
An Industrial Case Study on Speeding up User
Acceptance Testing by Mining Execution Logs

Zhen Ming Jiang
Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, Canada
zmjiang@cs.queensu.ca

Emad Shihab, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, Canada

{emads, ahmed}@cs.queensu.ca

Alberto Avritzer
Software Development Technologies Group

Siemens Corporate Research
Princeton, NJ, USA

alberto.avritzer@siemens.com

Parminder Flora
Enterprise Performance Engineering

Research In Motion
Waterloo, ON, Canada

Abstract—Software reliability is defined as the probability
of failure-free operation for a period of time, under certain
conditions. To determine whether the reliability of an application
satisfies the reliability requirements, User Acceptance Testing is
performed at deployment sites. To support the wide variation in
configurations and usage patterns, User Acceptance Testing has
become a crucial step in large deployments of mission-critical
applications. However, verifying the long-term reliability of an
application requires lengthy on-site engagements and dedicated
use of costly lab setups.

In this paper, we propose a technique to reduce the time and
cost needed for User Acceptance Testing. We use a repository
of execution logs from related deployments and prior tests of
the application to mine reliability estimates. We then customize
these estimates by mining logs generated from a limited-time
User Acceptance Test (i.e., one day of testing) instead of from
traditionally longer tests (e.g., one week of testing). Deployers
of applications can use such customized estimates to determine
whether an application satisfies their reliability requirements.
Through a case study on a large-scale enterprise application, we
show that our reliability estimate lies within 4% of the reliability
estimate derived from the longer User Acceptance Tests.

I. INTRODUCTION

Software reliability is defined as the probability of failure-
free operation for a period of time, under certain condi-
tions [26]. With studies showing that many field reliability
problems are not due to feature bugs, but rather due to
applications not scaling to field workloads [16], [30], the
reliability under field load is rapidly becoming an important
concern for deployers of large mission-critical applications.
Such applications range from web applications to telecom-
munication infrastructures, and they must support concurrent
access by thousands or millions of users while functioning
over a long period of time.

Reliability estimates must be produced whenever a new
version of the mission-critical application is released. These
estimates help customers determine whether an application
meets their reliability requirements. Such reliability estimates

are derived based on workloads from synthetic benchmark
load runs and early field deployments of the application. These
benchmark workloads rarely match the actual field workload,
leading to estimates that do not match the expected field
reliability of the application [13], [29]. This means that the
general reliability estimates might not be realistic, i.e. not
reflective of the actual field reliability [5].

Instead of relying on the reliability estimates of the appli-
cation builders, nowadays, many large enterprise customers
conduct their own in-house reliability verification before up-
grading to new versions of mission-critical applications. This
type of testing is commonly referred to as User Acceptance
Testing. User Acceptance Testing entails customers deploying
the new version on in-house labs with similar configurations
to the production environments and simulating their expected
workloads. For example, if the users in a particular deployment
won’t be using any of its buggy (not-as-reliable) features, then
the expected reliability of the application will be much higher
than the estimate provided by the general reliability estimate.
However, the acceptance testing process is time-consuming
and costly, requiring lengthy on-site engagements [18] – often
leading customers to either reduce their acceptance testing ef-
forts or to delay upgrading as they perform detailed acceptance
testing. This state of practice prolongs the upgrade cycle for
products and reduces the revenue stream of rapidly-growing
companies that develop these systems.

To deal with the lengthy on-site engagements and costly lab
time needed to perform User Acceptance Testing, we propose
an approach in this paper to reduce the time needed for such
on-site engagements. Instead of conducting the testing on-site
over a full work week, we show that our approach can reduce
the time needed to perform the testing down to a single day,
while providing reliability estimates that are within 4% of the
ones derived from a full User Acceptance Testing cycle. Our
approach analyzes rarely used, yet readily available execution
logs to produce empirically validated and customized reliabil-

ity estimates for mission-critical applications. Basically, our
approach uses logs generated from a single day of acceptance
testing to identify the usage patterns (“system states”) that are
important for a customer, and the “occurrence probability”.
Then, our approach uses logs derived from thousands of
hours of execution from prior deployments and earlier tests
of the same version of the application to provide a good
estimate of how often the identified system states fail (“failure
probabilities”). By combining the occurrence probabilities
from User Acceptance Testing with the failure probabilities
from log repositories, we can produce an accurate, customized
reliability estimate using less resources and time.

The main contributions of our approach are as follows:
• Our approach requires no additional instrumentation or

profiling, instead it leverages widely available, yet rarely
used execution logs.

• Our approach reduces the time needed to perform User
Acceptance Testing with high accuracy. This leads to
reduced costs since on-site engagements can be shorter
and the use of costly testing labs can be reduced.

Organization of the Paper

The remainder of this paper is organized as follows: Sec-
tion II provides an example to motivate the limitations of
traditional reliability estimates and the benefits of User Ac-
ceptance Testing and deployment-specific reliability estimates.
Section III first presents an overview of our approach then
describes the three phases (sections III-A, III-B, and III-C)
involved in our reliability estimation approach. Section IV
evaluates our approach on a large mission-critical application.
Section V discusses our current approach and presents future
work. Section VI presents the threats to validity. Section VII
presents related work. Section VIII concludes this paper.

II. MOTIVATING EXAMPLE

We first present an example to motivate our approach.
Jack’s company is planning an upgrade to a new version of a
mission-critical application. The application is an online web
application with a web server for handling client requests and
a database backend for storing transaction information. Jack
must determine whether the new version of the application
is reliable enough to warrant upgrading to it. Since the
application is a critical application within Jack’s organization,
Jack requires the new version of the application to have a
reliability of at least 0.99. A reliability of 1 means that the
application never fails. A reliability of 0.99 indicates that 99%
of the time the application will function correctly with no
crashes and no Service Level Agreement (SLA) violations.

Tom, one of the developers of the application, informs Jack
that the reliability of the new version is 0.99, based on Tom’s
in-house testing using synthetic industry-standard benchmarks.
Due to the importance of the application, Jack wants a more
custom reliability estimate that factors in his deployment
environment and usage characteristics (i.e. workload). Jack
requests Tom to dispatch an on-site engagement team to
perform a full week of User Acceptance Testing on the new

TABLE I: System State and Failure Profile Derived from
Synthetic Runs and Other Deployments

System States Occurrence Failure
(Search, Browse, Purchase) Probability Probability

(0,0,0) 0.40 0
(0,1,0) 0.30 0
(1,1,0) 0.20 0
(1,1,1) 0.10 0.10

TABLE II: System State Profile Recovered from a Day of User
Acceptance Testing

System States Occurrence
(Search, Browse, Purchase) Probability

(0,0,0) 0.15
(0,1,0) 0.15
(1,1,0) 0.10
(1,1,1) 0.60

version in Jack’s labs. Since the testing requires access to a
similar lab setup as Jack’s production setup, Jack would have
to migrate some of his production load to other machines to
free up machines for the full week of testing.

Tom explains to Jack that they can perform the whole
User Acceptance Testing process within a single day instead
of a longer time period (e.g. usually a full week). Jack is
excited since this process could be done possibly over the
weekend, when the production workload is low, so he does
not have to book longer lab time, and the cost of the on-
site engagement can be minimal. Tom proceeds to explain his
technique to calculate the reliability of the application. His
approach is based on work done by Avritzer [11] to model
the reliability of telecommunication applications. Instead of
simply capturing the workload using a black-box approach
(e.g., by measuring metrics like the number of transactions
per second), Tom uses a white-box approach that captures the
internal state of the application as it processes the workload.
These states are influenced by the deployment environment
and workload. Tom defines the system state for his application
as a 3-value tuple that captures the usage of the system in terms
of the following three currently executing scenarios: browsing,
purchasing and searching. Tom opts for this simple high-level
definition, although other more complex low-level definitions
are also possible. For example, the browsing scenarios could
be further divided into browsing catalogs and browsing rec-
ommendations.

Using this system state model, Tom samples the execution
of the application at run-time and determines which states it
resides in. He defines each value in the tuple to be the number
of active scenarios at the moment. For example, the system
state (0, 0, 0) indicates the system is in the idle state. The
state (1, 1, 1) indicates that the system is currently processing
1 search, 1 browse and 1 purchase scenario concurrently. Other
models, such as those including the percentage of utilization,
are possible as well.

By continuously sampling the data from the in-house testing
and other deployments, Tom derives a system state profile for

the application, i.e., an overview of the system states that occur
together with their frequency. Table I shows the system state
profile derived from synthetic runs and other deployments. The
profile indicates that the application is in idle state (0,0,0) 40%
of the time. At each sample, Tom also determines if there
are any reported failures of the application (e.g., crashes or
SLA violations). He can then calculate the reliability for each
system state. Looking back at Table I, we find that no failures
are reported in the occurrences of state (0,0,0), while 10% of
the occurrences of state (1,1,1) exhibit some type of failure.
Using the sampled failure distribution and the system state
profile, Tom can derive a reliability estimate for the appli-
cation. By combining data from multiple deployments, Tom
concludes that based on the lab testing and other deployments,
the general reliability for this application is 0.99 (failure occurs
only in 0.40 ∗ 0 + 0.30 ∗ 0 + 0.20 ∗ 0 + 0.10 ∗ 0.10 = 1% of
the cases).

However, this in-house reliability estimate does not consider
the differences in usage and deployment patterns in different
deployments. For example, after a day’s worth of running
the application at Jack’s site using his workload, Tom notices
that state (1,1,1) occurs at a much higher frequency (60% in
Table II showing the occurrence probability of Jack’s system
states) compared to the data used to calculate the in-house
reliability estimate (10% in Table I). It is clear that Jack’s
deployment spends more time in state (1,1,1), which has
a high failure probability (based on in-house testing). This
knowledge should be used to customize the reported in-house
reliability estimate. The customized reliability estimate for
Jack’s deployment is 0.94 (failure occurs in 0.15 ∗ 0 + 0.15 ∗
0 + 0.10 ∗ 0 + 0.60 ∗ 0.10 = 6% of the cases) instead of the
general in-house estimate of 0.99. Based on our customized
reliability calculation, Jack should not deploy the new version
of the application. This deployment estimate is derived from
the occurrence probabilities of states in a single day of testing
(second column of Table II), and the failure probabilities of
states in hundreds of hours of execution in the lab and other
deployments (third column of Table I).

We note three novel contributions of our approach:

1) It is important to capture the internal system states and
their failure probability when we estimate the application
reliability. The system state profile is influenced by both
the usage pattern and the deployment characteristics.
Given two deployments with the same usage pattern,
they might still end up with different system state
profiles because of different deployment characteristics.
For example, if one of the deployments has a much
slower database, the application might not be able to
process searches as fast, causing the system states to
have a higher number of active “Search” requests. The
deployment with a slower database will likely have
lower reliability even under the same workload.

2) Our approach makes use of the execution logs of
the application to calculate the system state profiles,
instead of instrumenting or profiling the application

during runtime. Sampling an application during runtime
is not feasible in a production setting due to the high
overhead [12], [22]. Execution logs are readily available
and are often used for remote issue resolution and for
legal compliance purposes (e.g., “Sarbanes-Oxley Act of
2002” [3]). By sampling the logs at a constant frequency
(e.g., once a second), we can create a system state profile
and failure profile without impacting the performance of
an application.

3) The use of execution logs permits Tom to continuously
improve the reliability estimate of his application, since
he can keep on integrating new logs coming from field
deployments in an automated fashion. As for Jack, he
would need to provide a log that captures his expected
system profile. To provide such a log, Jack could provide
logs from previous versions of the application or ideally
provide logs from a limited deployment of the new
version of the application. For example, Jack can provide
the data for running the application for a single day
and Tom can give him a reliability estimate based on
hundreds of deployments that have been running over
the past six months.

III. APPROACH OVERVIEW

Figure 1 gives an overview of our approach, which consists
of the following three phases:

1) Log Analysis: Recover the executed scenario instances
and identify the reported errors from execution logs.

2) System State Derivation: Derive the system states and
calculate the occurrence probability and failure proba-
bility for each system state.

3) Reliability Estimation: Estimate the deployment-
specific reliability using Bayesian Networks.

The Log Analysis and System State Derivation phases both
analyze two sources of execution logs:
• An execution log repository, which stores the load test

and other field deployment logs for the new version of
the application. We analyze the execution log repository
to get a collection of all possible system states as well as
their failure probability.

• Sample User Acceptance Testing logs, which are execu-
tion logs generated during User Acceptance Tests at the
targeted deployment site. We analyze these logs to obtain
the occurrence probability distribution of those system
states that occur in practice at the deployment site.

Then, we calculate the deployment-specific reliability by
matching the occurrence probability distribution of the system
states obtained from the User Acceptance Testing logs with the
corresponding failure probability distribution of these system
states obtained from the execution log repository.

In the next three subsections, we will use logs from a
small online bookstore as a running example to explain the
aforementioned three steps of our approach.
A. Log Analysis

Instead of instrumenting an application, we make use of
the readily available execution logs to recover the needed

Execution
Log

Repository
System State
DerivationLog Analysis

System State
Failure

Probability

System State
Occurrence
Probability

User
Acceptance

Testing Logs
System State
DerivationLog Analysis

Reliability
Estimation

Customized
Deployment-Specific

Reliability

Fig. 1: An Overview of Our Deployment-specific Reliability Estimation Approach

information for our analysis. The technique that we use for
recovering scenario instances and their timing information
from logs is explained in Jiang et al. [21], but here we
briefly summarize the technique using a sample execution
log. Table III shows the first fourteen log lines from the
log repository of an online bookstore. These log lines record
software activities (e.g., line one), system health (e.g., line
nine) as well as errors (e.g., line fourteen).

Each usage scenario in the logs consists of a sequence of
steps. For example, as shown in Table III, a user registration
scenario consists of the following steps:

1) A user sends a request to the web server;
2) The web server processes the request and stores the user

information in a database server;
3) A confirmation email is sent out to the user.
Furthermore, each step in these scenarios shares certain

identification values such as session and user ids. We need
to know the frequency of different scenarios as well as how
long each of them takes. Therefore, we recover the scenario
instances by first abstracting log lines into execution events.
Then we link related log lines (events) into sequences, whose
frequency and duration can then be determined easily.

Step 1. Log Abstraction: Log lines are the output of the
debug statements that developers insert into the source code.
Each log line is a mixture of static and dynamic information.
The static information describes the execution event (i.e.,
the context), whereas the varying (i.e., dynamic) parts are
parameter values generated at run-time. Different values for
the latter parameters cause the same execution event to result
in different log lines. For example, the fourth and the twelfth
log lines are generated from the same code location, but they
are different since they are generated by the execution of
different sessions.

In [19], we have proposed an approach that automatically
abstracts log lines into execution events and marks the dy-
namic and static parts, such that log lines that are related to the
same session can be grouped into sequences later on (step 2).
Furthermore, the abstracted events can also be used to identify
failure events. Table IV shows the results of log abstraction in
our running example.

Step 2. Scenario Sequence Recovery: As the system handles
concurrent client requests, log lines from different scenarios
are intermixed with each other in the execution logs.

The log lines in Table III are generated as a result of the

TABLE V: Recovered Scenario Instances

Session Log lines (Start, End) Keywords
1 1,2,5,7,10 (1,8) Register
2 3,4,6,8 (1,6) Browse
3 11,12 (9,10) Browse
4 13,14 (10,11) Update

activities of different users: Tom, Jack and Jim. Furthermore,
there are two scenarios related to Tom: user registration and
catalog browsing. We recover the sequences by linking the
appropriate parameter values. In our running example, we use
session ids to automatically link related log lines. The results
are shown in Table V. In addition, the third column of the
table also shows the timestamp of the first and last steps of
each recovered sequence. For example, session two started at
time one and ended at time six.

B. State Derivation
We can now derive the system states and estimate the

occurrence probability and failure probability associated with
these system states based on the recovered scenario sequences
from the log analysis.

We first categorize the scenario sequences into groups and
identify any failures. Then, we derive the system states by
taking a snapshot of the application’s scenarios at a fixed
time interval. The associated occurrence probability and failure
probability for each state are also calculated.

Step 1. Sequence Labeling: Executing one scenario can
exercise different code paths, therefore, resulting in differ-
ent sequences. Hence, at the end of our Scenario Sequence
Recovery step, there can be hundreds of sequences corre-
sponding to only a handful of scenarios. We need to further
reduce the amount of sequence data by properly categorizing
(labeling) sequences into scenarios. We label each sequence
with keywords specified by a domain expert. This process is
done once for an application using keyword matching in the
corresponding log entries. For new versions of an application,
the domain expert might need to update some of the keyword
mappings.

Our online bookstore example supports four types of op-
erations: register, browse, purchase and update. These are
the keywords used to label the sequences. When we match
the keywords against each execution event in the scenario
sequences, each word from the event’s log entry is mapped

TABLE III: Example log lines

Log Lines
1 time=1, thread=1, session=1, receiving new user registration request
2 time=1, thread=1, session=1, inserting user information to the database
3 time=1, thread=2, session=2, user=Jack, browse catalog=novels
4 time=1, thread=2, session=2, user=Jack, sending search queries to the database
5 time=3, thread=1, session=1, user=Tom, registration completed, sending confirmation email to the user
6 time=3, thread=2, session=2, database connection error: session timeout
7 time=4, thread=1, session=1, fail to send the confirmation email, number of retry = 1
8 time=6, thread=2, session=2, user=Jack, successfully retrieved data from the database
9 time=7, thread=2, system health check

10 time=8, thread=1, session=1, registration email sent successfully to user=Tom
11 time=9, thread=2, session=3, user=Tom, browse catalog=travel
12 time=10, thread=2, session=3, user=Tom, sending search queries to the database
13 time=10, thread=3, session=4, user=Jim, updating user profile
14 time=11, thread=3, session=4, user=Jim, database error: deadlock

TABLE IV: Abstracted Execution Events and Corresponding Log Lines

ID Event Template #

E1 time=$v, thread=$v, session=$v, receiving new user registration request 1
E2 time=$v, thread=$v, session=$v, inserting user information to the database 2
E3 time=$v, thread=$v, session=$v, user=$v, browse catalog=$v 3, 11
E4 time=$v, thread=$v, session=$v, user=$v, sending search queries to the database 4, 12
E5 time=$v, thread=$v, session=$v, user=$v, registration completed, sending confirmation email to the user 5
E6 time=$v, thread=$v, session=$v, database connection error: session timeout 6
E7 time=$v, thread=$v, session=$v, fail to send the confirmation email, number of retry=$v 7
E8 time=$v, thread=$v, session=$v, user=$v, retrieving data successfully from the database 8
E9 time=$v, thread=$v, system health check 9

E10 time=$v, thread=$v, session=$v, registration email sent successfully to user=$v 10
E11 time=$v, thread=$v, session=$v, user=$v, updating user profile 13
E12 time=$v, thread=$v, session=$v, user=$v, database error: deadlock 14

into its root form (i.e. word stemming). For example, words
like “browsing” and “browsed” will be mapped to the same
root form “browse”. The last column of Table V shows the
labeled scenario names for each sequence.

Step 2. Failure Identification: We identify two types of
failures in the logs based on domain knowledge. We identify
and categorize failures as follows:

1) Functional Failures (or Severity 1 failures) are associ-
ated with system-wide outages. Examples of functional
failures are system crashes, system restarts and system
deadlocks. A domain expert is used to identify severity
1 failures by marking specific keywords (e.g., “thread
dump”) in the log files. For the example shown in
Table III, there is one functional error which occurs at
line 14. It is a deadlock error.

2) Performance Failures (or Severity 2 failures) are associ-
ated with performance slowdowns. Performance failures
impact the user experience. Examples of performance
failures are Service Level Agreement (SLA) violations.
We basically compare the duration for each scenario’s
instances and see if it takes longer than the time specified
by the SLA. If the SLA for the online bookstore states
that all the scenarios should be executed within 5 sec-
onds, there are two severity 2 errors at time 6 for session
1 and session 2 (as both sessions started at time 1).
In [21], we presented an approach and a tool to provide

TABLE VI: Derived System States and Their Failure Occur-
rences with Sampling Interval == 1

Time (t) States (Sr(t)) Failure
(Register, Browse, Purchase, Update) (-/x)

0 (0, 0, 0, 0) -
1 (1, 1, 0, 0) -
2 (1, 1, 0, 0) -
3 (1, 1, 0, 0) -
4 (1, 1, 0, 0) -
5 (1, 1, 0, 0) -
6 (1, 1, 0, 0) x
7 (1, 0, 0, 0) x
8 (1, 0, 0, 0) x
9 (0, 1, 0, 0) -
10 (0, 1, 0, 1) -
11 (0, 0, 0, 1) x

automated support for rapidly identifying such failures.

Step 3. System States Derivation: We derive the system
states by taking a snapshot at a fixed time interval based on
the scenario durations. The snapshot interval must be smaller
than the response time of any scenario, to ensure we do not
miss any scenario information.

We define the system state from the log repository at time t
Sr(t) to be: Sr(t) = (s1 , s2 , . . . , sn

), where s
i

is the number
of active scenarios of type i at time t and n represents the
total number of scenarios. The state (0, 0, . . . , 0) refers to the
idle state. The state is denoted as Sr(t) if it is derived from

the log repository, and as Sa(t) for User Acceptance Testing
logs.

In our running example, there are four types of scenarios:
Register, Browse, Purchase and Update. Therefore, the system
state, Sr(t), is a four-dimensional state vector (s1 , s2 , s3 , s4).

Table VI shows the derived system states from the recovered
scenario instances. For example, at time 2, we have one
register scenario and one browse scenario that are executing
simultaneously (see Table V). Therefore, the system state at
time 2 is Sr(2) = (1, 1, 0, 0). In addition, Table VI also
keeps track of the failure information at each time instance. As
shown in the last column of this table, if there is at least one
identified system failure at time t, the corresponding system
state Sr(t) is marked with an “x”. If there is no failure at time
t, the state is tagged with a “-”. The states at time 6, 7 and 8
contain errors because of the SLA violation in sessions 1 and
2.

Step 4. Occurrence Probability and Failure Probability
Calculations: Table VI shows the system states derived from
the first 14 log lines. In practice, the log repository would
contain thousands or millions of log lines. The second column
of table VII shows the aggregated occurrences of all system
states based on a large execution log repository.

As mentioned earlier, we need to calculate failure prob-
abilities for the system states from the log repository and
occurrence probabilities for the system states from the User
Acceptance Testing. The failure probability for each state,
p

f
(Sr

i
) is calculated using the following formula:

pf (Sr
i
) =

Failure Occurrences of Sr
i

Occurrences of Sr
i

(1)

For example, the failure probability for state (1, 1, 0, 0) is
calculated as: pf ((1, 1, 0, 0)) = 50

500 = 0.1. The 4th column of
Table VII shows the failure probabilities for each system state
based on the execution log repository.

To calculate the occurrence probability of a system state,
p(Sa

i
), from the User Acceptance Testing (UAT) data, we use

the following formula:

p(Sa
i
) =

Occurrences of Sa
i

in the UAT

Total # occurrences of all states in UAT
(2)

If we assume that the data from Table VII comes from a
User Acceptance Testing log, the 2nd column of Table VII
would show the number of occurrences of each system state
in the User Acceptance Tests. The total number of occurrences
of all the system states in the User Acceptance Tests is 4,000
(sum of entries in second column). The occurrence probability
of the idle state is then calculated as p((0, 0, 0, 0)) = 2000

4000 =
0.5.

C. Deployment-Specific Reliability Estimation
In this section, we present our technique to provide a

deployment-specific reliability estimate using Bayesian Net-
works. Our technique consists of the following three steps:

TABLE VIII: System States Derived from the User Accep-
tance Testing

System States Occurrence Prob.
(0, 0, 0, 0) 0.5
(0, 1, 0, 1) 0.25
(1, 1, 0, 0) 0.125
(2, 3, 2, 0) 0.125

1) System States Selection - Identifying the system states
that are common between the User Acceptance Testing
logs and the log repository;

2) Test Coverage Calculation - Calculating the test cover-
age of the log repository on the User Acceptance Testing
logs;

3) Reliability Estimation - Estimating the deployment-
specific reliability using Bayesian Networks.

Step 1. System States Selection: The system states Sr=a
i

that are common between the log repository and the User
Acceptance Testing are selected. Based on the occurrence
probability in the real world (User Acceptance Testing) and
the past failure probability (Log Repository) for these states,
we can calculate the deployment-specific reliability estimates
in the next step.

Table VIII shows the system states and their occurrence
probabilities after analyzing data from the User Acceptance
Tests. After comparing the states from the log repository
(Table VII) and the User Acceptance Testing (Table VIII),
there are three states in common: (0,0,0,0), (0,1,0,1) and
(1,1,0,0).

Step 2. Test Coverage Calculation: For system states that
are tested in the lab or in other field deployments, we know the
likelihood of failure. For system states that do not show up in
the repository, we have no prior knowledge about their failure
probability. In order to obtain a lower bound estimate of the
system reliability, we need to take into account for how many
system states we have failure data, i.e., we need to measure
test coverage.

The Test Coverage (TC) is calculated using the following
formula:

TC(S) =
∑

Sr=a
i
∈S

p(Sr=a
i

) (3)

where Sr=a
i

are the common states between the log reposi-
tory and the deployment logs; p(Sr=a

i
) denotes the occurrence

probability of state Sr=a
i

based on data from the User Accep-
tance Testing, and S is the set of covered system states. In our
example, there are three states in common. Therefore, the test
coverage is calculated as: TC = 0.5 + 0.25 + 0.125 = 0.875.
The test coverage in the motivating example of Section II was
1.0, as all states that were observed in the User Acceptance
Testing were also observed in the log repository.

Step 3. Reliability Estimation: Once the failure and oc-
currence probability for each state are calculated, we use

TABLE VII: Estimated Occurrence Probability and Failure Probability for Each System State

States Occurrences Failure Occurrences Failure Prob.
Sr

i
pf (Sr

i
)

(0, 0, 0, 0) 2000 0 0
(0, 0, 0, 1) 500 100 0.2
(0, 1, 0, 0) 250 0 0
(0, 1, 0, 1) 400 0 0
(1, 0, 0, 0) 40 20 0.5
(1, 1, 0, 0) 500 50 0.1
(1, 1, 0, 1) 250 0 0
(2, 2, 2, 0) 60 0 0

Bayesian Networks to estimate the deployment-specific relia-
bility R(TC, S). Since we have no prior knowledge about the
reliability of states that are not included in the log repository,
we assume that all previously unseen system states derived
during the User Acceptance Testing contain failures. Hence,
the maximum possible reliability is TC(S). This leads to a
lower bound (worse case) estimate of the system reliability
based on test coverage. R(TC, S) is calculated as follows:

R(TC, S) = TC(S)−
∑

Sr=a
i
∈S

p(Sr=a
i

) ∗ p
f
(Sr=a

i
) (4)

where R(TC, S) denotes the estimated reliability given the
field test coverage TC and the set of covered system states
S; p(Sr=a

i
) denotes the occurrence probability of state Sr=a

i

in the User Acceptance Testing; and p
f
(Sr=a

i
) denotes the

failure probability of state Sr=a
i

based on data from the log
repository.

In our running example, the deployment-specific reliability
is calculated as: 0.875− (0.5 ∗ 0 + 0.25 ∗ 0 + 0.125 ∗ 0.1) =
0.8625. Thus, the estimated deployment reliability is 0.8625.
Once the reliability is estimated, deployers can match it with
their targeted reliability threshold and decide whether or not
to install this new version of the application.

IV. INDUSTRIAL CASE STUDY

We validate our approach by comparing our one day reliabil-
ity estimate against a five day (work-week) reliability estimate
that has been produced during the User Acceptance Testing
of a large mission-critical application. The mission-critical
application under study is a telecommunication application
that is responsible for processing thousands of simultaneous
client requests and has very stringent reliability requirements.
This application has been deployed into hundreds of sites,
which have different numbers of users, usage characteristics
and reliability requirements.

For our case study, we used a repository with around 125
GB of log data. The repository contains logs derived from
load and stress tests of the application and from other field
deployments of the application. We also use data from the User
Acceptance Testing of two different deployments, which have
different configuration and usage patterns. Both deployments
were tested over five days using the same version of the
application. One deployment generated 4 GB of logs while

the other generated 23 GB of logs. We measure the reliability
of the application for both deployments using:
• five days worth of logs (full User Acceptance Testing);
• our approach, which uses just one day worth of logs and

estimates the reliability using the log repository.
We then compare both reliability estimates. Due to confiden-

tiality, we cannot list the actual estimate values. However, we
note that our estimation error relative to the five-day estimate
is 2.5% for the first deployment and 3.6% for the second
deployment. As explained in section III, the error is an over-
estimate, i.e., the estimate is a safe estimate to use when
deciding to deploy since the application is likely to have a
higher reliability than reported by our estimate.

After examining the system state of both deployments,
we note that for both deployments a small portion of the
system states (5% and 8.8%) covers the majority (90%) of
the occurrence probability of system states from both deploy-
ments. These small portions of system states never fail. The
system states that suffer from performance slow-down are very
rare, leading to a high reliability. However, if the deployed
application spends considerable time in failure-prone states,
we expect that our approach will provide a better estimate
than the estimates based on the full acceptance testing logs.
The reason for this is that the log repository contains much
more accurate failure probability information than the logs
from even the full acceptance testing. We draw an analogy to
coin flipping to make this more clear. The more we flip a coin,
the better the empirically estimated probability that a coin falls
on its head side. As the log repository contains weeks or even
months of system behavior, the failure probability estimated
based on the log repository will be closer to the real failure
probability, and therefore providing a better reliability estimate
in the long run.

In summary, our deployment-specific reliability estimates
using just one day of User Acceptance Testing provide a
relatively good estimate with little loss in accuracy, while
providing substantial savings in consulting and lab time.

V. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our current
approach and propose directions for some future research.
A. User Acceptance Testing and Other Execution Logs

User Acceptance Testing is an important and critical step
in the deployment of mission critical large-scale enterprise

Fig. 2: Estimated Reliability for six Different Software Builds

applications. Our goal in this paper has been to reduce the
amount of time spent on acceptance testing. As systems
grow in size and complexity, the cost and time needed for
acceptance testing grows considerably due to the need for on-
site customer engagements and the need to book expensive
lab time to perform such testing. Recent advances such as
utility computing (e.g., Amazon EC2 [1]) help reduce some
of the costs of the lab time by permitting companies to book
limited time instead of having to acquire additional machines.
Nevertheless, the cost of acceptance testing continues to grow.

In the future, we wish to explore the minimum number
of hours that are needed to produce reasonable estimates.
Using these deployment logs, we could derive the workload
of the application, i.e., the occurrence probability of the
system states. However, using logs from different versions
of the application brings many challenges to our analysis, in
particular:

1) Performance improvement: The new version might run
faster under the same workload than the older version
due to architectural and design changes. Therefore, the
resulting occurrence probability distribution will shift
with the application spending more or less time in
different states. In this case, we cannot directly match
the distribution from the old logs with the failure in-
formation from the log repository for the new version.
In the future, we plan to investigate various approaches
to automatically translate the old system states into the
new system states.

2) Addition of new features: Because there is no informa-
tion about the usage information in the old system for
new features, we are not able to match the system states
from the old logs.

B. Speeding up Pre-release Field Testing
Our approach could be used to speed up the development

process by picking builds that are most suitable for limited test
deployment prior to the release of an application (e.g., alpha
testing). Alpha testing involves deploying the application in the
field to explore its use by real users. Potential alpha candidate
builds often support the main functionality, but might contain
bugs in the system or miss certain features.

Figure 2 shows the deployment-specific reliabilities for two
internal deployments (A and B). The dashed line in the Figure
shows the minimum acceptable reliability of the alpha build
of the application. For deployment A, any of the builds could
be safely deployed, whereas for deployment B only the third
build could be deployed safely. Using this information, the
development team could start gathering user feedback much
sooner by deploying the application at site A first. In addition,
the team should have waited until the third build to deploy at
site B and should have avoided upgrading from the currently
installed version of the software in order to avoid frustrating
the users due to a high chance of failure. By deploying the
application earlier at site A and only at the appropriate time
at site B, we are able to gain a better understanding of the
reliability and usage characteristics of the application in a real-
life setting. This information would help improve future builds
and speed up the development process.

To conduct our analysis across builds, we must ensure that
the performance between builds does not fluctuate consid-
erably. We used our previous work [21] to verify that the
performance between the consecutive builds was consistent
(no major shifts). Then we used logs generated from the load
and stress tests of each build and logs from each deployment
site to customize the reliability estimates.

VI. THREATS TO VALIDITY

This section discusses various possible threats to the validity
of our approach.
A. Construct Validity

1) Snapshot Interval: To accurately capture the change of
system states, we need to pick a snapshot interval shorter than
the shortest response time of any scenario in our application.
Shorter intervals lead to more accurate system states. However,
the length of the snapshot interval is limited by the logging
interval. In our industrial case study, the timestamp in the
execution logs is accurate up to milliseconds. However, if we
pick the snapshot interval to be every millisecond or every
10 milliseconds, the state derivation step will lead to a huge
number of repeated states with no changes between them.
For this reason, we picked a one-second interval. Our state
derivation step and our analysis finish within one hour on a
Quad-core machine. We cannot pick any interval longer than 1
second, as most of the scenarios finish within 1 to 2 seconds.

2) System States: As there can be an infinite number of
combinations of different workload requests, there can be
an infinite number of system states. However, in our large
industrial study, there are only a limited number of system
states. Furthermore, the distribution of system states follows
the Pareto-principle: a small percentage (5% and 8.8%) of
states covers the majority (90%) of the system behavior.
However, many of the states in the remaining 10% of the
system behavior can be equivalent, so we plan in the future
to apply fuzzy-clustering techniques on these states to group
them and further reduce the number of system states.

In this paper, we only consider the failure probability and
occurrence probability of system states, since we believe that

a system fails or slows down due to the current state (i.e.,
heavy workload). In the future, we plan to look into transitions
between system states to see whether they might be the reason
for system failure. In particular, a state might be a failure state
just because of the previous states that eventually lead it to fail.
B. Internal Validity

1) Contingency of Workload: Our deployment-specific re-
liability estimates are based on the workload in the field
deployment at a particular point in time. In reality, this
workload might shift over time leading to different reliability
estimates. Our approach could be used to track such shifts in
workload and warn about the impact of such a shift on the
reliability of the application.

One method of checking if the application’s behavior
changes over time, is to check the distribution of system states
over time. If the distribution of system states changes over
time, then the system reliability will likely change as well.
The distribution of system states remained stable in both of
our case studies (the alpha testing and the User Acceptance
Testing in two different sites).

2) Limitation of Execution Logs: In the studied mission-
critical application, there is a dedicated component that mon-
itors the overall health. Thus, business level information as
well as error messages are logged. Our current approach
may not work if the studied application does not log all the
necessary system information. In addition, we assume that all
the errors are recorded in the logs, which is usually true for
large mission-critical applications. Last but not the last, not
all errors reported in the logs are operational or performance-
related. Errors from which the application recovers are not
considered as failures. Examples of such errors are temporary
communication failures that do not impact the overall system
health or SLA. In this paper, we manually verified all failures
included in our analysis.
C. External Validity

In this paper, we introduced a novel approach to reduce
the time and cost needed for User Acceptance Testing. We
evaluate our approach against a large mission-critical telecom-
munication application and showed that our estimate lies
within 4% of the more traditional longer User Acceptance
testing. To show the general applicability of our approach, we
should evaluate it on other large mission-critical applications.
However, such applications are usually developed by large
commercial companies and their data is hard to obtain due
to legal and confidentiality concerns.

VII. RELATED WORK

In this section, we discuss two areas of work related
to our log-based empirical reliability estimation approach:
approaches that estimate the system quality in the field and
approaches that use log analysis.

Empirical Estimation of Software Availability and Reliability
Mockus [25] uses information from operational customer

support systems to estimate the availability of a large telecom-
munication system. Information from customer support sys-
tems is more straight-forward to obtain than extracting failure

information from the execution logs. However, the customer
support systems may not contain all failure information, as
they miss externally unnoticeable problems and problems that
are not reported by customers. Nagappan et al. [17], [27]
provide a reliability estimate based on information from the
static source code metrics and dynamic test coverage. Their
approach is implemented as an Eclipse IDE plugin to provide
rapid feedback for unit testing.

Avritzer et al. [8], [10], [11] have proposed several ap-
proaches for generating test suites based on the operational
profile and for estimating the reliability of mission-critical
applications. In [10], Avritzer et al. use Markov chains to
generate load testing suites based on an operational profile.
In [8], [11], Avritzer et al. introduce a transient analysis of
the failure-based Markov chain to model reliability decay as
a function of time. Our approach is similar to [8], [11], as
we incorporate the occurrence probability distribution from
the deployment and the failure probability from the reposi-
tory. However, rather than using the failure information from
vendors, we use the log framework and a large data set of field
data to empirically derive failure and occurrence probability
distributions. In addition, since we have the actual logs to
estimate the occurrence probability of system states, we do
not need Markov chains to model workload usage.

Log Analysis

In general, there are two sources of non-invasive data
that can be used to understand, monitor, and analyze the
various aspects of the system behavior: execution logs and
performance logs.

Execution logs are generated by output statements that
developers insert into the source code. Execution logs are
widely available and are often used for remote issue resolution
and for legal compliance purposes (e.g., “Sarbanes-Oxley Act
of 2002” [3]). Aguilera et al. [4], [28] developed various
algorithms to perform black-box performance debugging on
distributed systems. They use the header information of the
TCP packet traces (source, destination and time) to infer the
dominant causal paths through a distributed application. Un-
fortunately, the accuracy of the inferred causal paths decreases
as the degree of parallelism increases. Marwede et al. [23]
use timing anomalies to automatically uncover functional
problems. Hassan et al. [18] propose a light-weight approach
to extract customer operational profiles from the execution
logs. Jiang et al. [20], [21] analyze execution logs to detect
functional and performance problems in the load tests. The
log analysis approach presented in this paper is related to
the approach presented in [9], because in both papers we
abstract the log information into a set of different system
states. However, in [9] the state definition used was the set of
rules that were fired as a result of a change in object memory,
while in this paper the system state is defined as a set of active
scenarios present in the application at a particular moment in
time.

Performance logs, which are generated by third party mon-
itoring tools like PerfMon [2], record the system resource

utilizations like CPU, memory and disk. Avritzer et al. [7], [6]
propose algorithms to detect the need for software rejuvenation
by monitoring the changing values of performance metrics. Mi
et al. [14], [24] and Cohen et al. [15], [31] develop application
signatures based on various system metrics (like CPU and
memory usage). The application signatures are further used for
efficient capacity planning and anomaly detection. The main
difference between these approaches and ours is that we use
execution logs for our analysis. Execution logs provide more
in-depth domain-specific information.

VIII. CONCLUSION

Studies show that many field failures are due to load
problems rather than functional problems. One system can be
deployed in hundreds or thousands of customer sites, each
with a different workload. As it would be impossible to
test all the possible workloads in the lab, User Acceptance
Testing is becoming an important step in the deployment of
large mission-critical applications. However, User Acceptance
Testing is costly and time-consuming, as it involves costly on-
site customer engagements while running lengthy (multi-day)
tests using precious customer lab resources.

In this paper, we propose an approach that reduces the User
Acceptance Testing time, while providing a relatively accurate
reliability estimate, based on mining the readily available large
sets of execution logs. Experiments on a large mission-critical
application show that our reliability estimates are within a
4% error of the estimates produced by longer-running full
Acceptance Testing processes.

ACKNOWLEDGEMENT

The authors thank Dr. Bram Adams for his useful feedback
on this paper.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.
com/ec2/.

[2] PerfMon Sample. http://msdn.microsoft.com/en-us/library/
aa645516(VS.71).aspx.

[3] Sarbanes-Oxley Act of 2002. http://www.soxlaw.com/.
[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance debugging for distributed systems of black
boxes. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, 2003.

[5] M. Audris, P. Zhang, and P. L. Li. Predictors of customer perceived
software quality. In Proceedings of the 27th International Conference
on Software Engineering, 2005.

[6] A. Avritzer, A. Bondi, M. Grottke, K. S. Trivedi, and E. J. Weyuker.
Performance assurance via software rejuvenation: Monitoring, statistics
and algorithms. In Proceedings of the International Conference on
Dependable Systems and Networks, 2006.

[7] A. Avritzer, A. Bondi, and E. J. Weyuker. Ensuring stable performance
for systems that degrade. In Proceedings of the 5th international
workshop on Software and performance, 2005.

[8] A. Avritzer, F. P. Duarte, R. M. M. Le ao, E. de Souza e Silva, M. Cohen,
and D. Costello. Reliability estimation for large distributed software
systems. In Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research, 2008.

[9] A. Avritzer, J. P. Ros, and E. J. Weyuker. Reliability testing of rule-based
systems. IEEE Software, 13(5), 1996.

[10] A. Avritzer and E. Weyuker. The automatic generation of load test
suites and the assessment of the resulting software. IEEE Transactions
on Software Engineering, 21(9), Sep 1995.

[11] A. Avritzer and E. J. Weyuker. The automated generation of test cases
using an extended domain based reliability model. In Proceedings of
the ICSE Workshop on Automation of Software Test, 2009 (AST 2009),
2009.

[12] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dy-
namic optimization system. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation,
2000.

[13] L. Bertolotti and M. C. Calzarossa. Models of mail server workloads.
Performance Evaluation, 46(2-3), 2001.

[14] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni. Anomaly?
application change? or workload change? towards automated detection
of application performance anomaly and change. In Proceedings of the
IEEE International Conference on Dependable Systems and Networks,
2008.

[15] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, indexing, clustering, and retrieving system history. In Pro-
ceedings of the 12th ACM Symposium on Operating Systems Principles,
2005.

[16] Compuware. Applied Performance Management Survey, Oct 2007.
[17] M. Davidsson, J. Zheng, N. Nagappan, L. Williams, and M. Vouk.

Gert: An empirical reliability estimation and testing feedback tool. In
Proceedings of the 15th International Symposium on Software Reliability
Engineering, 2004.

[18] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz.
An industrial case study of customizing operational profiles using log
compression. In Proceedings of the 30th International Conference on
Software Engineering, 2008.

[19] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. An automated
approach for abstracting execution logs to execution events. Journal
on Software Maintenance and Evolution: Research and Practice, 20(4),
2008.

[20] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automatic
identification of load testing problems. In Proceedings of the 24th IEEE
International Conference on Software Maintenance (ICSM), 2008.

[21] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automated
performance analysis of load tests. In Proceedings of the 25th IEEE
International Conference on Software Maintenance (ICSM), 2009.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005.

[23] N. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring. Automatic
failure diagnosis in distributed large-scale software systems based on
timing behavior anomaly correlation. In Proceedings of the 13th
European Conference on Software Maintenance and Reengineering,
2009.

[24] N. Mi, L. Cherkasova, K. M. Ozonat, J. Symons, and E. Smirni. Analysis
of application performance and its change via representative application
signatures. In Proceedings of the Network Operations and Management
Symposium, 2008.

[25] A. Mockus. Empirical estimates of software availability of deployed sys-
tems. In Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, 2006.

[26] J. D. Musa, A. Iannino, and K. Okumoto. Software reliability: Mea-
surement, prediction, application. McGraw-Hill, 1987.

[27] N. Nagappan, L. Williams, and M. Vouk. ”good enough” software
reliability estimation plug-in for eclipse. In Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, 2003.

[28] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat.
Wap5: black-box performance debugging for wide-area systems. In
Proceedings of the 15th International Conference on World Wide Web,
2006.

[29] J. Voas. Will the real operational profile please stand up? IEEE Software,
17(2), 2000.

[30] E. J. Weyuker and F. I. Vokolos. Experience with performance testing
of software systems: Issues, an approach, and case study. IEEE
Transactions on Software Engineering, 26(12), 2000.

[31] S. Zhang, I. Cohen, J. Symons, and A. Fox. Ensembles of models for
automated diagnosis of system performance problems. In Proceedings
of the 2005 International Conference on Dependable Systems and
Networks, 2005.

