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Abstract—There is an increase in deploying Deep Learning
(DL)-based software systems in real-world applications. Usually,
DL models are developed and trained using DL frameworks
like TensorFlow and PyTorch. Each framework has its own
internal mechanisms/formats to represent and train DL models
(deep neural networks), and usually those formats cannot be
recognized by other frameworks. Moreover, trained models are
usually deployed in environments different from where they
were developed. To solve the interoperability issue and make
DL models compatible with different frameworks/environments,
some exchange formats are introduced for DL models, like
ONNX and CoreML. However, ONNX and CoreML were never
empirically evaluated by the community to reveal their prediction
accuracy, performance, and robustness after conversion. Poor
accuracy or non-robust behavior of converted models may lead to
poor quality of deployed DL-based software systems. We conduct,
in this paper, the first empirical study to assess ONNX and
CoreML for converting trained DL models. In our systematic
approach, two popular DL frameworks, Keras and PyTorch,
are used to train five widely used DL models on three popular
datasets. The trained models are then converted to ONNX and
CoreML and transferred to two runtime environments designated
for such formats, to be evaluated. We investigate the prediction
accuracy before and after conversion. Our results unveil that the
prediction accuracy of converted models are at the same level of
originals. The performance (time cost and memory consumption)
of converted models are studied as well. The size of models are
reduced after conversion, which can result in optimized DL-based
software deployment. We also study the adversarial robustness of
converted models to make sure about the robustness of deployed
DL-based software. Leveraging the state-of-the-art adversarial
attack approaches, converted models are generally assessed
robust at the same level of originals. However, obtained results
show that CoreML models are more vulnerable to adversarial
attacks compared to ONNX. The general message of our findings
is that DL developers should be cautious on the deployment of
converted models that may 1) perform poorly while switching
from one framework to another, 2) have challenges in robust
deployment, or 3) run slowly, leading to poor quality of deployed
DL-based software, including DL-based software maintenance
tasks, like bug prediction.

Index Terms—Empirical, Deep Learning, Converting Trained
Models, Deploying ML Models, Robustness.

I. INTRODUCTION

Nowadays, we are observing an increasing deployment of

Deep Learning (DL)-based software systems in real-world

applications, from personal banking to autonomous driving

[1], [2]. Different easy-to-use Python-based frameworks are

developed to help practitioners write their own DL codes, like

TensorFlow/Keras [3], [4] and PyTorch [5]. A (or multiple)

trained DL model(s) must be deployed in a DL-based software

system to provide the necessary prediction service. There are

several stages in development of DL-based software prior

to deploying a trained model: from data collection, labeling

and designing Deep Neural Networks (DNNs) to training/test-

ing the model. The development team encodes the network

structure of the desirable DL model (a DNN in particular)

and the process by which the model learns from a training

dataset. Hyperparameters and runtime settings (e.g., random

seed) should also be configured prior to training the model

on the selected dataset. Afterward, a validation/testing stage is

performed for evaluating the prediction accuracy of the trained

models. There might be some back-and-forth steps as well to

improve the quality of the model. Finally, the model becomes

ready to be deployed for application, for example on web or

mobile platforms. To do so, the trained model is converted to

some format and stored as one or multiple files.

A DL framework may support multiple options to store

(or export) models, e.g. TensorFlow provides checkpoints
during the training and saving trained model using Saved-
Model and HDF5 [6]. However, each framework has its own

representation for a model with customized primitives, which

are not necessarily compatible among different frameworks.

Since the deployment environment is likely different from

the development, it is expected that the trained model in

different frameworks can be easily ported and reused by

another framework or in a different environment [7], [8].

This interoperability requirement enforces that the prediction

accuracy, performance, and quality of the ported (converted)

model be the same as (or reasonably similar to) the original

trained model. Deploying a DL model with unexpected poor

accuracy or quality in a software system may affect the quality

of final decisions having severe consequences, especially in the

context of safety-critical systems. It is therefore important to

raise the awareness of development teams about the impor-

tance of interoperability requirements of trained DL models

during deployment.

To address such interoperability requirements, different con-

version formats and conversion techniques are introduced for

DL formats, e.g., Open Neural Network Exchange (ONNX)

[9] and CoreML [10]. The converted DL model should be eas-

ily transferred into other inference/development environments

due to deployments requirements, infrastructure limitations,

or security requirements (data privacy). On the other hand,
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these conversion formats are necessary since development of

multiple DL frameworks is inevitable: they provide their users

with diverse DL development experience including model

training performance, DevOps productivity and release engi-

neering [11], and debugging. According to a recent report

[12], TensorFlow/Keras were selected by about half of the

developers in 2021 while PyTorch was employed by about

34% of users.

Although these formats are currently used by

researchers/practitioners for converting DL models from

different frameworks, to the best of our knowledge there is

no study that empirically evaluated the prediction accuracy,

inference time, memory usage, and robustness of those

formats. An empirical study in this direction can identify

the challenges of the current conversion techniques. Also

future research can use such study to drive the various DL

software maintenance tasks, such as practical fault detection

and verification methods, to support debugging the conversion

techniques and correctness of the deployed DL software.

Therefore, we define our Research Questions (RQs) as follows:

• Prediction accuracy after conversion.
RQ1: Given the same runtime configuration, what are

the differences of prediction accuracy between an original

trained model and its converted one?

• Performance of converted models1.
RQ2: How does a DL model perform after conversion?

Is there any difference in the inference time and size of

the converted model?

• Adversarial robustness of converted models.
RQ3: Do converted models from a DL framework exhibit

the same adversarial robustness as the original ones after

conversion?

In this paper, we conduct an empirical study on the state-

of-the-art conversion format, i.e., ONNX and CoreML, using

different DL models trained in two widely used frameworks of

Keras (an API on the top of TensorFlow) and PyTorch. We aim

to investigate the performance and robustness of converting

trained DL models, its impact on DL software development,

maintenance/deployment processes, and providing practical

insight for both SE and AI communities on the different

aspects that should be improved. To summarize, this paper

makes the following contributions:

• We present the first experimental study on effectiveness

and performance of ONNX and CoreML conversion

formats for trained DL models.

• We report the difference in predictions between ONNX

and CoreML models: the error for ONNX is quite mini-

mal compared to CoreML while in the case of CoreML,

the error differs dramatically across Keras and PyTorch.

• We observe variations in inference time of the converted

models: ONNX models are faster than CoreML models.

1By performance, here, we mean cost-related metrics such as time and
CPU resources.

• The converted models are generally robust against ad-

versarial attacks at the similar level of original mod-

els. However, our assessment reveals that conversion to

CoreML is more vulnerable to adversarial threats than

ONNX conversions.

• We release a replication package including our detailed

results [13], that can be used as a benchmark for other

studies on exchanging trained DL models.

The rest of this paper is organized as follows. While

Section II briefly reviews ML conversion formats, Section III

details the methodology followed in our study. We report the

experimental results for each of our RQs in Section IV. Section

V presents a discussion on our finding and highlights future

research opportunities. We conclude the paper in Section VI.

II. BACKGROUND

In this section, we briefly review conversion formats for

Machine Learning (ML) models.

ONNX is an open source machine-independent format for

representing ML models [9]. The ONNX model is an ex-

pandable computational graph equipped with operators, and

standard data types offering a uniform representation for

different frameworks. It is widely employed for converting DL

models and has been actively maintained by and contributed

from open source communities [14]. Moreover, its official

tutorial for converting DL models to ONNX format is available

online [15], [16].

CoreML is an Apple framework to integrate ML models

into applications by providing a unified representation for all

types of models [10], [17]. It optimizes the on-device perfor-

mance of models by leveraging the CPU, GPU, and Apple

Neural Engine (ANE) while minimizing the memory footprint

and power consumption. Besides ONNX and CoreML, other

conversion formats were introduced as well.

Predictive Model Markup Language (PMML) is a java

based library for moving Apache Spark, R and Scikit-Learn

models from “lab” to “factory” [18] with a Python library for

converting Scikit-Learn pipelines [19]. H2O is an open-source

java-based scalable ML and predictive analytics platform for

building ML models on big data with easy productionalization

[20]. It allows for converting the built models to Plain Old Java

Object (POJO) or a Model ObJect, Optimized (MOJO) [21].

III. STUDY DESIGN

In this section, we introduce the methodology of our

study to assess converted DL models. Figure 1 illustrates an

overview of our study in this paper. There are three main steps

to answer our RQs: 1) training models, 2) converting them to

ONNX and CoreML formats, and 3) evaluating the converted

models. First, we train different DL models and investigate

their prediction accuracy across different frameworks. To do

so, two widely-used and well-known frameworks, i.e., PyTorch

[5] and Keras [3], are selected. Regarding DL models, similar

to other studies [22], [23], we choose five popular models:

LeNet-5 [24], ResNet-18 [25], and VGG-16 [26], LSTM [27]

and GRU [28]. For training and then evaluating these models,
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Fig. 1: Our methodology to train, convert, and evaluate converted DL models.

we have employed three famous publicly available datasets:

IMDb [29], CIFAR-10 [30], and MNIST [31].

After training each of the five selected DL models, we

converted the models from the respective frameworks (Py-

Torch and Keras) to ONNX and CoreML formats. Then,

we employ ONNX Runtime (ORT) [32] and CoreML Tools

Python package (a.k.a coremltools) [17] to run and per-

form experiments with converted models. Each experiment is

repeated 10 times and the average values are recorded. It was

acknowledged in the literature that multiple DL training runs

with identical configuration may result in different results.

So, multiple runs are necessary to analyze the variance and

increase the reliability of results [23].

A. DL Frameworks

There exist a number of DL frameworks for developers

and researchers to design, train, test, and deploy a variety of

deep models across the industry and academia. For this study,

we selected two state-of-the-art frameworks, i.e., PyTorch

1.9.0 from Facebook and Keras 2.6.0 (running on the top of

TensorFlow 2.6.2) from Google. Each of these frameworks

defines its own network structure and format for creating,

training, and saving models. For instance, PyTorch follows a

dynamic computational paradigm, whereas TensorFlow/Keras

follows the static computational graph paradigm. It should be

noted that Keras, as a set of DL APIs developed in Python, was

originally designed to support multiple backends, including

TensorFlow, Theano, and PlaidML, however as of version 2.4,

only TensorFlow is supported [33].

B. Models and Datasets

We choose five popular models widely used in the DL

community. Among Convolutional Neural Networks (CNNs),

we selected LeNet-5, ResNet-18, and VGG-16. These models

are mainly designed for image classification. To keep the set of

models diverse enough, LSTM and GRU are chosen from deep

Recurrent Neural Networks (RNNs). The last two are widely

used in Natural Language Processing (NLP) (like sentiment

analysis) and sequence prediction (like time series).

For training and then evaluating the models, we have

employed three famous publicly available datasets: i.e.,

IMDb [29] for LSTM and GRU, CIFAR-10 [30] for ResNet-

18 and VGG-16, and MNIST [31] for LeNet-5 respectively.

MNIST is a set of gray-scale images used for recognizing

handwritten digits. CIFAR-10 is collected from colored images

for object classification, like airplane, automobile, and bird.

IMDb is a set of text-based movie reviews from the online

database IMDb [34], which is widely employed for text

sentiment classification in NLP tasks. The selected datasets

are very popular in the DL community.

C. Model Training and Conversion

In this step, for each of the selected DL models and the

datasets described in Subsection III-B, we first train and test

DL models in the corresponding frameworks. We train our

DL models on the datasets using Keras and PyTorch. Multiple

combinations of hyperparameters for each model are tested

in the training step to obtain a proper training accuracy on

each framework preventing overfitting/underfitting issues. The

selected models are trained using the identical hyperparameter

setting such as the optimizer, the learning rate, the batch size,

for both DL frameworks (PyTorch or Keras). Each experiment

was repeated 10 times and the average values were recorded.

After training each of the five DL models, we convert

the models from the respective frameworks to ONNX and

CoreML formats. In Keras, we have used tf2onnx 1.9.1,

an official toolset for converting TensorFlow and Keras mod-

els to ONNX [35]. To convert ONNX models in PyTorch,

torch.onnx is used. torch.onnx consists of a set of

PyTorch built-in API for working with ONNX format [36].

To evaluate the converted ONNX models, we employ ONNX

Runtime (ORT) 1.10.0 [32]. ORT is an engine, developed

in C++, used to deploy ONNX models into production with

high performance. It is capable of integrating with hardware-

specific libraries using a flexible interface, so it performs infer-

ences efficiently across various platforms and hardware, e.g.,

Windows, Linux, and Mac, on both CPUs and GPUs. ORT

supports DL as well as other ML models. To convert trained
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models to CoreML and run them, we used coremltools
5.0b3 [17], which is a Python package acting as the primary

tool to convert third-party models to CoreML. coremltools
supports converting trained models from various libraries and

frameworks to the CoreML format and making predictions

using converted models.

D. Evaluation Metrics

This section describes the metrics used to evaluate the

converted models. The prediction accuracy, inference time,

model size, and adversarial robustness of converted models

are assessed and compared to the original models.

Accuracy in Training and Conversion. To train models,

we first ensure the same runtime configuration across different

frameworks. We attempt to train the models with different

combinations of hyperparameters on each framework, and

monitor the training and validation accuracy. At the end,

one combination is selected as reported in the paper, which

achieves acceptable training accuracy for all selected frame-

works. Then, we assess the prediction accuracy on the testing

data for each model/dataset. After converting models to ONNX

and CoreML, we evaluate the prediction accuracy of converted

models on the testing data to identify any difference that may

be caused by the conversion across different frameworks. Poor

accuracy or wrong decisions of the deployed model may affect

the functionality of the system.

To further assess the accuracy of converted models, we

calculate the difference between the predictions generated by

the converted model (ONNX and CoreML models) and their

respective original models (in PyTorch and Keras). To evaluate

the predictions of models, first, we compare the output of the

last layer per pair of neural network models, i.e., original

vs. converted models. We report the difference between the

last layers’ outputs (i.e., predictions) of original and converted

models as the error. Two types of errors are reported: absolute

and relative error. The absolute error measures the amount

of error in the predictions of the converted model as the

difference between the predictions of the converted model

and the original model (before the conversion). Formally, it

is defined as:

Absolute error = Δy = yc − yo (1)

where yc is the prediction results (can be a vector) of the

converted model (i.e., ONNX or CoreML), and yo is the

prediction results of the original model (i.e., in Keras or

PyTorch). When y is a vector, we report the average error

over all elements of the vector. Similarly, the relative error

is defined as the ratio of the absolute error of the converted

model to the predictions of the original model:

Relative error =
Δy

yo
(2)

Performance in Training and Conversion. Intuitively,

converting a model to another format results in some change in

the structure of the model. Therefore, the performance of the

model, i.e., running time or memory usage, might be affected.

After training, we evaluate the performance of trained models

during prediction tasks on the testing data. To do so, we assess

the size of the model (memory used to store the model), and

inference time (and load time for converted models). Then, we

repeat our evaluations on the converted models, and compare

the results to those of the original. However, to ensure that this

has a limited impact on the quality of the deployed software

system, this difference should not be significant. For example,

poor inference time of a deployed model may result in longer

response times and affect the quality of DL-based software.

Adversarial Robustness in Conversion. Resilience and

security of a trained model is determined by robustness evalua-

tion. Deploying non-robust may lead to degrading the security

of DL-based software systems. Among different robustness

properties, we evaluate the adversarial robustness of models in

this paper. The adversarial robustness can be simply described

as follows: if a model M misclassifies an input x′, which is

close to a given input x, then x′ is considered as an adversarial

example of x and M is considered not adversarial robust. To

speak formally, the adversarial robustness of a classifier can

be evaluated by d-local-robustness at an input x using the

following criterion:

∀x : dist(x, x′) ≤ d =⇒ C(x) = C(x′), (3)

where dist indicates the distance between two input samples,

and C is the indicated class for x by the classifier. In this

paper, we follow the state-of-the-art techniques in DL to

generate adversarial examples using adversarial attacks on DL

models [37], [38] to assess the robustness of converted models

and compare them to originals. Moreover, in this paper, the

adversarial robustness assessment is performed not only for

CNN models but also for RNNs by following state-of-the-art

techniques [39].

IV. EMPIRICAL RESULTS

In this section, we first briefly introduce the experimental

environment, then we detail the experiments and results ob-

tained to answer our RQs.

Experimental Environment. To train models, we use a

high performance computer running CentOS-7 on a 1.70 GHz

Intel Xeon Bronze 3104 CPU with 64 GB main memory

equipped with a NVIDIA GeForce RTX 2080 Ti GPU. All

other experiments (i.e., converting trained models and assess-

ing for both ONNX and Coreml) are run on a Macbook Air

laptop with macOS 12.2.1 on a 1.6 GHz Dual-Core Intel Core

i5 CPU with 16GB main memory. The choice for using a Mac

machine is due to the limitation of coreML models which can

be run only on Mac systems [40].

A. RQ1: Prediction accuracy of converted models

1) Training accuracy

We have trained five DL models on three datasets in Keras

and PyTorch: LSTM and GRU on IMDb, Restnet-18 and

VGG-16 on CIFAR-10, and LeNet-5 on MNIST. The runtime

configuration per model is the same for different frameworks.

For example, we have used identical learning rate (i.e., 0.05),

training epochs (i.e., 50), optimizer (i.e., SGD), batch size (i.e.,

128) for LeNet-5 on both frameworks. Each model is trained
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Fig. 2: The training and validation performance of the selected model with respective frameworks.

TABLE I: The average prediction accuracy of original and

converted models over the testing datasets per framework.

Model Framework
Accuracy (%)

Original ONNX CoreML

LeNet-5 Keras 99.85 99.85 99.85
PyTorch 98.90 98.90 98.90

ResNet-18 Keras 85.99 85.99 86.01
PyTorch 81.69 81.69 81.72

VGG Keras 88.66 88.66 88.65
PyTorch 81.40 81.40 81.40

LSTM Keras 81.32 81.32 81.32
PyTorch 74.22 74.22 74.22

GRU Keras 84.98 84.98 84.98
PyTorch 71.09 71.09 71.09

10 times in each framework and the average results is reported

for comparison. We have reported the hyperparameters used

for training each DL model in our replication package.

Figure 2 visualize training and validation plots of all five

models given identical configurations on different DL frame-

works. Overall we can observe that there is a closely similar

training behavior shown by both frameworks except for Keras

that demonstrated much higher training accuracy compared to

PyTorch in our study for VGG-16 and ResNet-18.

For each DL model, we evaluate the prediction on the

testing dataset after the training. We repeat predictions on all

10 instances for each model and record the average accuracy.

The result is presented in Table I. The prediction accuracy

of LeNet-5, VGG-16, and LSTM is similar across Keras and

PyTorch but this is not the case for ResNet-18 and GRU.

One can justify the results since DL frameworks employ

different computing libraries having various implementations

of operators (like calculating gradients, operations of layers,

or optimizations). Besides, the non-deterministic nature of the

training process eventually makes the weights/biases on the

same layer different from each other while the structure is

the same. Moreover, similar observations (and results) were

reported in the literature [22].

2) Accuracy of converted models

We have converted trained models into ONNX and CoreML

from the framework in which they were trained. For each

trained model per framework, we convert all 10 instances of

the model to ONNX and CoreML. So, we have 10 converted

instances for each model. All the reported results are averaged

over 10 instances per model in each framework.

Table I reports the prediction accuracy of converted models

over testing dataset. The accuracy of original models are also

reported in this table for comparison. As it is expected, con-

verted models demonstrate almost similar accuracy compared

to the original ones. While the differences are negligible (or

almost zero) for ONNX models, the largest offset obtained

in our experiments belong to CoreML format. This may

be caused by changing the structure of the model during

conversion that leads to missing some information during the

conversion or potential numerical defects in coremltools
as the runtime environment. Further investigation is essential

to identify the root cause of such an offset.

Table II reports absolute and relative errors for five con-

verted models from Keras and PyTorch. Overall, the prediction

errors for the DL models in ORT (running ONNX models) is

quite minimal compared to when the similar model is exported

to coremltools as observed by their both absolute and

relative errors. The prediction errors for the models converted

to CoreML differ dramatically across the DL frameworks and

the type of models: there is a big difference between Keras

and PyTorch in absolute errors of VGG-16 and relative errors

of ResNet-18. Moreover, RNN models tend to perform much

better (with lower error) in CoreML compared to CNN models.

A possible reason can be due to incorrect scaling factors during

the sampling (upsampling or downsampling) operations during

the conversion, which is a common operation specifically in

CNNs for performing image segmentation.

We also, in Table II, report misclassification observed be-

tween original and converted models. To measure misclassifi-

cation rate, for each sample in the model’s testing dataset, we
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check whether the sample is labeled the same by the original

and converted models or not. The percentage of misclassified

samples are reported accordingly. While this rate is zero for

most of the converted models, for ResNet-18 and VGG-16,

CoreML models show high misclassification rates compared

to ONNX. This ratio indicates the extent to which prediction

errors of the converted models can affect their functionality

of labeling input samples as a classifier. It is possible that

negligible prediction errors result in different labels for the

same input. This means that the deployed DL-based software

system behaves differently from the trained/tested system

on the same input. Different decisions of a system for the

same input, can affect its functionality as well by introducing

nondeterministic behavior.

Findings: While the accuracy difference between the

original and converted models are evaluated to be

negligible, ONNX models look more accurate than

CoreML according to our results.

Challenges: Further analysis is necessary to investi-

gate the effect of model’s structure and runtime en-

vironment in the prediction performance of converted

models. Moreover, different decisions of the converted

models for the same inputs (quantified by misclassi-
fication) can be very harmful for the functionally of

DL-based software systems.

B. RQ2: Performance of Converted Models

Intuitively, converting the trained model to ONNX or

CoreML formats may result in a different structure of the

model (i.e., layers are not necessarily implemented in exactly

the same way across frameworks) and therefore the model size

is likely to be modified. Since the model structure is changed,

the inference process can be changed leading to different

inference times. In this way, for example, long response time

can be observed in the deployed DL-based software affecting

its quality while it is not observed during testing trained

models.

To answer this RQ, we evaluate the inference time and size

(used memory to store the model) of converted and original

models and compare them. Normally, the total inference time

is the sum of time consumed for model loading and inference

(i.e., load model + perform inference). However, in practice

the model is loaded only once. We reported both the inference

and load time for all of our models. As stated earlier, all the

experiments were repeated 10 times per model and the average

is reported.

Table III reports the inference time of original and converted

models. Regarding the time costs of inference, the difference

among frameworks is significant. It takes much more time

on PyTorch to predict the outcomes of RNN models (both

LSTM and GRU). For example, in the case of LSTM, the

prediction lasted about 3.79 seconds on PyTorch while it

takes only 0.17 seconds on Keras. This is mainly because

PyTorch dynamically loads the data along with the graph

building at each batch, without feeding them in advance. In

this way, PyTorch inevitably generates a large number of

temporary variables in an instant, leading to long inference

time. For VGG-16, the inference time is almost the same for

both frameworks, we have the same observation for prediction

accuracy. Two other CNNs, i.e., LeNet-5 and ResNet-18,

demonstrate a different behavior where Keras performs the

inference much faster than PyTorch.

For converted CNNs, the inference time of the DL models in

the ORT environment is faster than that of the original model

while for CoreML it is slower. Contrary to the PyTorch mod-

els, Keras models are not uniform when converted to ONNX

and CoreML. For example, for the LeNet-5, the inference time

is much slower in CoreML and much faster in ONNX when

the employed framework is Keras. Similar to the CNN models,

RNN models perform much faster (inference time) in ORT

than coremltools and the original frameworks. However,

the inference time of the DL models in CoreML format is

not uniform for different DL frameworks. This phenomenon

leads to poor quality DL-based software systems with longer

response times. Longer response times of software systems

may cause lower user satisfaction and poor productivity among

users, that may lead the user to discontinue using the software

system.

The size of original and converted models are reported

in Table IV. This is the amount of memory used to store

the model in MB. The size of CNN models reduces when

converted from DL frameworks to ONNX format. Overall,

the model sizes in CoreML are slightly less compared to

the ONNX ones. By comparing the model sizes across the

DL frameworks, one can conclude that Keras models are

much bigger in size compared to the PyTorch models. Similar

to the CNN models, the size of the RNN models reduces

when converted from DL frameworks to ONNX and CoreML

format. However, contrary to the above conclusion, the model

size in CoreML is slightly higher than ONNX. Also, by

comparing across the DL frameworks, RNN models trained

in Keras are much bigger in size compared to peer models in

PyTorch.

Findings: The difference of inference time among

frameworks is significant. Moreover, coremltools
is generally slower than ORT. Converted models are

smaller in size, and this is intensified for RNNs.

Challenges: In few cases (specially for PyTorch), the

inference process of converted models is very slow.

This is an alert for DL software developers to be

cautious on their deployed system that may perform

poorly while switching from one framework to another.

C. RQ3: Adversarial Robustness of Converted Models

The adversarial robustness assessment was conducted in two

parts: (1) assessing CNN models (image classification) and (2)

assessing RNN models (NLP).
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TABLE II: The comparison of mean and standard deviation (in brackets) of absolute and relative errors of output the converted

DL models to ONNX and CoreML per framework.

Model Framework Absolute Error Relative Error Misclassification
ONNX CoreML ONNX CoreML ONNX(%) CoreML(%)

LeNet-5 Keras 6.7E-09(8.8E-09) 1.4E-02(2.9E-02) 9.5E-08(4.5E-07) 1.4E-01(3.1E-01) 0(0) 0(0)
PyTorch 8.9E-07(1.1E-06) 1.0E-02(1.3E-02) 1.1E-06(5.9E-05) 1.3E-02(4.5E-01) 0(0) 0(0)

ResNet-18 Keras 1.5E-07(5.3E-07) 1.6E-01(2.0E-01) 5.1E-06(4.4E-06) 1.6(2.0) 0(0) 0.70(0.41)
PyTorch 2.0E-06(1.7E-06) 6.3E-03(5.7E-03) 4.9E-06(1.6E-04) 0.02(1.1) 0(0) 0.12(0.11)

VGG Keras 1.4E-07(3.4E-07) 1.3E-01(2.5E-01) 2.1E-06(1.9E-06) 5.2E+05(4.1E+06) 0(0) 0(0)
PyTorch 4.2E-07(8.0E-08) 6.9E-05(5.1E-06) 4.2E-06(5.1E-06) 1.7E-03(9.4E-03) 0(0) 0.37(0.25)

LSTM Keras 4.3E-08(7.8E-08) 6.3E-08(2.4E-07) negligible 7.5E-06(3.2E-05) 0(0) 0(0)
PyTorch 5.7E-08(8.4E-08) 3.1E-08(7.3E-08) 6.8E-07(2.5E-06) 1.4E-07(2.9E-07) 0(0) 0(0)

GRU Keras 4.5E-08(1.6E-07) 5.1E-08(2.4E-07) negligible 5.1E-06(2.5E-05) 0(0) 0(0)
PyTorch 5.5E-08(5.4E-08) 3.2E-08(4.6E-08) 4.2E-07(1.1E-06) 1.4E-07(1.9E-07) 0(0) 0(0)

TABLE III: The comparison of mean and standard deviation (in brackets) of the inference time (in second) of the original and

converted DL models to ONNX and CoreML using different frameworks.

Model Framework
Loading Time Inference Time

Original models Converted models Original models Converted models
ONNX CoreML ONNX CoreML

LeNet-5 Keras 0.21 (8.4E-03) 7.6E-04 (5.2E-04) 5.2E-02 (2.4E-02) 5.7E-02 (1.7E-02) 7.6E-03 (2.5E-03) 0.10(0.02)
PyTorch 7.2E-04 (1.0E-02) 7.2E-04 (1.4E-03) 4.9E-02 (1.1E-02) 7.3E-03 (2.5E-03) 6.9E-03 (2.7E-03) 7.3E-02 (1.2E-02)

ResNet-18 Keras 1.1 (3.4E-02) 8.2E-02 (5.0E-02) 3.0 (28.7) 1.8 (0.47) 1.5 (0.29) 0.94 (0.12)
PyTorch 8.9E-02 (7.2E-03) 8.6E-02 (1.47E-02) 0.99 (0.15) 0.35 (0.06) 0.15 (0.11) 0.38 (0.09)

VGG Keras 1.0 (0.83) 7.2E-02 (1.4E-02) 1.1 (0.23) 0.96 (0.18) 7.6E-01 (1.4E-01) 0.54 (0.05)
PyTorch 0.45 (0.03) 1.1 (0.21) 16 (4.2) 371 (1020) 20.2 (5.2) 18.8 (5.2)

LSTM Keras 1.8 (0.58) 9.1E-02 (1.4E-02) 1.4 (0.1) 0.31 (0.36) 0.32 (0.05) 2.1 (0.14)
PyTorch 1.3E-02 (4.9E-03) 7.3E-03 (4.7E-03) 0.74 (0.39) 3.7 (0.72) 2.2 (0.62) 2.3(0.68)

GRU Keras 1.4 (0.15) 1.1E-01 (1.8E-02) 1.5 (3.4) 0.28 (0.4) 0.32 (0.05) 2.1 (0.16)
PyTorch 1.3E-02 (1.1E-03) 7.0E-03 (2.6E-03) 4.4 (1.1) 3.4 (1.0) 2.2 (0.7) 59 (139)

TABLE IV: The comparison of mean and standard deviation

(in brackets) of the size (in MB) of original and converted DL

models to ONNX and CoreML from the respective framework.

Model Framework
Model size

Original models Converted models
ONNX CoreML

LeNet-5 Keras 0.6019 (0) 0.5727 (0) 0.5709(0)
PyTorch 0.2523 (0) 0.2481 (0) 0.2476 (0)

ResNet-18 Keras 89.8 (0) 44.7 (0) 44.7 (0)
PyTorch 44.8 (0) 44.7 (0) 44.7 (0)

VGG Keras 71.9 (0) 35.8 (1.07E-04) 35.8 (6.24E-05)
PyTorch 515.3 (0) 515.2 (0) 515.2 (0)

LSTM Keras 144.3 (0.2) 48.1 (0.07) 48.2 (0.07)
PyTorch 3.6837 (0) 3.6833 (0) 3.6767(0)

GRU Keras 240.0 (0.37) 47.94 (0.073) 47.99 (0.074)
PyTorch 2.8276 (0) 2.8271 (0) 133.9 (0)

CNN models: To assess the robustness of CNN models,

we follow the methodology adopted by similar studies [22].

We investigate the robustness of CNNs in terms of success rate

against adversarial examples using two well-known adversarial

attacks: Fast Gradient Sign Method (FGSM) [37] and Bound-

ary Attack [38]. To create adversarial examples, FGSM applies

perturbation along the model’s gradient. Boundary Attack,

on the other hand, conducts a strong adversarial perturbation

on the input first, then reduces the L2 norm distance of the

perturbations while remaining adversarial. We start by picking

1000 images at random from MNIST and CIFAR-10 datasets

that are correctly classified by the model both before and after

conversion. These images will be used to attack the model

prior to conversion using FGSM and Boundary Attack. These

attack algorithms will generate new sets of synthetic images

(i.e., adversarial samples per attack) referred to as Dsyn−CNN .

The latter will be used to compute (i) the success rate of attack

algorithms on the model before conversion and (ii) the success

rate of the converted model (through ONNX and CoreML).

Since we have 10 instances for each model (trained and

converted), the attack is performed on each instance and the

average results are reported. We also compute misclassification

of adversarial samples, i.e., the ratio of adversarial samples

classified differently by original and converted models on

Dsyn−CNN . Furthermore, similar to Subsection IV-A2, we

measure the difference (i.e., the absolute error) between the

last layers’ outputs (i.e., predictions) of original and converted

models over Dsyn−CNN . All results are averaged over 10

instances per model. In overall, we run 240 configurations of

attacks for CNNs, i.e., 3 models × 2 frameworks × 2 types

of conversions × 2 types of attacks × 10 times.

RNN models: Similar to CNNs, first we examine the

robustness of our RNN models against adversarial examples in

terms of success rate by leveraging the black-box population-

based algorithm [39]. This technique uses the combination

of constrained word embedding distance and language model

prediction score to narrow the search space. For the search

algorithm, a well-known population-based metaheuristic algo-

rithm, Genetic Algorithm, is adopted [39]. We do not employ

language model output in our experiments since the search

space is manageable. We start by picking 1000 sentences at

random from the IMDB that are correctly classified by the

model both before and after conversion. Following [39], we

limit the original input length to 10-100 words, removing out-

of-vocabulary terms from the substitution set, and eliminating

adversarial examples with modification rates of more than

25%. We used this threshold since it was suggested originally

for the black-box population-based algorithm by the authors
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Fig. 3: The comparison of average success rate of different attacks on LeNet-5 and ResNet-18 models before and after

conversion to ONNX (top) and CoreML (bottom).
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Fig. 4: The comparison of average success rate of different attacks on LSTM and GRU models before and after conversion to

ONNX (left) and CoreML (right).

[39]. By having the set of adversarial samples, Dsyn−RNN ,

similar to the CNN models, the success and misclassification

rate over Dsyn−RNN between the original and converted

models are reported. Moreover, the absolute error between the

last layers’ outputs (i.e., predictions) of original and converted

models over adversarial samples (Dsyn−RNN ) are reported.

All results are averaged over 10 instances per model. All

results are averaged over 10 instances per model. In this

experiment, we perform 80 configurations of attacks, i.e., 2

models × 2 frameworks × 2 types of conversions × 1 type

of attack × 10 times.

Figure 3 illustrates the average success rate of different

attacks against original and converted CNN models1. The

results are averaged over 10 instances per model. Boundary

attack, compared to FSGM, achieves higher success rates on

all CNN models, in some cases 100%. Similar results were

1We do not report results of the VGG model due to a problem in our
experiments that made the results unreliable.

reported in other studies [22] and the reason is that this attack

is one of the most effective decision-based adversarial attacks.

This indicates that both original and converted models are

vulnerable against adversarial attacks. This is crucial for secu-

rity of DL-based software, and therefore, defense mechanisms

are desirable for trained DL models prior to deployment. For

ONNX models, the success rates of both attacks remain almost

the same before and after conversion. However, models trained

with Keras are more vulnerable for both attacks as success

rates are higher. There are two major observations in the case

of CoreML:

1) PyTorch vs. Keras: While PyTorch models demonstrate

almost the same success rate after conversion, models

trained by Keras behave differently after conversion:

success rates are higher for converted models.

2) FGSM vs. Boundary: Both LeNet-5 and ResNet-18,

when attacked by FGSM, look are more vulnerable after

conversion to CoreML, i.e., success rates jump from
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46% and 43% to 90% and 89% respectively. In the case

of Boundary attack, converted models reveal almost the

same vulnerability level before and after conversion.

The average success rate of different attacks against dif-

ferent RNN models (original and converted) are reported

in Figure 4. The first observation is that ONNX (left) and

CoreML (right) models behave similarly and no significant

contrast is noticed for both LSTM and GRU. In general,

the vulnerability level (in terms of attack’s success rate) of

converted models remains almost the same after conversion

and no major difference is observed. Interestingly, using the

same runtime configurations, PyTorch models exhibit more

robust behavior compared to Keras models. This phenomenon

is intensified for GRU, where the success rates of the attacks

drop from 82% (Keras) to near 20% (PyTorch).

Table V and VI show the results of robustness evaluation of

different models per attack by reporting the models’ prediction

error and misclassification rate over adversarial examples

for CNN and RNN models respectively. The absolute errors

and misclassification are relatively low for ONNX models

in general (actually, zero classification divergence in many

cases). So one may conclude that the adversarial robustness

of trained models remains almost the same after conversion

to ONNX. However, CoreML models behave distinctly as the

absolute errors are considerable for all frameworks and attacks

implying that converted models to CoreML behave differently

compared to original models under adversarial attacks. For

example, LeNet-5 trained in Keras under FGSM, displays the

misclassification rate of 92%, meaning that almost all adver-

sarial samples were classified differently after conversion. The

only exception is FGSM attack on PyTorch models, where

both ONNX and CoreML models do not reveal any significant

difference compared to original ones. For CNNs, no major

difference is observed when comparing frameworks (Keras

vs. PyTorch) or types of attacks (FGSM vs. boundary attack).

However, in the case of RNNs, the error and miscalssification

rate of models trained using PyTorch are higher than those

trained with Keras, but the models are still at the similar

level of robustness after conversion. According to our results,

deployment of CoreML models results in poor software quality

since the system makes different decisions for the same

adversarial input. This must be taken into account by the

development and deployment teams while more investigation

is necessary. Also, future works can propose efficient fault

detection and verification techniques to support debugging

or testing of the DL models during the conversion and the

deployment process.

To have a global understanding of the ability of each

conversion format in preserving the adversarial robustness of

models, we also present results of a robustness indicator metric

introduced in [22]. Formally, we define the following equations

to quantify the robustness variation of a converted model under

attacks:

R(mi, cj) = P (mi, cj , A1) + ...+ P (mi, cj , Ak), k ≥ 1,

with P (mi, cj , A) =

⎧⎨
⎩

∣
∣
∣S

mi,A
cj

−Smi,A
∣
∣
∣−min

max−min if max > min

0 if max = min

(4)

where m1, ..., mn represent the n models trained from

frameworks under evaluation, and Ak represents the k types

of attacks. Smi,A reflects the average success rate of attack A
on model mi before conversion. Smi,A

cj represents the average

success rate of attack A on model mi after conversion using cj .

Finally, min and max indicate the minimum and maximum

of the difference in success rate before and after conversion

of all models under attack A, respectively.

We compute the final robustness indicator R(mi, cj) with

Equation 4, which quantifies the robustness variation after the

conversion cj of model mi in terms of k attacks A1, ..., Ak.

The smaller the value R(mi, cj) is, the better the conversion

format cj conserves robustness. In this study, m1, and m2

represent LeNet-5 and ResNet-18 models trained by Keras,

and PyTorch respectively. A1 and A2 indicate FGSM attack

and Boundary attack, respectively. Finally, c1 and c2 represent

ONNX and CoreML as well.

Using Equation 4, we discover that ONNX conserves the

adversarial robustness of models better than CoreML. This is

shown in Table VII, where the robustness indicator is zero

for all ONNX models except ResNet-18 with Keras (0.12).

CoreML, on the other hand, performed poorly in terms of pre-

serving CNN models’ adversarial robustness. The robustness

indicator returns high values for CoreML settings, such as 1.87

and 2 for LeNet5 and ResNet-18 trained by Keras. In addition,

Table VII reveals that models trained by PyTorch have higher

adversarial robustness than models trained in Keras. In reality,

the average robustness indicator score of all Keras models

(using both conversion formats) is 0.99, whereas the average

PyTorch model robustness indicator score is 0.09.

Findings: ONNX models generally are almost at the

same level of adversarial robustness compared to orig-

inal models. However, models trained with PyTorch

are showing more robustness. Some CoreML models

look very vulnerable after conversion as well.

Challenges: Since both ONNX and CoreML are vul-

nerable against adversarial attacks, robust deployment

of a converted model is challenging.

D. Threats to Validity

The selected DL models/datasets might not be complete and

representative of state-of-the-art practices in the DL commu-

nity. So, our findings are not general for all situations. How-

ever, we select models with CNN and RNN architectures from

various domains, ranging from image classification to textual

sentiment analysis. Moreover, since many of the operators

in DL models are common and already exist in the well-

known models studied by our paper, we do not think studying
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TABLE V: The comparison of absolute error and divergence (as percentage) of robustness evaluation of the converted CNN

models from the respective framework to ONNX and CoreML.

Model Attack Framework Absolute Error Misclassification (%)
ONNX CoreML ONNX CoreML

LeNet5
FGSM Keras 2.0E-08 (2.0E-09) 0.1712 (0.0011) 0 (0) 92.27 (1.9)

PyTorch 1.1E-06 (1.6E-07) 0.0076 (0.0016) 0 (0) 0.02 (0.04)

Boundary Keras 1.2E-07 (6.9E-09) 0.1512 (0.0016) 0 (0) 69.24 (7.67)
PyTorch 9.8E-07 (1.6E-07) 0.0061 (0.0013) 0 (0) 1.83 (0.82)

ResNet-18
FGSM Keras 9.1E-07 (3.9E-08) 0.1523 (0.001) 0.1 (0.3162) 89.01 (7.77)

PyTorch 1.9E-06 (1.6E-06) 1.4E-06 (3.1E-08) 0 (0) 0 (0)

Boundary Keras 1.5E-06 (1.4E-08) 0.1462 (0.0007) 0.24 (0.18) 87.25 (6.49)
PyTorch 3.7E-05 (7.6E-06) 2.1E-05 (4.2E-06) 0 (0) 0 (0)

TABLE VI: Absolute error and divergence (as percentage) of

robustness evaluation of the converted RNN models from the

respective framework to ONNX and CoreML.

Model Framework Absolute Error Misclassification (%)
ONNX CoreML ONNX CoreML

LSTM Keras 1.1E-07 (2.0E-09) 9.5E-08 (1.7E-08) 0 (0) 0 (0)
PyTorch 0.0144 (0.0019) 0.0144 (0.0017) 2.75 (0.73) 2.71 (0.63)

GRU Keras 1E-07 (2.2E-08) 8.4E-08 (1E-08) 0 (0) 0 (0)
PyTorch 0.0169 (0.0029) 0.0168 (0.0027) 36.3 (10.00) 38.3 (9.96)

TABLE VII: Robustness indicator of CNN models after being

converted using ONNX and CoreML.

Framework/Model ONNX CoreML
LeNet5 ResNet-18 LeNet5 ResNet-18

Keras 0 0.12 1.87 2

PyTorch 0 0 0.35 0

big models will impact our findings much (as they share

lots of common operators). The datasets, therefore, contain

diverse data, including gray, color images and textual review,

to reduce such a threat. Although we select two popular DL

frameworks in our study, the results can be extendable to other

frameworks. However, the focus of this paper is not on the

multi-version evolution, but on revealing challenges/issues that

developers and researchers need to consider in development

and deployment processes of DL-based software.

V. DISCUSSION

The conversion of DL models are useful for simplifying the

maintenance and evolution of DL systems since they allow

models to be trained in the preferred framework and run

elsewhere, on the cloud/edge as needed. In fact, optimizing

the DL model for inference can be difficult since one needs to

tune the model and corresponding library to optimize hardware

capabilities. This will be very complicated and expensive when

one has multiple models from a variety of frameworks to be

deployed on different platforms (e.g., cloud/edge, CPU/GPU)

due to different capabilities and characteristics of framework-

s/platforms.

From the results presented, we can see that Keras models

generally behave quite differently in terms of the prediction

accuracy, the inference time and memory usage when con-

verted to ONNX and CoreML formats. The converted models

(i.e., ONNX or CoreML) in their runtime environments have

faster inference time and take less memory space compared

to the original. Keras models tend to take quite a larger

memory space compared to the similar model in PyTorch. The

ONNX Runtime is claimed to be designed to considerably

increase performance over multiple models [32]. Also, it is

not surprising to confirm that models in CoreML runtime

tools perform quite poorly (higher prediction error compared

to ONNX), slower (higher inference time), take much less

memory space (small model size), and are more vulnerable

to attacks (especially for the models trained in Keras). This

is expected because CoreML is explicitly optimized for on-

device performance, as explained by its developers. Based

on our findings presented in this paper, we appeal to the

DL developers to be cautious on deployed models that may

1) perform poorly while switching from one framework to

another, 2) have challenges in robust deployment, or 3) run

slowly, leading to poor quality of deployed DL-based software

that can lead to lower user satisfaction. This also includes DL-

based software maintenance tasks, such as bug prediction.

VI. CONCLUSION

In this paper, we present the first empirical study on con-

verting trained DL models into deployable formats. Five DL

models, selected from CNNs and RNNs, were trained on three

well-known datasets in the DL community. Then, we converted

models into ONNX and CoreML. We evaluated prediction

accuracy, size, inference time, and adversarial robustness of

converted models and compared to original ones. Our results

reveal differences in original and converted models. From the

results reported, it could be interesting to comprehensively

explore the impact of the different hyperparameters on the con-

verted model. However, this may require more experiments to

have a concrete conclusion. We need to expand our analysis by

exploring the impact of different input sizes and shapes when

converting from the DL frameworks to ONNX or CoreML. It

is still interesting to tune our analysis to compare the results

across the selected runtime environments for converted models

and also report the issues across these environments.
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