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FEATURE: PERFORMANCE ISSUES IN DEVOPS

DEVOPS IS A recent trend that in-
tegrates development (dev) and op-
erational (ops) teams.5 One of the 
reasons for this type of integration 
is the need to continuously adapt 
software system designs based on 

operational uncertainties, such as 
workload fluctuations (WFs) and 
resource availability. Such uncer-
tainties inevitably affect the depend-
ability characteristics of systems 
(e.g., performance and reliability) 
that may degrade as well as produce 
negative consequences. For instance, 
a software system can perform well 

initially with high throughput and 
low response time, but its perfor-
mance may suddenly worsen because 
of reasons like WFs or software up-
grades. To make informed decisions, 
DevOps teams must be aware of 
uncertainties in the entire DevOps 
life cycle so that they are able to in-
terpret data, models, and results 
accordingly. 

Support for this process can be 
provided by 1) identifying sources of 
uncertainty in a performance-aware 
DevOps scenario, 2) elaborating on 
how these uncertainties are mani-
fested in input data, design models, 
and operational results, and 3) per-
forming a sensitivity analysis that 
quantifies the impact of these sources 
of uncertainty for results interpre-
tation. It is therefore necessary to 
put in place a set of methodologies 
that model and control these uncer-
tainties so that violations of perfor-
mance requirements can be detected, 
thereby linking the operational per-
formance issues to the decision pro-
cess of software designers. 

In literature, uncertainty is em-
bedded in the concept of variability 
(i.e., the natural variation of some 
parameters), and it is very relevant 
in the analysis process.1,2 There-
fore, it is important to incorporate 
some form of uncertainty represen-
tation12 into the engineering process 
and identify software characteris-
tics that are not completely known. 
There exist performance prediction 
approaches that provide a sensitiv-
ity analysis of many parameters by 
monitoring a system or considering 
reasonable guesses by the domain 
experts. However, such model-based 
approaches are typically used for 
predicting system performance as 
a result of system configuration6 or 
external uncertainties. These estima-
tions are only approximations and 
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may result in low accuracies that 
could be misleading during the soft-
ware development process.14

This article has two main contri-
butions: 1) we make the developers 
aware of the system uncertainties and 
2) we run a sensitivity analysis to high-
light the main system criticisms that 
lead to performance issues. In doing 
so, we demonstrate that it is essential 
to bring the sources of uncertainty up 
front in the DevOps process to apprise 
the developers of these uncertainties 
and guarantee the stakeholders’ per-
formance expectations.

Related Work
This section briefly reviews related 
works that have been defined to 
model, analyze, and minimize the 
software system’s uncertainties. Note 
that variability can be considered a 
specific case of uncertainty because 
it includes the specification of pa-
rameters subject to varying values, 
whereas uncertainty also considers 
the lack of knowledge.12

Modeling and Analyzing Uncertainty
The uncertainty concept is discussed 
in many scientific fields. Kennedy and 
O’Hagan distinguish between six 
sources of uncertainty for models im-
plemented in source code:8 

• Parameter uncertainty: origi-
nates from calibrating the 
model, i.e., finding the actual 
parameter input values 

• Model uncertainty: the differ-
ence between the real-world pro-
cess and the code output given to 
the system model

• Residual uncertainty: originates 
from an inherently unpredictable 
real-world process; even under 
stable conditions, such a process 
might produce different output 
when repeated

• Parametric uncertainty: intro-
duced when some of the input 
conditions are not specified 
by the parameter input, either 
intentionally or because of an 
uncontrollable process 

• Observation error: occurs when 
actual observations are used to 
calibrate the system model 

• Code uncertainty: variations 
in the output that are produced 
from executing a system model 
on a given platform. 

Ramirez and coauthors introduced 
an uncertainty taxonomy that estab-
lishes a common vocabulary for the 
self-adaptive software community.10 
This taxonomy is composed of three 
phases of the development life cycle, 
i.e., requirements, design, and run-
time. In particular, the authors identi-
fied 26 sources of uncertainty, ranging 
from missing requirements to sensor 
noise. This taxonomy highlights three 
aspects of uncertainty (i.e., location, 
level, and nature9) and facilitates the 
understanding of 1) where uncer-
tainty manifests in the model, 2) what 
the level of uncertainty is (from deter-
ministic knowledge to not even being 
certain about being uncertain), and 3) 
whether the uncertainty is caused by 
lack of measurement data or by inher-
ent randomness in the model.

Minimizing Uncertainty
Minimizing uncertainty results is an 
open research challenge. Considerable 
research effort has been invested to 
minimize the uncertainty in software 
engineering experiments. Three main 
techniques have been adopted in this 
context. First, a widely adopted reso-
lution of minimizing performance-
related uncertainty is achieved using 
repeated measurements.7 The insta-
bility of performance measurements 
leads to uncertainties of performance 

evaluation results and may be mislead-
ing and incorrect without providing 
measurements of variation.7 Georges 
et al.3 recommended computing a 
confidence interval for repeated per-
formance measurements when imple-
menting a performance evaluation. 
With the knowledge of variation from 
repeated measurement, rigorous statis-
tical techniques can be used to mini-
mize uncertainty. Second, another 
way of minimizing uncertainty is to 
gain more knowledge about the nature 
of the system, based on extensive mod-
eling and simulation. With models, it 
is possible to specify the uncertainty 
of parameter values through prob-
ability distribution functions.13 In this 
way, Monte-Carlo-based simulations 
enable the extraction of parameter 
value samples, which minimize uncer-
tainty. Goldsby and Cheng4 developed 
a model-based approach that gener-
ates a system model to simulate system 
behavior in complex environments. De-
velopers use this type of model to in-
teractively understand the uncertainty 
in such environment. Finally, another 
method that minimizes uncertainty is 
to provide more information about the 
subject system, thereby reducing un-
certainties. Yuan et al.15 enriched the 
monitoring of systems by attaching 
more runtime information.

Decisions in a 
Performance-Aware 
DevOps Life Cycle 
Leading to Uncertainty
In this section, we describe the envi-
sioned performance-aware DevOps 
life cycle whose high-level illustration 
is reported in Figure 1. A central ele-
ment of this life cycle is represented 
by the models used for decision mak-
ing and may be formal models that 
predict the system runtime (e.g., 
queuing models) and system models 
that test design changes. For these 
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models, there are two types of inputs: 
static information in source code re-
positories and dynamic information 
instrumented or observed during the 
system runtime. A sensitivity analysis, 
i.e., the study of how the uncertainty 
in the output can be apportioned to 
different sources of uncertainty in the 
input,11 closes the cycle. Stakeholders 
use this information base to form an 
understanding of the system at vari-
ous levels, e.g., influencing their deci-
sions in changing the running system 
by altering the source code, configu-
rations, infrastructure, or even rede-
ploying the system.

Design decisions are influenced 
by the uncertainty of the system 
under development. 9 To this end, 
we elaborate on the high-level deci-
sions taken by the stakeholders that 
may affect the performance analy-
sis results.

1) Deployment infrastructure 
(DI): The physical or virtual 
infrastructure used to deploy a 
system can have a tremendous 

effect on the uncertainty of 
various performance character-
istics, especially in public cloud 
infrastructures.

2) Software versions and code 
changes (SCs): The uncertainty 
of the performance characteris-
tics can also be directly intro-
duced by a code change through 
a software developer or indi-
rectly by an operator’s decision 
to upgrade to a different version 
of the software.

3) Configuration parameters (CPs): 
The small adjustments of the 
software CPs can have a tremen-
dous effect on the uncertainty of 
the runtime characteristics of a 
system, e.g., the SQLite bench-
marking has often been found to 
be incorrect.

4) WF: The performance of a sys-
tem is a function of its work-
load, and a linearly increasing 
load may have nonlinear effects 
on a system. Wrongfully inter-
preting future states of a system 
when higher workloads occur 

can lead to uncertain decisions 
that affect CPs.

5) Monitoring and sensor accu-
racy (MS): Operators rely on 
active monitoring, instrumen-
tation, and sensors to observe 
and retrieve information about 
the (internal) state of a system, 
and adjusting the accuracy of 
sensors (e.g., through sampling) 
determines an inherent tradeoff 
between the visibility of the state 
and the introduced overhead.

Case Study
We conducted a controlled experi-
ment as a case study to illustrate 
the effects on uncertainty caused 
by the DevOps decisions depicted 
in the previous section. The goal of 
this case study was to demonstrate 
the performance impact of various 
DevOps decisions. We assessed and 
quantified both the Dev (e.g., code 
or configuration changes) and the 
Ops (e.g., hardware- and workload) 
side changes, which may impact sys-
tem performance. Specifically, we 

FIGURE 1. A performance-aware DevOps life cycle under uncertainty. 
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measured different performance 
characteristics of Apache Cassandra 
while changing the DI, source code 
repository, and workload. For the 
sake of illustration, we focused on 
the throughput (i.e., sensors/moni-
toring, as shown in Figure 1) of the 
benchmark queries against the Cas-
sandra engine. However, a broader 
definition of performance can be ex-
tended to any quantitative nonfunc-
tional property (e.g., reliability and 
security) of the system. We modeled 
potential actions that could affect un-
certainty as a discrete decision space 

{D DI, SC,CP,=  and .WF,  DI rep-
resents the space of underlying hard-
ware (i.e., the DI); , ,SC v v1 nf= " ,  
depicts the space of software releases 
(i.e., SC); , ,CP c c1 nf= " ,  is a set of 
configuration options that can be set 
for a particular version of software; 

, ,WF w w1 nf= " ,  models the work-
load change on the system as a set of 
relative percentages of read and write 
operations; and finally, |D| represents 
the number of combinations for all of 
these decision parameters.

Experimental Setting
We measured the performance char-
acteristics of Apache Cassandra un-
der different environmental changes 
(Table 1), which represent the di-
mensions of concrete instances of 
the decision space D. For our Cas-
sandra case study, we conducted 
systematic measurements (for mea-
suring the performance indicators 
of one configuration for a specific 
system version in specific environ-
ments and for specific workloads). 
We ran the benchmark for 10 min 
with the same operation repeated 
multiple times. Before the next mea-
surement, the Cassandra database 
was cleaned and restarted to ensure 
each measurement began with the 
same initial state. The Cassandra 

database was left idle for 10 s, 
i.e., the warmup period before the 
start of each measurement round. 
We used the Yahoo! Cloud Serving 
Benchmark [(YCSB) https://github 
.com/brianfrankcooper/YCSB] for 
generating different workloads and 
collecting the performance indica-
tors of the system. More specifically, 
we used the YCSB workload gener-
ator to first define the data set and 
load it into the database, and sec-
ondly to execute operations against 
the data set while measuring perfor-
mance. YCSB is a standard bench-
marking tool that has been used 
extensively for performance measure-
ments of key-value and cloud-based 
data engines.

We observed output parameters in 
many different combinations, e.g., hard-
ware change, workload change, version 
change, workload-version change, and 
hardware-workload-version change. In 
particular, we measured system per-
formance considering six configura-
tion options (leading to a total of 1,024 
system configurations) in different en-
vironments, i.e., two hardware envi-

ronments, three software versions, and 
six workloads.

Table 2 provides a summary of 
the underlying hardware options in 
this case study. To understand the 
performance with respect to vary-
ing incoming request rate behavior, 
in light of different choices made in 
the decision space of the Apache Cas-
sandra benchmark system, we ran six 
core YCSB workloads:

1) Workload A (update heavy): 
This workload has a 50/50 mix 
of reads and writes.

2) Workload B (read mostly): This 
workload has a 95/5 reads/writes 
mix. 

3) Workload C (read only): This 
workload is 100% read. 

4) Workload D (read latest): New 
records are inserted, and the 
most recently inserted records 
are the most popular.

5) Workload E (short ranges): Short 
ranges of records are queried, 
rather than individual records.

6) Workload F (read-modify-write): 
The client will read a record, 

Table 1. An overview of the case study subject system. 

System Domain ;D; ;DI; ;SC; ;CP; ;WF;

Cassandra Database 1,024 2 3 6 6

|D|: the number of all possible decisions; |DI|: the number of hardware environments; |SC|: the number of analyzed software versions; 
|CP|: the number of configuration options; |WF|: the number of different analyzed workloads.

Table 2. A summary of the hardware platforms on 
which configurable software systems were measured. 

ID Type NC IS CPU CCR RAM (GB) Disk

h1 NUC 4 x86_64 i5-4250U 1.30 15 SSD

h2 NUC 2 x86_64 Celeron 2.13 7 SCSI

NC: the number of CPUs; IS: instruction set; CCR and CPU: clock rate (GHz); RAM: memory size; SSD: solid-state drive.
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modify it, and write back  
the changes. 

We considered three different  
versions of Apache Cassandra for  
our measurements: . . ,1 2 19SC v1= =  

. . ,22 8v2 =  and . .3 10v3 =  We chose 
the most recent release, the next-
closest release (2.2.8), and a very dis-
tant version of the system (1.2.19). 
We also artificially injected white 
noise of 10% into the sources to in-
vestigate the performance impact as 
a result of measurement noise. More 
details regarding the configuration 
options, considered environments as 
well as all of measurement data are 
publicly available at https://github 
.com/pooyanjamshidi/uncertainty.

Results
We analyzed the percentage of the 
top/bottom configurations that are 
common across the environmental 
changes. Table 3 shows the results, 
and uncertainty indicates a dra-
matic influence when we consider 

variations along hardware, work-
load, version changes, or combina-
tions of them. More specifically, we 
considered throughput as a met-
ric and derived 10% of top (high-
est throughput) and 10% of bottom 
(lowest throughput). 

The results show that the percent-
age of common configurations is very 
low. In particular, we found that in 
ec6 (where ec stands for environmen-
tal change in which the source envi-
ronment is different from the target), 
practitioners have a greater likeli-
hood of achieving top throughput; 
at the same time, they have a higher 
change in ec9 to spot performance 
issues if they choose the same con-
figuration (however, the likelihood is 
still low). Also, the major gap (0.08) 
between top and bottom values is 
showed by ec3, which demonstrates 
that in this environment change, it 
is more likely that they find a high-
performing configuration and not 
observe a performance issue. This 
means that, despite uncertainties 

in the parameters, ec6 is the system 
configuration that shows the highest 
system throughput and ec9 is the one 
that is most likely to cause perfor-
mance issues; whereas ec3 is the one 
whose input uncertainties largely in-
fluence performance analysis results. 

This sensitivity analysis supports 
system administrators in their task 
of setting the best configuration of 
the system using specific hardware, 
workload, and version of the soft-
ware or their combinations. In the 
last two columns of Table 3, we re-
port the Spearman rank correlation 
values that were calculated using the 
original sources and the artificially 
injected data (i.e., white noise 
of 10%), respectively. We observe 
that the rank correlation, despite 
being weak, still shows a decreas-
ing trend. This observation high-
lights the importance of handling 
uncertainty in the DevOps process 
as well as determining the sources 
of uncertainty that are attribut-
able to environmental changes and 

Table 3. The results. Top/bottom: the percentage of top/bottom common 
configurations between source and target. 

Decision ID Source Target Top Bottom ;Top/bottom; Correlation Correlation (10%)

DI ec1 h2-A-V3 h1-A-V3 0.0980 0.1569 0.0589 0.0364 −0.0078

SC ec2 h1-A-V3 h1-A-V2 0.0490 0.0588 0.0098 −0.1266 −0.0527

ec3 h1-A-V3 h1-A-V1 0.1176 0.0376 0.08 0.1424 0.0696

WF ec4 h2-A-V3 h2-B-V3 0.0392 0.0686 0.0294 −0.1732 0.0139

ec5 h2-A-V3 h2-C-V3 0.1373 0.1275 0.0098 0.0318 0.0381

ec6 h2-A-V3 h2-D-V3 0.1471 0.1176 0.0295 0.0088 0.0172

ec7 h2-A-V3 h2-E-V3 0.0490 0.0686 0.0196 −0.0704 0.0127

ec8 h2-A-V3 h2-F-V3 0.0686 0.1373 0.0687 0.0217 0.0078

SC-WF ec9 h1-A-V3 h1-B-V1 0.1078 0.1765 0.0687 0.1001 −0.0302

DI-SC-WF ec10 h2-A-V3 h1-B-V1 0.1078 0.1176 0.0098 −0.0327 0.0192
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measurement noise. For instance, if 
a developer selected a configuration 
based on previous measurements 
in a certain environment, he or she 
should be careful when choosing a 
configuration for the system in an-
other environment because some en-
vironmental changes are more prone 
to uncertainty than others.

Our numerical results provide 
evidence which suggests that if un-
certainty is not handled properly, 
performance issues may arise. For 
example, if a system configuration is 
selected based on a model trained by 
measurement data that are collected 
in an environment with a differ-
ent workload, it may lead to a sub-
optimal configuration. As a result, 
systems may encounter higher de-
ployment costs or more failures be-
cause of larger memory allocations 
or threads that spin up. This can 
be more problematic in critical do-
mains, such as robotics. A detailed 
experience has been presented in the 
Model-Based Adaptation for Robot-
ics Software project (https://github 
.com/cmu-mars), in which power 
models are used under budget con-
straints to adapt to perturbations, 
such as environmental or internal re-
sources changes (e.g., battery level). 
Pareto optimal configurations are 
swapped at runtime based on the 
environmental conditions of the ro-
bot (e.g., its remaining battery level). 
We determined that when the model 
is inaccurate, Pareto optimal con-
figurations are chosen incorrectly, 
and it results in a mission failure, as 
shown in the demo at https://youtu 
.be/ec6BhQp2T0Q.

Given these consequences, if 
practitioners are aware of the uncer-
tainty, they can opt to

• conduct additional experi-
ments that further reduce the 

uncertainty (e.g., repetitive 
measurements combined with 
statistical methods are widely 
used in prior research to reduce 
uncertainty) 

• identify and handle the root 
cause of the uncertainty (e.g., 
if the DI introduces the un-
certainty, one should consider 
control or leverage a more stable 
infrastructure)

• if the uncertainty cannot be eas-
ily reduced or handled, uncer-
tainty quantification approaches 
(e.g., forward-uncertainty prop-
agation or inverse-uncertainty 
quantification) can be utilized 
to determine how likely certain 
outcomes are if some aspects of 
the system (e.g., optimal con-
figurations) are not deterministi-
cally known.12

Similar results have been observed 
in other systems (including a com-
piler, a satisfiability solver, a data-
base engine, and a video encoder) 
across  d i f ferent  env i ronmen-
tal changes (for more details, see 
https://github.com/pooyanjamshidi 
/ase17). Note that the considered un-
certainties are demonstrated to be 
relevant for some software systems, 
but they are far from being exhaus-
tive. Further applications may show 
other characteristics that have not 
been evidenced so far because it in-
deed difficult to link performance 
issues to a finite list of system con-
figuration settings.

I n conclusion, we discuss the les-
sons learned and their implica-
tions as a result of our study 

in the following two dimensions: 1) 
identifying sources of uncertainties 
and 2) modeling and controlling the 
uncertainties.

Identifying Sources of Uncertainty
The identification of the sources of un-
certainty is challenging and two dif-
ferent strategies can be used for this 
scope: 1) the bottom-up approach that 
is based on the knowledge of the pos-
sible sources of uncertainty in the given 
model and 2) the top-down approach, 
which is derived from the complete lack 
of knowledge about possible uncer-
tainties. We followed the bottom-up 
approach,9 and we began by enumer-
ating various decision points in the 
performance-aware DevOps life cycle, 
as shown in Figure 1. Then, we fur-
ther limited the decision points to only 
those that lead to performance uncer-
tainty and we narrowed them down us-
ing five sources of uncertainty.

Modeling and Controlling Uncertainties
Once we have identified the sources 
of uncertainties, we want to minimize 
their impact by modeling and analyz-
ing the performance variation caused 
by such uncertainties and then devise 
approaches that control their impact. 
In our case study, we observed the fol-
lowing sources of uncertainty.

DI
Our results show that within the 
same release and workload, changing 
the DI can have an impact on system 
performance ranging from small to 
large. For example, for version 3.10, 
the throughput can be more than 
doubled it is switched between two 
different hardware platforms. There-
fore, to limit such uncertainties, it is 
important to conduct user-acceptance 
testing or closely monitor the perfor-
mance of the canary deployment5 
prior to implementing full-fledged in-
frastructure changes.

SC
Our results show that the optimal con-
figurations for one version of Cassandra 
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would probably not yield the best per-
formance after a system upgrade. As 
shown in Table 3, when switching be-
tween versions (ec2 and ec3), there is 
less than 12% of top configurations 
shared between the two versions (i.e., 
before and after system update). There-
fore, it is vital to examine the perfor-
mance impact of various CPs for each 
version. However, because of the large 
combination of the configuration space 
and the rapid changes in DevOps, 
performance-testing-reduction tech-
niques (e.g., experimental design or re-
dundancy detection) should be used to 
efficiently explore the system configura-
tion space.

CPs 
Among different hardware platforms, 
software versions, and workloads, 
the percentage of common configu-
rations is very low. Within the same 
kind of setting (i.e., same hardware, 
workload, and release version), the 
throughput can vary by up to nine-
times difference among different Cas-
sandra configurations. This clearly 
shows how important CPs are in 
terms of system performance. How-
ever, to minimize and control the 
uncertainty caused by CPs, it is nec-
essary to isolate and study the most 
relevant ones.

WF 
Similar to the aforementioned three 
aspects, for Cassandra, the optimal 
configurations do not translate when 
different workloads are exercised. As 
the system keeps evolving, the user be-
havior coevolves. It is therefore impor-
tant to periodically verify and update 
the performance-testing workload.

MS 
The measurement noise can impact 
the validity of the performance re-
sults, although its overall effect can 

be small. Hence, it is helpful to cross-
reference the measurement data to 
ensure their validity.
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