
110 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 59 /19©2019 I E E E

FEATURE: PERFORMANCE ISSUES IN DEVOPS

DEVOPS IS A recent trend that in-
tegrates development (dev) and op-
erational (ops) teams.5 One of the
reasons for this type of integration
is the need to continuously adapt
software system designs based on

operational uncertainties, such as
workload fluctuations (WFs) and
resource availability. Such uncer-
tainties inevitably affect the depend-
ability characteristics of systems
(e.g., performance and reliability)
that may degrade as well as produce
negative consequences. For instance,
a software system can perform well

initially with high throughput and
low response time, but its perfor-
mance may suddenly worsen because
of reasons like WFs or software up-
grades. To make informed decisions,
DevOps teams must be aware of
uncertainties in the entire DevOps
life cycle so that they are able to in-
terpret data, models, and results
accordingly.

Support for this process can be
provided by 1) identifying sources of
uncertainty in a performance-aware
DevOps scenario, 2) elaborating on
how these uncertainties are mani-
fested in input data, design models,
and operational results, and 3) per-
forming a sensitivity analysis that
quantifies the impact of these sources
of uncertainty for results interpre-
tation. It is therefore necessary to
put in place a set of methodologies
that model and control these uncer-
tainties so that violations of perfor-
mance requirements can be detected,
thereby linking the operational per-
formance issues to the decision pro-
cess of software designers.

In literature, uncertainty is em-
bedded in the concept of variability
(i.e., the natural variation of some
parameters), and it is very relevant
in the analysis process.1,2 There-
fore, it is important to incorporate
some form of uncertainty represen-
tation12 into the engineering process
and identify software characteris-
tics that are not completely known.
There exist performance prediction
approaches that provide a sensitiv-
ity analysis of many parameters by
monitoring a system or considering
reasonable guesses by the domain
experts. However, such model-based
approaches are typically used for
predicting system performance as
a result of system configuration6 or
external uncertainties. These estima-
tions are only approximations and

Performance Issues?
Hey DevOps, Mind
the Uncertainty!
Catia Trubiani, Gran Sasso Science Institute

Pooyan Jamshidi, University of South Carolina

Jurgen Cito, Massachusetts Institute of Technology

Weiyi Shang, Concordia University

Zhen Ming Jiang, York University

Markus Borg, RISE Research Institutes of Sweden AB

// DevOps is a novel trend that aims

to bridge the gap between software

development and operation teams. This

article presents an experience report that

better identifies performance uncertainties

through a case study and provides a

step-by-step guide to practitioners for

controlling system uncertainties. //

Digital Object Identifier 10.1109/MS.2018.2875989
Date of publication: 22 February 2019

 MARCH/APRIL 2019 | IEEE SOFTWARE 111

may result in low accuracies that
could be misleading during the soft-
ware development process.14

This article has two main contri-
butions: 1) we make the developers
aware of the system uncertainties and
2) we run a sensitivity analysis to high-
light the main system criticisms that
lead to performance issues. In doing
so, we demonstrate that it is essential
to bring the sources of uncertainty up
front in the DevOps process to apprise
the developers of these uncertainties
and guarantee the stakeholders’ per-
formance expectations.

Related Work
This section briefly reviews related
works that have been defined to
model, analyze, and minimize the
software system’s uncertainties. Note
that variability can be considered a
specific case of uncertainty because
it includes the specification of pa-
rameters subject to varying values,
whereas uncertainty also considers
the lack of knowledge.12

Modeling and Analyzing Uncertainty
The uncertainty concept is discussed
in many scientific fields. Kennedy and
O’Hagan distinguish between six
sources of uncertainty for models im-
plemented in source code:8

• Parameter uncertainty: origi-
nates from calibrating the
model, i.e., finding the actual
parameter input values

• Model uncertainty: the differ-
ence between the real-world pro-
cess and the code output given to
the system model

• Residual uncertainty: originates
from an inherently unpredictable
real-world process; even under
stable conditions, such a process
might produce different output
when repeated

• Parametric uncertainty: intro-
duced when some of the input
conditions are not specified
by the parameter input, either
intentionally or because of an
uncontrollable process

• Observation error: occurs when
actual observations are used to
calibrate the system model

• Code uncertainty: variations
in the output that are produced
from executing a system model
on a given platform.

Ramirez and coauthors introduced
an uncertainty taxonomy that estab-
lishes a common vocabulary for the
self-adaptive software community.10
This taxonomy is composed of three
phases of the development life cycle,
i.e., requirements, design, and run-
time. In particular, the authors identi-
fied 26 sources of uncertainty, ranging
from missing requirements to sensor
noise. This taxonomy highlights three
aspects of uncertainty (i.e., location,
level, and nature9) and facilitates the
understanding of 1) where uncer-
tainty manifests in the model, 2) what
the level of uncertainty is (from deter-
ministic knowledge to not even being
certain about being uncertain), and 3)
whether the uncertainty is caused by
lack of measurement data or by inher-
ent randomness in the model.

Minimizing Uncertainty
Minimizing uncertainty results is an
open research challenge. Considerable
research effort has been invested to
minimize the uncertainty in software
engineering experiments. Three main
techniques have been adopted in this
context. First, a widely adopted reso-
lution of minimizing performance-
related uncertainty is achieved using
repeated measurements.7 The insta-
bility of performance measurements
leads to uncertainties of performance

evaluation results and may be mislead-
ing and incorrect without providing
measurements of variation.7 Georges
et al.3 recommended computing a
confidence interval for repeated per-
formance measurements when imple-
menting a performance evaluation.
With the knowledge of variation from
repeated measurement, rigorous statis-
tical techniques can be used to mini-
mize uncertainty. Second, another
way of minimizing uncertainty is to
gain more knowledge about the nature
of the system, based on extensive mod-
eling and simulation. With models, it
is possible to specify the uncertainty
of parameter values through prob-
ability distribution functions.13 In this
way, Monte-Carlo-based simulations
enable the extraction of parameter
value samples, which minimize uncer-
tainty. Goldsby and Cheng4 developed
a model-based approach that gener-
ates a system model to simulate system
behavior in complex environments. De-
velopers use this type of model to in-
teractively understand the uncertainty
in such environment. Finally, another
method that minimizes uncertainty is
to provide more information about the
subject system, thereby reducing un-
certainties. Yuan et al.15 enriched the
monitoring of systems by attaching
more runtime information.

Decisions in a
Performance-Aware
DevOps Life Cycle
Leading to Uncertainty
In this section, we describe the envi-
sioned performance-aware DevOps
life cycle whose high-level illustration
is reported in Figure 1. A central ele-
ment of this life cycle is represented
by the models used for decision mak-
ing and may be formal models that
predict the system runtime (e.g.,
queuing models) and system models
that test design changes. For these

112 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PERFORMANCE ISSUES IN DEVOPS

models, there are two types of inputs:
static information in source code re-
positories and dynamic information
instrumented or observed during the
system runtime. A sensitivity analysis,
i.e., the study of how the uncertainty
in the output can be apportioned to
different sources of uncertainty in the
input,11 closes the cycle. Stakeholders
use this information base to form an
understanding of the system at vari-
ous levels, e.g., influencing their deci-
sions in changing the running system
by altering the source code, configu-
rations, infrastructure, or even rede-
ploying the system.

Design decisions are influenced
by the uncertainty of the system
under development. 9 To this end,
we elaborate on the high-level deci-
sions taken by the stakeholders that
may affect the performance analy-
sis results.

1) Deployment infrastructure
(DI): The physical or virtual
infrastructure used to deploy a
system can have a tremendous

effect on the uncertainty of
various performance character-
istics, especially in public cloud
infrastructures.

2) Software versions and code
changes (SCs): The uncertainty
of the performance characteris-
tics can also be directly intro-
duced by a code change through
a software developer or indi-
rectly by an operator’s decision
to upgrade to a different version
of the software.

3) Configuration parameters (CPs):
The small adjustments of the
software CPs can have a tremen-
dous effect on the uncertainty of
the runtime characteristics of a
system, e.g., the SQLite bench-
marking has often been found to
be incorrect.

4) WF: The performance of a sys-
tem is a function of its work-
load, and a linearly increasing
load may have nonlinear effects
on a system. Wrongfully inter-
preting future states of a system
when higher workloads occur

can lead to uncertain decisions
that affect CPs.

5) Monitoring and sensor accu-
racy (MS): Operators rely on
active monitoring, instrumen-
tation, and sensors to observe
and retrieve information about
the (internal) state of a system,
and adjusting the accuracy of
sensors (e.g., through sampling)
determines an inherent tradeoff
between the visibility of the state
and the introduced overhead.

Case Study
We conducted a controlled experi-
ment as a case study to illustrate
the effects on uncertainty caused
by the DevOps decisions depicted
in the previous section. The goal of
this case study was to demonstrate
the performance impact of various
DevOps decisions. We assessed and
quantified both the Dev (e.g., code
or configuration changes) and the
Ops (e.g., hardware- and workload)
side changes, which may impact sys-
tem performance. Specifically, we

FIGURE 1. A performance-aware DevOps life cycle under uncertainty.

Deployment Infrastructure
(Virtual Server, Container,
Bare Metal, and so on)

System
Runtime

Source Code Repository

Program
Code

Infrastructure
Code

Deployment

Sensors/
Monitoring

Observe

Instrument

Stakeholders
(Software Developers and

Operations Engineers)

Information
Base

Dynamic
Information

Change Decision Based
on Sensitivity Analysis

Static
Information

Sensitivity
Analysis Require

Configuration
Code

Models for Decision
Making

Runtime
Models

System
Models

Prediction
Models

. . .

System
RuntimeSystem
Runtime

 MARCH/APRIL 2019 | IEEE SOFTWARE 113

measured different performance
characteristics of Apache Cassandra
while changing the DI, source code
repository, and workload. For the
sake of illustration, we focused on
the throughput (i.e., sensors/moni-
toring, as shown in Figure 1) of the
benchmark queries against the Cas-
sandra engine. However, a broader
definition of performance can be ex-
tended to any quantitative nonfunc-
tional property (e.g., reliability and
security) of the system. We modeled
potential actions that could affect un-
certainty as a discrete decision space

{D DI, SC,CP,= and .WF, DI rep-
resents the space of underlying hard-
ware (i.e., the DI); , ,SC v v1 nf= " ,
depicts the space of software releases
(i.e., SC); , ,CP c c1 nf= " , is a set of
configuration options that can be set
for a particular version of software;

, ,WF w w1 nf= " , models the work-
load change on the system as a set of
relative percentages of read and write
operations; and finally, |D| represents
the number of combinations for all of
these decision parameters.

Experimental Setting
We measured the performance char-
acteristics of Apache Cassandra un-
der different environmental changes
(Table 1), which represent the di-
mensions of concrete instances of
the decision space D. For our Cas-
sandra case study, we conducted
systematic measurements (for mea-
suring the performance indicators
of one configuration for a specific
system version in specific environ-
ments and for specific workloads).
We ran the benchmark for 10 min
with the same operation repeated
multiple times. Before the next mea-
surement, the Cassandra database
was cleaned and restarted to ensure
each measurement began with the
same initial state. The Cassandra

database was left idle for 10 s,
i.e., the warmup period before the
start of each measurement round.
We used the Yahoo! Cloud Serving
Benchmark [(YCSB) https://github
.com/brianfrankcooper/YCSB] for
generating different workloads and
collecting the performance indica-
tors of the system. More specifically,
we used the YCSB workload gener-
ator to first define the data set and
load it into the database, and sec-
ondly to execute operations against
the data set while measuring perfor-
mance. YCSB is a standard bench-
marking tool that has been used
extensively for performance measure-
ments of key-value and cloud-based
data engines.

We observed output parameters in
many different combinations, e.g., hard-
ware change, workload change, version
change, workload-version change, and
hardware-workload-version change. In
particular, we measured system per-
formance considering six configura-
tion options (leading to a total of 1,024
system configurations) in different en-
vironments, i.e., two hardware envi-

ronments, three software versions, and
six workloads.

Table 2 provides a summary of
the underlying hardware options in
this case study. To understand the
performance with respect to vary-
ing incoming request rate behavior,
in light of different choices made in
the decision space of the Apache Cas-
sandra benchmark system, we ran six
core YCSB workloads:

1) Workload A (update heavy):
This workload has a 50/50 mix
of reads and writes.

2) Workload B (read mostly): This
workload has a 95/5 reads/writes
mix.

3) Workload C (read only): This
workload is 100% read.

4) Workload D (read latest): New
records are inserted, and the
most recently inserted records
are the most popular.

5) Workload E (short ranges): Short
ranges of records are queried,
rather than individual records.

6) Workload F (read-modify-write):
The client will read a record,

Table 1. An overview of the case study subject system.

System Domain ;D; ;DI; ;SC; ;CP; ;WF;

Cassandra Database 1,024 2 3 6 6

|D|: the number of all possible decisions; |DI|: the number of hardware environments; |SC|: the number of analyzed software versions;
|CP|: the number of configuration options; |WF|: the number of different analyzed workloads.

Table 2. A summary of the hardware platforms on
which configurable software systems were measured.

ID Type NC IS CPU CCR RAM (GB) Disk

h1 NUC 4 x86_64 i5-4250U 1.30 15 SSD

h2 NUC 2 x86_64 Celeron 2.13 7 SCSI

NC: the number of CPUs; IS: instruction set; CCR and CPU: clock rate (GHz); RAM: memory size; SSD: solid-state drive.

114 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PERFORMANCE ISSUES IN DEVOPS

modify it, and write back
the changes.

We considered three different
versions of Apache Cassandra for
our measurements: . . ,1 2 19SC v1= =

. . ,22 8v2 = and . .3 10v3 = We chose
the most recent release, the next-
closest release (2.2.8), and a very dis-
tant version of the system (1.2.19).
We also artificially injected white
noise of 10% into the sources to in-
vestigate the performance impact as
a result of measurement noise. More
details regarding the configuration
options, considered environments as
well as all of measurement data are
publicly available at https://github
.com/pooyanjamshidi/uncertainty.

Results
We analyzed the percentage of the
top/bottom configurations that are
common across the environmental
changes. Table 3 shows the results,
and uncertainty indicates a dra-
matic influence when we consider

variations along hardware, work-
load, version changes, or combina-
tions of them. More specifically, we
considered throughput as a met-
ric and derived 10% of top (high-
est throughput) and 10% of bottom
(lowest throughput).

The results show that the percent-
age of common configurations is very
low. In particular, we found that in
ec6 (where ec stands for environmen-
tal change in which the source envi-
ronment is different from the target),
practitioners have a greater likeli-
hood of achieving top throughput;
at the same time, they have a higher
change in ec9 to spot performance
issues if they choose the same con-
figuration (however, the likelihood is
still low). Also, the major gap (0.08)
between top and bottom values is
showed by ec3, which demonstrates
that in this environment change, it
is more likely that they find a high-
performing configuration and not
observe a performance issue. This
means that, despite uncertainties

in the parameters, ec6 is the system
configuration that shows the highest
system throughput and ec9 is the one
that is most likely to cause perfor-
mance issues; whereas ec3 is the one
whose input uncertainties largely in-
fluence performance analysis results.

This sensitivity analysis supports
system administrators in their task
of setting the best configuration of
the system using specific hardware,
workload, and version of the soft-
ware or their combinations. In the
last two columns of Table 3, we re-
port the Spearman rank correlation
values that were calculated using the
original sources and the artificially
injected data (i.e., white noise
of 10%), respectively. We observe
that the rank correlation, despite
being weak, still shows a decreas-
ing trend. This observation high-
lights the importance of handling
uncertainty in the DevOps process
as well as determining the sources
of uncertainty that are attribut-
able to environmental changes and

Table 3. The results. Top/bottom: the percentage of top/bottom common
configurations between source and target.

Decision ID Source Target Top Bottom ;Top/bottom; Correlation Correlation (10%)

DI ec1 h2-A-V3 h1-A-V3 0.0980 0.1569 0.0589 0.0364 −0.0078

SC ec2 h1-A-V3 h1-A-V2 0.0490 0.0588 0.0098 −0.1266 −0.0527

ec3 h1-A-V3 h1-A-V1 0.1176 0.0376 0.08 0.1424 0.0696

WF ec4 h2-A-V3 h2-B-V3 0.0392 0.0686 0.0294 −0.1732 0.0139

ec5 h2-A-V3 h2-C-V3 0.1373 0.1275 0.0098 0.0318 0.0381

ec6 h2-A-V3 h2-D-V3 0.1471 0.1176 0.0295 0.0088 0.0172

ec7 h2-A-V3 h2-E-V3 0.0490 0.0686 0.0196 −0.0704 0.0127

ec8 h2-A-V3 h2-F-V3 0.0686 0.1373 0.0687 0.0217 0.0078

SC-WF ec9 h1-A-V3 h1-B-V1 0.1078 0.1765 0.0687 0.1001 −0.0302

DI-SC-WF ec10 h2-A-V3 h1-B-V1 0.1078 0.1176 0.0098 −0.0327 0.0192

 MARCH/APRIL 2019 | IEEE SOFTWARE 115

measurement noise. For instance, if
a developer selected a configuration
based on previous measurements
in a certain environment, he or she
should be careful when choosing a
configuration for the system in an-
other environment because some en-
vironmental changes are more prone
to uncertainty than others.

Our numerical results provide
evidence which suggests that if un-
certainty is not handled properly,
performance issues may arise. For
example, if a system configuration is
selected based on a model trained by
measurement data that are collected
in an environment with a differ-
ent workload, it may lead to a sub-
optimal configuration. As a result,
systems may encounter higher de-
ployment costs or more failures be-
cause of larger memory allocations
or threads that spin up. This can
be more problematic in critical do-
mains, such as robotics. A detailed
experience has been presented in the
Model-Based Adaptation for Robot-
ics Software project (https://github
.com/cmu-mars), in which power
models are used under budget con-
straints to adapt to perturbations,
such as environmental or internal re-
sources changes (e.g., battery level).
Pareto optimal configurations are
swapped at runtime based on the
environmental conditions of the ro-
bot (e.g., its remaining battery level).
We determined that when the model
is inaccurate, Pareto optimal con-
figurations are chosen incorrectly,
and it results in a mission failure, as
shown in the demo at https://youtu
.be/ec6BhQp2T0Q.

Given these consequences, if
practitioners are aware of the uncer-
tainty, they can opt to

• conduct additional experi-
ments that further reduce the

uncertainty (e.g., repetitive
measurements combined with
statistical methods are widely
used in prior research to reduce
uncertainty)

• identify and handle the root
cause of the uncertainty (e.g.,
if the DI introduces the un-
certainty, one should consider
control or leverage a more stable
infrastructure)

• if the uncertainty cannot be eas-
ily reduced or handled, uncer-
tainty quantification approaches
(e.g., forward-uncertainty prop-
agation or inverse-uncertainty
quantification) can be utilized
to determine how likely certain
outcomes are if some aspects of
the system (e.g., optimal con-
figurations) are not deterministi-
cally known.12

Similar results have been observed
in other systems (including a com-
piler, a satisfiability solver, a data-
base engine, and a video encoder)
across d i f ferent env i ronmen-
tal changes (for more details, see
https://github.com/pooyanjamshidi
/ase17). Note that the considered un-
certainties are demonstrated to be
relevant for some software systems,
but they are far from being exhaus-
tive. Further applications may show
other characteristics that have not
been evidenced so far because it in-
deed difficult to link performance
issues to a finite list of system con-
figuration settings.

I n conclusion, we discuss the les-
sons learned and their implica-
tions as a result of our study

in the following two dimensions: 1)
identifying sources of uncertainties
and 2) modeling and controlling the
uncertainties.

Identifying Sources of Uncertainty
The identification of the sources of un-
certainty is challenging and two dif-
ferent strategies can be used for this
scope: 1) the bottom-up approach that
is based on the knowledge of the pos-
sible sources of uncertainty in the given
model and 2) the top-down approach,
which is derived from the complete lack
of knowledge about possible uncer-
tainties. We followed the bottom-up
approach,9 and we began by enumer-
ating various decision points in the
performance-aware DevOps life cycle,
as shown in Figure 1. Then, we fur-
ther limited the decision points to only
those that lead to performance uncer-
tainty and we narrowed them down us-
ing five sources of uncertainty.

Modeling and Controlling Uncertainties
Once we have identified the sources
of uncertainties, we want to minimize
their impact by modeling and analyz-
ing the performance variation caused
by such uncertainties and then devise
approaches that control their impact.
In our case study, we observed the fol-
lowing sources of uncertainty.

DI
Our results show that within the
same release and workload, changing
the DI can have an impact on system
performance ranging from small to
large. For example, for version 3.10,
the throughput can be more than
doubled it is switched between two
different hardware platforms. There-
fore, to limit such uncertainties, it is
important to conduct user-acceptance
testing or closely monitor the perfor-
mance of the canary deployment5
prior to implementing full-fledged in-
frastructure changes.

SC
Our results show that the optimal con-
figurations for one version of Cassandra

116 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PERFORMANCE ISSUES IN DEVOPS
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

CATIA TRUBIANI is an assistant profes-

sor at the Gran Sasso Science Institute.

Trubiani received a Ph.D. from the University

of L’Aquila. Her research interests include

model-based performance analysis and

feedback on software architectures under

uncertainties and optimization of large-scale

software systems. She received the Best

Research Paper Award at the European Con-

ference on Software Architectures, the Mi-

crosoft Azure Research Award, and the Best

Research Paper Award at the International

Conference on Performance Engineering.

Contact her at catia.trubiani@gssi.it.

WEIYI SHANG is an assistant professor

and research chair on ultra-large-scale

systems at Concordia University, Canada.
His research interests include big data

software engineering, software engineering

for ultra-large-scale systems, and software

log mining. Shang received a Ph.D. from

Queen’s University, Canada. He received

the SIGSOFT Distinguished Paper Award

at ICSE 2013 and the Best Paper Award at

WCRE 2011. Contact him at shang@encs.

concordia.ca.

POOYAN JAMSHIDI is an assistant pro-

fessor at the University of South Carolina.

Jamshidi received a Ph.D. from Dublin

City University. His research interests are

at the intersection of software engineer-

ing, systems, and machine learning,

with a focus on the areas of distributed

machine-learning systems. Contact him at

pjamshid@cse.sc.edu.

ZHEN MING JIANG is an associate

professor in York University’s Department

of Electrical Engineering and Computer

Science. His research interests include

software engineering and computer

systems, with special interests in software

performance engineering, software

analytics, and source-code analysis.

Jiang received a Ph.D. from the School

of Computing at Queen’s University. He

received several Best Paper Awards at

ICST 2016, ICSE 2015 (the Software

Engineering in Practice track), ICSE 2013,

and WCRE 2011, respectively. Contact him

at zmjiang@cse.yorku.ca.

JURGEN CITO is a postdoctoral re-

searcher at the Massachusetts Institute of

Technology. His research interests include

developing approaches that produce reli-

able infrastructure through synthesis and

repair techniques. Cito received a Ph.D.

from the University of Zurich, where he

worked on techniques that help software

developers reason about performance

problems in their development workflows.

Contact him at jcito@mit.edu.

MARKUS BORG is a senior researcher at

the RISE Research Institutes of Sweden

AB and an adjunct senior lecturer at Lund

University, where he also received a Ph.D.

His research interests include require-

ments engineering and software testing,

particularly for systems powered by

machine learning. He is a board member

of Swedsoft and a Member of the IEEE.

Contact him at markus.borg@ri.se.

 MARCH/APRIL 2019 | IEEE SOFTWARE 117

would probably not yield the best per-
formance after a system upgrade. As
shown in Table 3, when switching be-
tween versions (ec2 and ec3), there is
less than 12% of top configurations
shared between the two versions (i.e.,
before and after system update). There-
fore, it is vital to examine the perfor-
mance impact of various CPs for each
version. However, because of the large
combination of the configuration space
and the rapid changes in DevOps,
performance-testing-reduction tech-
niques (e.g., experimental design or re-
dundancy detection) should be used to
efficiently explore the system configura-
tion space.

CPs
Among different hardware platforms,
software versions, and workloads,
the percentage of common configu-
rations is very low. Within the same
kind of setting (i.e., same hardware,
workload, and release version), the
throughput can vary by up to nine-
times difference among different Cas-
sandra configurations. This clearly
shows how important CPs are in
terms of system performance. How-
ever, to minimize and control the
uncertainty caused by CPs, it is nec-
essary to isolate and study the most
relevant ones.

WF
Similar to the aforementioned three
aspects, for Cassandra, the optimal
configurations do not translate when
different workloads are exercised. As
the system keeps evolving, the user be-
havior coevolves. It is therefore impor-
tant to periodically verify and update
the performance-testing workload.

MS
The measurement noise can impact
the validity of the performance re-
sults, although its overall effect can

be small. Hence, it is helpful to cross-
reference the measurement data to
ensure their validity.

Acknowledgment
This article is one of the results of
break-out group sessions held dur-
ing the Dagstuhl Seminar 16394 on
“Software Performance Engineering
in the DevOps World,’’ which took
place in September 2016. The report
from GI-Dagstuhl Seminar 16394
is publicly available at https://arxiv
.org/abs/1709.08951.

References
1. M. Autili, V. Cortellessa, D. Di

Ruscio, P. Inverardi, P. Pelliccione,

and M. Tivoli, “Eagle: Engineer-

ing software in the ubiquitous

globe by leveraging uncertainty,” in

Proc. ACM Symp. Foundations of

 Software Engineering (FSE), 2011,

pp. 488–491.

2. D. Garlan, “Software engineering

in an uncertain world,” in Proc. Int.

Workshop Future Software Engineer-

ing Research (FoSER), 2010, pp.

125–128.

3. A. Georges, D. Buytaert, and L. Eeck-

hout, “Statistically rigorous java per-

formance evaluation,” in Proc. ACM

SIGPLAN Conf. Object-Oriented

Programming Systems and Applica-

tions (OOPSLA), 2007, pp. 57–76.

4. H. J. Goldsby and B. H. Cheng,

“Automatically generating behav-

ioral models of adaptive systems to

address uncertainty,” in Proc. Int.

Conf. Model Driven Engineering

Languages and Systems (MoDELS),

2008, pp. 568–583.

5. M. Httermann, DevOps for Devel-

opers. Apress, 2012.

6. P. Jamshidi, N. Siegmund, M. Velez,

C. Kastner, A. Patel, and Y. Agarwal,

“Transfer learning for performance

modeling of configurable systems: An

exploratory analysis,” in Proc. Int.

Conf. Automated Software Engineer-

ing (ASE), 2017, pp. 497–508.

7. T. Kalibera and R. Jones, “Rigorous

benchmarking in reasonable time,” in

Proc. Int. Symp. Memory Manage-

ment (ISMM), 2013, pp. 63–74.

8. M. C. Kennedy and A. O’Hagan,

“Bayesian calibration of computer

models,” J. Roy. Statistical Soc.: Sta-

tistical Methodology Series B, vol. 63,

no. 3, pp. 425–464, 2001.

9. D. Perez-Palacin and R. Mirandola,

“Dealing with uncertainties in the

performance modelling of software

systems,” in Proc. Int. Conf. Quality

of Software Architectures (QoSA),

2014, pp. 33–42.

10. A. J. Ramirez, A. C. Jensen, and B. H.

Cheng, “A taxonomy of uncertainty

for dynamically adaptive systems,” in

Proc. Int. Symp. Software Engineering

Adaptive and Self-Managing Systems

(SEAMS), 2012, pp. 99–108.

11. A. Saltelli, S. Tarantola, F. Cam-

polongo, and M. Ratto, Sensitivity

Analysis in Practice: A Guide to As-

sessing Scientific Models. Hoboken,

NJ: Wiley, 2004.

12. R. C. Smith, Uncertainty Quantifica-

tion: Theory, Implementation, and Ap-

plications. Philadelphia: Siam, 2013.

13. A. Aleti, C. Trubiani, A. van Hoorn,

and P. Jamshidi, “An efficient method

for uncertainty propagation in robust

software performance estimation,” J.

Syst. Softw., vol. 138, pp. 222–235,

Apr. 2018.

14. C. M. Woodside, “Regression tech-

niques for performance parameter

estimation,” in Proc. WOSP/SIPEW

Int. Conf. Performance Engineering,

2010, pp. 261–262.

15. D. Yuan, S. Park, P. Huang, Y. Liu,

M. M. Lee, Y. Zhou, and S. Savage,

“Be conservative: Enhancing failure

diagnosis with proactive logging,”

in Proc. USENIX Conf. Operating

Systems Design and Implementation

(OSDI), 2012, pp. 293–306.

