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Abstract—Large-scale software systems like Amazon and eBay
must be load tested to ensure they can handle hundreds and
millions of current requests in the field. Load testing usually
lasts for a few hours or even days and generates large volumes
of system behavior data (execution logs and counters). This
data must be properly analyzed to check whether there are any
performance problems in a load test. However, the sheer size of
the data prevents effective manual analysis. In addition, unlike
functional tests, there is usually no test oracle associated with a
load test. To cope with these challenges, there have been many
analysis techniques proposed to automatically detect problems in
a load test by comparing the behavior of the current test against
previous test(s). Unfortunately, none of these techniques compare
their performance against each other.

In this paper, we have proposed a framework, which evaluates
and compares the effectiveness of different test analysis tech-
niques. We have evaluated a total of 23 test analysis techniques
using load testing data from three open source systems. Based
on our experiments, we have found that all the test analysis
techniques can effectively build performance models using data
from both buggy or non-buggy tests and flag the performance
deviations between them. It is more cost-effective to compare the
current test against two recent previous test(s), while using testing
data collected under longer sampling intervals (≥ 180 seconds).
Among all the test analysis techniques, Control Chart, Descriptive
Statistics and Regression Tree yield the best performance. Our
evaluation framework and findings can be very useful for
load testing practitioners and researchers. To encourage further
research on this topic, we have made our testing data publicity
available to download.

I. INTRODUCTION

Many large-scale software systems (e.g., BlackBerry’s
telecommunication systems [1] and Microsoft’s web ser-
vices [2]) are used by thousands and millions of users ev-
eryday. Study finds that most failures in the field are due
to systems not able to scale rather than feature bugs [3].
The failure to scale could result in catastrophic consequences
and unfavorable media coverage (e.g., the botched launch of
Apple’s MobileMe [4] and US Government’s Health Care
Website [5]). Hence, to ensure the quality of the system in the
field, load testing is a required testing procedure in addition
to the conventional functional testing (e.g., unit and system
integration testing).

Load testing is usually conducted after all the functional
testing is completed [6]. It uses one or more load generators,
which mimic hundreds or thousands of real users accessing
the system at the same time (called the load). During the
course of the load testing, there are two types of system

behavior data generated: execution logs and counters. Exe-
cution logs are generated by debug statements (e.g., printf
and System.out.println) that developers insert into the code.
Counters record the workload and the resource usage (e.g.,
CPU, memory and disk utilization) of system during runtime.
Since the goal of a load test is to assess the system behavior
under load, the duration of a load test can be a few hours
(e.g., 8 hours for a working day) or even weeks. Hence,
the volume of the generated system behavior data can be
huge. Unfortunately, analyzing the results of a load test is
challenging due to the following three reasons:

1) Lack of Test Oracle: Unlike functional testing, which
has clear pass and fail criteria, the objectives of a load
test are not clear [7] and are often defined later on a
case-by-case basis [8].

2) Large Volume of Data: A load test can generate
hundred megabytes or even terabytes of system behavior
data. It would be impossible for load testing practitioners
to analyze them manually.

3) Limited Time: Load testing is usually the last step in the
already delayed software development cycle. The time
allocated for test analysis can be very limited.

To cope with the above challenges, there have been a few
techniques proposed to automatically analyze the results of a
load test (e.g., [1], [9], [10], [11]). These techniques automat-
ically derive the performance models from the previous test(s)
using various approaches (e.g., queuing theory or data mining)
and check whether the behavior of the current test matches
with the previous test(s). However, none of the aforementioned
works compared the effectiveness of their techniques against
others nor provided replication packages. We suspect this
is mainly due to two reasons: (1) most of the studies are
conducted on commercial systems, whose test results can-
not be made available to the public due to confidentiality
concerns; and (2) certain details are missing. For example,
many tools described in these works are not publicity available
to download. In addition, many techniques impose threshold
values. For example, the CPU utilizations in the current test
maybe anomalous, as they are 30% above the predicted values.
However, the exact threshold values are either not disclosed
or should be tunable based on different systems. In this
paper, we have re-implemented and systematically evaluated
the effectiveness of 23 different test analysis techniques. The



contributions of this paper are:
1) This is the first study, which systematically evaluates the

effectiveness of different test analysis techniques used in
a load test.

2) Our evaluation framework is very flexible. It evaluates
different test analysis techniques on a range of threshold
values. In addition, it can easily integrate new test
analysis techniques or new test data.

3) The test data used in this paper is made available on-
line [12] to encourage further research on this topic. Our
data is a collection of system behavior data generated by
load tests executed on three open source systems. For
each system, load testing is conducted both on “buggy”
versions, which contain manually injected or real-world
performance bugs, and on “healthy” versions. Such data
takes a long time to prepare and is rarely available.

Paper Organization

The rest of the paper is organized as follows: section II
provides some background knowledge about different perfor-
mance modeling and anomaly detection techniques. Section III
describes our evaluation framework. Section IV explains the
case study setup and proposes three research questions. Sec-
tions V, VI, VII investigate the three research questions
and present the results. Section VIII discusses the threats to
validity. Section IX explains the related work and section X
concludes the paper and discusses some future work.

II. BACKGROUND

Different from functional testing, which has clear pass and
fail criteria, there is usually no test oracle available for a load
test [8]. The pass/fail criteria of a load test are usually derived
based on the “no-worse-than-before” principle. This principle
states that the performance of the current version should be
at least as good as the previous version(s). In this section, we
will briefly explain various test analysis techniques used in a
load test. This paper focuses on the automated test analysis
techniques using counters. For a survey on automated test
techniques using execution logs, please refer to [13].

Each test analysis technique can be further broken down in
two parts: (1) the performance modeling part (section II-A, in
which the system behavior from the past test(s) is summarized
into models; and (2) the anomaly detection part (section II-B),
in which the anomalous behavior in the current test is flagged.
A. Performance Modeling

Table I provides an overview of eight different perfor-
mance modeling methods. We have divided them into three
categories: queuing theory-based methods, data mining-based
methods and rule-based methods. For each modeling method,
we also list their assumptions and limitations, as well as the
data used in the input and output.

Queuing Theory-based Methods: Queuing models apply
queuing theory [18] to model the performance behavior of
a system. Queuing models mimic system resources (e.g.,
CPU and memory) as queues, predict the time that different
scenarios spend on different queues and estimates the resource

utilizations and throughput information. Each scenario corre-
sponds to one type of workload request (e.g., browsing a page
or purchasing an item). For each request on each resource,
there are two types of timing information that queuing theory
tracks and predicts: waiting time and processing time. The
waiting time, also called the queuing time, is the time that each
request waits in this resource queue to be serviced. The service
time, also called the service demand (SD), is the processing
time that each request spends on this resource. The overall
response time for one request is the combination of the service
time and queuing time from all the resources. The resource
utilizations and throughput can also be estimated based on
the SDs. Since queuing models require the knowledge of the
system internals (e.g., the deployment topology, the queues
and locks involved in a scenario, and whether the call is syn-
chronous or asynchronous) to properly model the performance
behavior, they are also called white-box models [19].

In addition to hardware resources, there are also various
software resources (e.g., database or middleware) in a system.
The single layer queuing models can only be used to model the
performance of hardware resources. To model the performance
of both hardware and software resources, Layered Queuing
Models (LQN) are required [9].

Data Mining-based Methods: Compared to LQN, data min-
ing models treat the system under test as a black box and do
not require the knowledge of the system internals. Hence, they
are also called black-box models [19]. Data mining models rely
on various statistical-based and AI-based techniques to model
the system’s performance behavior. Most of the data mining
models used in a load test are regression-based models:

• Multiple Linear Regression (MLR): Linear regression
models the system behavior as a linear function of work-
load mixes and resource usage utilization [10]. As there
are certain assumptions associated with linear regression
models, extra care is needed to verify these assumptions
are met before applying the model. For example, linear
regression assumes the input data is normally distributed.
If the normality assumption is not met, the input data
needs to be transformed (e.g., log transformation) before
building the model. In addition, MLR also suffers from
confounding problem, which may impact the accuracy
of the model. Hence, a set of input variables, which
are highly correlated with each other, are removed. This
process is called attribute selection. In this paper, we
evaluate the following two attribute selection approaches:
(1) removing the independent variables which are highly
correlated with each other [10]; and (2) removing the
independent variables which have low correlations with
dependent variables [16]. For MLR applied with the first
approach, we abbreviate this method as MLR D; and
MLR V for MLR applied with the second approach.

• Regression Tree (RegTree): Compared to MLR, in
which extra care is required to ensure the input data
satisfies the assumptions of the model, RegTree does not
have such restrictions [16]. RegTree predicts the system’s
performance behavior using a tree-liked structure.



TABLE I: Performance Modeling Techniques

Category Techniques Assumptions Input Output Limitations

Queuing models LQN Model [9] System is stable Workload mix,
topology information

Utilization for
hardware and software,
response time and
throughput

Needs topology
information

Data mining models

Multiple Linear Regression [10] Normality, Independence,
Linearity, Homoscedasticity Any counters Any counters Assumptions

MARS [14] N/A Any counters Any counters N/A

Quantile Regression [15] N/A Any counters Any counters Needs to specify
quantile

Regression Tree [16] N/A Any counters Any counters N/A

Rule-based models
Control Chart [1] Normality, Linearity,

Independence Any counters Any counters N/A

Descriptive Statistics [11] N/A Any counters Any counters N/A

Load Profile [17] System is stable Workload mix,
topology information

Service demand for
each scenario

Needs topology
information

• Multivariate Adaptive Regression Splines (MARS): In
some cases, a system can undergo different phases during
a load test. For example, the performance behavior of
a system can be different when the cache is filled up.
MARS [14] is proposed to model such behavior (a.k.a.,
multiple phases), as the simple MLR model cannot per-
form well in this case. MARS automatically splits the
data (a.k.a., phases) and builds different sub-models.

• Quantile Regression (QUANT): Similar to MARS,
QUANT [15] can be used to model different phases.
Compared to MLR, which imposes equal penalty on over-
estimation and underestimation, QUANT sets different
penalty on overestimation and underestimation based on
the given quantiles. These quantiles need to be specified
manually in the model. For example, quantile regression
built on 25% quantile, denoted as QUANT.25, estimates
the relation between input variables and an output vari-
able, on 25% quantile of the output data. In this paper, we
have studied the following QUANT models: QUANT.25,
QUANT.50, QUANT.75, QUANT.90, QUANT.100. The
reason for studying a range of QUANT models is to
assess whether different quantiles would impact the ef-
fectiveness of detecting performance problems.

Rule-based Methods: Compared to the queuing theory and
data mining-based methods, which predict the performance
behavior of the current test using the derived models, there
are no predictions involved in rule-based methods. Rather they
analyze the system behavior using a set of rules.

• Descriptive Statistics (DescStats): Descriptive statistics
like median and mean [11] provide a high level summary
of the system performance data. They are the easiest to
implement and used widely in practice. In this paper,
we compare the absolute relative difference between the
mean of the current and the previous test(s).

• Control Chart (CtrlChart): A control chart has three
components: a control line (CL), a lower control limit
(LCL) and an upper control limit (UCL). If a point lies
outside the controlled regions (above the UCL or below
the LCL), the point is counted as a violation [1]. The three

components can be defined in various ways. In this paper,
we use the median of the previous test(s) as our CL, the
median ± one standard deviation of the previous test(s) as
our UCL and LCL. Similar to MLR, certain assumptions
need to be satisfied before applying the CtrlChart.

• Load Profile (LP): The main idea behind LP is that
among different versions of the system, the SDs of
different requests should be the same. Otherwise, there
could be performance problems [17]. There are different
approaches to estimate the SDs. In this paper, we use the
Kalman filter to estimate the SDs, as it is very flexible
(i.e., can work with data from any distributions) and
produces high accurate results [20].

B. Anomaly Detection
In general, the data from the current test is consid-

ered anomalous, if it “significantly” deviates from the past
test(s). The anomaly detection methods are different based on
the three categories of performance modeling methods. The
anomaly detection methods for the queuing and data mining-
based methods are the same, as these methods predict the
outcomes based on the input values from the current test. The
predicted outcomes are compared against the actual measured
values in the current test. The anomaly detection methods for
the rule-based methods are different, as the actual values from
the current test are evaluated against some rules.

Anomaly Detection Methods for Queuing and Data Mining-
based Methods: In this paper, the following two statistical
methods are studied. Both methods aim to quantify the differ-
ences between the predicted and the measured values:

• Mean Percentage Absolute Error (MAPE): MAPE is
one of the evaluation methods of model prediction [21].
The formula to calculate MAPE is shown in Formula 1
below. For each predicted outcome, the absolute relative
errors between each predicted and measured values are
calculated. Then all these absolute relative errors are
combined to provide an average value.

MAPE =
1

n

∑n

i=1

∣∣∣∣measuredi − actuali
actuali

∣∣∣∣ (1)



• Wilcoxon Rank Sum test and Cliff’s Delta (WC):
Wilcoxon Rank Sum (WRS) test is a non-parametric
test which compares two distributions. However, in some
cases, even if the two distributions are different, the
differences between them are small. Hence, we also need
to quantify the strength of the differences between the
two distributions, called the effect size. For example, if the
response time is more than 5 minutes and the differences
of response time between the two tests are very small
(e.g., 1 millisecond), the performance deviation from
the new test should not be a big concern. Cliff’s Delta
(CD) is a non-parametric technique to calculate the effect
size between two distributions [22]. The strength of the
differences and the corresponding range of CD values are
shown below:

effect size =


trivial if CD < 0.147
small if 0.147 ≤ CD < 0.33
medium if 0.33 ≤ CD < 0.474
large if 0.474 ≤ CD

Anomaly Detection Methods for Rule-based Methods: The
anomaly detection methods for rule-based methods are mainly
based on threshold values. For example, if more than 30% of
the CPU utilizations data from the current test are violations
(above UCL or below LCL), the CPU metric in the current
test is considered anomalous [1].

III. AN OVERVIEW OF OUR FRAMEWORK

In this section, we will introduce our framework to evaluate
the effectiveness of different test analysis techniques as illus-
trated in Figure 1. Our framework consists of the following
five steps: (1) load testing; (2) model building; (3) test oracle
derivation; (4) anomaly detection & result evaluation, and
(5) ranking. Our framework is very flexible, as it can easily
accommodate new test analysis techniques, new load testing
data, and new evaluation systems.

Step 1 - Load Testing

Multiple versions of the same system are load tested. The
selected versions to be tested should be a mixture of “good”
and “bad” versions. Bad versions contain known performance
problems. Good versions refer to the versions of the system
whose performance is satisfactory under load. All the selected
versions of the same system are load tested using the same load
profile. A load profile is characterized along two dimensions:
workload mixes and workload intensities. The workload mix
refers to the ratios among different types of requests (e.g.,
30 percent browsing, 10 percent purchasing and 60 percent
searching). The workload intensity refers to the rate of the
incoming requests (e.g., browsing, purchasing and searching),
or the number of concurrent users. During the course of each
load test, while the system is processing requests generated
by the load profile, the system behavior data (a.k.a., logs and
counters) is collected. In this paper, we use the load profile,
which generates stable request rate, to test the target systems.

This same load profile is applied on multiple versions of
the system to counter potential bias. The test plan will be
updated if the system evolves. For example, if the URL of the
browsing scenario changed from “brs.jsp” to “browse.jsp” in
the next version, the test plan will be updated accordingly.

Step 2 - Model Building

Using the generated system behavior data from the previous
step, different performance modeling methods are applied to
summarize the performance behavior of the previous test(s).
For descriptions of different performance modeling methods,
please refer to Section II-A. Additional data processing is
carried out to ensure the data is cleaned up (e.g., removing
the warm-up and cool-down period) and transformed into the
corresponding input file formats (e.g., csv or xml) required by
different modeling techniques.

In addition, extra care is taken to ensure the assumptions
are met for each model. For example, MLR and CtrlChart
require input data to be normally distributed. Hence, we first
use Shapiro-Wilk test to verify the normality assumption.
If the normality assumption is not met, log transformation
is performed on the input data. For QUANT, we choose
a range of different quantizes: 25%, 50%, 75%, 90% and
100%, to investigate if models built on different quantiles
performed the same . In this paper, we use the readily available
OPERA tool [23] as our model implementation for LQN and
LP methods. OPERA automatically estimates the SD using
Kalman filter based on the workload mixes, hardware resource
utilizations and response time for different scenarios. OPERA
models and predicts the system performance using the Mean-
Value-Analysis (MVA) algorithm. All the other methods are
re-implemented using R.

Step 3 - Test Oracle Derivation

In order to evaluate the effectiveness of different test analy-
sis techniques, a “test oracle”, which flags the problematic
counters in each run, is needed. We manually derive the
test oracle for each run based on bug reports, release notes
and close examinations on the counters. For example, if a
version of a system injected with a CPU intensive bug, the
CPU utilization of this version should be flagged as “buggy”.
As another example, if the response time for the browsing
scenario is much longer in the current version than the previous
version(s) and there is a response time issue reported in the
bug report for this version, the response time for the browsing
scenario is also flagged as “buggy”. Our test oracle has been
derived and verified by the first two authors of this paper.

Step 4 - Anomaly Detection & Model Evaluation

Using the derived performance models in the previous
step, different anomaly detection techniques are applied to
flag suspicious behavior from the current test. Please refer
to Section II-B for descriptions on different anomaly de-
tection methods. All the anomaly detection methods are re-
implemented in R. Different test analysis techniques may use
different threshold values to detect anomalous counters:
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Fig. 1: An Overview of Our Framework

• MAPE: The higher the MAPE values are, the bigger the
deviations between the predicted and the measured values
in the current test. Ideally, higher MAPE values for one
counter indicate higher probability that this counter is
anomalous. However, if the MAPE cut-off value is set to
be too high, we might miss some problematic counters.

• WC: For the WC method, the threshold values are only
used when there is a statistical difference between the
current and the past test(s). The strength of the differences
are quantified by the CD values. The counters with higher
CD values, indicating bigger differences, and are more
likely to be problematic.

• CtrlChart: For CtrlChart, the threshold value corre-
sponds to the violation ratio, which is the percentage of
data points in the current test lying outside the control
limit (a.k.a., above the UCL or below the LCL). Higher
violation ratios indicate bigger differences between the
current and past test(s).

• DescStats: For DescStats, the threshold value corre-
sponds to the absolute percentage errors between the
current test and the previous test(s).

A test analysis technique corresponds to one combination
of a modeling technique and an anomaly detection techniques.
The predicted values from each performance modeling method
are evaluated using all the applicable anomaly detection meth-
ods to ensure all valid test analysis techniques are studied. For
example, the predicted values from the RegTree are applied
using both MAPE and WC. There are ten different data min-
ing and queuing methods (LQN, MLR D, MLR R, MARS,
RegTree, and 5 different QUANT methods), each of which has
two different anomaly detection methods (WC and MAPE).

In addition, we have three different rule-based performance
modeling methods, each of which has one anomaly detection
method. Hence, we have evaluated 23 different testing analysis
techniques in total.

We use the Receiver Operating Characteristic (ROC)
curve [24] to assess the effectiveness of different test analysis
techniques under a range of threshold values. Once the ROC
curve for each test analysis technique is built, the AUC (Area
Under the Curve) values are calculated. The AUC values are
used in the ranking process below.

Step 5 - Ranking

In this paper, we use the Scott-Knot test [25] to rank the
effectiveness of different test analysis techniques. Scott-Knott
test uses hierarchical clustering to group the test analysis
techniques. Each group contains techniques with similar per-
formance. The smaller the group number that one technique is
assigned to, the more effective this test analysis technique is.
For example, if CtrlChart is assigned to Group 1, it means that
CtrlChart is more effective than techniques assigned in Groups
2 and 3. Scott-Knot test has been used successfully in other
software engineering tasks (e.g., comparing the performance
of different bug prediction techniques [26]). The input for the
Scott-Knott test is the AUC values from different test analysis
techniques exercised on different tests.

There are two reasons for using Scott-Knot test and the
AUC values to rank the test analysis techniques. First of
all, compared to other techniques (e.g., Nemenyi’s test or
hierarchical clustering), Scott-Knot test automatically clusters
different test analysis techniques into distinctive groups, which
are non-overlapping. Second, most test analysis techniques



TABLE II: Case Study Systems

System Domain Category SLOC

DS2 Benchmark application JSP 100
Petclinic E-commerce Hibernate > 2000

JMS Mail Server Mailet Container > 4,000

TABLE III: Load Testing Details for Three Systems

System # of Test Versions # of Injected/Known Bugs
Scenarios Test Runs or Improvements

DS2 4

v0 6 Original version
v1 1 Injected a CPU intensive bug

in purchasing
v2 1 Removed indices in two

database tables
v3 1 Created a constant delay in

purchasing

PetClinic 15
v0 1 Original version
v1 1 Changed to stateless and non-

blocking I/O to improve re-
quest throughput

v2 6 Removed JVM locks to further
improve request throughput

JMS 6
2.3.2 1 Stable release version

3.0M1 1 Improved the efficiency of
queueing emails

3.0M4 6 Improved the efficiency of
handling MIME messages

require threshold values, which are either not specified in the
paper, or are tunable based on different projects. AUC values
enable us to evaluate the effectiveness of different techniques
under a range of threshold values.

IV. CASE STUDY SETUP

We intentionally picked three different open source systems
with different deployment setup and application domains: Dell
DVD Store (DS2) [27], Petclinic [28] and James Mail Server
(JMS) [29] to demonstrate the usefulness of our framework.
Each system is developed under different technologies and has
different deployment configurations. Table II shows the details.

In total, about 60 hours of load testing were run on various
versions of the three systems. We collected over 150 counters
from three target systems, containing resource utilizations
(e.g., CPU, memory and disk I/O) for various components of
the systems, request rates, throughput and response time for
each scenario.

The rest of this section is organized as follows: section IV-A
explains the test scenarios as well as the rationales for selecting
different versions. Section IV-B describes our test execution
and test monitoring process. Section IV-C introduces a few re-
search questions that we want to answer using our framework.

A. Test Design

1) DS2: DS2 is an open source e-commerce website, which
Dell uses to benchmark the performance of their hardware.
The system contains four different JSP pages: login, browsing
catalogs, purchasing items and registrations for new customers.
It is deployed on the top of a Tomcat web server and is
connected to a MySQL database.

The test details are shown in Table III. The original version
(v0) does not have any injected or known performance bugs,
so we call it “good version”. V0 was load tested six times. We
injected three performance bugs (a busy CPU bug, a database
performance bug, and a constant delay bug) into three versions
of DS2 (v1, v2, and v3), respectively. The CPU and the
database bugs are from [1]. We have added the delay bug in
this study, as it represents another performance issue (a.k.a.,
blocking v.s. busy waiting). These three versions are called
“bad versions”. Following the practice of [10], in which a good
version is load tested multiple times and each bad version is
tested once. If a load test is executed on a good version, we
call it a “good run”, and a “bad run” means a load test is
executed on a bad version.

PetClinic: Petclinic is a web application written in Java
Spring and Hibernate. There are 15 different test scenarios
related to pets, pet owners, and veterinarians. Example sce-
narios include scheduling visits to veterinarians and locating
pet owners. Same as DS2, Petclinic deploys on top of a Tomcat
web server and connects to a MySQL database.

Different from DS2, in which performance bugs are man-
ually injected, we load tested on versions of systems with
known real-world performance issues for PetClinic. In the
blog post by Dubois [30], he detailed a series of changes
that he has made in order to improve the performance and
scalability of PetClinic. All his changes are archived in the
GitHub repository [31]. In this paper, we picked three versions
from that GitHub repository. We called the last version as
the “good version”, as it contains all the fixes that he has
performed. The other two older versions as “bad versions”,
as they contain various performance issues. The descriptions
for the performance issues associated with the bad versions
are shown in Table III. We executed the load testing on good
version 6 times and on each bad version once.

JMS: The Apache James Mail Server (JMS) is an open
source, mail server written in Java. It contains two generic
scenarios: sending emails and receiving emails. The two
generic scenarios can be further divided into many smaller
scenarios, like sending and receiving emails with or without
attachments, reading only the mail header or loading the whole
mail, etc. In total, 6 scenarios are tested for JMS. Different
from DS2 and PetClinic, JMS is a stand-alone system, which
does not have any additional supporting components.

Unlike Petclinic, we could not find two or more continuous
revisions, which contain performance fixes. Hence, we picked
three different release versions in our study. Apart from the
latest stable version 2.3.2, there were three MR releases for
version 3.0. Since 3.0M3 was not available to download in
the official website, the other two MRs, 3.0M1 and 3.0M4,
are used in this study. The selected three versions have
many bug fixes and performance improvements. Between these
versions, numerous modules have been upgraded, such as
updating to more efficient JavaMail [32] and ActiveMQ ver-
sions [33]. Table III summarizes the various performance bug
fixes and improvements from the two released versions. This
information is extracted from JMS’s bug reports and release



notes. Similar to DS2 and PetClinic, since 3.0M4 (the “good
version”) is the last version containing most performance fixes,
it was load tested 6 times. The other two versions (the “bad
versions”) were tested once.

B. Test Execution and Monitoring

All three systems are deployed on the same machine, which
has the following hardware configurations: Intel® CoreTM 2
CPU 2.40 GHz, 2 GB memory and a 160 GB 7200 RPM hard
drive. We use JMeter [34] as our load generator. JMeter is
deployed on a separate machine with the following hardware
specifications: Intel® CoreTM i7-4790 CPU 3.60 GHz, 16 GB
memory and a 2TB 7200 RPM hard drive. The reason for the
separate deployment of JMeter and the case study systems is
to ensure no overhead caused by the load generator to the case
study systems.

The resource utilizations for the systems during load testing
are monitored and recorded using pidstat [35]. In addition, we
also archived the logs from JMeter, MySQL and Tomcat at
the end of each load test. These logs can be used to extract
the workload and response time information.

C. Research Questions

We propose the following three research questions to eval-
uate the effectiveness of different test analysis techniques:

• RQ1 (Build Dependency): Can we use data from a bad
run to analyze the results of other tests?
In some cases, there could be no “good versions” avail-
able for a system, as the system is constantly being
fixed and improved until release. Hence, most of the load
testing runs could be “bad runs”. In this research question,
we seek to answer whether we can still leverage the data
from the bad runs to effectively analyze the results of a
load test. RQ1 is discussed in Section V.

• RQ2 (History Dependency): Would more historical data
help improve the performance of different test analysis
techniques?
Since all the test analysis techniques compare the current
test data against the historical data (a.k.a., past runs). This
research question aims to answer whether more historical
data would help improve the effectiveness of different test
analysis techniques. RQ2 is discussed in Section VI.

• RQ3 (Sampling Interval Dependency): What’s the im-
pact of different sampling intervals on detecting perfor-
mance problems?
During the course of a load test, the behavior of the
system is monitored. There can be different monitoring
granularities. For example, the average CPU utilizations
can be sampled at every 5 seconds interval or every 60
seconds interval. Different sampling intervals generate
different levels of details and different sizes of data to be
analyzed. This research question aims to answer whether
more fine-grained sampling intervals would improve the
effectiveness of different test analysis techniques. RQ3 is
discussed in Section VII.

TABLE IV: Aggregated Scott-Knot Ranking for RQ1

Category Techniques Rankings

G B

Rule-based Models
CtlChart 1 1
DescStats 1 1

LP 2 2
M B M G W B W G

Data Mining Models

MLR D 2 2 2 2
MLR V 2 2 2 2
MARS 2 2 2 2

QUANT.25 2 2 2 2
QUANT.50 2 2 2 2
QUANT.75 2 2 2 2
QUANT.90 2 2 2 2

QUANT.100 2 2 2 2
RegTree 1 1 1 1

Queuing Models LQN 2 2 2 2

V. RQ1 - BUILD DEPENDENCY

In practice, it can be hard to obtain one version of a system
which is “bug free” due to the following two main reasons: (1)
constant evolution of the system due to bug fixes and feature
improvements; and (2) undetected performance bugs due to the
challenging nature of analyzing the results of a load test [13].
Hence, in this RQ, we want to investigate whether we can still
leverage the data from “bad runs” to effectively analyze the
results of current load test.
Approach

We built a set of performance models, which use the data
from one good run or one bad run. These performance models
are used to evaluate the test results from other test runs. For
example, eight LQN techniques are built using the test runs
from PetClinic. Among them, four techniques are built using
the data from bad versions (v0 and v1 of PetClinic) and the rest
four techniques are built using the data from good versions (v2
of PetClinic). Each model is used to predict the results of all
the other test runs from PetClinic. Similar process is applied on
other techniques and on other systems. The prediction results
from different test runs of the same test analysis techniques
are grouped. The overall results across all systems are ranked
using the Scott-Knot test.
Analysis

Table IV shows the ranking results for different test analysis
techniques. The second column shows the list of performance
modeling methods. Each cell corresponds to the ranking of
one particular test analysis technique, as technique corresponds
to one unique combination of a modeling method and an
anomaly detection method. The columns marked with “B”
and “G” correspond to the techniques built with training data
from the good and bad runs, respectively. All the queuing
and data mining methods are evaluated under two anomaly
detection methods: MAPE (marked as “M” in the table) and
WC (marked as “W”). Hence, the column “M B” refers to the
modeling techniques trained with data from the bad run and
use MAPE as its anomaly detection method.

There are two groups generated by the Scott-Knott test.
Among all the test analysis techniques, DescStats, CtrlChart,



both RegTree techniques perform better than the other tech-
niques. Among all the test analysis techniques, their rankings
are the same regardless of using data from the good or the
bad runs. We want to note that some performance models do
not summarize the training well. For example, when we apply
the LQN model built from the bad runs (e.g., v3 from DS2)
to predict the values from the same run (v3), the accuracy
is low. However, when the LQN model built from the good
runs (e.g., v0 from DS2) to predict the values from the
same run (v0), the accuracy is high. However, in general, the
accuracy of the modeling methods does not seem to impact
the effectiveness of different test analysis techniques. We
believe this is because each technique can effectively detect
the performance deviations between the good and the bad runs.
Findings: In general, the effectiveness of different test
analysis techniques are not impacted by its training data.
Implications: Load testing practitioners can use the test
analysis techniques as an effective “diffing” tool to check
if there are any performance deviations between the current
and the past test(s).

VI. RQ2 - HISTORY DEPENDENCY

All the studied load testing analysis techniques compare the
data from the current test against the historical data (a.k.a.,
past runs) to ensure the performance of the current test is not
worse-than the past test(s). As there can be many past test(s),
the time required for load testing analysis can be increased
due to the number of past test(s) that need to be compared.
If adding more past tests could provide a significant boost for
the effectiveness of detecting performance bugs, we need to
know the number of past test(s) required. However, if we can
achieve the same effectiveness by analyzing fewer past test(s),
we can save the limited test analysis time. The goal of this
RQ is to investigate whether more historical data could help
improve the effectiveness of different test analysis techniques.

Approach

The previous RQ shows that all the test analysis techniques
are effective regardless of building performance models using
good or bad runs. In this RQ, we built a set of performance
models with varying number of good runs as their training data
for each test analysis technique. For example, we combined
two different good runs as training data. This process was
repeated six times to ensure each good run can appear at least
once in one of the six training datasets. The same approach is
repeated for combining 3–5 good runs. In the end, there are
30 different training sets for each modeling technique. These
models are used to detect performance problems for the other
test runs. For example, if the model is built using data from
three good runs in JMS, the anomaly detection methods would
be applied on the other 3 good runs and 2 bad runs. The same
process is applied on all three systems.

Analysis

Table V shows the ranking results for different test analysis
techniques based on varying number of previous tests as

their training data. Similar to the previous RQ, we com-
pared 23 different test analysis techniques based on their
performance modeling and anomaly detection techniques. The
second column corresponds to different performance modeling
techniques. The capital letter “R” refers to the number of good
runs used in the training data. For example, “1R” means 1
good run is used to build the model, and “2R” means 2 good
runs are used to build the model, and so on. Each cell stores
the ranking for each test analysis technique. “M” and “W”
refer to the MAPE and WC anomaly techniques, respectively.
“M 1R” refers to using 1 good run as the training data and
MAPE as its anomaly detection method.

As we can see in Table V, there are total five groups.
Among all the test analysis techniques, CtrlChart, DescStats
and (RegTree + WC) are ranked the top. All the test analysis
techniques share similar trends based on the amount of training
data: (1) each technique performs at least the same or better
giving more previous test(s) as their training data; and (2)
the effectiveness of the test analysis techniques seems to be
stabilizing after 2R.
Findings: The test analysis techniques perform better by
providing more previous tests as their training data. Based
on our load testing data, the effectiveness of the test analysis
techniques seems to stabilize after using two previous test
run(s) as their training data.
Implications: Comparing the current test against multiple
previous test runs is time-consuming and might not improve
the effectiveness of detecting performance bugs. More re-
search is required to investigate the optimal amount of data
required for training the performance models.

VII. RQ3 - SAMPLING INTERVAL DEPENDENCY

During the course of the load test, the system behavior
is monitored and recorded periodically. For example, the
average CPU and memory utilization can be sampled at every
5 seconds, 30 seconds, 60 seconds or more. The sampling
interval affects the resulting test data in terms of size and
granularity. As the test duration is fixed for one load test,
the amount of recorded data decreases when the sampling
interval is large. However, it might lose some details. For
example, a sudden spike in the CPU could be visible using
the 5 seconds sampling interval but might not be visible
using the 180 seconds sampling interval. However, using a
smaller sampling interval generates larger volumes of data to
be analyzed and could slow down the system execution. For
example, it is usually not recommended to set the sampling
interval for pidstat to be less than 5 seconds [36], as the
monitoring overhead is too high and significantly slows down
the test execution. Such slow-down could impact the validity
of the collected testing data, as the system’s performance no
longer reflects the actual behavior in the field. In this section,
we want to examine the impact of different sampling intervals
on the effectiveness of test analysis techniques.
Approach

The load tests conducted for the three systems were mon-
itored using 5 seconds as its sampling interval. For all the



TABLE V: Aggregated Scott-Knot Ranking Results for RQ2

Category Techniques Rankings

1R 2R 3R 4R 5R

Rule-based Models
CtlChart 1 1 1 1 1
DescStats 1 1 1 1 1

LP 5 5 5 5 5
M 1R M 2R M 3R M 4R M 5R W 1R W 2R W 3R W 4R W 5R

Data Mining Models

MLR D 3 3 3 3 3 3 3 2 2 2
MLR V 3 3 3 3 3 3 3 3 3 3
MARS 3 3 3 3 3 3 3 2 2 2

QUANT.25 3 3 3 3 3 4 3 3 3 3
QUANT.50 4 3 3 3 3 4 3 3 3 3
QUANT.75 4 3 3 3 3 4 3 3 3 3
QUANT.90 4 3 3 3 3 4 3 3 3 3

QUANT.100 3 3 3 3 3 3 3 3 3 3
RegTree 2 2 2 2 2 1 1 1 1 1

Queuing Models LQN 3 3 3 3 3 3 3 3 3 3

systems, we aggregate the testing data into four additional
granularities: 30, 60, 180 and 300 seconds to represent the data
collected at 30, 60, 180 and 300 seconds sampling intervals.
For each sampling interval, multiple performance models,
which use the data from one good run, are built. The resulting
models are used to analyze the rest of test runs.

Analysis

Table VI shows the ranking results for different test analysis
techniques based on the test runs monitored under different
sampling intervals. Similar to the previous two RQs, the sec-
ond column shows different performance modeling techniques.
The numbers after the letter “i” indicate the sampling intervals.
For example, “i5” means data collected using 5 seconds as its
sampling interval, “i30” means data collected using 30 seconds
as its sampling interval, and so on. “M i5” refers to using the
data collected at 5 seconds sampling interval as the training
data and MAPE as its anomaly detection method.

As we can see in Table VI, there are four groups outputted
by the Scott-Knott tests. Similar to the previous two RQs,
CtrlChart, DescStat and two RegTree techniques rank the
best. For each technique, surprisingly, using data from smaller
sampling intervals usually performs the same or worse than
using data from larger sampling intervals. In general, the test
analysis techniques perform the best when using data sampled
at every 180 seconds or more. We suspect this is because the
data trend is smoother under larger sampling intervals.
Findings: For most of the analysis techniques, using the
data collected at smaller sampling intervals yields worse
performance than larger sampling intervals. The techniques
perform the best when using data sampled at ≥ 180 seconds.
Implications: Fine-grained monitoring could bring over-
head to the system execution and does not necessarily
improve the effectiveness of different test analysis tech-
niques. Larger sampling interval may miss some of the
runtime behavior. More research is required to investigate
the optimal sampling interval for load testing analysis.

VIII. THREATS TO VALIDITY

In this section, we will discuss the threats to validity.

A. Construct Validity

Sampling interval: In this paper, we evaluated different test
analysis techniques under different sampling intervals. All the
test runs are monitored using pidstat under the 5 seconds
sampling interval. We aggregated the pidstat values in RQ3
to simulate the pidstat data generated under the 30, 60, 180,
and 300 seconds interval. We also ran one load test using the
30 seconds sampling interval and compared the resulting data
against our aggregated data. The differences are negligible.

The accuracy of the performance data: Each load test was
run for a few hours to avoid measurement bias and errors [37].

The resource utilizations are collected using pidstat. The
throughput and the response time data from each scenario are
extracted either from the JMeter or Tomcat access logs. We
cross-checked the data extracted from JMeter and Tomcat and
found they would agree most of the time. Hence, we used the
data extracted from access logs for DS2 and PetClinic, and
used JMeter logs for JMS as JMS doesn’t use Tomcat.
B. Internal Validity

For MLR and CtrlChart, we performed log transformation
to ensure the model assumptions are met before building the
model. In addition, to avoid the confounding problem, we also
applied two variable section techniques [10], [16] for MLR to
reduce the number of input variables. We used the Kalman
filter to estimate the SD for different scenarios. The values of
SD are used in the LQN and LP models. Compared to other SD
estimation techniques, studies show that Kalman filter is the
least restrictive (a.k.a., works on data from any distributions)
and produces high accurate results [20].

For each RQ, we keep all two of the three factors (good or
bad runs, number of past tests, sampling intervals) the same
while investigating the impact of one factor in order to avoid
the risk of confounding. For example, in RQ1, we keep the
number of past tests and the sampling intervals the same, while
varying the types of training data (good run or bad run).
C. External Validity

Most of the previous load testing research is usually con-
ducted on industry systems. Hence, the testing data from such
systems are rarely available to download due to confidentiality



TABLE VI: Aggregated Scott-Knot Ranking Results for RQ3

Category Technique Rankings

i5 i30 i60 i180 i300

Rule-based Models
CtlChart 2 1 1 1 1
DescStats 1 1 1 1 1

LP 4 4 4 4 4
M i5 M i30 M i60 M i180 M i300 W i5 W i30 W i60 W i180 W i300

Data Mining Models

MLR D 3 2 2 2 2 2 2 2 2 2
MLR V 3 2 2 2 2 2 2 2 2 2
MARS 3 2 2 2 2 2 2 2 2 2

QUANT.25 3 2 3 2 2 3 3 3 2 2
QUANT.50 3 2 3 2 2 2 3 3 2 2
QUANT.75 3 3 3 2 2 3 3 3 2 2
QUANT.90 3 3 3 2 2 3 3 3 2 2
QUANT.100 3 3 2 2 2 3 3 2 2 2

RegTree 2 2 1 1 1 3 1 1 1 1
Queuing Model LQN 3 2 2 2 2 3 2 2 2 2

concerns. In this paper, we have evaluated different test
analysis techniques on multiple versions of three open source
systems. These three systems are from different domains
(e.g., benchmarking, e-commerce and mail servers) and are
implemented using different technologies. In addition, when
selecting the versions of the systems to be load tested on, we
have used two approaches: (1) for DS2, we manually injected
a few performance bugs, which are also used in previous
studies (e.g., [1], [10]); (2) for PetClinic and JMS, we have
selected the versions which contain real-world performance
bugs. However, our findings in three RQs may not generalize
to other systems. For example, we have applied the stable load
profiles for one system. Other systems may be load tested
using bursty load profiles. In this case, some test analysis
techniques may not perform well. However, our proposed
evaluation framework is very flexible, new test data (from
the same or different load profiles or systems) can be easily
incorporated and compared in the framework.

IX. RELATED WORK

Here we discuss the prior research related to this paper.

A. Load Testing

In general, a load test can be broken down into three phases:
test design, test execution and test analysis. For a survey on
various techniques used in a load test, please refer to [13].

In general, there are two types of load profiles that can be
used in a load test: realistic testing loads and fault-inducing
testing loads. Realistic testing loads aim to generate load
profiles which mimic the actual request rates in the field [11].
This type of load profiles are usually derived from past usage
data (e.g., Tomcat access logs). Compared to realistic testing
loads, which require repeatedly executing the same scenarios
for a long duration of time (hours or days), the fault-inducing
load profiles aim to generate load profiles, which likely lead
to performance problems. For example, Grechanik et al. [38]
propose an iterative technique which automatically learns
the system behavior using randomly selected inputs. Then
machine learning techniques are applied to generate inputs
which lead to performance problems. Zhang et al. [39] use

Java PathFinder to automatically generate load profiles, which
cause performance problems. They assign a time value for
each step along the code path. By summing up the costs
for each code path, they can identify the paths that lead to
the longest response time. The values that satisfy the path
constraints form the load profiles. In this paper, we focus on
evaluating different test analysis techniques, which analyze the
data generated from realistic testing loads.
B. Evaluation

Although this is the first work which systematically evalu-
ates different load testing analysis techniques, there have been
a few prior works which compare the techniques used to solve
other software engineering problems. For example, Lutellier et
al. [40] compare the accuracy of different architecture recovery
techniques. Ghotra et al. [26], [41] compare the performance
of different bug prediction techniques. Bellon et al. [42], [43]
compare the accuracy of different clone detection techniques.
Parnin and Orso [44] empirically evaluate different automated
debugging techniques. Lo et al. [45] compare the effectiveness
of different fault-localization techniques.

X. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an evaluation framework
which systematically compares the effectiveness of different
load testing analysis techniques. To demonstrate the usefulness
of our framework, we have applied it on the load testing data
exercised on 25 runs of three open source systems (DS2,
PetClinic and JMS). We have found that all the techniques
perform well regardless of training on good or bad test
runs. Using more than two runs of previous tests as the
training data takes longer time to analyze and may or may
not yield better performance. The test analysis techniques are
more effective when building and analyzing data from higher
sampling intervals (≥ 180 seconds). Among all the techniques,
CtrlChart, DescStats, and RegTree are the most effective ones.

In the future, we plan to extend our evaluation study
using load testing data from additional systems as well as
incorporating new test analysis techniques. In addition, we
also plan to evaluate the test analysis techniques along other
dimensions (e.g., usefulness to practitioners).
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