory, and that each notification will hold 50 kilobyte of
memory when it is being processed. The resources are released
when the request is serviced.

5) Model Validation: To ensure that the simulation model
is specified correctly, we tested our model with a simplified
use case where only one blog and one user are connected
to the RSS server. In the test, all requests generated by
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TABLE IV
PROCESSING REQUIREMENTS FOR AN RSS NOTIFICATION.

Resource Requirement
CPU 2 unit
RAM 5 kB

Thread 1
Processing time 2 seconds
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Fig. 3. Throughput of the RSS server at various request arrival rates (world
layer).

the blog component are serviced by the RSS server and
subsequently received by the subscriber. Through visualization
of the simulation and detailed traces, we are able to verify
the timing of the requests as they propagate through the
components in the different layers of our model.

6) Performance Bottleneck Identification: The core task of
performance analysts is to determine if changes in the design
of a software system would result in performance regressions,
and whether or not such regressions would lead to performance
bottlenecks. Here we show how layered simulation models are
able to support performance analysts in these tasks.

We manually specify the resource requirements for process-
ing an RSS notification request (Table IV), then examine the
RSS server performance by varying the notification request
arrival rate (but keeping it steady stream). Requests sent
from the blogs to the RSS server are initially stored in the
request buffer. Depending on whether or not the RSS server
has enough resources (e.g., CPU, RAM, and a free thread)
available, a thread will pick up the request from the buffer
and allocate the required resources. Each request is processed
for 2 simulated seconds during which all allocated resources
are blocked by the thread. When the thread has processed the
request, all previously allocated resources are released. The
thread that has just been freed will pick up the next message
in the request buffer.

To avoid random noise and fluctuations, we ran 10 sim-
ulations, each simulating one hour of operation with arrival
rates ranging from 5 to 25 requests per second. During
these simulations, we collected various statistics from different
layers of the simulation model (Figures 3 to 5), such as
throughput and response time of the world view layer, number
of threads used in the component layer, and CPU and RAM
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Fig. 4. Response time of the RSS server at various request arrival rates
(world layer).
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Fig. 5. Resource utilization of the RSS server at various request arrival rates
(physical layer).

utilization of the physical layer.
As evident from Figures 3 and 4, the system throughput and

response time both degrade at 17 requests/second. In order
to determine the bottleneck responsible for this, we examine
statistics of resource utilizations (thread, CPU, and RAM)
collected at the component and physical layers. Figure 5 shows
that the CPU reaches 100% utilization at 17 requests/second
while the thread and RAM utilizations are below 50%.

A request is only processed if all required resources can be
allocated at once. If the CPU does not have enough capacity
to serve a request, the request will wait in the buffer until the
CPU becomes available, regardless of the availability of other
resources. In other words, the CPU prevents other resources
from being fully used and is therefore the performance bot-
tleneck of the system. To ensure that the system can handle
future growth of request arrival rate, system engineers should
focus on CPU usage, for example by upgrading the CPUs or
increasing the number of CPUs.

This case study has shown that a layered simulation model
focusing on different stakeholders is able to identify perfor-
mance bottlenecks in complex software systems.

Case Study 2: Evaluating Changes to System Design

As the demand for services increases, organizations examine
different options to increase the performance of their systems
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TABLE V
PERFORMANCE DATA COLLECTED PER LAYER.

Layers Performance Data
World view layer Response time, Transmission Cost
Component layer Thread Utilization

Physical layer CPU and RAM utilization

to cope with the high volumes of workload. In this case study,
we use our simulation model to evaluate the performance
benefits of migrating a centralized performance monitor for
ULS systems to a distributed architecture. Since the per-
formance of distributed systems is highly dependent on the
configuration, the performance analyst should first determine
which configuration of the distributed system provides the best
performance.

1) System Description: Performance monitors are used to
detect problems in the services provided by a ULS system.
Such systems distribute computational units around the world
to keep servers geographically close to the users. In the
original design, one performance monitor would periodically
collect performance data from each computational unit di-
rectly. While it is easy to administer, this centralized design
has heavy resource requirements.

In a distributed design, each computational unit is connected
to a local monitoring agent as shown in Figure 6. The local
monitoring agents periodically collect, compress and upload
the performance data to a central monitor for analysis. The
central monitor may occasionally send back an updated set of
monitoring policies to the local agents.

There are two major challenges involved with monitoring
ULS systems:

• Communication latency ULS systems are decentralized
around the world. Due to the large physical distances be-
tween the nodes and the central monitor, the performance
data may not reflect the current state by the time the data
is received by the central monitor.

• Financial cost of data transmission Depending on the
frequency with which the performance data is sent, the
cost of data transmission may be prohibitively high for
ULS systems with many nodes deployed across the globe.

2) Simulation Model: Figure 6 shows the world view layer
of the simulation model for the industry-inspired performance
monitor used in our case study. The local monitoring agents
and the central monitor are modeled using the same architec-
ture as the RSS server (Figure 2).

Our simulation model has two tuneable parameters:
• Data collection frequency The rate at which local

monitoring agents collect performance data from their
respective computational units.

• Data broadcast period The amount of time an agent
would wait between each successive upload of perfor-
mance data. Data collected by the agents is first stored
locally. When the send timer fires, all stored data is
uploaded to the central monitor.

We conducted a series of simulated runs with 15 combi-

TABLE VI
CATEGORIZATION OF CPU UTILIZATION.

CPU Util. Low OK High Very High
Range (s) < 30 30 – 60 60 – 75 > 75

Discretization 0.25 0.5 0.75 1

TABLE VII
CATEGORIZATION OF RAM UTILIZATION.

RAM Util. Low OK High Very High
Range (%) < 25 25 – 50 50 – 60 > 60

Discretization 0.25 0.5 0.75 1

nations of collection frequencies (0.1, 0.2, and 0.3 times per
second) and broadcast periods (1, 3, 5, 7, and 9 seconds).
Each of the 15 runs simulates an eight-hour workday. Each
data collection consumes on average 30 Megabyte of memory
and 10 CPU units, and lasts for 3 simulated seconds. Table V
shows for each layer the performance data collected during a
simulation run.

3) Evaluation of Configurations: In this section, we show
that, by considering the performance data from all three layers,
we are able to select a configuration that leads to a balance
of three important aspects: cost, performance, and resource
consumption. For this, we define a score to rank configurations
according to multiple performance objectives.

Configuration Score We use the concept of configuration
score to evaluate a given configuration of performance coun-
ters. This score needs to take into account that some counters
are perceived by stakeholders in a fuzzy manner. For example,
the difference between a CPU utilization of 20% and 25% is
hard to observe and hence does not really matter. On the other
hand, counters such as the response time and dollar cost are
usually perceived by customers in a crisp way.

To account for the fuzziness of counter perception, we
discretize the fuzzy counter values into discrete levels, where
each level is ranked by a number between 0 and 1 according
to stakeholder perception. Tables VI and VII show the cat-
egorization for CPU and RAM utilizations, respectively. For
counters perceived in a crisp way (e.g., response time and
cost), we use the original counter values.

The configuration score is calculated as the product of
the discretized or crisp counter values of a configuration.
As a simplified example, if a given configuration exhibits an
average response time of 5.61 seconds, consumes on average
46% of the central monitor CPU, and has a cost of $10,
then the score of this configuration would be calculated as
follows (taking into account the discretization levels of CPU
Utilization in Table VI):

Responsetime = 5.61 seconds

Cost = $10

CPU Utilization = 46%→ 0.5

−−−−−−−−− −−−−−−−−−−
⇒ Score = 5.61× 10× 0.5 = 28.1

7
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Fig. 6. World view layer of the performance monitor for ULS systems.

TABLE VIII
SIMULATION RESULTS FOR THE DISTRIBUTED DESIGN OF THE PERFORMANCE MONITOR.

Data Collection Layers Data Broadcast Response time (s) Cost per Central Monitor Central Monitor Central Monitor
Frequency (Hz) Period (s) transmission ($) Thread Util. (%) CPU Util. (%) RAM Util. (%)

0.1
World View 1 6.8 5.0 1.6 15.6 6.1
Component 1 6.8 5.0 1.6 15.6 6.1

Physical 1 6.8 5.0 1.6 15.6 6.1

0.2
World View 1 7.7 5.0 4.0 40.3 15.7
Component 1 7.7 5.0 4.0 40.3 15.7

Physical 7 8.9 5.3 2.3 23.4 9.2

0.3
World View 1 8.9 5.0 6.4 64.4 25.3
Component 1 8.9 5.0 6.4 64.4 25.3

Physical 3 9.2 5.0 5.6 56.0 21.9

Choosing the Optimal Configuration Since we aim to
minimize resource consumption, response time and cost, the
configuration that has the lowest score gives the best over-
all performance. Table VIII shows, for each data collection
frequency, the three optimal configurations considering the
performance data visible up to the designated layer in the
second column. For example, we calculate the score of a
configuration at the world view layer by multiplying the
response time and the cost. If we are to calculate the score
at the physical layer level, we would take the product of all
five variables (response time, cost, thread, CPU and RAM
utilizations). By doing this, we can determine whether early
performance modeling by the world view layer stakeholders
(Table II) is effective at picking the best configuration.

At the lowest data collection frequency (0.1 Hz), the optimal
configuration can indeed be determined using the world view
layer alone, since it picks the same configuration as the
other two layers. This effect is explained by the fact that
the system is only slightly loaded and the counters collected
in the component and physical layers only exhibit small
variations, e.g., RAM utilization ranges between 3% to 6%.

As a result, all low level counters are discretized to the same
range, diminishing the effect of these low level counters in
the score calculation. Our discretization approach effectively
hides the small variations of the performance counter that are
insignificant in terms of stakeholder experience.

As the data collection frequency increases and more layers
are being considered, our ranking algorithm outputs configu-
rations that balance between cost, performance and resource
consumption. For example, at the collection frequency of 0.3
Hz, the configuration selected by considering data collected up
to the physical layers reduces the CPU utilization from 64.4%
to 56% in a tradeoff of 0.3s increase of response time, while
maintaining the same cost. In all our experiments, the world
view layer performs at least as good as the component layer.

4) Evaluation of the Migration to a Distributed Architec-
ture: Table IX shows the simulation result for the original
design of the performance monitor at various data collection
frequencies. Comparing to our distributed design (Table VIII),
the original design, while providing better response time,
consumes more hardware (e.g., CPU and RAM) and logical
(e.g., thread) resources. At the collection frequency of 0.3 Hz,
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TABLE IX
SIMULATION RESULTS FOR THE ORIGINAL DESIGN OF THE PERFORMANCE MONITOR.

Data Collection Response time (s) Cost per Central Monitor Central Monitor Central Monitor
Frequency (Hz) transmission ($) Thread Util. (%) CPU Util. (%) RAM Util. (%)

0.1 0.2 2.2 31.0 42.6 37.2
0.2 0.3 2.7 43.7 68.2 47.6
0.3 0.4 3.1 60.2 86.6 59.2

the CPU of the central monitor is close to running at its full
capacity, which will likely result in system instability. More-
over, while the original design has lower cost per transmission,
the performance data in the original design is transmitted more
frequently due to the absence of a local batching mechanism
provided by the local monitoring agent. As a result, the overall
cost for monitoring all computational units would increase in
the original design compared to the distributed design.

In this case study, we demonstrated the usefulness of our
layered simulation model in evaluating the different design op-
tions for the performance monitor. Furthermore, we show that
configurations selected by analyzing information from the top
level can provide a good estimation of resource consumption.
As more information from different layers is supplied, our
ranking algorithm is able to select configurations that balance
between cost, performance, and resource consumption.

VI. DISCUSSION

In this section, we discuss how our simulation models can
be updated over time and what the major limitations of our
approach are.

A. Updating the Simulation Model to Reflect System Changes

In discrete-event simulations, system components react
based on received messages. Therefore, performance analysts
can model the system’s behaviour by specifying the state a
component should be in when a specific message is received.
For example, to simulate the time required to process an RSS
notification request, performance analysts can specify that the
RSS server would hold each request for 2 simulated seconds
before forwarding the notification to subscribers. Performance
analysts do not need to know the low-level programming
details when constructing the model, which drastically reduces
the modeling effort.

To update a model constructed for a previous release of a
software system to a new version, the resource requirements
of the configuration need to be updated. Furthermore, new
system behaviour can be introduced into the model by adding
new message types and their corresponding behaviour in the
simulation code. Once the modified model reflects the new
configuration and behaviour, new simulation runs can be
performed.

B. Capturing Resource Requirements

Correct resource requirements are essential in deriving
useful performance conclusions from a simulation model.
To ensure that the simulation model accurately reflects the
performance of the final system, resource requirements should

be validated as information becomes available throughout
development. Due to the lack of access to production data,
we could only estimate a list of resources and processing
requirements in our case studies.

VII. RELATED WORK

We discuss four areas of related work: approaches to con-
struct multi-view models, approaches to apply performance
modeling at each stage of development, and approaches to
create analytical and simulation models.

Multi-View Models Kruchten et al. proposed the well-
known “4+1 View” model to describe the different aspects
of software architectures [7]. The “4+1 View” model focuses
on supporting software architecture understanding for different
stakeholders. Our simulation model, on the other hand, focuses
on modeling system performance for different stakeholders.

Woodside proposed a Three-View Model for performance
analysis of concurrent software [20]. The three views in Wood-
side’s model are drawn from existing analytical techniques
and are connected by a “core model” that applies the results
of one analytical view to the input of another. Our approach
is different from Woodside’s Three-View Model, since our
models are based on simulation models and do not require
a “core model”. Each layer in the simulation model is built
on top of each other, tied together by test case scenarios.

Incremental Performance Models Performance modeling
can be started at the early stage of software development.
Smith et al. proposed a technique to create simple models
such as a System Execution Model from usage scenarios with
estimates of resource requirements in the beginning of soft-
ware development [17], [19]. At a later stage, more accurate
models such as LQN can be built as more information becomes
available. Our model avoids the use of different techniques at
different stages in the development, while detailed logic and
resource requirements can be added to the simulation model
as more information becomes available.

Another notable work in this area is the work on run-time
performance control (e.g., [25]). Initially, there is no sufficient
run-time information available about the software system.
Hence, the models used to control the performance of the
software system can only use statically available information.
Once execution starts, more information becomes available,
with which the initial models can be iteratively refined to
converge to a more accurate model. Similar to this work, our
layered models start out with incomplete information at the
world view layer, before being refined based on more accurate
lower-layer information.
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Analytical models The Queuing Network Model (QN)
has long been used to analyze the performance of software
systems. Baskett et al. proposed algorithms to solve the open,
closed, and mixed QN models [1]. Rolia proposed to model
complex software systems with layers of servers [13]. Menascé
proposed an approach to model both the software and hard-
ware resources of a system in a combined model [8]. Woodside
et al. proposed an automatic technique to create LQN models
from traces of messages passing between software compo-
nents [22], [6]. However, the quality of the generated layered
model depends on the accuracy of the traces.

Performance data can be derived from analytical models by
solving a set of equations. Because of the use of complex
formulas, the knowledge encapsulated in an analytical model
can be difficult to transfer to other stakeholders. Furthermore,
in order to update analytical models, modelers must possess a
certain level of expertise in mathematics. Models built using
event-based simulation, on the other hand, can be described
using source code, which may provide a lower entrance barrier.

Simulation models Smit et al. proposed a simulation
framework to support capacity planning for Service-Oriented
Architectures (SOA) [16]. Each service in an SOA-based
system is modeled as an entity that can send and receive
messages. Similar to Smit’s work, our approach can readily
be used to model the performance of SOA-based systems.
Furthermore, our approach allows modelers to create highly
accurate models through the use of layers.

Bause et al. extended Petri Nets with Queuing Networks [2].
Xu et al. used coloured Petri Nets to model the architecture
of software systems [24]. The authors analyzed performance
in time and space based on simulations of test cases. We
also simulated test casesto analyze the performance of a
software system, however our approach provides modelers
with a structured way to construct models suitable for use by
multiple stakeholders with varying objectives. Furthermore, by
using multiple layers in the simulation model, we effectively
create a single, synchronized performance knowledge base that
all stakeholders can refer to.

VIII. CONCLUSION

A performance model should convey information about
the behaviour of a ULS system relevant to the performance
concerns of all stakeholders. Inspired by the “4+1 View”
model for software architecture, we proposed an approach to
construct simulation models with four layers of abstractions:
the world view layer, component layer, physical layer, and
usage scenario layer. These layers can be built gradually in
a top-down manner as more information about the software
project becomes available. Two case studies on complex
software systems showed that our layered model can be used to
identify performance bottlenecks and evaluate design changes.
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