
Automated Analysis of Load Testing Results

Zhen Ming Jiang
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada
zmjiang@cs.queensu.ca

ABSTRACT
Many software systems must be load tested to ensure that
they can scale up while maintaining functional and perfor-
mance requirements. Current industrial practices for check-
ing the results of a load test remain ad hoc, involving high-
level checks. Few research efforts are devoted to the au-
tomated analysis of load testing results, mainly due to the
limited access to large scale systems for use as case studies.
Automated and systematic load testing analysis is going to
be much needed, as many services have been offered online
to an increasing number of users. This dissertation proposes
automated approaches to detect functional and performance
problems in a load test by mining the recorded load testing
data (execution logs and performance metrics). Case stud-
ies show that our approaches scale well to large enterprise
systems and output high precision results that help analysts
detect load testing problems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: [Testing and Debugging]

General Terms
Performance, Reliability, Verification

1. INTRODUCTION
Many systems ranging from e-commerce websites to telecom-

munication infrastructures must support concurrent access
by hundreds or thousands of users. Studies show that many
problems reported in the field are not related to feature bugs,
but to systems not scaling to field workloads [5, 20]. The in-
ability to scale causes catastrophic failures and unfavorable
media coverage. For example, some web service providers
did not fully load test or plan their resources carefully for
heavy traffic before the launch of their new product (e.g.
MobileMe [4]) or new release (e.g. Firefox website [1]).

Unlike many functional testing techniques (e.g. unit test-
ing or integration testing), which focus on testing a system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10, July 12–16, 2010, Trento, Italy.
Copyright 2010 ACM 978-1-60558-823-0/10/07 ...$10.00.

based on a small number of users, load testing studies the
behavior of a system by simulating hundreds or thousands
of users performing tasks at the same time. A typical load
test uses one or more load generators that simultaneously
send requests to the system under test. A load test can last
from several hours to a few days, during which execution
logs along with performance metrics are collected. Execu-
tion logs are generated by debug statements that developers
insert into the source code to record the run time behav-
ior of the application under test. Performance metrics can
be collected periodically by resource monitoring tools like
PerfMon [2]. Performance metrics record the resource usage
information such as CPU utilization, memory, disk I/O and
network traffic.

The primary goal of a load test is to verify whether a
system’s functionality and performance can scale to a large
number of users. This verification is difficult, due to the
following challenges:

1. No Documented System Behavior: Correct and
up-to-date documentation of the behavior of an appli-
cation rarely exists [15].

2. Monitoring Overhead: Techniques that monitor or
profile an application have a high overhead on an ap-
plication and are not suitable for a load test.

3. Time Pressure: Load testing is usually the last step
in an already delayed release schedule. The time allo-
cated to analyze a test is even more limited, as running
a load test usually takes days.

4. Large Volume of Data: A load test records perfor-
mance metrics and logs that are usually hundreds of
megabytes or even larger. This data must be analyzed
thoroughly to uncover any problems in the load test,
yet, in-depth manual analysis is not possible.

Motivated by the importance and challenges of the load
testing analysis, this dissertation proposes automated ap-
proaches to detect functional and performance problems in
a load test by analyzing the recorded execution logs and
performance metrics.

Organization of the Paper
Section 2 describes the related load testing research. Sec-
tion 3 outlines the current industrial practices on load test-
ing analysis and their limitations. Section 4 presents our
research hypothesis. Section 5 outlines our research plan.
Section 6 lists the expected contributions in this disserta-
tion. Section 7 concludes this paper.

2. STATE OF LOAD TESTING RESEARCH
There are various approaches for automatic generation of

load test suites (e.g. [7, 11]), and for monitoring and diagnos-
ing production systems (e.g. [8, 9]). There is very few work
on systematic approaches to automatically analyze the load
testing data for functional verification and performance eval-
uation. Yet, load testing analysis is an important problem,
as studies show that many field problems are not related to
feature bugs but to load problems [20]. It would be prefer-
able that functional and performance issues can be caught
early before the system is released to the field.

We believe that the current limited research on load test-
ing analysis is mainly due to two reasons: First, there is
limited access to large scale multi-user systems and load
testing infrastructure, as many of such systems are devel-
oped in-house by commercial companies. Second, scalability
problems are not a big concern for most prototype systems
developed by researchers. However, as more and more ser-
vices are offered in the cloud for thousands and millions of
users, load testing analysis research will become indispens-
able.

3. STATE OF INDUSTRIAL PRACTICES
The primary goal of a load test is to verify functional

correctness and to evaluate performance criteria for a sys-
tem under load. Current industrial practices for load testing
analysis remain ad hoc, involving high-level manual checks.

Verifying Functional Correctness
Load test engineers first check whether the application has
crashed, restarted or hung during the load test. Then, load
test engineers perform a more in-depth analysis by grepping
through the log files for specific keywords like“failure”or“er-
ror”. Load test engineers analyze the context of the matched
log lines to determine whether these lines indicate problems
or not.

There are two limitations in the current practice for check-
ing functional correctness: First, not all log lines containing
terms like “error” or “failure” are worth investigating. A log
such as “Failure to locate item in the cache” is likely not a
bug. Second, not all errors are indicated in the log file using
the terms “error” or “failure”. For example, even though the
log line “Internal queue is full” does not contain the words
“error” or “failure”, it might be worthwhile investigating, as
newly arriving items are possibly being dropped.

Evaluating Performance Criteria
Load test engineers first use domain knowledge to check the
average response time of a few key scenarios. Then, load test
engineers examine performance metrics for specific patterns
(e.g. memory leaks). Finally, they compare these perfor-
mance data with previous releases to assess whether there is
a significant increase in the utilization of system resources.

We believe that current performance analysis practice is
not efficient, since it takes hours of manual analysis. Cur-
rent practice is neither sufficient for the following two rea-
sons: First, checking the average response time does not
provide a complete picture of the end user experience, as it
is not clear how the response time evolves over time or how
response time varies according to load. Second, merely re-
porting symptoms like “system is slowing down” or “higher
resource utilization” does not provide enough context for de-
velopers to reproduce and diagnose the issues.

4. RESEARCH HYPOTHESIS
Two artifacts are recorded during a load test: execution

logs and performance metrics. Execution logs record soft-
ware activities (e.g. “User authentication successful”) and
errors (e.g. “Fail to retrieve customer profile”). Execution
logs are widely available both in the testing and field en-
vironment for large enterprise systems, as they are used to
support remote issue resolution and to cope with recent legal
acts such as the “Sarbanes-Oxley Act of 2002” [3]. Perfor-
mance metrics record the system’s resource usage like CPU,
memory, and disk I/O. Performance metrics can be collected
by resource monitoring tools like PerfMon [2] with very little
overhead. The information from execution logs and perfor-
mance metrics complement each other, as over the course
of a load test, execution logs record the system behavior
and performance metrics keep track of the system resource
utilization.

In this dissertation, we plan to propose automated ap-
proaches to verify functional correctness and to evaluate per-
formance criteria of a system under load by mining the large
set of execution logs and performance metrics data from load
tests. Our underlying research hypothesis is as follows:�
�

�
�

Historical load test repositories, which are a valuable,
readily available and rarely explored resource, can form
the basis of effective, automated load test analysis.

Our research hypothesis will be validated in the following
three steps:

1. Automated Abstraction of Load Testing Data:
We abstract the execution logs and performance met-
rics to facilitate the automated analysis in the next
two steps.

2. Automated Verification of Functional Correct-
ness: We verify a system’s functional correctness by
inferring functional models from the abstracted execu-
tion logs.

3. Automated Evaluation of Performance Crite-
ria: We evaluate a system’s performance criteria by
building performance models from the abstracted exe-
cution logs and performance metrics.

We will explain the current progress and future plans of
these three steps in the next section.

5. OUR APPROACH
As illustrated in Figure 1, our approach consists of three

steps: We first abstract the log lines to execution events and
performance metrics into performance categories. Then, we
derive functional models by mining the sequences of exe-
cution events to uncover functional problems. We derive
performance models by analyzing the test data from the
test repositories to uncover performance problems. For each
step, we explain our motivation, compare our proposed work
against existing research, and describe our current progress
and future plans. Some of our research results [12, 13, 14]
are already adopted by industry.

(1) Automated Abstraction of Load Testing Data

Execution logs are hard to parse and analyze automatically,
as they are free-form and have an infinite set of vocabulary.
Each log line is a mixture of dynamic and static informa-
tion. Log lines generated by the same output statements

Load Testing Data

Repository

Execution

Logs

Performance

Metrics

Abstraction

(1)

Execution

Events

Performance

Category

Functional

Correctness

(2)

Functional

Models

Performance

Criteria

(3)

Performance

Models

Functional

Problems

Response Time

Problems

Resource Usage

Problems

Figure 1: Our approach for automated load testing analysis

will have identical static information and the same structure
of dynamic information. For example, the log line “Update
shopping cart, item=100” should be automatically classified
with all the other log lines of the abstracted form “Update
shopping cart, item=$v”. We call these abstracted forms
execution events.

Existing log abstraction techniques, which work for generic
log formats, either cannot scale to large log files [16] or can-
not uniquely map one log line to one execution event [19].
Our approach is influenced by source code clone detection
techniques to recognize the static and dynamic parts of the
log lines [12]. Case studies show that our approach can han-
dle large log file sizes with satisfying results (> 80% in pre-
cision and recall).

As the system handles concurrent client requests, log lines
from different scenarios are intermixed with each other in
the execution logs. We have used various abstracted rep-
resentations for scenarios formed by execution events (e.g.
pairs [13] and sequences [14]), which are used in automated
functional and performance analysis.

It is difficult for humans to interpret raw performance
metrics, as it is not clear how to categorize these raw met-
ric values into performance categories (e.g. high, medium
and low). Furthermore, some data mining algorithms (e.g.
Navie Bayes Classifier) only take discrete values as input.
We are currently exploring generic approaches to classify
performance metrics into discrete performance categories us-
ing techniques like control charts [18] to facilitate our future
work in performance analysis.

(2) Automated Verification of Functional Correct-
ness

We can verify a system’s functional correctness by analyzing
the execution logs. As a load test repeatedly executes a set
of scenarios and is conducted after the functional testing is
complete, the execution of the same scenario should generate
identical event sequences. Any variations of these sequences
might indicate potential problems.

We have proposed an approach [13] that derives the pair-
wise temporal relations out of execution logs. Unlike many
temporal specification mining approaches (e.g. [6, 10, 21]),
which profile and analyze the applications on the method-
invocation level, our analysis examines the execution logs to
avoid huge performance overhead during a load test. Com-
pared to method-invocation level data, execution logs are
hard to abstract and group into scenario sequences. Our ap-

proach will flag the following case as problematic: the “lock
open” event is followed by the “lock acquire” event 99% of
the time, whereas the remaining 1% of the time “lock open”
is followed by some other events. Case studies show that our
approach detects various types of problems in the load test-
ing environment, load generators, and the application under
test, and scales well to large enterprise systems, flagging less
than 1% of the log lines as troublesome.

We are currently extending our pair-wise anomaly detec-
tion approach to more generic representations like [10]. In
addition, mining execution sequences of a whole load test at
once might miss certain functional problems. For example,
if the disk on the database server fills up halfway during a
load test, the application under test will report errors for
all the incoming requests that arrive afterwards. To resolve
this problem, we plan to segment the log files into various
chunks and compare temporal properties across chunks.

(3) Automated Evaluation of Performance Criteria

We can evaluate a system’s performance criteria by compar-
ing the data from different load tests. As similar loads are
applied on load tests, performance data should be compara-
ble across tests and informal performance baselines can be
derived. We plan to evaluate a system’s performance in two
aspects: the end-user experience (response time) and the
resource usage efficiency (e.g. CPU, memory, and network).

Response time throughout a test is not constant, as a
typical workload usually consists of periods simulating peak
usage and periods simulating off-hours usage. Therefore, we
need to evaluate the end-user experience by examining the
entire response time distribution instead of merely compar-
ing the average response time. If the current run has sce-
narios that follow a different response time distribution than
the baseline, this run is probably troublesome and worth in-
vestigating. In [14], we have presented an approach that
automatically flags scenarios with response time problems
by comparing the durations of execution sequences from the
current test against previous test(s). We recover execution
sequences from logs and calculate the duration of these se-
quences using the time stamps associated with each log line.
Then, we compare the duration of various sequences using
statistical techniques and visualize the problems in a report.
Our approach not only reports scenarios with performance
problems but also pin-points the performance bottlenecks
within these scenarios. Case studies show that our approach
produces few false alarms (with a precision of 77%) and

scales well to large industrial systems. Unlike [9], our ap-
proach detects performance problems without specifications
like SLOs. In contrast to [8], our approach provides more
context for developers to reproduce and diagnose problems.

We are currently working on building performance mod-
els to evaluate the resource usage efficiency. We correlate
general performance data (from metrics and response time)
with the executed load (from execution logs). We expect
to detect performance problems like abnormal performance
spikes (e.g. unexpected resource contentions) and perfor-
mance degradation (e.g. memory leaks).

6. EXPECTED THESIS CONTRIBUTIONS
The following are our expected thesis contributions:
1. Techniques for abstracting load testing data:

Our log and metric abstraction techniques can be used
for other types of research like mining customer pro-
files [17] or proposing new approaches for detecting
load testing problems.

2. A general methodology to analyze the behavior
of a system during a load test: We will propose
methods to infer functional and performance models
from large volume of load testing data. These meth-
ods can be used to systematically detect and diagnose
functional and performance problems. Some of our
research results [12, 13, 14] are already adopted by
industry.

7. CONCLUSIONS
Large software systems must be load tested to ensure they

can support a large number of concurrent users. Analyzing
a load test is challenging, because it is hard to build models
from the large set of load testing data. Current industrial
practice consists mainly of high-level manual checks. Such
practice is not efficient, nor is it sufficient. In this disserta-
tion, we propose automated approaches to detect functional
and performance problems by analyzing the recorded load
testing data.

Acknowledgments
The author thanks Dr. Ahmed E. Hassan and Dr. Bram
Adams for their comments on the draft. The author appre-
ciates the generosity of the Performance Engineering team
at Research In Motion (RIM). Working with the team as
an embedded researcher, the author has gained an appreci-
ation of the current practice of load testing and the daily
challenges facing load test engineers.

8. REFERENCES
[1] Firefox download stunt sets record for quickest

meltdown. http://tinyurl.com/5ehfvq.

[2] PerfMon Sample. http://tinyurl.com/yzf8d32.

[3] Sarbanes-Oxley Act of 2002.
http://www.soxlaw.com/.

[4] Steve Jobs on MobileMe.
http://tinyurl.com/6dnng9.

[5] Applied Performance Management Survey, Oct 2007.

[6] B. Anton, M. Leonardo, and P. Fabrizio. Ava:
Automated interpretation of dynamically detected
anomalies. In Proceedings of the Eighteenth
International Symposium on Software Testing and
Analysis, 2009.

[7] A. Avritzer and E. J. Weyuker. The automatic
generation of load test suites and the assessment of

the resulting software. IEEE Trans. Softw. Eng.,
21(9), 1995.

[8] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and
E. Smirni. Anomaly? application change? or workload
change? towards automated detection of application
performance anomaly and change. In IEEE
International Conference on Dependable Systems and
Networks, 2008.

[9] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons,
T. Kelly, and A. Fox. Capturing, indexing, clustering,
and retrieving system history. In Proceedings of the
twentieth ACM symposium on Operating systems
principles, 2005.

[10] M. Gabel and Z. Su. Javert: fully automatic mining of
general temporal properties from dynamic traces. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
2008.

[11] V. Garousi, L. C. Briand, and Y. Labiche.
Traffic-aware stress testing of distributed systems
based on uml models. In Proceedings of the 28th
International Conference on Software Engineering,
2006.

[12] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
An automated approach for abstracting execution logs
to execution events. Journal on Software Maintenance
and Evolution: Research and Practice, 20(4), 2008.

[13] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automatic identification of load testing problems. In
Proceedings of the 24th IEEE International
Conference on Software Maintenance, 2008.

[14] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automated performance analysis of load tests. In
Proceedings of the 25th IEEE International
Conference on Software Maintenance (ICSM), 2009.

[15] D. L. Parnas. Software aging. In Proceedings of the
16th International Conference on Software
Engineering, 1994.

[16] J. Stearley. Towards informatic analysis of syslogs. In
Proceedings of the 2004 IEEE International
Conference on Cluster Computing, 2004.

[17] D. Thakkar, Z. M. Jiang, A. E. Hassan, G. Hamann,
and P. Flora. Retrieving relevant reports from a
customer engagement repository. In Proceedings of the
24th IEEE International Conference on Software
Maintenance, 2008.

[18] I. A. Trubin and L. Merritt. Mainframe global and
workload level statistical exception detection system,
based on masf. In 2004 CMG Conference, 2004.

[19] R. Vaarandi. A data clustering algorithm for mining
patterns from event logs. In Proceedings of the 3rd
IEEE Workshop on IP Operations and Management,
2003.

[20] E. J. Weyuker and F. I. Vokolos. Experience with
performance testing of software systems: Issues, an
approach, and case study. IEEE Trans. Softw. Eng.,
26(12), 2000.

[21] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and
M. Das. Perracotta: mining temporal api rules from
imperfect traces. In Proceedings of the 28th
International Conference on Software Engineering,
2006.

