
The Journal of Systems & Software 203 (2023) 111734

A

T
(
s
d
i
t
G

t
g

v
(
m
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

GitHub Copilot AI pair programmer: Asset or Liability?✩

rghavan Moradi Dakhel a,∗,1, Vahid Majdinasab a,∗,1, Amin Nikanjam a, Foutse Khomh a,
Michel C. Desmarais a, Zhen Ming (Jack) Jiang b

a Polytechnique Montreal, Montreal, Canada
b York University, Toronto, Canada

a r t i c l e i n f o

Article history:
Received 27 June 2022
Received in revised form 18 April 2023
Accepted 26 April 2023
Available online 2 May 2023

Dataset link: https://github.com/Copilot-Ev
al-Replication-Package/CopilotEvaluation

Keywords:
Code completion
Language model
GitHub copilot
Testing

a b s t r a c t

Automatic program synthesis is a long-lasting dream in software engineering. Recently, a promising
Deep Learning (DL) based solution, called Copilot, has been proposed by OpenAI and Microsoft as an
industrial product. Although some studies evaluate the correctness of Copilot solutions and report its
issues, more empirical evaluations are necessary to understand how developers can benefit from it
effectively. In this paper, we study the capabilities of Copilot in two different programming tasks: (i)
generating (and reproducing) correct and efficient solutions for fundamental algorithmic problems, and
(ii) comparing Copilot’s proposed solutions with those of human programmers on a set of programming
tasks. For the former, we assess the performance and functionality of Copilot in solving selected
fundamental problems in computer science, like sorting and implementing data structures. In the latter,
a dataset of programming problems with human-provided solutions is used. The results show that
Copilot is capable of providing solutions for almost all fundamental algorithmic problems, however,
some solutions are buggy and non-reproducible. Moreover, Copilot has some difficulties in combining
multiple methods to generate a solution. Comparing Copilot to humans, our results show that the
correct ratio of humans’ solutions is greater than Copilot’s suggestions, while the buggy solutions
generated by Copilot require less effort to be repaired. Based on our findings, if Copilot is used by expert
developers in software projects, it can become an asset since its suggestions could be comparable to
humans’ contributions in terms of quality. However, Copilot can become a liability if it is used by
novice developers who may fail to filter its buggy or non-optimal solutions due to a lack of expertise.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Recent breakthroughs in Deep Learning (DL), in particular the
ransformer architecture, have revived the Software Engineering
SE) decades-long dream of automating code generation that can
peed up programming activities. Program generation aims to
eliver a program that meets a user’s intentions in the form of
nput–output examples, natural language descriptions, or par-
ial programs (Alur et al., 2013; Manna and Waldinger, 1980;
ulwani, 2010).
Program synthesis is useful for different purposes such as

eaching, programmer assistance, or the discovery of new al-
orithmic solutions for a problem (Gulwani, 2010). One finds

✩ Editor: Prof. Raffaela Mirandola.
∗ Corresponding authors.

E-mail addresses: arghavan.moradi-dakhel@polymtl.ca (A. Moradi Dakhel),
ahid.majdinasab@polymtl.ca (V. Majdinasab), amin.nikanjam@polymtl.ca
A. Nikanjam), foutse.khomh@polymtl.ca (F. Khomh),
ichel.desmarais@polymtl.ca (M.C. Desmarais), zmjiang@cse.yorku.ca

Z.M. Jiang).
1 Both authors contributed equally to this research.
ttps://doi.org/10.1016/j.jss.2023.111734
164-1212/© 2023 Elsevier Inc. All rights reserved.
different approaches to automatic code generation in the litera-
ture, from natural language programming (Mihalcea et al., 2006)
and formal models (Drechsler et al., 2012; Harris and Harris,
2016) to Evolutionary Algorithms (Sobania et al., 2021b) and
machine-learned translation (Rahit et al., 2019).

Novel Large Language Models (LLMs) with the transformer
architecture recently achieved good performance in automatic
program synthesis (Brown et al., 2020; Chen et al., 2021; Clement
et al., 2020; Feng et al., 2020). One such model is Codex (Chen
et al., 2021); a GPT-3 (Brown et al., 2020) based language model
with up to 12 billion parameters which has been pre-trained
on 159 GB of code samples from 54 million GitHub reposito-
ries. Codex shows a good performance in solving a set of hand-
written programming problems (i.e., not in the training dataset)
using Python, named HumanEval dataset (Chen et al., 2021). This
dataset includes simple programming problems with test cases
to assess the functional correctness of code. A production version
of Codex is available as an extension on the Visual Studio Code
development environment, named GitHub Copilot.2 Copilot, as

2 https://copilot.github.com/

https://doi.org/10.1016/j.jss.2023.111734
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111734&domain=pdf
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
mailto:arghavan.moradi-dakhel@polymtl.ca
mailto:vahid.majdinasab@polymtl.ca
mailto:amin.nikanjam@polymtl.ca
mailto:foutse.khomh@polymtl.ca
mailto:michel.desmarais@polymtl.ca
mailto:zmjiang@cse.yorku.ca
https://copilot.github.com/
https://doi.org/10.1016/j.jss.2023.111734


A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

b
a
u
2
A
t
w
t
o
N
d
b
c
p
p

l
C
s
T
i
b
c
l

o
q
u
q
a
t
h
s
a
b

a
m
s
l
a
p
c
b

C
W
t
a
t
s
g

i
h
o
m
m
c
C
o
p

an ‘‘AI pair programmer’’, can generate code in different pro-
gramming languages when provided with some context (called
prompt), such as comments, methods names, or surrounding
code.

Several studies focus on the correctness of code suggested
y Copilot on the different types of problems such as linear
lgebra problems for an MIT course (Drori and Verma, 2021) or
niversity level probability and statistical problems (Tang et al.,
021). The author in Finnie-Ansley et al. (2022) used Davinci (an
PI on a beta version of Codex) on different programming ques-
ions of a programming course and compared students’ grades
ith the grade of the tool in solving the programming ques-
ions correctly. There are few studies that assess other aspects
f Copilot besides the correctness of its suggestions. Nguyen and
adi (2022) compared the complexity of Copilot’s solutions in
ifferent programming languages for several LeetCode questions,
esides their correctness. Authors in Vaithilingam et al. (2022)
onducted a user study to understand how Copilot can help
rogrammers complete a task. They studied how much time
articipants needed to complete a task using Copilot.
While these studies highlight some qualifications of Copi-

ot, they neither examined the quality of the code produced by
opilot compared to humans nor did they investigate the buggy
olutions suggested by Copilot and the diversity of its suggestions.
herefore, despite all these previous studies, we still do not know
f–how Copilot, as an industrial component, can be leveraged
y developers efficiently. We need to go beyond evaluating the
orrectness of Copilot’s suggestions and examine how despite its
imitations, it can be used as an effective pair programming tool.

The focus of our study is not on the type or difficulty level
f programming tasks that Copilot can handle, but it is on the
uality of the code that it will add to software projects if it is
sed as an AI pair programmer. We aim to investigate if the
uality of code generated by Copilot is competitive with humans
nd if it can be used instead of a developer in pair programming
asks of software projects without impacting code quality. We
ighlight Copilot’s limitations and competence with two different
trategies and compared its suggestions with humans in different
spects. We also formulate suggestions on how developers can
enefit from using Copilot in real software projects.
First, we assess Copilot’s capabilities in solving fundamental

lgorithmic problems (i.e., searching and sorting) in program-
ing. We study the correctness and reproducibility of Copilot’s
olutions to these problems. Secondly, we compare Copilot’s so-
utions with human solutions in solving programming tasks, to
ssess the extent to which it can mimic the work of a human pair
rogrammer. We use a dataset of different programming tasks
ontaining up to 4000 in human-provided solutions (correct and
uggy).
To conduct our study, we have chosen datasets for which

opilot is able to generate answers to their programming tasks.
hile such tasks may not be representative of all programming

asks that a professional developer performs, they allow us to
ssess Copilot’s capabilities/limitations, and to list our sugges-
ions to developers on how to benefit from this tool in real
oftware projects. However, we acknowledge the limitations of
eneralizing the results to more complex tasks.
The results of our study show that Copilot is capable of provid-

ng efficient solutions for the majority of fundamental problems,
owever, some solutions are buggy or non-reproducible. We also
bserved that Copilot has some difficulties in combining multiple
ethods to generate a solution. Compared to human program-
ers, Copilot’s solutions to programming tasks have a lower
orrect ratio and diversity. While the buggy code generated by
opilot can be repaired easily, the results highlight the limitation
f Copilot in understanding some details in the context of the
roblems, which are easily understandable by humans.
2

Our finding shows Copilot can compete with humans in coding
and even though it can become an asset in software projects if
used by experts, it can also become a liability if it is used by
novices, those who may not be familiar with the problem context
and correct coding methods. Copilot suggests solutions that might
be buggy and difficult to understand, which may be accepted
as correct solutions by novices. Adding such buggy and complex
code into software projects can highly impact their quality.

To summarize, this paper makes the following contributions:

• We present an empirical study on the performance and
functionality of Copilot’s suggestions for fundamental algo-
rithmic problems.

• We empirically compare Copilot’s solutions with human
solutions on a dataset of Python programming problems.

• We make the dataset used and the detailed results obtained
in this study publicly available online (Moradi et al., 2022)
for other researchers and–or practitioners to replicate our
results or build on our work.

The rest of this paper is organized as follows. We briefly
review the related works in Section 2. Section 3 presents the
design of our study to evaluate Copilot as an assistant to devel-
opers. We report our experiments to assess Copilot’s suggestions
for fundamental algorithmic problems and compare generated
suggestions with what programmers do on specific programming
tasks in Section 4. We discuss our results and potential limitations
in Section 5. Threats to validity are reviewed in Section 6. Finally,
we conclude the paper in Section 7.

2. Related works

A few studies empirically investigate the different capabilities
of Copilot. Sobania et al. (2021a) compared Copilot with a Genetic
Programming (GP) based approach that achieved good perfor-
mance in program synthesis. Their findings show that GP-based
approaches need more time to generate a solution. Moreover,
training GP-based models is expensive due to the high cost of
data labeling. Also, these approaches are not suitable to support
developers in practice as GP usually generates code that is bloated
and difficult to understand by humans (Sobania et al., 2021a).

Vaithilingam et al. (2022) conducted a human study involving
24 participant to understand how Copilot can help programmers
to complete a task. They focused on 3 Python programming tasks:
‘‘1. edit CSV, 2. web scraping’’ and ‘‘3. graph plotting’’. Their
finding shows that while Copilot did not necessarily improve the
task completion time and success rate, programmers prefer to
use Copilot for their daily tasks because it suggests good starting
points to address the task. The tasks in this study involve less
problem solving effort compared to the typical programming
tasks in our study. They are mostly related to using programming
language libraries. Also, they did not compare Copilot’s sugges-
tions with their participants’ suggestions when working without
the help of Copilot.

Drori and Verma (2021) studied Copilot’s capability in solving
linear algebra problems for the MIT linear algebra course. In the
same line of work, Tang et al. examined Copilot’s capability in
solving university level probability and statistical problems (Tang
et al., 2021). These two studies only focused on the correctness
ratio of Copilot’s solutions and did not examine its performance
on programming tasks.

Finnie-Ansley et al. (2022) used Davinci (an API on a beta
version of Codex) on two datasets. The first dataset includes
23 programming questions for a programming course, students’
solutions for these questions, and their grades. This dataset is
not publicly available. The second dataset is a set of different
descriptions of a single well-known problem, rainfall, without



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

q
L
T
A
c
C

e
o
G
e
s
c
C
e
g
a
w
r

t
h
s
m

a
d
d
2
s
t
m
p
l
d
C

t
c
a
T
p
s
e

b
s
t
t
d
o
t
u

humans’ solutions. For the programming questions, the paper
focused on the grading of the solutions suggested by Codex: gen-
erating the correct solution for the problems after different runs
(10 runs) and then comparing the grading with students. For the
second dataset, besides the code correctness, they checked the
variety of solutions by calculating the number of source lines of
code (SLOC). Their results showed that Codex outperformed most
students as evidenced by the grades received for their proposed
solutions. Also, they observed that using the same input as a
prompt on Codex can lead to different solutions, while Codex can
generate correct solutions for different descriptions of the same
problem.

Nguyen and Nadi (2022) evaluated Copilot on 33 LeetCode
uestions in 4 different programming languages. They used the
eetCode platform to test the correctness of Copilot’s solutions.
he questions in their study included different levels of difficulty.
lthough they evaluated the correctness of Copilot’s solutions and
ompared their understandability, they did not assess whether
opilot successfully found the optimal solution for each task.
Another group of studies focuses on vulnerability issues to

valuate Copilot solutions. As mentioned before, Copilot is trained
n a large volume of publicly available code repositories on
itHub which may contain bug or vulnerability problems. Pearce
t al. (2022) conducted different scenarios on high-risk cyber-
ecurity problems and investigated if Copilot learns from buggy
ode to generate insecure code. Another study investigates how
opilot can reproduce vulnerabilities in human programs (Asare
t al., 2022). To do so, they first used a dataset of vulnerabilities
enerated by humans, then rebuilt the whole code before the bug
nd asked Copilot to complete the code. The completed section
as manually inspected by three coders to determine if Copilot
eproduced the bug or fixed it.

Moroz et al. (2022) examined the challenges and the poten-
ial of Copilot to improve the productivity of developers. They
ighlighted the copyright problems and the safety issues of its
olutions. They discussed the non-deterministic nature of such
odels and the harmful content that could be generated by them.
Authors in Ziegler et al. (2022) surveyed 2631 developers

bout the impact of Copilot on their productivity and highlighted
ifferent metrics of users’ interaction with Copilot that help pre-
ict their productivity. They relied on the SPACE (Forsgren et al.,
021) framework to generate 11 Likert-style questions in their
urvey. Also, they analyzed the usage data of Copilot of the par-
icipants who responded to this survey. They extracted different
etrics from this data such as the acceptance rate of solutions,
ersistence rate, unchanged and mostly unchanged accepted so-
utions, etc. They found that the acceptance rate of solutions by
evelopers is the most relevant metric that shows the impact of
opilot on the productivity of developers.
In another recent paper, the author discussed the opportuni-

ies and challenges of AI code generation tools in an educational
ontext (Becker et al., 2022). This study is not an empirical study
nd there is no experiment or evaluation of Copilot’s suggestions.
he author was not specifically focusing on Copilot and its com-
etence or limitations, but on the opportunities/challenges that
uch tools (code generation tools) bring into education such as
xercise generation, illustrative samples, example solutions, etc.
The authors in Denny et al. (2023) evaluated Copilot’s capa-

ilities in solving elementary coding problems that are taught to
tudents in an introductory programming course (CS1: Introduc-
ion to Programming) and investigated the effect of modifying
he task descriptions, also known as prompt engineering, to ad-
ress the unsuccessful attempts at solving the tasks using the
riginal descriptions. They also categorized the area of failure on
hose programming tasks. The authors explored the impact of

sing different natural language descriptions in decreasing the

3

number of failures or wrong suggestions. Their focus was only
on the correctness (correct/fail) of Copilot’s suggestions, not their
quality if used as an AI pair programmer. They did not conduct
a comparison between Copilot’s suggestions and those generated
by students.

In Wermelinger (2023), the author studied Copilot’s capabili-
ties on a handful of programming tasks designed to test students’
knowledge of program design. The author also compared Copi-
lot’s outputs to those of Codex (Davinci, which is a model that
Copilot is based on) and assessed the correctness of their sug-
gestions alongside the diversity of their solutions. For diversity
comparison, the author manually checked the different program-
ming structures used in those solutions. The author also assessed
Copilot’s and Codex’s abilities in generating test cases along-
side explaining their own solutions. Compared to this research,
we study Copilot which is based on Codex and has a more
diverse set of algorithmic problems. We also analyze the quality
of the generated solutions on multiple aspects such as optimality,
reproducibility, and similarity compared to humans.

Authors in Leinonen et al. (2023) studied how Codex can be
used to provide better programming error messages. The authors
provided a faulty program alongside the prompt asking the model
to explain why the program fails and to provide solutions. They
analyzed the provided solutions in terms of whether the solution
is correct, understandable, contains a fix to the fault, and whether
it improves upon the original script.

To the best of our knowledge, none of these studies compared
the quality of code generated by Copilot with human code in solv-
ing programming tasks. The majority of these studies focused on
assessing the correctness of Copilot’s solutions and highlighted its
issues; e.g., the presence of vulnerabilities in generated solutions.
In this study, we focus on fundamental algorithmic problems and
compare the quality of code generated by Copilot with humans
in solving programming tasks.

3. Study design

In this section, we present our methods to assess Copilot as an
AI pair programmer and detail the experimental design to achieve
our goals.

To solve a programming task, a developer usually builds the
code on top of fundamental data structures (e.g., queues, trees,
graphs) and algorithms (e.g., search, sorting) in computer science.
Moreover, the developer needs to come up with ideas to achieve
the goal(s) of the programming task efficiently.

We evaluate Copilot on (1) the adequacy of recommended
code for fundamental algorithmic problems, and (2) the qual-
ity of recommendations compared to human-provided solutions.
Specifically, we address the following research questions (RQs):

RQ1: Can Copilot suggest correct and efficient solutions for
fundamental algorithmic problems?

RQ2: Are Copilot’s solutions competitive with human solutions
for solving programming problems?

In the rest of this section, we describe the research methods
we followed to answer each of our RQs as illustrated in Fig. 1.

3.1. RQ1: Copilot on algorithm design

Our goal in RQ1 is to observe if Copilot can generate solutions
for fundamental algorithmic problems given clear descriptions of
the problem and do further analysis. Solving these fundamental
algorithmic problems is important for developers contributing to
a software project. Although these problems are not necessarily
representative of all professional projects, the ability to correctly
and efficiently handle fundamental programming problems is a



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

T
a

r
p
r
a
r
a
t
o
i
o
i
s

3

e
u
s
e
b
o
c
4

Fig. 1. The Workflow of proposed methods. The study includes two different methods to test Copilot in recommending code to solve programming problems.
he first pipeline focuses on algorithmic problems collected from a well-known algorithm design book (Cormen et al., 2022a). The second pipeline focuses on the
ssignments of a Python programming course (Hu et al., 2019). It compares Copilot with students in solving programming problems in different aspects.
equirement for correctly and efficiently handling more complex
rogramming problems. For example, Leetcode3 is a website that
epresents different categories of such problems for the coding
ssessment which are often part of the interview questions for
ecruiting professional developers. Developers may not use these
lgorithmic problems outside of the assessment (i.e., in their daily
asks) directly, but understanding how to solve them with an
ptimal algorithm is essential. In this section, we plan to examine
f Copilot is capable of solving these fundamental problems with
ptimal solutions. In this section, we plan to examine if Copilot
s capable of solving these fundamental problems with optimal
olutions.

.1.1. Data set: Fundamental algorithmic problems
We selected the problems and their descriptions from Cormen

t al. (2022a). We choose this resource because it is widely
sed for teaching algorithmic design fundamentals to computer
cience students (Cormen et al., 2022b). In this book, the authors
xplain the principal algorithms that computer engineers must
e knowledgeable about by breaking them into categories. Since
ur problems were selected from this book, we followed its
ategorization, such that our tests on Copilot were conducted on
categories:

• Sorting Algorithms: Sorting algorithms are among the first
algorithmic concepts that are taught to computer science
students. These algorithms introduce the concept of time
complexity and how inefficient code can make differences
in more complex programs. Sorting algorithms are used in
databases to segment large amounts of data that cannot
be loaded entirely into memory or in numerical operations
to determine which numbers should undergo operations
first for the results to be produced as quickly as possible.
From this section, we selected some well-known sorting
algorithms which students are asked to learn and then im-
plement. These algorithms are methods for sorting an array
of numbers (integers or floats) in a descending or ascending
manner. In these problems, time complexity, a measure of

3 https://leetcode.com/
4

an algorithm’s run-time as a function of input length, is an
important factor to be considered.
From the algorithms described in the book, we selected
bubble sort, bucket sort, heap sort, insertion sort, merge sort,
quick sort, radix sort, and selection sort. We selected these
algorithms based on their implementation complexity, from
easy to hard, based on Cormen et al.’s (2022a) descriptions.

• Data Structures. From this section, we selected the Binary
Search Tree (BST). BST is a basic data structure that is taught
in algorithm design. Each node of the tree contains a value
(called key) that is greater than all the values in the left sub-
tree and smaller than all the values in its right sub-tree. The
implementation of BST involves multiple steps, namely:

– Finding the minimum and maximum values in the tree
before inserting any new value.

– In-order tree walks to extract all the values in the tree
in a sorted manner.

– Finding the successor node. Given a node x, the succes-
sor of x is the node that has the smallest value which
is greater than x.

• Graph Algorithms. From this section, we selected the Ele-
mentary Graph Algorithms. These algorithms are used to per-
form some elementary operations on a graph. Since graphs
store information about how each node is connected to oth-
ers, they can be used in implementing applications such as
maps and social media user connections. We tested Copilot
on the following graph algorithms problems:

– Generating code for a simple graph data structure.
– Breadth First Search (BFS) on a graph.
– Depth First Search (DFS) on a graph.
– Implementing Directed Acyclic Graphs (DAG). DAGs re-

quire a more complex implementation logic compared
to simple graphs, since during initialization, based on
the directions of the edges, we need to check if a cycle
exists in the graph or not.

– Finding reachable vertices. A pair of vertices are defined
as reachable if both vertices can be reached from each
other in a directed graph.

https://leetcode.com/


A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

n
a
o
w
a
d
p
m

b
d
c
T

E
g
f
w
g
s
u
o
p

(

s
i
o
T
f
m

c
i
i
g
c
R
r

• Advanced Design and Analysis Techniques. We selected
the greedy algorithms from this section. Unlike the algo-
rithms described above, the greedy technique is a general
approach for solving optimization problems based on break-
ing problems down into multiple subproblems and selecting
the best solution at the given time. As these solutions need
to be evaluated in the context of a problem, we selected
the ‘‘activity selection’’, an introductory problem to greedy
algorithms as described in Cormen et al. (2022a).

3.1.2. Prompt engineering
Alongside code completion, Copilot can generate code from

atural language descriptions in the form of comments. However,
s noted by Li et al. (2022), if the description becomes too long
r detailed, Copilot’s performance degrades. Since the book that
e are using to collect the problems (Cormen et al., 2022a) is
comprehensive educational book, each problem is described in
etail and by building upon concepts that were explained in the
revious chapters. As a result, some problem descriptions span
ultiple paragraphs and sometimes, pages.
However a summary description of our selected problems can

e found in different resources, but the authors summarized the
escription of each problem in their own words to reduce the
hance of memorization (Carlini et al., 2022) issue on Copilot.
herefore, our prompt engineering was done in two steps:

1. Describing the problem: We needed to summarize each
problem’s description to feed them to Copilot while stay-
ing as faithful as possible to the books. To make sure
that our descriptions were understandable and did contain
enough information about the algorithm being described,
we cross-checked each of them with those on popular cod-
ing websites such as W3SCHOOLS (W3schools Team, 2022)
and GEEKSFORGEEKS (Geeksforgeeks Team, 2022) as well.
For cross-checking, the second author summarized Cor-
men et al.’s (2022a) algorithm descriptions while keeping
in mind Copilot’s limits on the length of the prompt. If
there were differences in the descriptions (i.e., the de-
scription was missing some key elements in explaining the
problem), the descriptions were revised.

2. Cross validation of problem descriptions: Cross-validation
of problem descriptions: The second author created the
input descriptions as explained above. After this, these de-
scriptions were cross-checked with the first author to make
sure that they were correct, understandable, and contained
enough information about the problem being described.
The first two authors both have taken the course ‘‘Introduc-
tion to Algorithms’’ during their education and have more
than 5 years of experience in coding and program design.
To assess the agreement, we have calculated Cohen’s Kappa
score (Cohen, 1960). While the score was 0.95 implying
an almost perfect agreement, for cases where there were
conflicts about the descriptions, the two authors met and
discussed the conflicts to resolve them. In the end, the
descriptions were also cross-checked with the third author
who has more than 10 years of experience in teaching
algorithm design. Therefore, the final input descriptions
were what all three authors agreed on.

xcluding sorting algorithms, other problems require code to be
enerated using previous code as it is common practice in both
unctional and object-oriented programming For these problems,
e followed exactly the book’s example by asking Copilot to
enerate code for the underlying subproblems and then for the
ucceeding problems, we asked it to implement the solution
sing the code it had generated before. We have recorded all
f our descriptions and Copilot’s responses in our replication
ackage (Moradi et al., 2022).
5

3.1.3. Solving fundamental algorithmic problems with Copilot
To generate solutions with Copilot, we feed the description

of each algorithmic problem, call it prompt, to Copilot. At each
attempt on Copilot with a selected prompt, it only returns up to
the top 10 solutions. Thus, we do not have access to the rest of
the potential suggestions. To inquire about Copilot’s consistency
in generating correct solutions, we repeat the process 6 times and
each time collect its top 10 suggestions.

To assess whether Copilot’s suggestions are consistent over
time, we performed 2 trials within a 30 days time window. Each
trial consists of 3 attempts for each prompt and each attempt
contains up to 10 suggestions provided by Copilot. The collection
of 3 first attempts is called ‘‘First Trial’’ and the collection of 3 last
attempts which were conducted 30 days later is named ‘‘Second
Trial’’.

Given that Copilot may try to consider the script’s filename
as a part of its query, to make sure that solutions were only
generated from our descriptions, we gave the scripts unrelated
names.

3.1.4. Evaluation criteria
Below, we briefly explain the 4 different metrics which we

have used to evaluate Copilot and explain them in detail in
the rest of this section. The metrics are calculated per each
fundamental algorithmic problem.

1. Response Received ∈ [0, 3] ∈ N. The number of at-
tempts in each trial that Copilot was able to understand
the problem and generate code content as its response.

2. Correctness Ratio (%). The percentage of correct solutions
suggested by Copilot in each trial.

3. Code Optimality ∈ [Yes,No]. Whether at least one of the
correct solutions suggested by Copilot in each trial has
optimal time complexity [Yes or No].

4. Code Reproducibility ∈ [Yes,No].

• Within a Trial: Whether at least one of the correct
solutions suggested by Copilot in one attempt was
repeated in two other attempts, within a trial [Yes or
No].

• Across Trials: Whether at least one of the correct
solutions suggested by Copilot in the first trial was
repeated in the second trial [Yes or No].

5. Code Similarity ∈ [0, 1] ∈ R.

• Within Trial: The similarity degree between all cor-
rect solutions within a trial.

• Across Trials: The similarity of correct solutions be-
tween two trials.

1) Response received
Our observation shows that if Copilot is unable to provide

olutions to the problem with the provided prompt, it will return
rrelevant responses such as repeating user’s prompts, code that
nly contains import statements or natural language responses.
hus, this metric helps us to evaluate if Copilot generates code
or the summarized description of the program instead of the
entioned irrelevant responses.
We used the description of each problem in the form of

omments and collected up to the top 10 suggestions of Copilot
n 6 different attempts and two separate trials, as it is described
n Section 3.1.3. To calculate this metric, if at least one of the sug-
ested solutions in an attempt within a trial is code content, we
onsider it as a successful code generation attempt or ‘‘Response
eceived’’. Since we conduct 3 separate attempts in each trial, we
eport the value of this metric with a number ∈ [0, 3] ∈ N per
trial.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

s
t
n
p

c
n
t

s
i
i
t
i
i
a
a
i

f

(

c
a
u
p
t
s

p
p
C
t
s
s
c
s
c
p
s

(2) Correctness ratio
We report the correctness ratio as a fraction of solutions

uggested by Copilot per problem that are functional and address
he objective of the problem. To calculate this metric, we first
eed to evaluate the correctness of Copilot’s suggestions for a
roblem. A suggested code is correct if it passed a set of unit tests.
However, in algorithmic problems, passing a set of unit tests to

heck the correctness of solutions is not enough. In this category,
ot only we need to verify a suggestion on passing a set of unit
ests, but also we need to verify its chosen algorithm.

For example, in the ‘‘Sorting’’ problems, all problems have the
ame functionality: sorting a list of numbers. But the importance
s the choice of the algorithm to address the problem and to check
f Copilot is able to understand the structure of the solution from
he given description. If Copilot implements the ‘‘Bubble sort’’
nstead of the ‘‘Selection sort’’ algorithm or uses the Python built-
n functions ‘‘sort’’ or ‘‘sorted’’, the code is still functionally correct
nd is able to sort the inputs. But the code is not addressing the
lgorithm described in the problem. That is the same situation for
mplementing the data structure of a BST or a graph.

We tackle this challenge of calculating the correctness ratio by
ollowing three steps:

1. We check the functional correctness of Copilot’s sugges-
tions on a set of unit tests.

2. We check if the selected algorithm in the solution follows
the description that we gave to Copilot for that prob-
lem. To conduct this step, same as in Section 3.1.2, the
two first authors separately checked the solutions sug-
gested by Copilot for the problems. They compared the
algorithm of the solutions (that is employed by Copilot
to solve the problem) to the reference algorithms (ground
truth). We collect the ground truth for each problem from
the reference book (Cormen et al., 2022a) and from popular
coding websites such as W3SCHOOLS (W3schools Team,
2022) and GEEKSFORGEEKS (Geeksforgeeks Team, 2022).
We calculate Cohen’s Kappa score to measure the agree-
ment between the two authors.

3. The solutions per problem within a trial that passed the
two above steps are labeled as correct. Then, we calculate
the correctness ratio based on the fraction of the correct
solutions within a trial.

3) Code optimality
We report this metric because the problems in our dataset

an be implemented with different algorithms. This choice of
lgorithm may impact their computation complexity for example
sing a nested loop, queue, or recursive functions to solve a
roblem. With this metric, we want to check if Copilot is able
o suggest the optimal algorithm of a problem among its correct
uggestions.
We cannot write a code to automatically check if the com-

utation size of another code is optimal due to Turing’s halting
roblem (Bera and Bera, 2020). Thus, same as in Section 3.1.2 and
orrectness Ratio in this section, the two first authors check if
here is a solution with an optimal algorithm between the correct
olutions suggested by Copilot for a problem in a trial. They
eparately compared correct solutions with a reference optimal
ode for a problem (ground truth). If at least one of the correct
olutions suggested by Copilot within a trial is optimal, they
onsider that Copilot is able to find an optimal solution for that
roblem [Yes] and otherwise [No]. We calculate Cohen’s Kappa

core to report the agreement of two authors on code optimality.

6

(4) Code reproducibility and similarity
While Copilot is closed-source and we have no information

about its characteristics that may impact its behavior on our
prompts, we want to study if this tool is able to reproduce a
correct solution for a problem in different attempts and over
time. We introduce ‘‘Code Reproducibility’’ as a metric for this
measurement. For more clarification, we split our approach for
measuring this metric into three subsets:

• We consider two different types for reproducing a code: the
one that checks if a correct solution is reproduced across
different attempts within a trial and calls it ‘‘Within a Trial’’,
and the one that checks if a correct solution of a problem is
reproduced over a time window among two trials and call
it ‘‘Across Trials’’.

• To identify the correct solutions that are reproduced and
measure their similarity, we have used the Abstract Syntax
Trees (AST) similarity method described in Salazar Paredes
et al. (2020). AST similarity is calculated by first building the
AST of a code and then pruning the leaves that are related
to variable or function names. Also, we ignore comments or
any natural language text in each solution as they are not
part of the code itself.
AST similarity is bounded between 0 and 1 with 1 denoting
structurally equivalent programs (regardless of their seman-
tic similarity) and 0 denoting no equivalence between pro-
grams. It also returns 1 for ‘‘structurally equivalent recorded
programs’’ where the programs are functionally identical
but their instructions are executed in a different order,
and ‘‘structurally equivalent renamed identical programs’’
where the programs are structurally the same with different
variable names.
Therefore, this similarity measure will not be affected by
different statement orders or different variable names. How-
ever, this similarity will be different for semantically similar
programs where the same concept is implemented in differ-
ent ways. In Section 3.2.4, we explain in more detail why we
need to apply this method to detect similar codes when we
discuss Copilot’s duplication solutions.

• To apply this comparison to correct solutions ‘‘Within a
Trial’’, we compare the pairs of correct solutions across 3
different attempts within that trial. If at least one of the
correct solutions in one attempt is reproduced in two other
attempts (similarity equals 1), or in other words if at least
one of the correct solutions within a trial occurs in all its
3 attempts, we consider that Copilot is able to reproduce
the correct solution for that problem ‘‘Within a Trial’’ [Yes],
otherwise, we consider that [No]. To apply it ‘‘Across Tri-
als’’, we compare the pairs of correct solutions among two
trials. If at least one of the correct solutions in the first
trial is reproduced in the second trial (similarity equals 1),
we consider that Copilot is able to reproduce the correct
solution for that problem ‘‘Across Trials’’ [Yes], otherwise,
we consider that [No].

Our observation shows that in some cases however Copilot’s
suggestions are not exactly the same but they are very similar. For
example, Fig. 2 shows two code samples for ‘‘Insertion Sort’’. The
differences between the two code samples are only syntactically
in a few lines. Code Sample #1 calculates the length of the list
within the range in for loop instructor. However, Code Sample
#2 assigns the length of the list into a variable and then uses it to
control the loop. Also, the comparison operator in the while loop
condition is different in the two code samples. However, only the
variables of the operator are switched and both are applying the
same comparison.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

t
a
T
s
a

t
c
T
m
a
a
b
r

3

f
c
d
a
w
d
l
c
t

3

c
s
d
t
t
c
i
b
i
s
P

Fig. 2. Two different solutions suggested by Copilot for Insertion sort. There
are a few lines in these two code samples that are syntactically different
but both are addressing the same functionality. Code Sample #1 calculates
he length of the list within the range in for loop instructor. Code Sample #2
ssigns the length of the list to a variable and then uses it to control the loop.
he comparison operator in the while loop condition is different in the two code
amples. However, only the variables of the operator are switched and both are
pplying the same comparison.

Therefore, in addition to ‘‘Code Reproducibility’’, we report
he ‘‘Code Similarity’’ as the average similarity between pairs of
orrect solutions for different fundamental algorithmic problems.
o calculate the similarity, we follow the same AST similarity
easure as explained above. For ‘‘Within a Trial’’, we compare
ll pairs of correct solutions in different attempts within a trial,
nd for ‘‘Across Trials’’, we compare all pairs of correct solutions
etween two trials. Finally, the average of these comparisons is
eported for each problem.

.2. RQ2: Copilot vs. Human

In this subsection, we aim to describe our research method
or RQ2, on how to compare Copilot code with human written
ode in different quantitative metrics. First, we illustrate the
ataset of programming tasks that we used in our experiments
nd explain why we select this dataset. Then, we explain how
e employ Copilot to generate solutions for each task in this
ataset. After that, we present how we selected students’ so-
utions for this comparison. Finally, we discuss the criteria to
ompare Copilot with students in solving Python programming
asks from different aspects.

.2.1. Dataset: Python programming tasks
To address RQ2, we choose a dataset of a Python programming

ourse that includes students’ submissions for 5 programming as-
ignments (Hu et al., 2019). While the programming tasks in this
ataset may not be representative of all the programming tasks
hat professional developers do, they provide us with an oppor-
unity to assess the quality of Copilot’s suggestions beyond code
orrectness. This dataset includes different students’ submissions
ncluding buggy ones that support our RQ on investigating the
ug-repairing cost of Copilot’s suggestions. The bugs detected
n students’ code can also occur in professional development
ettings, as demonstrated by tools like FindBugs (Hovemeyer and
ugh, 2004). This tool, in the beginning, is designed to identify
7

issues in student code, but it has also successfully detected bugs
in production software systems (Hovemeyer et al., 2005). Addi-
tionally, the task descriptions in this dataset are human-written,
reducing the chance of memorization issues (Carlini et al., 2022).

This dataset includes 2442 ‘‘Correct’’ and 1783 ‘‘Buggy’’ stu-
dent submissions for 5 Python programming assignments in a
Python course. Another study also used this dataset for char-
acterizing the benefit of adaptive feedback for errors generated
by novice developers (Ahmed et al., 2020). Table 1 shows the
description of each programming task. Each task includes a de-
scription of the problem, one or more reference solutions, a
different number of submissions by students that includes ‘‘Cor-
rect’’ and ‘‘Buggy’’ solutions, and different unit tests for each task,
with an average of 9 tests per problem, to evaluate the functional
correctness of solutions.

This dataset also contains a tool named ‘‘Refactory’’ to auto-
matically repair the buggy submissions of students if applica-
ble (Hu et al., 2019). In our study, we use this tool to repair
buggy solutions generated by Copilot and students to evaluate the
complexity of fixing bugs in code generated by Copilot compared
to those of junior programmers. This tool matches each buggy
program with the closest correct solution based on its AST struc-
ture. Then, it modifies different blocks of the incorrect program
to repair its bug(s) and convert it to a correct solution if possible.
This tool shows better performance than other state-of-the-art
methods in repairing buggy programs such as Clara (Gulwani
et al., 2018). Despite others that need a large and diverse range of
correct solutions, this tool can repair buggy code even with one
or two references (i.e., correct solutions).

Considering the choice of programming tasks and in order to
have a fair comparison, we compare Copilot with junior develop-
ers. We acknowledge that the results of this comparison may not
be generalizable to all developers. Still, they can provide valuable
insights for future studies to conduct similar investigations on
more advanced programming tasks and compare them to those
written by more experienced developers.

3.2.2. Solving programming problems with Copilot
To generate solutions with Copilot, akin to Section 3.1.3, we

feed the description of each programming task in Table 1, called
prompt, to Copilot. At each attempt, Copilot only returns the Top-
10 solutions for a prompt. Thus, we do not have access to the
rest of the potential suggestions. To inquire about the Copilot’s
consistency in generating solutions, similar to the previous exper-
iments, we repeat the process. In this setup, we repeat the process
5 times and each time collect its top 10 suggested solutions.
Expressly, we ask Copilot to solve each programming problem in
5 different attempts and collect the top 10 suggested solutions
in each one. Thus in total, we collect 50 solutions by Copilot for
each problem.

As we already explained in Section 3.2.1, there are different
test cases per task. To evaluate the functional correctness of
Copilot’s solutions, a solution is considered ‘‘’Correct’’ if it passes
all the unit tests related to its problem. Otherwise, it is considered
as ‘‘Buggy’’.

3.2.3. Downsampling student solutions
In each attempt on Copilot, we only have access to its top 10

suggestions while the average number of student submissions for
these tasks is 689.8. One solution to have more suggestions by
Copilot could be to increase the number of attempts on Copilot.
But, increasing the number of attempts to more than 5 will in-
crease the number of duplicate answers in Copilot’s suggestions.
We discuss the duplicate solutions in Section 3.2.4 with more
details.

Thus, instead of increasing the number of attempts on Copi-
lot, we downsample the students’ submissions to the same size
of Copilot solutions (50 in total) to have an equal number of
solutions for students and Copilot.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

c
t
f
m

(

m
F
s
o
u

t
p
a
e
A
s
k
1
f

n
o
f
C
f
i
c
p

i
i
t

Table 1
A summary of the dataset used to compare Copilot with the human in solving simple programming tasks. The Dataset includes the
assignments and submissions of a Python programming course. It includes students’ submissions for 5 Python programming tasks (Hu et al.,
2019). The last two columns represent the number of students’ submissions in two categories ‘‘Correct’’ and ‘‘Buggy’’.

Task Description Correct Buggy

q1 Sequential
Search

Takes in a value ‘‘x’’ and a sorted sequence ‘‘seq’’, and returns the
position that ‘‘x’’ should go to such that the sequence remains
sorted. Otherwise, return the length of the sequence.

768 575

q2 Unique Dates
Months

Given a month and a list of possible birthdays, returns True if
there is only one possible birthday with that month and unique
day, and False otherwise. Implement 3 different functions:
unique_day, unique_month, and contains_unique_day.

291 435

q3 Duplicate
Elimination

Write a function remove_extras(lst) that takes in a list and
returns a new list with all repeated occurrences of any element
removed.

546 308

q4 Sorting
Tuples

We represent a person using a tuple (gender, age). Given a list of
people, write a function sort_age that sorts the people and
returns a list in an order such that the older people are at the
front of the list. You may assume that no two members of the
list of people are of the same age.

419 357

q5 Top_k
Elements

Write a function top_k that accepts a list of integers as the input
and returns the greatest k number of values as a list, with its
elements sorted in descending order. You may use any sorting
algorithm you wish, but you are not allowed to use sort and
sorted.

418 108

Total 2442 1783
3.2.4. Evaluation criteria
For this part of our study, we consider different criteria to

ompare solutions suggested by Copilot and students to solve
hese programming tasks. We investigate the solutions on the
ollowing markers. In the rest of this section, we explain each
etric in more detail.

1. Correctness Ratio (pass@Topk)
2. Repairing Costs
3. Diversity
4. Cyclomatic Complexity
5. Syntactic Mastery.

1) Correctness ratio (pass@Topk)
A very common metric to evaluate programming language

odels is pass@k metric (Li et al., 2022; Chen et al., 2021).
or example, calculating pass@100 shows the fraction of correct
olutions out of 100 solutions. However, since Copilot returns
nly the Top 10 solutions in each attempt, we cannot accurately
se this metric in our study.
In this study, what attracts our interest is the pass@Topk in all

he attempts. It means that if we call Copilot n times for the same
roblem (the same prompt), n equals the number of attempts,
nd collect the Topk solutions of each attempt, then pass@Topk
quals the fraction of these solutions that passed all the test units.
s an example for pass@Top2, we collect all the Top2 suggested
olutions for a problem in n = 5 different attempts (#solutions =

∗ n = 2 ∗ 5 = 10). Then pass@Top2 reports the fraction of these
0 solutions that passed all test units. We can calculate pass@K
or Copilot but we cannot calculate it for students.

Another evaluation that comes to our attention is the Correct-
ess Ratio (CR) of solutions. We calculate the correctness ratio
f solutions the same as Section 3.1.4. Here by CR, we mean the
raction of correct solutions out of all solutions suggested by the
opilot or human for each problem. We calculate this fraction
or each problem while collecting Topk suggestions of Copilot
n different attempts. For students, we calculate the fraction of
orrect submissions out of all students’ submissions for each
roblem.
Also, we calculate the distribution of the CR and its average in

ndependent attempts on Copilot. We like to study how increas-
ng the number of attempts (giving different chances to Copilot
o solve the same problem) impacts the CR.
8

(2) Repairing costs
After computing the CR for Copilot and students, we aim

to compare Copilot’s buggy solutions with students’ buggy sub-
missions. Our observation shows that several buggy solutions
generated by Copilot can be easily converted into a correct so-
lution by applying small changes. We discuss this observation in
detail in Section 4.2.2.

Repairing the cost of bugs in a software project is an important
metric to show the quality of a code snippet (Kim and Whitehead,
2006). The long repairing time of a bug can be correlated with
structural problems in a code snippet (Kim andWhitehead, 2006).
One of the important factors that impact the repairing time of a
bug is the code churn or the size of changes that are required
to fix the bug (Zhang et al., 2012). Complex or low-quality code
(in case of being buggy) need more time to be repaired, e.g., the
developer needs to spend more time to detect the bug, or bigger
patches are required for fixing the bug. Thus, to compare the
quality of code generated by Copilot with students, we repair the
buggy solutions and then compare them in terms of repair costs.

We use the repairing tool that we explained in Section 3.2.1.
We choose an automated tool for repairing buggy code because:

1. Using an automated tool to fix bugs is very common in
software projects. Software projects train their own tool for
automatically fixing the bugs within the projects to save
developers time (Arcuri, 2008).

2. By using an automated tool, we prevent our repairing pro-
cess from being biased by one specific human expertise.

This tool reports three different metrics to evaluate the repair-
ing cost of buggy solutions (Hu et al., 2019) including:

• Repair Rate: This metric shows the fraction of buggy code
that passed all test cases after the repair process.

• Avg. Repair Time: This metric shows the average time taken
to repair a buggy program in seconds.

• Relative Patch Size (RPS): This metric defines as the Tree-
Edit-Distance (TED) between the AST of a buggy code and
the AST of its repaired code, normalized by the AST size of
the buggy code.

(3) Diversity
It is already shown in language models such as Codex that

increasing the number of sample solutions for a programming



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

o
a

t
t
n
s
p

T
s
1
s
a
c
3
i
c
e
u

m
W
q
n
s
T
t

S
t
A
s
e
i
i
o
b

(

m
v
T
i
i
e
c
d
m
t
C
a
a

i
i
i

Fig. 3. Three different solutions were generated by Copilot for the q3: Duplicate Elimination Task in one attempt. There is no difference between the approach
f these 3 solutions in solving the task. The only difference between (a) and (b) is in variable names, ‘‘i’’ and ‘‘item’’. The difference between (c) and (b) is the
dditional comment in (c). The differences between (c) and (a) are in variable names and comments.
ask can increase the number of correct solutions that pass all
est units (Chen et al., 2021; Li et al., 2022). However, they did
ot study if this increment is due to the increasing diversity of
olutions or if the new correct solutions are just a duplication of
revious ones.
Copilot claims that it removes duplicate solutions among the

op 10 suggested solutions in a single attempt. However, our ob-
ervations show the appearance of duplicate solutions in the Top
0 suggestions of a single attempt. Fig. 3 shows three different
olutions generated by Copilot for task q3: Duplicate Elimination
t a single attempt. As we can see, the structure of all three
odes are the same. The only difference between Figs. 3(a) and
(b) is in the variable name, ‘‘item’’ and ‘‘i’’. Also, the solution
n Fig. 3(c) is the same as the solution in Fig. 3(a) alongside
omments. Since Copilot compares the sequence of characters to
liminate duplicates, it considers these three solutions as three
nique suggestions in the Top 10 solutions of a single attempt.
To remove duplicate solutions in each attempt, we use the

ethod discussed in Section 3.1.4 for reproducibility evaluation.
e investigate if increasing the number of attempts and conse-
uently increasing the total number of solutions will increase the
umber of unique solutions. Also, we compare the diversity of
olutions (correct and buggy) provided by Copilot and students.
his metric compares Copilot’s novelty in generating solutions to
hat of students in solving a programming task.

To remark on the duplicate solutions, as we discussed in
ection 3.1.4, we compare the AST of two codes. We eliminate
he leaves in AST which are related to variable or function names.
lso, we ignore comments or any natural language text in each
olution. Then, we calculate a similarity between the AST of
very two solutions for a problem by the method introduced
n Salazar Paredes et al. (2020). If the similarity between two ASTs
s equal to 1, then they are assumed to be duplicates. We keep just
ne of the solutions. Any value less than 1 represents a difference
etween the functionality of the two solutions.

4) Cyclomatic complexity
A programming language is comprised of a set of program-

ing keywords and built-in functions, methods, and types. De-
elopers may solve a simple programming task in different ways.
hey may choose different programming keywords and built-
ns to solve the same problem. However, even though flexibility
n completing a programming task is desired, it can impact the
fficiency, readability, and even maintainability of code in some
ases (Maruping et al., 2009; dos Santos and Gerosa, 2018). These
ifferences can also reflect developers’ mastery of the program-
ing language. For example, Fig. 4 shows two different solutions

o a simple programming task, q4: Sorting Tuples, from Table 1.
ode Sample #1 has more diverse programming syntax keywords
nd built-in functions, but Code Sample #2 is easier to understand
nd more readable.
Cyclomatic Complexity (McCabe’s Cyclomatic Complexity C.C.)

s another code quality metric that evaluates the understandabil-
ty of a code snippet. C.C. shows the number of independent paths
n a code component, specifically, the number of decisions that
9

can be made in a source code (Ebert et al., 2016; Sarwar et al.,
2013). Measuring the understandability of code snippets allows
us to estimate the required effort for adding new features to the
code or modifying it (Scalabrino et al., 2019).

There are studies that apply C.C. to measure the readability
and understandability of small code snippets (Fakhoury et al.,
2019; Dantas and Maia, 2021; Nguyen and Nadi, 2022). When
comparing solutions for a problem, a lower C.C. indicates a more
readable and understandable code. For example, in Fig. 4, the
C.C. of code samples #1 and #2 are 4.13 and 1, respectively.
While code sample #1 represents two nested for-loops to sort the
list, code sample #2 simply calls sort and uses a lambda to loop
over the list. Such an approach is more Pythonic and also more
understandable.

To evaluate if Copilot’s suggestions are as understandable as
humans’, we calculate the C.C. of Copilot’s solutions and compare
them to the C.C. of humans’ solutions for the same problems.
Thus, we can assess whether Copilot can provide understandable
code that is easy to change and maintain (lower C.C.) or not
if used as a pair programmer in a software project. We use a
Python package, RADON,4 to calculate it. C.C. close or above 10
is interpreted as not a best practice code.

(5) Syntactic mastery

As we already discussed in Section 3.2.4/(4), different syntax
patterns and built-in functions, methods, and types in solving
the same problem can reflect the developers’ mastery as novice
developers may not be familiar with all possible programming
keywords and features in a programming language. While di-
versity in syntax patterns of a solution to address a specific
task shows familiarity with more programming keywords and
built-ins, these diverse solutions may not necessarily be the best
practice to solve a problem. One of the goals of pair program-
ming in industrial projects is to transfer such experiences from
experts to novice developers (Plonka et al., 2015; Lui and Chan,
2006; Fronza et al., 2009). So, as another evaluation criterion, we
compare the diversity of programming keywords and Python’s
built-in functions of Copilot’s code to those of humans.

For example, the code in Fig. 4 are different solutions to
solve the same programming task. Code sample #1 has more
diverse programming syntax keywords such as {‘FunctionDef’,
‘List[None]’, ‘for’, ‘if’, ‘BoolOp’, ‘else’, ‘break’, ‘elif’, ‘return’} and
more diverse built-ins such as {‘append’, ‘range’, ‘insert’}. Code
sample #2 includes programming syntax keywords such as {‘Func-
tionDef’, ‘Lambda’, ‘NameConstant’, ‘Subscript[Num]’} and built-
in method, ’sort’, which are less diverse than the first sample
but more advanced and a less complex solution (in terms of
cyclomatic complexity).

We follow the instructions suggested by Moradi Dakhel et al.
(2021) to collect programming syntax patterns. We convert each
solution to its AST and then walk through the syntax tree to
collect nodes as programming keywords.

4 https://radon.readthedocs.io/en/latest

https://radon.readthedocs.io/en/latest


A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

h
C
u
m
1

d
a
a
l
n
W
i
P

4

o

4

a
t
o
s
T
d
o
t

4

F
t
C
o
o

a
t
a
d
c

(

g
o
g
i
t
s
o
p

o
f

Fig. 4. Two different solutions to solve q4: Sorting Tuples. Code Sample #1
as more diverse syntax patterns and Python built-in functions compared to
ode Sample #2. But #2 is more readable and less complex (in terms of C.C.) in
nderstanding because of using more advanced programming syntax and built-in
ethods. The C.C. of Code Sample #1 (written by a human) is 4.13 while it is
for Code Sample #2 (suggested by Copilot).

To collect built-in functions within a code, first, we need to
istinguish the built-in function from other function calls since
ll types of calls in Python, from built-in to local or public library,
re a subset of a node named ‘‘Call’’ in AST. To do so, we extract a
ist of Python built-ins.5 Then, we collect the node’s name of the
ode ‘‘Call’’ if its ‘‘class_name’’ was in the list of Python built-ins.
e compare the diversity of the keywords and Python built-ins

n Copilot’s and humans’ code to study their capabilities in using
ython’s keywords and built-ins.

. Empirical results

In this section, we present the results we obtained to answer
ur RQs, one by one.

.1. RQ1: Copilot on algorithm design

In this section, we assess the capability of Copilot to solve
lgorithmic problems. To highlight the difference between our
wo trials which have been conducted 30 days apart from each
ther, for each marker, we have indicated the results of the
olutions ‘‘Within a Trial’’ separately from each other as ‘‘First
rial’’ and ‘‘Second Trial’’. For this part of our study, we discuss the
ifferent evaluation criteria per each category of problems since
ur finding shows there is a correlation between the difficulty of
he categories and the results.

.1.1. Sorting algorithms
In this section, we discuss our findings on Sorting Algorithms.

or those evaluation metrics where the manual inspection of au-
hors was required (Response Received, algorithm validation on
orrectness Ratio, and code Optimality), the authors achieved 89%
f the Kappa agreement. We discuss the details in the following
f this section.

5 https://docs.python.org/3/library/functions.html
10
(1) Response received
Our results in Table 2 on sorting algorithms show that when

the algorithm gets more difficult and requires more details in
implementation, Copilot struggles to generate solutions. For ex-
ample, on the first trial, for Heap and Radix sort, Copilot generates
code in only one of the 3 attempts within the trial. However,
in the second trial, Copilot showed improvement as it generated
code in all three attempts. The situation is the opposite for Merge
sort. In the first trial, Copilot generates code in all three attempts.
But in the second trial, it is responsive in only two of the three
attempts.

(2) Correctness ratio
Copilot shows various behavior in generating correct solutions

for sorting algorithms. The difficulty of problems impacts its abil-
ity to generate a correct solution and to use the correct algorithm
for the implementation. However, Copilot shows different behav-
ior in two different trials. For example in the first trial for bubble
and bucket sort which are two easy sorting algorithms, 100%,
and 85.71% of Copilot’s suggestions were correct respectively.
However, in the second trial, it generates no correct solutions for
these two sorting problems.

Since implementing heap sort requires implementing a max
heap, and then writing a sorting function, this algorithm is harder
to implement. In the first trial, Copilot generates no correct solu-
tion for this problem. However, during our second trial, 9.09% of
its suggestions for this problem are correct. In the second trial for
Radix sort, Copilot showed improvement in solving the problem
as it generated code in all three attempts (Response Received) but
none of the generated code was correct.

Copilot shows some particular behavior for some of the sorting
algorithms. For example, during the second trial where we asked
it to generate code for Bucket sort, some of the generated code
was calling the Quick sort function for sorting the buckets even
though Quick sort had not been implemented in the code.

For validating the algorithm choice in solutions that passed
all unit tests, two authors disagreed on the result for selection
sort. The input prompt was summarized from the descriptions
collected from the algorithm design book (Cormen et al., 2022a).
The given prompt for this algorithm was ‘‘Create a function that
accepts a list as input. The function should create two lists named
sorted and unsorted. The function sorts an array by repeatedly
finding the minimum element (considering ascending order) from
an unsorted list and putting it at the beginning of the sorted list.
Finally, it should return the sorted array’’. Given this description,
the second author only accepted solutions that followed this ex-
act description, mainly those which created the two empty sorted
nd unsorted lists. Upon review, however, the first and third au-
hors mentioned that some solutions followed the selection sort
lgorithm, without following the exact steps mentioned in the
escription. After discussions, these solutions were considered as
orrect as well.

3) Code optimality
Our result on code optimality shows that if Copilot is able to

enerate correct solutions for a sorting algorithm, it generates an
ptimal solution for that problem, too. In the first trial, Copilot
enerates correct solutions for 7 out of 8 sorting algorithms and
t is able to generate optimal solutions for these 7 problems in
he same trial, too. In the second trial, Copilot generates correct
olutions for 4 sorting algorithms and it is able to generate
ptimal solutions within its correct solutions for these 4 sorting
roblems as well.
Since we have no correct solutions for example for Bubble sort

r Bucket sort in the second trial, code optimality is not applicable
or these cases. Thus, we show their results with ‘‘-’’.

https://docs.python.org/3/library/functions.html


A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

c
i
a
t
f .

t
h
o

P
t
u
a
t
i
t
c
f
p
c
s
t
i

(

o
d
r
t

w
s

Table 2
Results of Copilot’s code generation ability on fundamental algorithmic problems. ‘‘Response Received’’ shows the number of attempts in each trial that Copilot
an generate code for the proposed prompt. It ranges in [0, 3] ∈ N . ‘‘Correct Ratio’’ shows the percentage of correct solutions in each trial. ‘‘Optimal’’ status is ‘‘Yes’’
f at least one of the correct solutions in each trail is optimal. If at least one correct solution in one of the three attempts (Within a Trial) repeats in two other
ttempts (at the same Trial), then ‘‘Reproduced’’ is ‘‘Yes’’. ‘‘Across Trials’’ for ‘‘Reproduced’’ metric is ‘‘Yes’’ if at least one of the correct solutions from the First
rial repeats in Second trial . If the metrics are not applicable then it presents by ‘‘-’’. For example, in ‘‘Second trial ’’ of ‘‘Bubble Sort’’, we receive no (0) response
rom Copilot. Consequently, ‘‘Correctness Ratio’’ and ‘‘Optimal’’ in ‘Second trial ’’ and ‘‘Reproduced’’ in ‘‘Second trial ’’ and ‘‘Across Trials’’ assign ‘‘-’’ for this algorithm
Algorithm Response received [0,3] Correctness ratio [%] Optimal [Yes/No] Reproduced [Yes/No]

First trial Second trial First trial Second trial First trial Second trial First trial Second trial Across Trials

Sorting Algorithms
Bubble Sort 3 3 100 0 Yes – Yes – –
Bucket Sort 3 3 85.71 0 Yes – Yes – –
Heap Sort 1 3 0 9.09 – Yes – No –
Insertion Sort 3 3 100 100 Yes Yes Yes Yes Yes
Merge Sort 3 2 33.34 0 Yes – No – –
Quick Sort 3 3 16.67 16.67 Yes Yes No No No
Radix Sort 1 3 10 0 Yes – No – –
Selection Sort 3 3 14.28 13.34 Yes Yes No No No

Binary Search Trees
Data Structure 3 1 61.9 35.71 Yes Yes No No Yes
Min and Max Values in Tree 3 3 71.42 66.67 Yes Yes No Yes No
In-order Tree Walk 3 3 94.12 16.67 Yes Yes Yes No Yes
Finding The Successor Node 3 3 100 100 No Yes No Yes Yes

Elementary Graph Algorithms
Simple Data Structure 2 2 50 0 Yes – No – –
Breadth First Search 3 3 100 100 Yes Yes Yes Yes Yes
Depth First Search 3 3 75 0 Yes – No – –
Directed Acyclic Data Structure 2 3 86.37 0 Yes – No – –
Finding Reachable Vertices 3 3 60 100 Yes No Yes Yes No

Greedy Algorithms
Activity Class 2 3 0 0 – – – – –
Comparing Activities 3 3 9.52 0 Yes – Yes – –
Adding Activities to a Set 3 3 13.33 16.67 Yes No No No Yes
Generate All in one Prompt 1 3 0 0 – – – – –
However, this result on sorting algorithms is due to the fact
hat for some of the sorting algorithms such as bubble sort or
eap sort, there is no other possible implementation than the
ptimal one (quadratic or log-linear).
We also observed that Copilot generates Pythonic code or uses

ython’s language-specific features instead of re-implementing
he desired functionality to some extent. For example, alongside
sing list comprehensions (which are faster in Python than iter-
ting over the list in explicit for-loops), Copilot generated code
hat uses built-in functions. An example of this can be observed
n Fig. 5, code generated for the Quick sort where after dividing
he input array into left and right subarrays, instead of generating
ode for sorting the arrays, Copilot used Python’s built-in sort
unction. For sorting problems where iterating over the entire in-
ut was required, instead of using while loops, Copilot generates
ode with either explicit ‘‘for’’ loops or list comprehensions. Doing
o removes the risk of getting trapped in an infinite loop and in
he case of using list comprehensions can make a real difference
n the program’s running time.

4) Code reproducibility and similarity
As the last evaluation metric in Table 2, we report if at least

ne of the correct solutions suggested by Copilot is exactly repro-
uced (similarity equals 1) within a trial and across two trials. Our
esult shows that correct solutions are not exactly reproduced for
he majority of sorting algorithms.

However, the correct solutions are not exactly reproduced
ithin a trial or across two trials, our results in Table 3 on the
imilarity degree between pairs of correct solutions show that
11
they are very similar in some cases. For example, for Quick Sort in
the second trial, the correct solutions are not exactly reproduced
but based on Table 3, there is a 0.99 similarity between its cor-
rect solutions. As another example, for selection sort in the first
trial and across two trials, the correct solutions are not exactly
reproduced but the similarity degree between them equals 0.61
and 0.63 respectively.

Same as code optimality, if Copilot was not able to generate
the correct solution for a problem within a trial, then the code re-
producibility metric and similarity degree are not applicable. Also,
if Copilot generates correct solutions for the sorting problems just
in one of two trials, then reproducibility and similarity across
trials are not applicable. We use ‘‘-’’ for nonapplicable cases.

Summary of results. In summary, Copilot is relatively capable of
providing solutions for sorting problems. It is responsive (Re-
sponse Received) for 6 out of 8 sorting problems of the first trial
and for 7 out of 8 problems of the second trial.

On Correctness Ratio, in the first trial, Copilot generates cor-
rect solutions for all sorting problems except Heap sort, and
on average, 51.42% of its solutions within this trial is correct.
However, in the second trial, it generates correct solutions for
only 4 sorting problems (out of 8) and the average correctness
ratio within this trial is 34.77%. In both trials, if Copilot generates
the correct solution for a problem, at least one of those correct
solutions is optimal.

Finally, the correct solutions suggested by Copilot are not
exactly reproduced for the 4th, 3rd, and 2nd sorting problems
in the first trial, second trial, and across two trials respectively,



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

S
t
a
t
p

b
c
t
s
s

Table 3
Similarity ratios of the AST of Copilot’s correct suggestions on fundamental algorithmic problems. To
calculate the similarity, we removed the duplicate correct solutions in each attempt (three attempts within
a trial). The results show however some of the correct solutions are not exactly reproduced in different
attempts within a trial or between two trials, but they are very similar. The similarity is blank, ‘‘-’’, if it
cannot be calculated (i.e. no correct solution or only one correct solution).
Algorithm First trial Second trial Across trials

Sorting Algorithms

Bubble Sort 0.93 – –
Bucket Sort 1 – –
Heap Sort – – –
Insertion Sort 0.99 1 0.99
Merge Sort – – –
Quick Sort – – 0.99
Radix Sort – – –
Selection Sort 0.61 – 0.63

Binary Search Trees

Data Structure 0.51 0.46 0.53
Min and Max Values in Tree – 1 0.83
In-order Tree Walk 1 – 1
Finding The Successor Node 0.33 0.99 0.55

Elementary Graph Algorithms

Simple Data Structure 0.25 – –
Breadth First Search 0.54 0.72 0.45
Depth First Search 0.73 – –
Directed Acyclic Data Structure 0.63 – –
Finding Reachable Vertices 0.79 1 0.076

Greedy Algorithms

Activity Class – – –
Comparing Activities 1 – –
Adding Activities to a Set 0.09 0.11 0.17
Generate All in one Prompt – – –
Fig. 5. Two different solutions suggested by Copilot for Quick sort. Code
ample #1 is a recursive function. It picked the first element as a pivot
o partition the given array and employed the correct ‘‘Divide and Conquer’’
lgorithm to implement Quick Sort. However, Code Sample #2 randomly divided
he given array into partitions. It is buggy, and it is not deploying the sorting
roperly, but it uses the Python built-in function, ‘‘sort’’ to sort each partition.

ut the similarity degree between some of those non-reproduced
orrect solutions is above 0.6. In some trials and for some of
he sorting problems the code optimality, reproducibility, and
imilarity are not applicable due to the lack of comparable correct
olutions.
12
4.1.2. Binary search trees
In this section, we discuss our findings on Binary Search Trees

(BSTs). The Kappa agreement between the two authors on eval-
uation metrics that needed manual inspection is 100%. For this
problem, we first asked Copilot to generate the BST data structure
which should comprise a class with the parent, right, and left
nodes alongside the node’s value. After that, we asked Copilot to
generate a method that handles insertion per the BST insertion
algorithm for the class. Then, we asked Copilot to create a method
for deleting a node. These operations require the BST to be rebuilt
in order to conform to the BST property. We also asked Copilot
to implement a search method for finding if a value is present in
the BST. These 3 methods comprise the base BST data structure. In
the next steps, we asked Copilot to generate functions for finding
the maximum and minimum value in a tree, performing an in-
order tree walk, and finding the successor node of a child node.
We discuss the details of our results in the following section.

(1) Response received
Our results show that Copilot is capable of understanding the

BST problems in both trials. Only in the second trial, Copilot
struggles in suggesting code in 2 out of 3 attempts for generating
the data structure of a BST.

(2) Correctness ratio
Our results in Table 2 show that Copilot has inconsistent

behavior in generating correct solutions for some BST problems
in two trials. For example, considering the ‘‘In-order Tree Walk’’,
94.12% of Copilot’s suggestions are correct in the first trial, but
in the second trial, it reduces to 16.67%. However, for the two
problems, ‘‘Min and Max Values in Tree’’ and ‘‘Finding The Suc-
cessor Node’’, the correctness ratio on both trials are very close to
each other. For example, for ‘Finding The Successor Node’’, 100%

of Copilot’s suggestions are correct in both trials.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

a
a
w
a
a
‘
p
s
f
v
c
u
o
s
t
v
f

i
s

(

r
a
T
i
e
t
a

l
v
s
e

n
o
a
i
c

S
s
f

t
f
t
p
t

w
n
d
s
m
s
t

4

A
m
a
c
t

(3) Code optimality
It should be noted that, in a majority of the cases, Copilot was

ble to generate code consistent with optimal time complexities
s required for an efficient BST problem. In addition, Copilot
as able to generate multiple different versions (with iterative
nd recursive programming techniques) for ‘‘Finding maximum
nd minimum values in the tree’’, ‘‘In-order tree walk’’, and
‘Finding successor nodes’’ problems. For the ‘‘In-order Tree Walk’’
roblem, Copilot generated functions inside the main function re-
ponsible for executing the walk. These functions were duplicate
unctions of those generated for finding minimum and maximum
alues in the tree. This is bad programming practice as it over-
omplicates the code. However, since these functions were not
sed by the original function at all, the generated code was still
ptimal. Copilot tends to generate recursive functions when the
olution can be solved using such an approach. For example, for
he ‘‘In-order Tree Walk’’ and ‘‘Finding maximum and minimum
alues in the tree’’ problems, the generated code are all recursive
unctions.

Thus, for all the BST problems in both trials, except for ‘‘Find-
ng successor nodes’’ in the first trial, at least one of the correct
olutions suggested by Copilot has optimal time complexity.

4) Code reproducibility and similarity
As it is shown in Table 2, in the first trial, Copilot exactly

eproduces at least one of its correct solutions in 3 different
ttempts only for the ‘‘In-order tree walk’’ problem. Based on
able 3, the similarity between the pairs of its correct solutions
s not greater than 0.51 for those correct solutions that are not
xactly reproduced. For example, the similarity of correct solu-
ions in different attempts of the first trial for ‘‘Data Structure’’
nd ‘‘Finding successor nodes’’ are 0.51 and 0.33 respectively.
In the second trial, based on Table 2, the exact correct so-

utions are reproduced for ‘‘Finding maximum and minimum
alues in the Tree’’ and ‘‘Finding successor nodes’’ problems. The
imilarity for correct solutions of ‘Data Structure’’ which is not
xactly reproduced in this trial is 0.46.
Unlike sorting algorithms, reproducibility across two trials was

ot an issue on BST problems as Copilot reproduces at least one
f the correct solutions from the first trial in the second trials for
ll BST problems except ‘‘Finding maximum and minimum values
n the Tree’’. However, Table 3 shows that the similarity of the
orrect solution for this problem across two trials is 0.83.

ummary of results. In summary, Copilot is capable of under-
tanding the description of BST problems in both trials, except
or the ‘‘Data Structure’’ problem on the second trial.

Copilot has inconsistent behavior in generating correct solu-
ions in two trials as 81.86% of its solutions are correct in the
irst trial but the correctness ratio equals 54.76% in the second
rial. Copilot was able to generate optimal code for all the BST
roblems in both trials except for ‘‘Finding successor nodes’’ in
he first trial.

Copilot struggled in exactly reproducing its correct solutions
ithin each trial and the similarity of those solutions that are
ot exactly reproduced is not above 0.51. However, Copilot repro-
uces at least one of its correct solutions from the first trial in the
econd trial (Across Trials) for all BST problems except ‘‘Finding
aximum and minimum values in the Tree’’. Although the correct
olutions for this problem are not exactly reproduced across two
rials, the similarity of its correct solutions is 0.83.

.1.3. Elementary graph algorithms
In this section, we discuss our findings on Elementary Graph

lgorithms. The Kappa agreement between the two authors on
etrics that needed manual inspection is 83%. As our algorithms
re becoming more complex, it is required for Copilot to generate
ode that uses the previous code that it has generated. We discuss

he details of our results in the following section.

13
(1) Response received
Our results in Table 2 show that like BSTs, Copilot is adept

at generating code for elementary graph algorithms. In the first
trial, Copilot generates code in all 3 attempts for all graph prob-
lems except ‘‘Simple Data Structure’’ and ‘‘Directed Acyclic Data
Structure’’ and in the second trial, it struggles only in one of the
3 attempts on ‘‘Simple Data Structure’’.

(2) Correctness ratio
As we can find in Table 2, same as BST problems, Copilot shows

inconsistent behavior in generating correct solutions for some
graph problems in two trials. For example, for ‘‘Simple Data Struc-
ture’’, ‘‘Depth First Search’’ and ‘‘Directed Acyclic Data Structure’’
in the first trial, 50%, 75% and 86.37% of Copilot’s Suggestions
are correct respectively. However, in the second trial, Copilot is
not able to generate correct solutions for these problems. For the
‘‘BFS’’ problem, 100% of Copilot solutions are correct in both trials.

Our observation shows that during different attempts on Copi-
lot to generate code for BFS and DFS, Copilot generated code for
both algorithms regardless of our asking to do so only for one of
them.

Even though Copilot was able to recognize and generate code
for our description, some of the generated code had one flaw and
since successor methods use the previous methods, this bug was
present in every piece of generated code. This snow-balling effect
has affected our Kappa score as well. This bug was a result of
Copilot considering the nodes being named by integer numbers.
As a result, if a node is created with a name that is not an integer
(e.g. ‘‘A’’ or ‘‘Node1’’ instead of ‘‘1’’ or ‘‘2’’), the code will fail to
iterate through the list of nodes and generate a syntax error.
However, since the code functioned correctly given the normal
usage, we labeled them as correct.

(3) Code optimality
In the first trial, Copilot generated one optimal solution for

each of the graph problems. However, in the second trial, out of
2 problems that Copilot addressed correctly, only one of them,
BFS, includes the optimal solution within its correct solutions.
Checking if a graph is cyclic, requires using a BFS or DFS approach.
If Copilot does not use the code that it has generated for BFS and
DFS during checking if a graph is cyclic, we will be left with code
pieces that repeat the same operation over and over which is a
bad practice in programming. We consider those suggestions as
non-optimal.

We examined the solutions suggested by Copilot for con-
structing the graph data structure and observed that its solutions
contain both list comprehensions and explicit ‘‘for’’ loops. In one
of the correct solutions, the generated code constructs the nodes
from the input using explicit ‘‘for’’ loops, and in another solution,
it does so using list comprehensions. We accept the code that uses
list comprehensions as optimal since if the input is large, there
is a real running time difference between these two approaches.
We also observed that some of the generated code are using an
advanced Python feature called ‘‘operator overloading’’ in which a
native Python function is rewritten by the programmer to behave
differently depending on the arguments that it receives as input.
Fig. 6 shows an example of operator overloading generated by
Copilot.

(4) Code reproducibility and similarity
As we can find in Table 2, in the first trial, Copilot is able to

reproduce at least one of its correct solutions for only two graph
problems, ‘‘Breadth First Search’’ and ‘‘Finding Reachable Ver-
tices’’. However, for other problems such as ‘‘Depth First Search’’
and ’Directed Acyclic Data Structure’’, the correct solution is not

exactly reproduced by Copilot but their similarity equals 0.73 and



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

a
p
a
r

0
t
c
t
b
l

S
a
B
s
C
w
t
l
a
c
t
r
t
m

4

l
b
s
p
s
a
r
c
d

p
c
g

(

d
c
c
c

Fig. 6. Code sample of operator overloading. ‘‘operator overloading’’ is an
dvanced Python feature in which a Python built-in function is re-written by the
rogrammer to behave differently depending on the arguments that it receives
s input. ‘‘contains’’ and ‘‘str’’ are two Python native functions that Copilot
e-wrote in graph problems.

.63 respectively. In the second trial, Copilot is able to reproduce
he correct solutions for those two problems that it addressed
orrectly. For across trials, Copilot is able to exactly reproduce
he correct solutions only for the BFS problem. The similarity
etween correct solutions of ‘‘Finding Reachable Vertices’’ is very
ow across two trials, 0.076.

ummary of results. Our results show Copilot is adept at gener-
ting code for elementary graph algorithms. However, same as
ST, Copilot shows inconsistent behavior in generating correct
olutions for some graph problems in two trials. In the first trial,
opilot is able to generate correct solutions for all graph problems
ith an average correct ratio of 74.27%. However, in the second
rial, it is able to generate correct solutions for only two prob-
ems and 100% of its correct solutions are correct. Copilot was
ble to generate optimal code for all problems that it addressed
orrectly in both trials except for ‘‘Finding Reachable Vertices’’ in
he second trial. In the manner of reproducibility, it struggled to
eproduce its correct solutions for all graph problems. However,
he similarity between correct solutions for some problems is
ore than 0.6.

.1.4. Greedy algorithms
In this section, we discuss our findings on the ‘‘activity se-

ection’’ problem as a Greedy Algorithm. The Kappa agreement
etween the two authors on metrics that needed manual in-
pection is 100%. The ‘‘activity selection’’ problem requires the
rogrammer to define a class for ‘‘activities’’. Each activity has a
tart and end time. The goal of this problem is: given a set of
ctivities where each activity has its own start and ending time,
eturn a set that contains the maximum number of activities that
an be performed as long as they do not overlap. Overlapping is
efined as:

• An activity’s start time must be after a previous activity’s
end time.

• An activity should not happen during another activity.

For this problem, we asked Copilot to generate code for im-
lementing the activity class, comparing activities, and finally
hecking for overlaps between activities to investigate if the
enerated solutions are ‘‘greedy’’.

1) Response received
Our results in Table 2 show that Copilot is capable of un-

erstanding what the underlying problem is and can generate
ode for it. Our observations show that Copilot can even generate
ode when we give it the entire problem definition (activity class,
omparing activities, and adding activities to a set) in one go.
14
(2) Correctness ratio
Even though Copilot is capable of understanding what we ask

from it, the code that it generates for solving the problem is either
buggy or incorrect. For example, given the prompt ‘‘implement a
class called activity. Each instance of this class has two attributes:
start-time and end-time. Both should be integer numbers be-
tween 0 and 24’’, the generated code has no functionalities for
checking the input type or their boundaries. In another problem,
when we asked Copilot to implement a method for compar-
ing activities, we gave it the following prompt: ‘‘implement a
function for comparing two activities. the function should return
True if the first activity ends before the second activity starts.
if the inputs have overlapping start times, return False’’. Here,
Copilot implemented the description correctly. However, since
this method is dependent on its inputs being instances of the
activity class, this code will fail if the input is anything else.
Type checking is important and a basic operation to do which
Copilot fails to do here. Finally, for adding activities to a set of
activities, Copilot was asked to create a method that accepts a
set of activities alongside a start time and end time of activity.
The method should first create a new activity instance with the
given start and end time and then check if this new activity does
not overlap with the activities in the set. Copilot was unable to
generate the necessary code for this no matter how detailed the
description was.

(3) Code optimality
As Copilot was not able to generate correct solutions to most

of the problems, we could only analyze the optimality of the
solutions generated for ‘‘Comparing activities’’ and ‘‘Adding Ac-
tivities to a Set’’. Here, the generated code was simple (As was the
underlying problem) and the solutions required only checking the
boundaries of class attributes or whether the output of a function
was true or not.

(4) Code reproducibility and similarity
As Tables 2 and 3 show, Copilot was only capable of repro-

ducing solutions to a problem for the ‘‘Adding activities to a set’’
problem across trials and these solutions were different from
each other. As Table 3 shows, for the ‘‘Comparing Activities’’
problem, Copilot generated solutions that were exactly the same
in the same trial. However, in the second trial, it was not capable
of even producing a correct solution.

Summary of results. The activity selection problem was used as
a proxy to see whether Copilot would be able to generate code
for solving this problem with a greedy solution. However, Copilot
was not able to generate solutions that satisfied the criteria of a
correct solution. In particular, Copilot showed difficulties in un-
derstanding type checking and variable boundary checking even
though such behaviors were explicitly required in the prompt.

Findings: Copilot is able to recognize fundamental algo-
rithms by their names and generate correct, optimal code
for them as long as the descriptions are short and concise.
In some cases, the developers may need to invoke Copi-
lot multiple times in order to receive solutions that are
correct and tailored to their descriptions.
Challenges: Copilot is unable to generate code for type-
checking variables. It also generates needlessly compli-
cated code for some simple descriptions. Hence, Copilot
still needs to be improved to truly be considered as a pair
programmer.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

t
R

4

d

4
m

f
T
t
m
t

p
T
t
c
f
C
t
o
t
f

‘
t
i
t
t
p
d

c
c
d

t
C
i
i
0
t
c
o
e
i
a

Fig. 7. Evaluation of correct solutions generated by Copilot. Plot (a) shows the normalized values for pass@Topk metrics against different values of k. It shows
he fraction of correct solutions between Topk solutions of 5 different attempts. Plot (b) shows the distribution, average and standard deviation of the Correctness
atio (CR) in each attempt for different programming tasks.
.2. RQ2: Copilot vs. Human in solving programming problems

In this section, we discuss our findings to answer RQ2. We
iscuss the results for each criterion of our evaluation separately.

.2.1. Correctness ratio of Copilot’s suggestions and students’ sub-
issions
As explained in Section 3.2.4, we calculate the pass@Topk

or solutions generated by Copilot for each programming task.
he pass@Topk shows the fraction of correct solutions among
he Topk solutions, collected from 5 different attempts. We nor-
alized the values to report this metric for the programming

asks.
Fig. 7(a) shows the normalized values for pass@Topk of each

rogramming task for Copilot. TopK solutions range between
op1 to Top10 because each attempt on Copilot includes only
he Top10 suggestions. Based on this result, Copilot cannot find
orrect solutions for ‘‘q2: Unique Dates Months’’. This task asks
or ‘‘...solve the problem by implementing 3 different functions...’’.
opilot could not understand this point within the task descrip-
ion and tried to solve the problem in one function. Thus, all
f Copilot’s solutions for this task failed the test cases because
he test units of this task are based on implementing 3 different
unctions.

There are no correct solutions in Copilot’s Top3 suggestions for
‘q4: Sorting Tuples’’ in 5 different attempts. It increases to 0.02 in
he set of Top4 solutions. For ‘‘q1’’, ‘‘q3’’, and ‘‘q5’’, the pass@Top1
s equal to 0.08, 0.13, and 0.13, respectively. For some questions,
he pass@Topk, at different values of k, shows greater values than
he other questions. For example, ‘‘q5’’ has the greatest values for
ass@Top4 and above. Also, ‘‘q4’’ has the lowest pass@Topk, for
ifferent values of k, after ‘‘q2’’.
In general, pass@Topk increases by increasing the k. It means

ollecting a larger number of solutions suggested by Copilot in-
reases the number of correct solutions and this growth can be
ifferent for different programming tasks.
In addition, Fig. 7(b) shows the Correctness Ratio (CR) of solu-

ions in each attempt independently. However, the distribution of
Rs in different attempts is varied, but adding new attempts can
ncrease the average CR of solutions. For example, the average CR
n the first attempt (atp1) is equal to 0.32 while it increases to
.44 in the last attempts (atp5). It shows if we ask Copilot to solve
he same problem multiple times (here 5 attempts), there is a
hance to increase the CR among new Top10 suggested solutions
n average. However, this is not correct for all questions. For
xample for ‘‘q1’’, the CR in ‘‘atp4’’ is 0.7 but it decreases to 0.4
n ‘‘atp5’’. But, for ‘‘q5’’, the CR in the first attempt is equal to 0.7

nd it increases to 0.9 in the last attempt.

15
Since we cannot calculate pass@Topk for students, in Table 4,
we compare the CR of solutions generated by Copilot with the
CR of students’ submissions. For this comparison, we calculate
three different CRs for Copilot. The first, CR@Top1, reports the
number of correct solutions out of all Top1 solutions in 5 different
attempts for each programming task. CR@Top5 calculates the
fraction of correct solutions out of all Top5 solutions suggested
by Copilot in 5 different attempts. Finally, CR@Top10 represents
the number of correct solutions generated by Copilot out of all
its 50 solutions for a programming task. Collecting more solutions
decreases the CR of Copilot since it increases the fraction of wrong
solutions. For some of the questions, CR@Top1 and CR@Top5 of
Copilot are greater than students’ CR. For all questions, the CR
of students’ submissions is greater than CR@Top10 for Copilot’s
suggestions. On average for all the programming tasks, the Cor-
rectness Ratio (CR) of students’ submissions is greater than the
CR of Copilot’s suggestions.

4.2.2. Repairing costs of buggy solutions generated by Copilot and
students

In this part, we compare the repair cost of buggy solutions for
Copilot with students. As we already discussed, our observation
shows there are buggy solutions that are generated by Copilot and
are very similar to correct solutions. A small change can convert
them into a correct solution. Therefore, we attempt to quantify
our observation by calculating the intersection between Copilot’s
correct and buggy solutions for each problem using the BLEU
score (Papineni et al., 2002). The comparison has been done in a
pairwise manner between each correct and each buggy solution.
For example, if out of 50 solutions, 40 are correct and 10 are
buggy, we end up with 400 pairwise comparisons.

BLEU is used in evaluating program synthesis approaches such
as text-to-code, code summarization, and code prediction. BLEU
score uses the n-gram overlap between tokens of two contents
and penalizes length difference. It returns a value between 0 and
1 (Tran et al., 2019). BLEU measures how well two texts match
or are similar to each other. Ren et al. (2020) introduces a new
metric, called CodeBLEU, that measures the BLEU score on syntax
and semantics of code. As a part of this new metric, they measure
CodeBLEU between AST of code.

To measure the overlap between correct and buggy solutions,
we measure the BLEU score between the AST of the buggy and
correct. We omit the buggy code that has syntax errors and
cannot be converted into AST. For example, the BLEU score of
more than 0.7 between the AST of several correct and buggy
pairs of solutions implies a high similarity between these two
solutions. It can give us an estimation of the number of changes
that we need to apply to a buggy solution to repair it.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

o
T
s

p
f
t
o
a
a
(

v
i
b
c
t
t
T
a
o
w
r
o

b
r
g
F

Table 4
The Correctness Ratio (CR) of Copilot’s solutions while collecting Top1, Top5, and Top10 solutions in all 5 attempts
compared to the CR of students’ submissions.

Copilot Students

Task CR@Top1 CR@Top5 CR@Top10 CR

q1 Sequential Search 0.6 0.44 0.36 0.57
q2 Unique Dates Months 0.00 0.00 0.00 0.40
q3 Duplicate Elimination 1 0.72 0.56 0.64
q4 Sorting Tuples 0.00 0.08 0.14 0.54
q5 Top-k Elements 1 0.92 0.76 0.79

Total 0.52 0.43 0.35 0.59
Fig. 8. Distribution of BLEU score among the pair of correct and buggy solutions generated by Copilot. This chart shows a histogram of the BLEU Score on pairs
f correct and buggy solutions generated by Copilot. The BLEU score of 0.75 and above represents a great similarity between the AST of a correct and buggy pair.
he BLEU score between several pairs of the buggy and correct solutions is greater than 0.7, in different programming tasks. This supports our observation that
everal buggy solutions can be corrected with small changes.
Fig. 8 shows the density distribution for the BLEU score among
airs of the buggy and correct solutions generated by Copilot
or different programming tasks. As we can see in this figure,
here are pairs of correct and buggy solutions with BLEU scores
f 0.75 or greater. It shows that sometimes a small change in
buggy solution generated by Copilot can easily convert it into
correct solution, for example, changing ‘‘>’’ (greater) to ‘‘≥’’

greater equal).
Now that some of the buggy solutions generated by Copilot are

ery similar to the correct solutions, we are interested in compar-
ng the repairing cost of Copilot’s buggy solutions with students’
uggy submissions. As we have explained in Section 3.2.3, for this
omparison, we need to downsample students’ submissions to
he same size as Copilot’s suggestions. Fig. 9 shows the distribu-
ion of repairing time for repairing students’ buggy submissions.
here are a high number of submissions with low repairing time
nd few with high repairing time. Thus, to keep the distribution
f repairing costs in the sample set close to the entire population,
e repeat the downsampling process 5 times and report all
epairing metrics for students’ submissions based on the average
f all 5 sampleset.
As we can find in Table 5, the average repair rate for Copilot’s

uggy solutions is greater than students’, which are 0.95 and 0.89
espectively. This means that on average, 95% of buggy solutions
enerated by Copilot have been fixed after the repair process.
or example, for ‘‘q4: Sorting Tuples’’ and ‘‘q5: Top-k Elements’’,
16
all buggy solutions of Copilot (100%) have been fixed while the
repairing rate of students’ submissions for these two tasks is
equal to 85%.

In addition, the average repair time for Copilot’s buggy so-
lutions is less than the students’. This means that not only the
repairing tool can fix the majority of Copilot’s buggy solutions
but also it can fix them faster than student buggy submissions.
The average repairing time for Copilot’s buggy solutions is 4.94 s
while it is equal to 6.48 s for the students. The reason is that on
average, the Relative Patch Size (RPS) of Copilot’s buggy solutions
that need to be repaired is smaller than students’. As we can find
in Table 5, the average RPS for Copilot and students are 0.33 and
0.35, respectively.

We can conclude that however on average, the CR of students’
submissions is greater than Copilot’s solutions, but the repairing
costs of buggy solutions of Copilot are less than students. With
a repairing tool, we can repair the majority of buggy solutions
generated by Copilot and increase its CR.

Thus, if Copilot, as a pair programmer in a software project,
suggests buggy solutions, it is less expensive to fix its bugs
compared to bugs that may be produced by junior developers
when solving the same programming task.

4.2.3. Diversity of Copilot’s suggestions and students’ submissions
The diversity of solutions shows the novelty of Copilot and

students in solving different problems. Also, it shows that while



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

C
s
a
s
b
f
v
b

l
t
s
a
i
i

Fig. 9. The distribution of repairing time for students’ buggy submissions. This chart shows a histogram of students’ buggy submissions based on their repairing
time. It shows that there are more buggy submissions with low repairing time than buggy submissions with high repairing time. We repeat the downsampling
process on students’ submissions 5 times to observe the same distribution in samplesets.
Table 5
Comparing the Repairing Cost of Copilot’s suggestions with students’s submissions.

Copilot Students

Task Rep
Rate

Avg Rep
Time(sec)

Avg
rps

Rep
Rate

Avg Rep
Time(sec)

Avg
RPS

q1 sequential search 0.94 9.61 0.48 0.98 2.58 0.40
q2 unique dates months 0.92 3.26 0.28 0.82 3.81 0.44
q3 duplicate elimination 0.91 0.64 0.26 0.96 4.35 0.30
q4 sorting tuples 1.00 0.78 0.15 0.85 8.82 0.29
q5 top-k elements 1.00 10.40 0.50 0.85 12.84 0.30

Total 0.95 4.94 0.33 0.89 6.48 0.35
increasing the number of sample codes increases the fraction of
correct solutions, this increment is due to the diversity of correct
solutions or duplication. As we discussed in Section 3.2.4, we ob-
serve duplicate solutions in a single attempt and across multiple
attempts on Copilot to solve a problem. On the other hand, we
observe duplicate solutions among students’ submissions as well.
For example, for ‘‘q1: Sequential Search’’, after comparing the
ASTs of students’ correct submissions, 54.32% of their submissions
are identified to be duplicated.

To compare the diversity among students’ submissions and
opilot’s solutions, we randomly downsample 10 student submis-
ions in 5 different sample sets and consider them as 5 different
ttempts. Then, in each attempt on Copilot and for each sample
et of students’ submissions, we eliminate duplicate correct and
uggy solutions. There are a few buggy solutions for Copilot and
or student solutions involving syntax errors that cannot be con-
erted into AST (3 solutions). We consider them as non-duplicate
uggy solutions.
Fig. 10 shows the cumulative distribution of Correct (C) so-

utions, None Duplicate Correct (NDC) solutions, Buggy (B) solu-
ions, and None Duplicate Buggy (NDB) solutions by Copilot and
tudents across different tasks. In this figure, for example, in ‘‘q3:
tp3’’, the number of Correct (C) solutions suggested by Copilot
s 17 but the number of Non-duplicate Correct (NDC) solutions
s only 2. This means that after generating more solutions and
17
running more attempts, Copilot repeats these 2 correct solutions
several times. However, out of 14 Correct (C) solutions gener-
ated by students in the third attempt (atp3), 13 solutions are
non-duplicate. That is the same observation for buggy solutions.
Increasing the number of attempts on Copilot leads to a jump in
the number of correct solutions for ‘‘’q1’’ and ‘‘q5’’ from 2 to 18
and 7 to 38 respectively. However, for ‘‘q3’’ and ‘‘q4’’, this growth
is smaller. The number of None Duplicate Correct (NDC) solutions
of Copilot is less than or equal to the number of Correct (C)
solutions in each attempt for each task. This is the same story for
Buggy solutions. However, it shows that despite Copilot’s claims
that it removes the duplicate solutions, there are still duplicates
in the Top 10 solutions of each attempt.

The difference between C and NDC in student submissions is
less than Copilot. For example, in ‘‘q3’’, the cumulative number of
C solutions generated by Copilot in different attempts is greater
than students’ submissions in different samplesets. However, it is
the opposite for NDC solutions. In ‘‘atp5’’ the cumulative number
of C solutions generated by Copilot equals 28 and it equals 22
after the 5 sampleset on students’ submissions. However, the
cumulative NDC solutions at these attempts equal 2 (out of 28)
for Copilot and it equals 21 (out of 22) for students. It shows
more diversity between correct and even buggy submissions of

students compare to Copilot’s solutions.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

a
n
t
g

s
a
5

4

o
e
g
w
s

f
s
s
‘
h

a
o
i

i
t
s

Fig. 10. The cumulative distribution of solutions by Copilot and students. It shows the cumulative distribution of Correct (C), Non-duplicate Correct (NDC), Buggy
(B), and Non-duplicate Buggy (NDB) solutions for Copilot and students. Attempts (atp) for students equal to a random sampleset of their submission. Each value on
the stack represents the number of solutions in each of the 4 categories. The growth of NDC solutions for Copilot’s solutions decreases or stops for some programming
tasks while the number of its Correct (C) solutions increases. Students’ submissions are more diverse than Copilot’s solutions.
Table 6
The Cyclomatic Complexity (C.C.) of Copilot’s solutions compare to students’
submissions.

Question C.C. Copilot C.C. Students

q1 Sequential Search 5.8 ± 1.94 4.63 ± 2.1
q2 unique dates Months – 4.18 ± 1.03
q3 Duplicate Elimination 3 ± 0.01 3.12 ± 0.5
q4 Sorting Tuples 1 ± 0 4.13 ± 1.03
q5 Top_k Elements 1.44 ± 0.69 3.3 ± 1.46

Total 2.81 3.87

As another example for Copilot, there is no more NDC solution
fter ‘‘atp3’’ for ‘‘q3’’ and ‘‘q5’’. This means that by increasing the
umber of solutions generated by Copilot for these two questions,
he CR increases due to the duplication of correct solutions not
enerating new ones.
In general, the diversity of correct and buggy submissions for

tudents is more than Copilot. While there is no guarantee that
ll non-duplicate solutions are optimized, students solved these
tasks with more diverse and novel solutions.

.2.4. The cyclomatic complexity of code
In this section, we calculate the Cyclomatic Complexity (C.C.)

f code generated by Copilot and students. Table 6 shows the av-
rage and the standard deviation of C.C. for the correct solutions
enerated by Copilot and students. It is worth mentioning that
e use the sampling method explained in Section 3.2.3 to collect
tudents’ correct solutions.
On average, the correct solutions suggested by Copilot are

ound to be less complex than students’ solutions. However, we
hould consider that for example, for ‘‘q2’’, Copilot has no correct
olutions, or the CR of Copilot for ‘‘q4’’ is only 8%. Also, for
‘q5’’, Copilot used Python built-in functions ‘‘Sort’’ and ‘‘Sorted’’,
owever, it was asked in the description to not use them.
The low cyclomatic complexity in our results is primarily

ttributed to the ease of the tasks in our dataset, however, the
bserved minor variances are attributed to poor coding practices
n the students’ solutions, like the example demonstrated in Fig. 4.

Although Copilot is not able to match the diversity observed
n student solutions according to the results discussed in Sec-
ion 4.2.3, its solutions are more understandable than solutions
uggested by students in terms of their cyclomatic complexity.
18
4.2.5. Syntactic mastery
As discussed in Section 3.2.4/(5), different developers can solve

a programming task with different solutions. Consequently, this
can impact the readability and maintainability of the code if it is
not an efficient solution.

In this section, we compare the diversity of syntax keywords
and the usage of built-in functions between the solutions gener-
ated by Copilot and those written by humans for different pro-
gramming tasks. Fig. 11 shows the diversity of syntax keywords
and built-ins that we observed in both Copilot’s and students’
solutions with normalized values. Students used more diverse
keywords and built-ins in comparison to Copilot.

For example, for q3: Duplicate Elimination, the only Python
built-in function in Copilot’s solutions is ‘‘append’’. However,
students included more diverse built-ins such as {’count’, ‘re-
move’, ‘index’, ‘copy’, ‘append’, ‘reverse’, ‘pop’} in their solutions.
As another example, in q5: Top-k elements, Copilot used {’sort’,
‘append’, ‘remove’} as built-in functions in all of its solutions but
students used {’copy’, ‘pop’, ‘remove’, ‘append’, ‘sort’, ‘extend’,
‘reverse’, ‘clear’}. The using of programming keywords by Copilot
and students is similar to built-ins. For example, for q4: Sorting
Tuples, there are solutions provided by students that iterate over
the list of tuples to sort them causing diverse syntax patterns in
their solutions such as {’Tuple’, ‘Lt’, ‘Add’, ‘Expr’, ‘Continue’, ‘Eq’,
‘Break’, ‘Gt’, ‘BoolOp’, ‘And’, ‘UnaryOp’, ‘USub’, ‘LtE’}. We cannot
find these programming patterns in Copilot’s solutions as it only
used the built-in function ‘‘sort’’ in the majority of its solutions.

Students used more diverse syntax patterns and built-ins to
solve the same problem compared to Copilot. This may be the
result of students not being familiar with advanced Python fea-
tures as opposed to Copilot which uses such features frequently.
However, this diversity could stem from the diversity of student
submissions as discussed in Section 4.2.3, or it could be the result
of restriction in some assignments’ descriptions, for example in
q5: Top_k elements that not using the built-in functions sort and
sorted is requested which, unlike the students, Copilot was not
able to understand this restriction.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

o
P

t
l

5

i
m
d
s
t
t
I
s
‘
t
s
s
i
r
a
p
i
i

i

Fig. 11. Diversity of programming Syntax Patterns in Solutions generated by Copilot and Students. Plot (a) shows the normalized value for the distinct number
f Python built-in functions in Copilot’s solutions compared to students’ for different questions. Plot (b) shows the normalized value for the distinct number of
ython Syntax keywords in Copilot’s solutions compared to students.
B
m
i
t
a
U
f
h

f
t

Findings: In general, Copilot suggests solutions that com-
pete with students’ submissions in different aspects. The
correctness ratio and diversity of students’ submissions
are greater than Copilot’s. However, the cost of repairing
buggy solutions generated by Copilot is less than stu-
dents’. In addition, the complexity of Copilot’s generated
code is less than students’.
Challenges: Copilot has difficulty understanding some
requirements in the description of tasks. This affects
the correctness ratio of its solutions. However, students
understand those details and consider them in their
submissions.

5. Discussion and limitation

In this section, we discuss the boundaries of Copilot and how
o make it more beneficial in real programming tasks despite its
imitations.

.1. Description of problems (prompts)

Our results show that Copilot cannot understand some details
n the description of problems that are understandable by hu-
ans. For example, in q5, ‘‘Top-k Elements’’, it is asked in the
escription to ‘‘... not use Python’s built-in functions sort and
orted ...’’. Copilot cannot understand this detail and uses these
wo built-in functions in all of the correct solutions. However,
he majority of students avoided using these built-in functions.
nstead, they wrote a sorting algorithm and then called it for
orting tasks or used other built-in functions such as ‘‘append’’,
‘remove’’ and ‘‘max’’ in their solutions. As our results in Sec-
ion 4.1 show, Copilot suggests correct solutions for different
orting algorithms (meaning that Copilot is familiar with different
orting algorithms such as ‘‘Bubble Sort’’ or ‘‘Merge Sort’’), but
t did not use them in q5 because it could not figure out the
equirements of the problem. But students apply their knowledge
bout sorting algorithms to solve this problem. Thus, since in the
rompt, we cannot limit Copilot to NOT using certain functions,
nstead, it is better to clarify our task by defining functions that
t is allowed to use.

In q4, ‘‘Sorting Tuple’’, it is asked to return the list of tuples
n an order that ‘‘... older people are at the front ...’’. Copilot
 w

19
cannot understand this part. In 92% of suggestions, it returned the
sorted tuples in the default order: ascending. However, students
considered this point in their submission. We even checked some
of the buggy submissions by students. Our observations show that
even in buggy submission, students considered the correct order
of sorting. It means that they fully understood what the point of
sorting tuples is in a way that ‘‘...older people are at the front...’’.

Copilot shows similar limitations on algorithmic problems.
For example, when asking Copilot to implement the ‘‘activity’’
class in Section 4.1.4, Copilot cannot understand putting limits on
variables even though it was asked to do so explicitly. Another
limitation is its difficulties in understanding long descriptions
which are also observed by Li et al. (2022). Throughout our
testing in Sections 4.1 and 4.2, we observed that Copilot might
misunderstand the problem entirely if the description contains
multiple sentences (whether short or long).

5.2. Experimental suggestions

Furthermore, for more exploration on how to change prompt
to meet the target solution, we performed some experiments by
applying different scenarios and discussing their impacts on the
results.

Scenario#1: In this scenario, we changed ‘‘...older people are
at the front...’’ to ‘‘...descending order...’’ in the description of q4
and repeated the process with Copilot to generate solutions. This
small change improves the CR from 14% to 79%. This improve-
ment shows there are some details/keywords in the description
of problems that seem obvious to humans, but Copilot cannot
understand those details in natural language. If we change those
details into programming specific/technical keywords such as
‘‘descending’’, it can help Copilot recommend relevant solutions.

Scenario#2: We have a similar observation for q2, ‘‘Unique
irthday’’, where the Copilot cannot understand the requirements
entioned in the description, however, all students considered

t. In this question, it is asked for ‘‘...implement 3 different func-
ions unique_day, unique_month and contains_unique_day...’’, to
ddress the problem. Copilot could not understand this condition.
nit tests for q2 are testing all 3 functions. Thus, the CR of Copilot
or q2 equals zero because all 50 solutions in different attempts
ave failed on some of the test units.
So, in this scenario, we gave 3 separate descriptions to Copilot

or unique_day, unique_month, and contains_unique _day func-
ions in the same source file. Here is the revised description that
e used:



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734
• unique_day: Given a day and a list of possible birthday dates
return True if there is only one possible birthday with that
day, and False otherwise.

• unique_month: Given a month and a list of possible birth-
day dates, return True if there is only one possible birthday
within that month, and False otherwise.

• contains_unique_day: Given a month and a list of possible
birthday dates, return True if there is only one possible
birthday with that month and day, and False otherwise.

We start with the description of unique_day at the first line
of the source file. Then, we accepted the first solution suggested
by Copilot. We continued with the description of unique_month
in the next line and accepted the first suggested solution and
followed the same instruction for contains_unique_day. We re-
peat the process 50 times to generate 50 solutions that contain
3 separate functions. Copilot even calls the unique_day function
in some of its suggestions for the contains_unique_day function.
You can find sample solutions in the replication package. Since
there are separate unit tests to test each function separately, we
run related tests against each function. In this scenario, the CR
of unique_day, unique_month, and contains_unique_day are 88%,
0%, and 40% respectively.

While the original description was clear to students, Copilot
could not understand it. Instead of asking Copilot to solve the
problem with different functions, we divide a problem into 3
different problems. It increases the CR for unique_day and con-
tains_unique_day. However, the CR of unique_month is still zero.
In the following, we investigate this case with a different scenario.

Scenario#3: Since Copilot could not find any correct solutions
for unique_month, we manually checked its suggested solutions.
We found that in all buggy solutions, Copilot refers to the second
item of the ‘‘birthday’’ tuple in the list of birthday dates as the
month. However, unit tests consider month as the first item
of tuples to test the functionality of the method. For example,
consider below unit test:

• unique_month (Month = ‘‘January’’, Birthdays =
[(‘‘January’’,‘‘1’’), (‘‘January’’, ‘‘2’’)]).

In each tuple in the list of birthdays, for example, (‘‘January’’,
‘‘1’’), Copilot referred to the second item as a month, however,
the first item in the tuple is the birthday month.

In the description of ‘‘unique_month’’, we added the above
unit test as a sample input, at the end of the description. It
improves the CR of ‘‘unique_month’’ from 0% to 91%. It shows
that adding sample input or sample unit test in the description
of problems can help Copilot to generate more correct solutions.

In addition, we randomly checked 20% of students’ submis-
sions (both correct and buggy). Our observation shows that none
of them assumed any wrong structure for the input data, while
the structure of input is not clear in the description of the ques-
tion. Thus, we assume that there is some extra clarification be-
tween students and the lecturer about the structure of the input.

6. Threats to validity

We now discuss the threats to the validity of our study fol-
lowing the guidelines provided by Wohlin et al. (2012) for
experimentation in software engineering.

6.1. Internal validity

The threat to internal validity comes from the fact that Copi-
lot is closed-source. We cannot analyze our results based on
the characteristics (and expected behavior) of Copilot’s trained

model. This is also the case for Copilot’s training data, hence we

20
are not able to indicate whether it memorized the solutions to
these inquiries from its training set or whether it generates a
unique solution. Similar to other researchers (Nguyen and Nadi,
2022; Imai, 2022; Vaithilingam et al., 2022; Chen et al., 2021), we
can only investigate Copilot’s functionality in suggesting code for
the provided prompt.

Also, as our experiments have shown, Copilot’s suggestions
change over time and are not always consistent. This may come
from the inconsistency stemming from the nature of LLMs and
also the continuous improvement of Copilot’s engine as an ML
product, perhaps by feeding new code samples or learning from
new queries submitted to Copilot. As a result, we cannot guaran-
tee that other researchers will receive the same suggestions and
results that we obtained by performing the same experiments.

6.2. External validity

The lack of a dataset that comes from an industrial context
and contains programming task statements along with their cor-
responding code drives us to follow the path of other research in
software engineering using classical programming tasks to study
Copilot’s competence (Vaithilingam et al., 2022; Sobania et al.,
2021a; Nguyen and Nadi, 2022; Drori and Verma, 2021; Tang
et al., 2021). There are different advantages to these types of
programming tasks that we discussed in Sections 3.1 and 3.2.1.
To highlight two advantages, first, Copilot is able to generate
answers corresponding to these task descriptions. Thus, we could
apply our assessments beyond the correctness of the suggested
solutions. Also, the task descriptions in our datasets are human-
written and it decreases the possibility of the memorization issue
in LLMs. But these programming tasks are not representative of
the whole programming tasks in real software projects.

Considering the choice of programming tasks and to have a
fair comparison, we compared Copilot with students in a Python
programming course. While we have no information about the
background and characteristics of the participants, we assume
that they are good representatives of junior developers in real
software projects, but they may not be representatives of the
whole population.

6.3. Conclusion validity

To mitigate the threats to the validity of our conclusions,
we choose different quantitative metrics, based on other studies
in software engineering, to compare Copilot’s code with hu-
mans’ (Fakhoury et al., 2019; Nguyen and Nadi, 2022; Kim and
Whitehead, 2006). Even though these quantitative metrics reduce
the chance of having biased conclusions, they do not enable us to
conduct any qualitative assessment such as how humans interact
with the tool.

6.4. Construct validity

The threat to the construct validity of our study stems from
the fact that all the features and capacities of a good AI pair
programmer cannot be captured by quantitative metrics. Since
pair programming is an interaction between human–human and
human–tool, the opinion of humans about their experience in
using such tools as an AI pair programmer is also required for
a comprehensive study. For example, someone may prefer a
pair programming tool that accepts voice commands to a tool
that suggests a list of possible solutions because they like the
discussion part of pair programming more than seeing a list of

suggestions.



A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

t
r
s
H
t
t
n
u
p
c
t
c

i
a
i
e
n
p
b
f

p
w
e
b
t
h
f
o
o
o
w
m
p

C

S
W
j

7. Conclusion

In this paper, we have studied Copilot’s ability to code genera-
ion and compared its generated code with those of humans. Our
esults show that Copilot is able to generate correct and optimal
olutions for some fundamental problems in algorithm design.
owever, the quality of the generated code depends greatly on
he conciseness and depth of the prompt that is provided by
he developer. Furthermore, our results indicate that Copilot still
eeds more development in fully understanding natural language
tterances in order to be able to fill in the position of a pair
rogrammer. Copilot may occasionally be unable to generate
ode that satisfies all the criteria described in the prompt, but
he generated code can be incorporated with little to moderate
hanges to the provided prompt or the code.
Although Copilot suggests solutions that are more advanced

n programming than solutions provided by junior developers,
nd even though those solutions are comparable to humans’
n correctness, optimality, reproducibility, and repair costs, an
xpert developer is still required to detect and filter its buggy or
on-optimal solutions. Thus, Copilot can be an asset in software
rojects if it is used by expert developers as a pair programmer
ut it can turn into a liability if it is used by those who are not
amiliar with the problem context and correct coding methods.

Given that Copilot has recently been released as a commercial
roduct, a new wave of developers will have access to it. This
ill undoubtedly enrich Copilot’s training dataset and will also
xpose more of its shortcomings. However, Copilot solutions can
e troublesome if novice developers/students fully trust them, on
he other hand, we hypothesize that Copilot’s suggestions may
elp them in improving their programming skills. Therefore, as
uture work, a tool or a layer on top of Copilot that can filter
ut buggy and non-optimal suggestions will reduce the liability
f using this tool in software projects. Future works can also use
ur study design and explore more diverse programming tasks
ith heterogeneous participants in a human-centered study, to
ore comprehensively compare Copilot with humans as an AI
air programmer.

RediT authorship contribution statement

Arghavan Moradi Dakhel: Conceptualization, Methodology,
oftware, Data collection, Visualization, Validation, Investigation,
riting – original draft, Writing – review & editing. Vahid Ma-

dinasab: Methodology, Data collection, Writing – original draft,
Writing – review & editing. Amin Nikanjam: Conceptualization,
Methodology, Writing – review & editing. Foutse Khomh: Super-
vision, Reviewing and editing. Michel C. Desmarais: Supervision,
Reviewing and editing. Zhen Ming (Jack) Jiang: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

We shared our code and data as a replication package: https://
github.com/Copilot-Eval-Replication-Package/CopilotEvaluation.

Acknowledgments

This work is partially supported by the Fonds de Recherche du
Québec (FRQ), the Canadian Institute for Advanced Research (CI-
FAR), and the National Science and Engineering Research Council

of Canada (NSERC).

21
References

Ahmed, U.Z., Srivastava, N., Sindhgatta, R., Karkare, A., 2020. Characterizing
the pedagogical benefits of adaptive feedback for compilation errors by
novice programmers. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering Education and
Training. pp. 139–150.

Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A., 2013. Syntax-Guided
Synthesis. IEEE.

Arcuri, A., 2008. On the automation of fixing software bugs. In: Companion of
the 30th International Conference on Software Engineering. pp. 1003–1006.

Asare, O., Nagappan, M., Asokan, N., 2022. Is GitHub’s copilot as bad as humans
at introducing vulnerabilities in code? arXiv preprint arXiv:2204.04741.

Becker, B.A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., Santos, E.A.,
2022. Programming is hard–or at least it used to be: Educational oppor-
tunities and challenges of AI code generation. arXiv preprint arXiv:2212.
01020.

Bera, R.K., Bera, R.K., 2020. Fundamental limits to computing. In: The Amazing
World of Quantum Computing. Springer, pp. 171–206.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are
few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F., Zhang, C., 2022.
Quantifying memorization across neural language models. arXiv preprint
arXiv:2202.07646.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., et al., 2021. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374.

Clement, C.B., Drain, D., Timcheck, J., Svyatkovskiy, A., Sundaresan, N., 2020.
PyMT5: multi-mode translation of natural language and python code with
transformers. arXiv preprint arXiv:2010.03150.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol.
Measur. 20 (1), 37–46.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2022a. Introduction to
Algorithms, fourth ed. MIT Press.

Cormen, T.H., Leiserson, C.E., Ronald L Rivest, C.S., 2022b. Introduction
to algorithms reviews. https://www.goodreads.com/book/show/58064696-
introduction-to-algorithms.

Dantas, C.E.C., Maia, M.A., 2021. Readability and understandability scores for
snippet assessment: An exploratory study. arXiv preprint arXiv:2108.09181.

Denny, P., Kumar, V., Giacaman, N., 2023. Conversing with copilot: Exploring
prompt engineering for solving CS1 problems using natural language. In:
Proceedings of the 54th ACM Technical Symposium on Computer Science
Education Vol. 1. pp. 1136–1142.

dos Santos, R.M., Gerosa, M.A., 2018. Impacts of coding practices on readability.
In: Proceedings of the 26th Conference on Program Comprehension. pp.
277–285.

Drechsler, R., Harris, I.G., Wille, R., 2012. Generating formal system models from
natural language descriptions. In: 2012 IEEE International High Level Design
Validation and Test Workshop. HLDVT, IEEE, pp. 164–165.

Drori, I., Verma, N., 2021. Solving linear algebra by program synthesis. arXiv
preprint arXiv:2111.08171.

Ebert, C., Cain, J., Antoniol, G., Counsell, S., Laplante, P., 2016. Cyclomatic
complexity. IEEE Softw. 33 (6), 27–29.

Fakhoury, S., Roy, D., Hassan, A., Arnaoudova, V., 2019. Improving source code
readability: Theory and practice. In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension. ICPC, IEEE, pp. 2–12.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al., 2020. Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155.

Finnie-Ansley, J., Denny, P., Becker, B.A., Luxton-Reilly, A., Prather, J., 2022. The
robots are coming: Exploring the implications of OpenAI codex on intro-
ductory programming. In: Australasian Computing Education Conference. pp.
10–19.

Forsgren, N., Storey, M.-A., Maddila, C., Zimmermann, T., Houck, B., Butler, J.,
2021. The SPACE of developer productivity: There’s more to it than you
think. Queue 19 (1), 20–48.

Fronza, I., Sillitti, A., Succi, G., 2009. An interpretation of the results of the
analysis of pair programming during novices integration in a team. In:
2009 3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE, pp. 225–235.

Geeksforgeeks Team, 2022. GeeksForGeeks. https://www.geeksforgeeks.org.
Gulwani, S., 2010. Dimensions in program synthesis. In: Proceedings of the

12th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming. PPDP ’10, Association for Computing Machinery,
New York, NY, USA, ISBN: 9781450301329, pp. 13–24. http://dx.doi.org/10.
1145/1836089.1836091.

Gulwani, S., Radiček, I., Zuleger, F., 2018. Automated clustering and program
repair for introductory programming assignments. ACM SIGPLAN Not. 53 (4),
465–480.

Harris, C.B., Harris, I.G., 2016. Glast: Learning formal grammars to translate
natural language specifications into hardware assertions. In: 2016 Design,
Automation & Test in Europe Conference & Exhibition. DATE, IEEE, pp.

966–971.

https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb3
http://arxiv.org/abs/2204.04741
http://arxiv.org/abs/2212.01020
http://arxiv.org/abs/2212.01020
http://arxiv.org/abs/2212.01020
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb7
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2010.03150
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb12
https://www.goodreads.com/book/show/58064696-introduction-to-algorithms
https://www.goodreads.com/book/show/58064696-introduction-to-algorithms
https://www.goodreads.com/book/show/58064696-introduction-to-algorithms
http://arxiv.org/abs/2108.09181
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb17
http://arxiv.org/abs/2111.08171
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb20
http://arxiv.org/abs/2002.08155
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb24
https://www.geeksforgeeks.org
http://dx.doi.org/10.1145/1836089.1836091
http://dx.doi.org/10.1145/1836089.1836091
http://dx.doi.org/10.1145/1836089.1836091
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb28


A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

H

H

I

K

L

L

L

M

M

M

M

M

M

N

P

P

P

R

R

S

S

S

S

S

T

T

Hovemeyer, D., Pugh, W., 2004. Finding bugs is easy. SIGPLAN Not. (ISSN:
0362-1340) 39 (12), 92–106. http://dx.doi.org/10.1145/1052883.1052895.

ovemeyer, D., Spacco, J., Pugh, W., 2005. Evaluating and tuning a static analysis
to find null pointer bugs. In: Proceedings of the 6th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering. pp.
13–19.

u, Y., Ahmed, U.Z., Mechtaev, S., Leong, B., Roychoudhury, A., 2019. Re-factoring
based program repair applied to programming assignments. In: 2019 34th
IEEE/ACM International Conference on Automated Software Engineering. ASE,
IEEE, pp. 388–398.

mai, S., 2022. Is GitHub copilot a substitute for human pair-programming?
An empirical study. In: Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings. pp. 319–321.

im, S., Whitehead, Jr., E.J., 2006. How long did it take to fix bugs? In: Proceed-
ings of the 2006 International Workshop on Mining Software Repositories.
pp. 173–174.

einonen, J., Hellas, A., Sarsa, S., Reeves, B., Denny, P., Prather, J., Becker, B.A.,
2023. Using large language models to enhance programming error messages.
In: Proceedings of the 54th ACM Technical Symposium on Computer Science
Education, Vol. 1. In: SIGCSE 2023, Association for Computing Machinery,
New York, NY, USA, ISBN: 9781450394314, pp. 563–569. http://dx.doi.org/
10.1145/3545945.3569770.

i, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T.,
Keeling, J., Gimeno, F., Lago, A.D., et al., 2022. Competition-level code
generation with alphacode. arXiv preprint arXiv:2203.07814.

ui, K.M., Chan, K.C., 2006. Pair programming productivity: Novice–novice vs.
expert–expert. Int. J. Hum.-Comput. Stud. 64 (9), 915–925.

anna, Z., Waldinger, R., 1980. A deductive approach to program synthesis. ACM
Trans. Programm. Lang. Syst. (TOPLAS) 2 (1), 90–121.

aruping, L.M., Zhang, X., Venkatesh, V., 2009. Role of collective ownership and
coding standards in coordinating expertise in software project teams. Eur. J.
Inf. Syst. 18 (4), 355–371.

ihalcea, R., Liu, H., Lieberman, H., 2006. NLP (Natural Language Processing)
for NLP (Natural Language Programming). In: International Conference on
Intelligent Text Processing and Computational Linguistics. Springer, pp.
319–330.

oradi, et al., 2022. Replication package. GitHub Repository, GitHub, https:
//github.com/Copilot-Eval-Replication-Package/CopilotEvaluation.

oradi Dakhel, A., C. Desmarais, M., Khomh, F., 2021. Assessing developer
expertise from the statistical distribution of programming syntax patterns.
In: Evaluation and Assessment in Software Engineering. pp. 90–99.

oroz, E.A., Grizkevich, V.O., Novozhilov, I.M., 2022. The potential of artificial
intelligence as a method of software developer’s productivity improvement.
In: 2022 Conference of Russian Young Researchers in Electrical and Electronic
Engineering. ElConRus, IEEE, pp. 386–390.

guyen, N., Nadi, S., 2022. An empirical evaluation of GitHub Copilot’s code
suggestions. In: Accepted for Publication Proceedings of the 19th ACM
International Conference on Mining Software Repositories. MSR, pp. 1–5.

apineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. Bleu: A method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics. pp. 311–318.

earce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R., 2022. Asleep at the
keyboard? Assessing the security of GitHub copilot’s code contributions.
In: 2022 2022 IEEE Symposium on Security and Privacy (SP). SP, IEEE
Computer Society, Los Alamitos, CA, USA, pp. 980–994. http://dx.doi.org/10.
1109/SP46214.2022.00057, URL https://doi.ieeecomputersociety.org/10.1109/
SP46214.2022.00057.

lonka, L., Sharp, H., Van der Linden, J., Dittrich, Y., 2015. Knowledge transfer
in pair programming: An in-depth analysis. Int. J. Hum.-Comput. Stud. 73,
66–78.

ahit, K., Nabil, R.H., Huq, M.H., 2019. Machine translation from natural language
to code using long-short term memory. In: Proceedings of the Future
Technologies Conference. Springer, pp. 56–63.

en, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N., Zhou, M.,
Blanco, A., Ma, S., 2020. Codebleu: A method for automatic evaluation of
code synthesis. arXiv preprint arXiv:2009.10297.

alazar Paredes, P., et al., 2020. Comparing Python Programs Using Abstract
Syntax Trees. Technical Report, Uniandes.

arwar, M.M.S., Shahzad, S., Ahmad, I., 2013. Cyclomatic complexity: The
nesting problem. In: Eighth International Conference on Digital Information
Management. ICDIM 2013, IEEE, pp. 274–279.

calabrino, S., Bavota, G., Vendome, C., Linares-Vasquez, M., Poshyvanyk, D.,
Oliveto, R., 2019. Automatically assessing code understandability. IEEE Trans.
Softw. Eng. 47 (3), 595–613.

obania, D., Briesch, M., Rothlauf, F., 2021a. Choose your programming copilot:
A comparison of the program synthesis performance of GitHub copilot and
genetic programming. arXiv preprint arXiv:2111.07875.

obania, D., Schweim, D., Rothlauf, F., 2021b. Recent developments in program
synthesis with evolutionary algorithms. arXiv preprint arXiv:2108.12227.

ang, L., Ke, E., Singh, N., Verma, N., Drori, I., 2021. Solving probability and
statistics problems by program synthesis. arXiv preprint arXiv:2111.08267.

ran, N., Tran, H., Nguyen, S., Nguyen, H., Nguyen, T., 2019. Does BLEU score
work for code migration? In: 2019 IEEE/ACM 27th International Conference
on Program Comprehension. ICPC, IEEE, pp. 165–176.
22
Vaithilingam, P., Zhang, T., Glassman, E.L., 2022. Expectation vs. Experience:
Evaluating the usability of code generation tools powered by large language
models. In: CHI Conference on Human Factors in Computing Systems
Extended Abstracts. pp. 1–7.

W3schools Team, 2022. W3schools. https://www.w3schools.com.
Wermelinger, M., 2023. Using GitHub Copilot to solve simple programming

problems. In: Proceedings of the 54th ACM Technical Symposium on Com-
puter Science Education V. 1. In: SIGCSE 2023, Association for Computing
Machinery, New York, NY, USA, ISBN: 9781450394314, pp. 172–178. http:
//dx.doi.org/10.1145/3545945.3569830.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

Zhang, F., Khomh, F., Zou, Y., Hassan, A.E., 2012. An empirical study on factors
impacting bug fixing time. In: 2012 19th Working Conference on Reverse
Engineering. IEEE, pp. 225–234.

Ziegler, A., Kalliamvakou, E., Simister, S., Sittampalam, G., Li, A., Rice, A., Rifkin, D.,
Aftandilian, E., 2022. Productivity assessment of neural code completion.
arXiv preprint arXiv:2205.06537.

Arghavan Moradi Dakhel is currently a Ph.D. Candi-
date in Software Engineering at Polytechnique Mon-
tréal. Her study is focused on modeling the expertise
of developers and exploring characteristics and tools
that impact developers’ proficiency and productiv-
ity. She received her B.Sc. degree from University of
Guilan in 2013 and her M.Sc. Degree from Shahid
Beheshti University in 2016. Her research interest
stands at the intersection of machine learning/deep
learning, software engineering, mining software reposi-
tories, recommender systems, and human–computer/AI

interaction.

Vahid Majdinsasab received his Bachelor of Science in
Information Technology from University of Tabriz. He
received his Master of Science in Artificial Intelligence
and Robotics from K.N. Toosi University of Technology.
He is currently pursuing a Ph.D. degree in Software
Engineering at Polytechnique Montréal, with a focus
on using Artificial Intelligence for Software Engineering.
Vahid’s research interests include Reinforcement Learn-
ing, Multi-Agent Systems, Evolutionary Algorithms, and
Large Language Models trained on code. His research
aims to advance the state-of-the-art in applying ma-

chine learning to software engineering, with the goal of developing efficient,
reliable, and intelligent software systems.

Amin Nikanjam is a research associate in the SWAT
research team at Polytechnique Montréal. He is study-
ing (1) how Software Engineering practices (like testing
and fault localization) can be leveraged to Machine
Learning Software Systems, and (2) how Machine
Learning techniques can be applied for safety-critical
systems in terms of reliability, robustness, and explain-
ability. He received his Master’s and Ph.D. in Artificial
Intelligence from Iran University of Science and Tech-
nology, Iran, and his Bachelor’s in Software Engineering
from University of Isfahan. Before joining Polytechnique

Montréal, he was an invited researcher at University of Montréal, and before
that, he was an assistant professor at K.N. Toosi University of Technology, Iran.
His research interests include Systems Engineering for Machine Learning, (Deep)
Reinforcement Learning, and Multi-Agent Systems.

Foutse Khomh is a full professor, a Canada CIFAR AI
Chair, and FRQ-IVADO Research Chair at Polytechnique
Montréal, where he heads the SWAT Lab (http://swat.
polymtl.ca/). He received a Ph.D. in Software Engi-
neering from the University of Montreal in 2011. His
research interests include software maintenance and
evolution, cloud engineering, machine learning systems
engineering, empirical software engineering, software
analytics, and dependable and trustworthy AI/ML. His
work has received four ten-year Most Influential Pa-
per (MIP) Awards, and six Best/Distinguished Paper

Awards. He has served on the program committees of several international
conferences including ICSE, FSE, ASE, ICSM(E), SANER, MSR, ICPC, SCAM, ESEM
and has reviewed for top international journals such as SQJ, JSS, EMSE, TSE,

TPAMI, and TOSEM.

http://dx.doi.org/10.1145/1052883.1052895
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb33
http://dx.doi.org/10.1145/3545945.3569770
http://dx.doi.org/10.1145/3545945.3569770
http://dx.doi.org/10.1145/3545945.3569770
http://arxiv.org/abs/2203.07814
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb38
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb39
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
https://github.com/Copilot-Eval-Replication-Package/CopilotEvaluation
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb44
http://dx.doi.org/10.1109/SP46214.2022.00057
http://dx.doi.org/10.1109/SP46214.2022.00057
http://dx.doi.org/10.1109/SP46214.2022.00057
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00057
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00057
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00057
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb47
http://arxiv.org/abs/2009.10297
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb51
http://arxiv.org/abs/2111.07875
http://arxiv.org/abs/2108.12227
http://arxiv.org/abs/2111.08267
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb56
https://www.w3schools.com
http://dx.doi.org/10.1145/3545945.3569830
http://dx.doi.org/10.1145/3545945.3569830
http://dx.doi.org/10.1145/3545945.3569830
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00129-2/sb60
http://arxiv.org/abs/2205.06537
http://swat.polymtl.ca/
http://swat.polymtl.ca/
http://swat.polymtl.ca/


A. Moradi Dakhel, V. Majdinasab, A. Nikanjam et al. The Journal of Systems & Software 203 (2023) 111734

a
m

Michel C. Desmarais is a full professor at the Computer
and Software Engineering Department of Polytechnique
Montreal since 2002. After his Ph.D. in Psychology
at the University of Montreal, he spent ten years at
the Montreal Computer Research Institute (CRIM) as
scientific lead of a research team. His research interests
include Artificial Intelligence, Human–Computer Inter-
faces, Recommender Systems, Educational Data Mining
and User Modeling, and Probabilistic and Cognitive
modeling. He was editor of the Journal of Educational
Data Mining from 2013 to 2017. Further information

bout him can be found at https://www.polymtl.ca/expertises/en/desmarais-
ichel-c.
23
Zhen Ming (Jack) Jiang is an associate professor at
the Department of Electrical Engineering and Computer
Science, York University. He received his Ph.D. from the
School of Computing at Queen’s University, MMath and
BMath degrees from the David R. Cheriton School of
Computer Science at the University of Waterloo. During
his Ph.D. studies, he worked with the Performance
Engineering team at BlackBerry (RIM). Tools resulted
from his research are currently used daily to monitor
and debug the health of several ultra-large commercial
software systems within BlackBerry.

https://www.polymtl.ca/expertises/en/desmarais-michel-c
https://www.polymtl.ca/expertises/en/desmarais-michel-c
https://www.polymtl.ca/expertises/en/desmarais-michel-c

	GitHub Copilot AI pair programmer: Asset or Liability?
	Introduction
	Related Works
	Study Design
	RQ1: Copilot on Algorithm Design
	Data set: Fundamental Algorithmic Problems
	Prompt Engineering
	Solving Fundamental Algorithmic Problems with Copilot
	Evaluation Criteria
	(1) Response Received
	(2) Correctness Ratio
	(3) Code Optimality
	(4) Code Reproducibility and Similarity

	RQ2: Copilot vs. Human
	Dataset: Python Programming Tasks
	Solving Programming Problems with Copilot
	Downsampling Student Solutions
	Evaluation Criteria
	(1) Correctness Ratio (pass@Topk)
	(2) Repairing Costs
	(3) Diversity
	(4) Cyclomatic Complexity

	(5) Syntactic Mastery

	Empirical results
	RQ1: Copilot on Algorithm Design
	Sorting Algorithms
	(1) Response Received
	(2) Correctness Ratio
	(3) Code Optimality
	(4) Code Reproducibility and Similarity
	Binary Search Trees
	(1) Response Received
	(2) Correctness Ratio
	(3) Code Optimality
	(4) Code Reproducibility and Similarity
	Elementary Graph Algorithms
	(1) Response Received
	(2) Correctness Ratio
	(3) Code Optimality
	(4) Code Reproducibility and Similarity
	Greedy Algorithms
	(1) Response Received
	(2) Correctness Ratio
	(3) Code Optimality
	(4) Code Reproducibility and Similarity

	RQ2: Copilot vs. Human in Solving Programming Problems
	Correctness ratio of Copilot's suggestions and students' submissions
	Repairing costs of Buggy solutions generated by Copilot and students
	Diversity of Copilot's suggestions and students' submissions
	The Cyclomatic Complexity of Code
	Syntactic Mastery


	Discussion and Limitation
	Description of Problems (Prompts)
	Experimental Suggestions

	Threats to Validity
	Internal Validity
	External Validity
	Conclusion Validity
	Construct Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


