
Towards Build Verifiability for Java-based Systems

Jiawen Xiong1, Yong Shi2, Boyuan Chen3, Filipe R. Cogo4, Zhen Ming (Jack) Jiang5

Huawei China1,2, Huawei Canada3,4, York University5

Shenzhen, China1,2, Kinston, Canada3,4, Toronto, Canada5

{xiongjiawen,young.shi,boyuan.chen1,filipe.roseiro.cogo1}@huawei.com,zmjiang@eecs.yorku.ca

ABSTRACT

Build verifiability refers to the property that the build of a software

system can be verified by independent third parties and it is crucial

for the trustworthiness of a software system. Various efforts towards

build verifiability have been made to C/C++-based systems, yet the

techniques for Java-based systems are not systematic and are often

specific to a particular build tool (e.g., Maven). In this study, we

present a systematic approach towards build verifiability on Java-

based systems. Our approach consists of three parts: a unified build

process, a tool that dynamically controls non-determinism during

the build process, and another tool that eliminates non-equivalences

by post-processing the build artifacts. We apply our approach on 46

unverified open source projects from Reproducible Central and 13

open source projects that are widely used by Huawei commercial

products. As a result, 91% of the unverified Reproducible Central

projects and 100% of the commercially adopted OSS projects are

successfully verified with our approach. In addition, based on our

experience in analyzing thousands of builds for both commercial

and open source Java-based systems, we present 14 patterns that

introduce non-equivalences in generated build artifacts and their

respective mitigation strategies. Among these patterns, 11 (78%) are

unique for Java-based system, whereas the remaining 3 (22%) are

common withC/C++-based systems. The approach and the findings

of this paper are useful for both practitioners and researchers who

are interested in build verifiability.
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1 INTRODUCTION

Java is one of the most prominent programming languages in the

software industry, ranked third in the TIOBE index [15]. Given the

popularity of Java, both industry and open source initiatives are
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actively researching forms of improving the security of applica-

tions written in this programming language. Build verifiability is an

important security property that ensures correspondence between

the source code and the deliverable packages that are distributed to

final users. Build verifiability is paramount for both commercial and

Open Source Software (OSS) systems and can potentially prevent

incidents such as software supply chain attacks [2, 3, 29, 34], which

silently injects malicious code into a distributed package during

the build process [33]. Before we can consider a build setup as a

verifiable build [25], one of the following two properties needs to

be satisfied by the generated deliverable packages: (1) generated

packages by two build instances are always equivalent (i.e., have

the same contents), or (2) the technical details behind occasional

non-equivalences in the built packages can be explained (e.g., us-

ing Name Space Layout Randomization [1] to defend against code

injection attacks). When all deliverable packages satisfy the first

property, we consider the build setup as a reproducible build [18].

Producing a verifiable build is not trivial due to sources of non-

determinism present in the build toolchain, the build environment,

or the design of a software system. Prior research proposed dif-

ferent approaches towards producing verifiable builds of C/C++-

based systems [27, 30, 31]. In particular, our prior work [32] pro-

posed a unified process and a toolkit to produce verifiable builds

for C/C++-based large-scale industrial systems. Our unified process

encompasses a catalog of remediation strategies that is periodically

updated whenever new sources of non-determinism are identified

and mitigated. We leverage the following three different mitigation

strategies: (1) controlling, which intercept non-deterministic build

instructions at runtime and returns pre-defined values [27]; (2) re-

mediation, which modifies source code and build scripts to mitigate

sources of non-determinism [30]; and (3) interpretation, which pro-

vides a traceable explanation of eventual non-equivalences in the

build artifacts that are introduced by design [25]. Our approach has

been checked by an independent auditing organization for com-

pliance [11] and is currently used by hundreds of systems within

Huawei. However, the aforementioned existing approaches can-

not be directly applied to Java-based systems due to the following

challenges:

• Distinct sources of non-determinism. The sources of non-

determinism that cause non-equivalences in Java packages can

be different from those of C/C++ packages. There are no prior

investigations on the sources of non-determinism that are ex-

clusively related to Java systems. For example, some specific

sources of non-determinism stem from how the compilation

mechanism of JavaDoc [12] and JSP [16] files works. Simi-

larly, it is unknown if there are any common sources of non-

determinism between Java- and C/C++-based systems.

• Distinct mitigation approaches. The approaches to mitigat-

ing the sources of non-determinism are different between Java
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and C/C++-based systems. For example, the controlling mech-

anism used in C/C++-based systems dynamically intercepts

non-deterministic build instructions at the kernel level (e.g., us-

ing LD_PRELOAD hooks [32]). These mechanisms cannot work

directly on Java-based systems, as the non-deterministic build

instructions need to be intercepted at the JVM level. As a result,

new mitigation approaches are needed for Java-based systems.

• Distinct build mechanisms. Java-based systems have differ-

ent build mechanisms compared toC/C++-based systems. Many

Java-based systems are built by automated build tools (e.g.,

Maven and Gradle), which either use pre-compiled libraries lo-

cally or automatically retrieve them from central remote repos-

itories (e.g.,Maven Central). In addition, a Java package should,

in principle, run in any platform with an installed JVM instance.

This process is different from the build of C/C++ systems whose

libraries are platform-dependent and typically stored in local

repositories. Therefore, we also need to consider additional

aspects when analyzing and improving build verifiability for

Java-based systems.

Build verifiability of Java-based systems is supported by associ-

ated plugins with each build tool. However, these plugins require

individual installation and configuration for each system and are

only able to mitigate a limited set of sources of non-determinism. To

tackle these challenges, in this paper, we propose a new approach to

systematically diagnosing and automatically mitigating the sources

of non-determinism during the build of a Java-based system. The

automatic mitigation leverages dynamic bytecode instrumenta-

tion [13] to control the non-deterministic build instructions (a.k.a.,

the controlling mechanism). We further improve the interpretation

mechanisms such that we not only explain the non-equivalences

but also demonstrates their effect through a post-processing step.

We have applied our approach on 46 projects from Reproducible

Central [5] and 13 OSS projects that are often used by commer-

cial applications from Huawei. The build from 55 (93.2%) of the

projects can now be fully verified, compared to 0 previously. The

contributions of our paper are the following:

(1) This is the first study that systematically investigates build ver-

ifiability for Java-based systems. Through our experience in

verifying the deliverable packages of thousands of Java-based

projects, we have derived a set of root causes and their associ-

ated mitigation strategies.

(2) Compared with existing approaches to producing verifiable

builds for Java-based applications, our approach is shown: a) to

mitigate sources of non-determinism that are not mitigated by

existing approaches, b) to prevent the modification of existing

build setups or the integration and configuration of plugins, c)

to affect only specific fields and methods of specific classes, d)

to integrate seamlessly with the most popularly adopted Java

build tools, and e) to extend effortlessly to mitigate new sources

of non-determinism.

(3) We report 14 patterns that yield non-deterministic build in-

structions in Java-based systems and their associated mitigation

strategies. While comparing against previously reported pat-

terns in C/C++-based systems, 11 patterns are new and unique

for Java-based systems.

Paper organization: Section 2 presents the motivation and back-

ground material of our paper. Section 3 presents our approach to

produce verifiable builds of Java-based systems. Section 4 presents

the case study results. Section 5 discusses the results of our case

study. Section 6 presents the threats to the validity of our paper.

Finally, Section 7 presents our conclusions.

2 BACKGROUND AND RELATEDWORKS

In this section, we present how Java-based systems are typically

built (Section 2.1), the existing approaches to producing verifiable

builds (Section 2.2), and how verifiable builds are currently pro-

duced for Java-based systems (Section 2.3).

2.1 The build of Java-based systems

The build of a Java-based system encompasses the four general

phases as shown in Figure 1. We explain each of the general build

phases below by comparing against the build process for C/C++-

based systems.

Source retrieval. During the source retrieval phase, the build con-

figuration file and the source code are fetched from a Version Control

System (VCS). This process is typically supported by automated

build tools and is similar in both Java- and C/C++-based systems,

although the automated build tools are different depending on the

language. The build configuration file is responsible for setting up

access to dependency repositories, determining which dependencies

are retrieved and linked during a build process, customizing the be-

haviour of the build tool and its associated plugins, and configuring

options for the compiler.

Dependency retrieval. In Java, it is common to retrieve dependen-

cies (e.g., jar files) from either local or remote (e.g.,Maven Central)

dependency repositories. Dependencies are typically retrieved by the

associated package manager with the build tool. The functionali-

ties provided by library packages are directly reused by the built

application. In contrast, in C/C++-based systems, dependencies are

typically retrieved from local repositories of shared libraries.

Compiling and linking. The next phase is automatically sup-

ported by build tools and plugins and is broken down into two

steps: (1) The compiling step compiles the source files that are

retrieved in the source retrieval phase. (2) The linking step binds

the compiled artifacts with the obtained dependencies in the de-

pendency retrieval phase to produce a set of executable files or

instructions living inside runtime environments (e.g., JVM). The

output of these two steps is one or more built artifacts (called class

files in Java systems and object files in C/C++ systems) that

are used as input to the next phase. In Java, the linking process is

performed by the JVM. Most of the major Java build tools (e.g., Ant,

Maven, and Gradle) run over the JVM, as they are Java applications

themselves. Therefore, any sources of non-determinism that stem

from the JVM also affect the Java build tools.

Packaging. In the last phase, the built artifacts from the previ-

ous phase (e.g., class files) and additional package metadata (e.g.,

MANIFEST.MF files) are archived in a deliverable package for distri-

bution. In Java-based systems, deliverable packages are distributed

as a deployable Java application (e.g., a war file) or a Java library

(e.g., a jar file). Similarly, the deliverable packages of C/C++-based
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Figure 1: The build process of Java-based systems.

systems are distributed as platform-dependent executable files (e.g.,

in ELF format) or shared libraries (e.g., so files).

2.2 Existing approaches towards producing

verifiable builds

Three main approaches can represent prior efforts towards verifi-

able builds. We refer to the first approach as “controlling”, which

comprises a mechanism that intercepts non-deterministic build

instructions at runtime and replaces the returning value of these

instructions with pre-defined deterministic values [27, 32]. The

second approach is called “remediation” and comprises directly

modifying non-deterministic instructions in the source code or

build scripts. We refer to the third approach as “interpretation”,

which provides legitimate explanations about non-equivalence in

generated build artifacts. Optionally, additional post-processing

step(s) can be introduced to demonstrate the correctness of the

explanations.

Prior research studies have been conducted to ensure build ver-

ifiability of C/C++-based systems. Carnavalet et al. [25] observe

several related challenges to build verifiability of OSS systems. The

authors manually identify and explain a set of sources of non-

determinism in security-critical OSS systems. Ren et al. [30, 31]

adopt an automated build profiling technique to identify account-

able instructions for introducing non-equivalences in the built pack-

ages. Our prior work [32] proposes a unified process and a toolkit

to produce verifiable builds of C/C++ applications. Results show

that the controlling mechanism implemented by our toolkit can

mitigate most of the sources of non-determinism in both large-scale

commercial systems and OSS systems. Leija et al. [28] proposes

a reproducible container, which can execute system calls in a de-

terministic way to eliminate sources of non-determinism from the

build environment. Reproducible-Build [18] is a community-based

effort to document the best practices and relevant tools for check-

ing and verifying build reproducibility. It mainly focuses on C/C++

systems (e.g., packages of the Debian distribution of Linux) and

highlights that producing reproducible builds of Java systems is

challenging.

2.3 The current state of build verifiability for

Java-based systems

There are different tools formitigating some sources of non-determinism
and verifying deliverable packages for Java-based systems [6, 8, 9,

17]. Each of these tools addresses one or more of the following

three sources non-determinism: a) timestamps: jar and configura-

tion files (e.g., pom.xml) contain timestamps that are either replaced

by pre-defined values or stripped off [14], b) file order : depending

on the build process, packaged files in a jar file can have different

order. Such packages files are then sorted after the build process is

finished [7], c)metadata on manifest.mf files: user names and tool-

ing version that are recorded in manifest files are stripped off [10].

The aforementioned solutions are natively supported by the major

automated build tools (namelyMaven and Gradle).

However, two main limitations render these solutions unsuit-

able for verifying the build of Java-based systems in an industrial

setting: (1) Limited tool capability: our experience on building in-

dustrial Java-based systems shows that there are several sources

of non-determinism not covered by the provided solutions, such

as sorting of symbol tables in the generated jar files and other

non-equivalences introduced by specific tools (e.g., the Jasper com-

piler); and (2) Complex installation and configuration processes: since

none of the existing solutions supports all the usage scenarios

and build tools, one has to install and configure all of them to

provide a general solution used in the industrial context. This char-

acteristic requires huge manual effort and cannot scale to various

build environments and settings, typically needed by industrial

systems. These limitations motivated us to develop a new approach

to produce verifiable builds for industrial Java-based systems that,

compared to the native solutions offered by automated build tools,

is more flexible, extensible, and generalizable. We will cover the

details of our approach in the next section.

3 OUR APPROACH

As shown in Figure 2, our approach consists of five phases. (1)

During the Checking build verifiability phase, we prepare the build

environment and invoke the build process. Then we check if the

deliverable package is verifiable. (2) During the Diagnosing sources

of non-determinism phase, we study from existing literature and

tool documentation to diagnose the sources of non-determinism in

the deliverable package. (3) During the Mitigating sources of non-

determinism phase, we configure our developed tools to control

and interpret various sources of non-determinism. (4) During the

Documenting root causes and mitigation strategies phase, we move

back to Phase 1 to recheck the deliverable package. The process

is repeated until the deliverable package is successfully verified.

Then we document the root causes of non-determinism and update

the corresponding mitigation strategies. Then in the (5) Outputting

the deliverable package and build specifications phase, we output

the verified deliverable package along with the build specifications,

which clearly describe the build environment and setup.

To ease explanation, in the rest of the section, wewill describe our

approach using a running example, which is a Java-based system

Foo consisting of two source code files, Bar.java and Baz.java,

and aMaven configuration file pom.xml. After build, it will generate

a deliverable package Foo.jar, which contains the following build

artifacts: two class files (Bar.class and Baz.class) and three

configuration files (MANIFEST.MF, pom.properties, and pom.xml).

Phase 1 - Checking build verifiability. The objective of this

phase is to check the verifiability of the deliverable package gener-

ated from our build process. We follow the same setup previously
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Figure 2: An overview of our approach.

adopted in C/C++-based systems [32], where we use the same build

environment, build specifications, and build commands to start

two build processes to produce deliverable packages. This phase is

further broken down into three steps:

Step 1 - Collecting build specifications: In this step, we collect build

information (e.g., JDK version, build tools, and dependencies) and

record it in build specifications documents.

Step 2 - Setting up the build environment: In this step, we prepare the

build environment according to the build specifications. Typically,

we encapsulate the build environment in a container (e.g., docker)

or a virtual machine (VM) to ensure that the build environment is

consistent. In our running example, we use the same build environ-

ment throughout (docker with Ubuntu 18.04 LTS), JDK 1.8.0_111,

andMaven 3.6.0).

Step 3 - Invoking the build process and checking build verifiability: In

this step, we carry out the build processes following the specified

procedure. Two repeated build processes are invoked in the same

environment with the same setup. To ease explanation, we refer to

the resulting deliverable package of the first build process as 𝐷𝑃1
and the resulting deliverable package of the second build process

as 𝐷𝑃2 . We compare the SHA1-checksums of 𝐷𝑃1 and 𝐷𝑃2 . If they
are identical, we consider that the build is verifiable and move on

to Phase 5. If not, the build is not verifiable. Further inspection

will be carried out in the next phase to diagnose sources of non-

determinism.

Phase 2 - Diagnosing sources of non-determinism. The objec-

tive of this phase is to identify the root cause of the non-equivalences

in the two deliverable packages generated in Phase 1. This phase is

conducted manually and consists of the following two steps:

Step 1 - Studying existing research literature and tool documentation:

As there are no prior research studies focusing on Java-based sys-

tems, in this step, we first search on existing research work on build

verifiability for C/C++-based systems [25, 30–32]. Then we collect

various tools for producing verifiable builds for Java-based systems

in the wild [4, 7, 8] and summarize the objectives and the solutions

from these tools by studying their documentation. The collected

knowledge will benefit us in the diagnosis process.

Step 2 - Comparing build artifacts: In this step, we first unpack two

non-equivalent deliverable packages 𝐷𝑃1 and 𝐷𝑃2 to extract two
lists of build artifacts. The build artifacts usually consist of a set

of class files and a set of text-based files. We apply diffing tools

(e.g., diffoscope) to compare the build artifacts that have the same

path and name. Since the class files are in the bytecode format, we

first apply the javap command to decompile them into text-based

representation. Then we compare the text-based representations

line by line to examine the differences. For text-based files such

as MANIFEST.MF, we directly examine the non-equivalences. We

also check the orders and file properties (e.g., created time) of build

artifacts embedded in the deliverable packages as it also introduces

non-equivalences in the deliverable package. We cross-check the

identified non-equivalence and collected knowledge to summarize

the root cause of these non-equivalences.

In our running example, after unpacking the deliverable package,

five build artifacts are extracted. Four build artifacts: Bar.class,

Baz.class, MANIFEST.MF, and pom.xml are equivalent, while pom.

properties is not equivalent. Listing 1 shows the non-equivalences

that exist in the auto-generated messages, which contain times-

tamps. The timestamp differences are caused by the build environ-

ment, as two build processes are invoked at different times. This

pattern of non-equivalence is further explained in Section 4.2 as

[P1]. In addition, the order of the build artifacts in the deliverable

package is not deterministic. In 𝐷𝑃1 , the file Bar.class is listed
before Baz.class, and it is the other way around in 𝐷𝑃2 . This is
caused by the multi-threaded compilation of the Java compiler. This

pattern of non-equivalence is further explained in Section 4.2 as

[P11].

Listing 1: Example differences of timestamp in

pom.properties.

# Generated by Maven

- # Sun Sep 18 22:43:23 EDT 2021

+ # Sun Sep 18 22:45:35 EDT 2021

Phase 3 - Mitigating sources of non-determinism. The objec-

tive of this phase is to leverage automated techniques to mitigate

sources of non-determinism. This phase consists of two steps, which

are automatically invoked during the compiling and linking, and

the packaging phases of the build process, respectively.

Step 1 - Applying bytecode instrumentation to control sources of non-

determinism: In this step, sources of non-determinism are controlled

by dynamically altering the behavior of build tools via bytecode in-

strumentation. Modern build tools (e.g.,Ant,Maven, andGradle) for

Java-based systems are also implemented in Java. Hence, these build

tools must first be loaded by JVM to start the build process. By de-

fault, the build tools write metadata such as timestamps into various

build artifacts. Some metadata is non-deterministic and cannot be

easily mitigated. Hence, we develop a technique called JavaBEPEnv,

which includes a custom Java Agent program. It leverages the Java

Instrument API to modify the bytecode of build tools dynamically.

Java Instrument API is a set of APIs supported by JVM to instrument

bytecode when it is being loaded in the JVM. To control the sources

of non-determinism, JavaBEPEnv replaces the non-determinism in-

troducing methods (e.g., currentTimeMillis()) with customized

methods. These customized methods have the same method sig-

natures as the non-determinism introducing methods, but they

only return deterministic information (e.g., a fixed timestamp) to

keep the outputted information consistent. JavaBEPEnv can be con-

figured to be attached to JVM when the build process starts and

control the non-deterministic behavior automatically.
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Step 2 - Applying post-processing to interpret sources of non-determinism:

In the build process of Java-based systems, many non-equivalences

are caused by different phases of the process (e.g., compiling and

linking, and packaging), which cannot be easily controlled. Post-

processing the build artifacts by rules could explain the non-equivalences

and verify they are not malicious.

Interpreting sources of non-determinism means that an open

and transparent technique will be automatically applied to build

artifacts to eliminate non-equivalences. The technique should be

transparent to third-party stakeholders whowant to verify the build

independently. We implement such a technique called JavaBEPFix,

including rules like: (1) it leverages the Byte Code Engineering

Library (BCEL) to modify the non-equivalent class files. BCEL is

an open-source library to analyze, transform, and manipulate class

files. With BCEL, JavaBEPFix is able to interpret many sources of

non-determinism that cause non-equivalent class files, such as

[P6] Constant pool and [P7] Temporary variables (details shown in

Section 4.2). (2) It automatically unpacks the deliverable package,

sorts the build artifacts in a deterministic order based on predefined

configuration (e.g., sort the files by name), and repacks the build

artifacts into a post-processed deliverable package. (3) It also lever-

ages the standard java.nio API to keep the creation time of build

artifacts consistent. Other sources of non-determinism that can be

interpreted by JavaBEPFix are discussed in Section 4.2.

Similar toC/C++-based systems, to mitigate some sources of non-

determinism in the deliverable packages of Java-based systems, we

also need to leverage the remediation strategy (e.g., editing source

code or configuration files, or upgrading dependencies). We will

not mention the details here due to page limitations. Further details

about how remediation is applied to produce verifiable builds can

be found in our prior work [32].

In our running example, both JavaBEPEnv and JavaBEPFix are

enabled during the build process. As a result, the timestamp gen-

erated in pom.properties files will always be the same, as the

methods that generate timestamps are intercepted and transformed.

All the build artifacts are automatically sorted and repacked into a

deliverable package by JavaBEPFix.

Phase 4 - Documenting root causes andmitigation strategies.

The objective of this phase is to document root causes of non-

determinism and the corresponding mitigation strategies. For each

newly discovered source of non-determinism, we document its root

cause and summarize it into a specific category. We also describe

the recommended mitigation strategies. Such documentation is

beneficial for producing verifiable builds in Java-based systems, as

it can be reused whenever a documented root cause is identified.

Please refer to Section 4.2 for a detailed documentation of vari-

ous patterns of non-determinism in Java-based systems. After this

phase, we move back to Phase 1 and check if the new deliverable

package after mitigation is verifiable.

In our running example, we document the patterns of times-

tamp and entries in deliverable packages. The root cause of non-

equivalent timestamps is the build environment. The mitigation

strategy is to control the timestamp using JavaBEPEnv. The root

cause of randomly ordered entries in deliverable packages is due to

multi-threaded compiling. The mitigation strategy is to interpret

the non-equivalences by sorting the built artifacts.

Phase 5 - Outputting deliverable packages and build specifi-

cations. This phase begins once we deem the deliverable package

as verifiable, after Phase 1. The objective of this phase is to output

the verifiable deliverable packages along with build specifications.

The build specifications consist of three parts: (1) the build envi-

ronment; (2) the build commands; and (3) the additional operations

applied on the build artifacts for build verifiability. The build envi-

ronment could either be a docker file (if the build is started within

a container), a VM image, or a detailed description of the host

operating system (OS), and dependent libraries (e.g., the detailed

versions of JDK), and so on. The build commands include the ex-

act instructions to start the build process. The applied mitigation

strategies are also documented. Independent builders can leverage

the build specifications to verify the deliverable packages. Similar

to our prior work [32], the outputs of this phase are provided to

independent agencies for security auditing if needed.

We have included all the above information in our running ex-

ample and delivered them to third-party auditing agencies. They

acknowledged the build is verifiable.

4 CASE STUDY

In this section, we present the evaluation of applying our approach

on Java-based systems. In the past few years, we have applied our

approach on various systems ranging from OSS to commercial

systems within Huawei. These systems are from different applica-

tion domains such as server-based systems, middleware libraries,

and mobile apps. Due to confidentiality, we cannot directly dis-

cuss the evaluation details on our commercial systems. Hence, to

demonstrate the effectiveness of our approach, we have applied

our approach on various representative Java-based OSS systems.

The case study setup and the evaluation results are described in

Section 4.1. Section 4.2 shares the sources of non-determinism and

our proposed mitigation strategies based on our experience on ap-

plying our approach on thousands of Java-based commercial and

open source systems.

4.1 Performance Evaluation

In this section, we describe our case study setup (Section 4.1.1) and

evaluation results (Section 4.1.2).

4.1.1 Case Study Setup. Here we describe how to set up our case

study on two different datasets of OSS projects. We first present

the setup of OSS projects from Reproducible Central [5]. Next, we

present the setup of OSS projects that are commonly adopted as

dependencies within Huawei.

OSSs from Reproducible Central. The Reproducible Builds [18]

presents a collection of efforts on producing reproducible builds

for C/C++-based systems. Recently, efforts towards reproducible

builds for Java-based systems are also included [7]. Reproducible

Central [5] is part of Reproducible Build efforts, which rebuilds

open source Java-based systems and compare the deliverable pack-

ages with the stored ones in Maven Central. As of September 4,

2021, it contains 391 releases of 118 projects. Among them, 112

releases in 46 projects (the builds of 39% projects) cannot be re-

produced or verified. For demonstration purposes, we only focus

on the build verifiability of the most recent releases of these 46

projects which are not verified. Table 1 shows the basic information
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Table 1: Evaluation results after applying our approach. BVP

represents build verifiable projects.

Dataset Projects
BVP SLOC Files

Before After Min Max Min Max

RC 46 0 (0%) 42 (91%) 108 578,998 1 2,310
CA 13 0 (0%) 13 (100%) 4,710 700,668 51 7,540

of these projects. The sizes of these 46 projects range from 108 lines

to 578,998 lines, and they contain from 1 to 2,310 files. Examples of

these 46 projects include dubbo and kubernetes-client. For brevity,

we call these projects as Reproducible Central (RC) projects.

To examine if our approach can produce verifiable builds for

RC projects, we follow the projects’ build specification and build

commands in a fresh docker environment as described in Section 3.

The main focus is to check if we can produce verifiable deliver-

able packages. Note that the deliverable packages stored inMaven

Central were not built with our approach, hence many of the non-

determinism have not beenmitigated (e.g., not controlling the times-

tamp differences). To demonstrate the effectiveness of our approach,

we have to compare the two deliverable packages built in our lo-

cal environment, instead of comparing the deliverable packages

against the ones in the central repository.

Commonly adopted OSSs within Huawei. Since the selected

projects from Reproducible Central are generally of a smaller scale,

to ensure generalizability, we have also selected the most recent

releases of 13 open source projects which are widely adopted within

Huawei. As shown in Table 1, the sizes of these commercially

adopted projects range from 4,710 to 700,668 lines of code and have

51 to 7,540 source files. Examples of these 13 projects include Spring

Framework and SLF4J. For brevity, we call these projects Commer-

cially Adopted (CA) projects. In a similar setup as RC projects above,

we also build the CA projects locally twice using the same build

specification and build environments. Then, we verify the resulting

deliverable packages.

4.1.2 Case Study Results. In this section, we report the evaluation

results of 46 RC projects and 13 CA projects. Table 1 shows our

evaluation results. For the build of 46 RC projects, before apply-

ing our approach, none of them are verifiable. After applying our

approach, 42 (91%) of them are successfully verified. The build of

four RC projects failed to be fully verified due to additional non-

deterministic APIs from third party libraries.

These four projects leverage third-party libraries to generate

Java source code files, XML files, and index files. For example,

org.apache.royale.compiler from Apache Royale uses JFlex,

a lexical analyzer generator which can generate Java programs

based on specifications. A set of Java source code files is gener-

ated for later use in the build process. The auto-generated source

code files have differences in the comments (e.g., randomly sorted

documentation for parameters used in a method), which lead to

the non-equivalences in the deliverable packages. For such types

of non-equivalences, we plan first to identify and locate the non-

determinism introducing methods. Then we will extend the current

implementation of JavaBEPEnv to dynamically instrument and al-

ter the existing behavior of these methods. In particular, for the

non-determinism introducing methods, we intercept them by defin-

ing custom methods with the same method signatures through

Java Instrumentation API, and implement custom program logic to

avoid non-determinism.

For the 13 CA projects, before applying our approach, none

of them achieve build verifiability. After applying our approach,

the build of all 13 CA projects can be successfully verified. The

evaluation results on both RC and CA projects demonstrate the

effectiveness of our approach towards build verifiability for Java-

based systems.

4.2 Our Mitigation Guidelines

This section describes various patterns of sources of non-determinism

and the correspondingmitigation strategies. Table 2 presents the list

of patterns. For each pattern, we include the root cause, the descrip-

tion, the mitigation strategy, the specificity, and one code example.

There are a total of 14 patterns from five categories of root causes.

Three types of strategies are applied to mitigate the sources of non-

determinism: Control, Interpretation, and Remediation. Control

includes using JavaBEPEnv to dynamically alter non-deterministic

behaviors or ensuring the build environment is consistent. Interpre-

tation involves using JavaBEPFix to post-process non-equivalent

build artifacts. Remediation includes modifying source code, con-

figurations, or upgrading JDK versions. In the remainder of this

section, we describe each pattern in detail.

4.2.1 [RC1] Environment. The environmental factors refer to the

build environment that should be documented in build specifica-

tions, including the types of host OS (e.g.,Windows or Linux), and

the dependent JDK versions. Without such documentation, many

non-equivalences might be introduced to the build artifacts. Such

non-determinism could usually be avoided if a docker or VM is pro-

vided for the build, except for timestamp-related non-determinism.

Below we list the common patterns we find during our evaluation.

[P1] Timestamp. Build tools call JVM-level functions to retrieve

the current timestamp. The timestamp is then written to build

artifacts, causing non-equivalences across different build instances.

In addition, generated files might contain time-related information,

such as the creation time. Table 2 shows an example. During the

build process of wcm-caconfig-editor-1.8.0, the timestamps

are recorded in the properties.xml file, which causes the build

artifacts to be non-equivalent.

Solution: Use JavaBEPEnv to replace the timestamp introducing

function calls at JVM-level with customized functions. The cus-

tomized functions return the pre-defined timestamp instead of real

timestamp values, preventing non-deterministic information from

being written into build artifacts. For the timestamps recorded

in the file attributes, use JavaBEPFix to process all the files and

assigning pre-defined timestamps to them.

[P2] JDK version. The JDK version used in the build process is

written into MANIFEST.MF. As shown in Table 2, during the build

process of dropwizard [22], the two build instances invokes two

different JDK versions: 1.8.0_292 and 1.8.0_275, as the build spec-

ification does not record the exact JDK version while it simply

notes JDK1.8. When independent builders try to verify the build,
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Table 2: Our mitigation guideline

Root cause Name Description Strategy Java-
specific

Example

[RC1]

Environment

[P1] Times-
tamp

Time related information
was written into files by
build tools or embedded
in the file properties.

Control or In-
terpretation

No META -INF/vault/properties.xml (wcm-caconfig-editor-1.8.0)

- <entry key="created" >2021-01-17T13 :47:15.000Z</entry >

+ <entry key="created" >2021-01-17T13 :46:49.000Z</entry >

[P2] JDK ver-
sion

JDK versions written into
MANIFEST.MF

Control Yes META -INF/MANIFEST.MF (io.dropwizard.metrics@metrics-servlets-4.1.22)

- Build -Jdk: 1.8.0 _292

+ Build -Jdk: 1.8.0 _275

[P3] Git infor-
mation

Git related information
written into git.json
and packaged in final ar-
tifact.

Control No classes/git.json (ladapchai-0.8.1)

- "git.local.branch.ahead": "0"

+ "git.local.branch.ahead": "NO_REMOTE"

[P4] User infor-
mation

Users who invoked the
build process written into
MANIFEST.MF.

Remediation or
Control

Yes META -INF/MANIFEST.MF (io.dropwizard.metrics@metrics-servlets-4.2.1)

- Build -By: runner

+ Build -By: ?

[RC2]

JDK

[P5] LineNum-
berTable

Non-deterministic
LineNumber Table gener-
ated by javac by default.

Remediation Yes io/fabric8/maven/docker/HelpMojo.class (docker-maven-plugin-0.36.1)

LineNumberTable:

- Line 29:0

+ Line 28:0

[P6] Constant
Pool

Redundant/randomly or-
dered elements in Con-
stant pool.

Interpretation Yes io/fabric8/maven/docker/HelpMojo.class (docker-maven-plugin-0.36.1)

- #12 = Methodref #160.#279 // java/io/InputStream.close :()V

+ #91 = Methodref #88.#90 // java/io/InputStream.close :()V

[P7] Tempo-
rary variables

The temporary variables
have different assigned
IDs.

Interpretation Yes ClassA.class ClassA.class (Internal project)

- astore 15 + astore 13

- aload 14 + aload 12

[P8] Javadoc Javadoc entries randomly
sorted due to JDK bug.

Control Yes (JDK-8013887/Internal project)

- com.sun.source.tree + com.sun.source.doctree

- com.sun.source.doctree + com.sun.source.util

- com.sun.source.util + com.sun.source.tree

[P9] Inner class
order

The order of inner classes
is non-deterministic.

Interpretation Yes InnerClasses: (Internal project)

- public static #160= #518 of #517; //Foo=class A/B/C/...

- public static #189= #520 of #519; //Bar=class A/B/C/...

public static #162= #650 of #657; //Baz=class A/B/C/...

+ public static #160= #518 of #517; //Foo=class A/B/C/...

+ public static #189= #520 of #519; //Bar=class A/B/C/...

[P10] Method
order

Methods in class files are
randomly ordered.

Interpretation Yes (Kubernetes-client-project-5.4.1)

Io/fabric8/kubernetes/api/model/WatchEventFluent.class

A withAuthInfoObject(final AuthInfo p0);

- A withAPIServiceObject(final APIService p0);

A withResourceRequirementObject (...);

+ A withAPIServiceObject(final APIService p0);

[RC3]Multi-
thread

[P11] Entries
in deliverable
packages

Files packaged in archive
files randomly sorted due
to multithreading.

Interpretation No - ... META -INF/MANIFEST.MF (liquibase-percona-4.3.1.jar)

- ... META -INF/services/

+ ... META -INF/MANIFEST.MF

+ ... liquibase/

[RC4] Other
tools

[P12] Proper-
ties in files

Properties in
MANIFEST.MF are
randomly ordered.

Interpretation Yes (io.dropwizard.metrics:metrics-4.2.1)

- Export -Package:com.codahale.metrics.health;uses:="com.

codahale.metrics";version="4.2.1" (...) com.codahale.

metrics.health.annotation;version="4.2.1"

+ Export -Package:com.codahale.metrics.health.annotation;

version="4.2.1",com.codahale.metrics.health;uses:="com

.codahale.metrics";version="4.2.1" (...)

[P13] JSP com-
pilation

Different source code
generated by Jasper due
to cache option.

Control Yes JasperGeneratedFile.java (Internal project)

+ static { _jspx_dependants = new

+ java.util.HashMap <java.lang.String ,java.lang.Long >(2);

+ _jspx_dependants.put("dep1.jar",Long.valueOf (1685L));

...}

[RC5]
Compound
effect

[P14] Lambda
expression

Auto-generated methods
for lambda expression
during compilation are
not consistent.

Control Yes - #25 = Methodref #4.#30 // L1.lambda$new$0 :()V (Internal project)

+ #25 = Methodref #4.#30 // L1.lambda$new$1 :()V

- #25 = Methodref #4.#30 // L2.lambda$new$1 :()V

+ #25 = Methodref #4.#30 // L2.lambda$new$0 :()V
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a different JDK version is recorded in the MANIFEST.MF, causing

non-equivalences in the build artifact.

Solution: Make sure the same JDK version is used during the build

processes. The adopted JDK version should be documented in the

build specification for future references as well.

[P3]Git information.Many software projects use Git as the VCS

to manage the evolution and the maintenance of the projects. Some

build processes record Git related information (e.g., the commit ID

or the user who started the process) in the build artifacts. Such infor-

mation might be non-deterministic if the build processes are started

in different environments. As shown in Table 2, one of the build

environment for ladapchai-0.8.1.jar does not configure the re-

mote repository [20], causing the field git.local.branch.ahead

to be non-equivalent.

Solution: Make sure the same Git setup is used during the build

processes. The Git setup information should be documented in the

build specification for future references as well. Recommend to use

the same build environment (e.g., VMs or containers) to ensure the

consistency of the build environment.

[P4] User information. The user ID of the user who invokes the

build process can be written into MANIFEST.MF file. As shown in

Table 2, the user information is recorded in the Build-By field in

MANIFEST.MF during the build process for metrics-servlets-4.2.1.

As two build processes can be conducted in different environments,

the user information can also be different.

Solution: Modifying the build configuration can mitigate this issue.

A configuration field Built-by under manifestEntries can be

set with a consistent name to avoid non-deterministic user IDs.

Alternatively, build within consistent environments (similar to [P2]

and [P3]) can also mitigate this source of non-determinism.

4.2.2 [RC2] JDK. Some non-deterministic behavior is caused by

JDK during the build process. Below we list the common patterns

that we find during our evaluation.

[P5]LineNumberTable. LineNumberTable is an optional attribute

that represents the relation between source code and bytecode. It

can vary during the compiling phase. Table 2 shows an example.

During the build process for docker-maven-plugin [24], the val-

ues LineNumberTable are different in the HelpMojo.class file.

Solution: Modify the build configuration to mitigate this issue.For

example, a configuration parameter -g:none can be added with

javac to prevent LineNumberTable from being written into the

bytecode. If the build process is started by Maven, we can also

disable the generation of LineNumberTable by adding such config-

uration in the pom.xml.

[P6] Constant pool. The constant pool is a data structure inside

class files. It records the symbolic references that JVM uses to link

with the actual contents of variables, methods, interfaces, etc. We

find that the constant pool might contain duplicated elements. The

indices of the duplicated elements are used in a non-deterministic

way when these elements are referenced. Furthermore, the con-

stant pool might be randomly ordered accross two build instances,

causing the indices to be different. Table 2 shows an example of this

pattern. During two build instances of docker-maven-plugin [19],

the indices of the reference to the close method are recorded as

12 and 91, respectively.

Solution: Use JavaBEPFix to mitigate this issue. In particular, it will

post-process the class files by deduplicating the constant pool and

then sort it in a deterministic order.

[P7] Temporary variables. Temporary variables are variables

with a short lifetime. For example, a return statement return

(a+b); would create a temporary variable when compiled to byte-

code. Such variables will be assigned with a temporary ID by the

compiler, which is used for instructions such as astore and aload.

We find the same build process could yield different IDs for the

temporary variables. The example shown in Table 2 is adapted from

our internal project. At the same locations of a class file, the IDs of

the temporary variables are different in two build instances.

Solution: Use JavaBEPFix to mitigate this issue. In particular, it will

automatically post-process the class files to reassign temporary

variables with deterministic IDs.

[P8] JavaDoc. Lower versions of JDK can cause entries in the

JavaDoc being randomly sorted [21]. The example shown in Table 2

is adapted from the issue report JDK-8013887 [21], where the three

JavaDoc entries have different orders during two identical build

processes. We found such non-determinism exists in Huawei’s

internal projects.

Solution: Upgrade the JDK version to be higher than or equal to

1.8_b105 to mitigate this issue.

[P9] Inner class order. Inner classes are classes that are defined

inside another class. When the source code of the class that contains

inner classes is compiled to bytecode, the list of inner classes is

listed in the bytecode. As shown in Table 2, three inner classes, Foo,

Bar, and Baz are listed. However, the order of the inner classes in

the list is non-deterministic.

Solution: Use JavaBEPFix to mitigate this issue. In particular, it

will automatically post-process the class files by sorting the inner

classes in a deterministic way.

[P10] Method order. The order of the compiled methods in the

class files might be non-deterministic. Table 2 shows an example.

Across two build instances of kubernetes-client-project-5.4.1,

file WatchEventFluent.class is not equivalent. We find that the

only difference is the order of the methods inside the class (e.g.,

the method withAPIServiceObject appears before or after the

method withResourceRequiremetnObject).

Solution: Use JavaBEPFix to mitigate this issue. In particular, it will

automatically post-process the class files by sorting the methods

in a deterministic way.

4.2.3 [RC3] Multi-thread. Multi-threaded compilation is widely

adopted by modern build tools, as it can accelerate the build process.

However, build artifacts might be generated in a non-deterministic

order, causing non-equivalences in deliverable packages.

[P11] Entries in deliverable packages. Each deliverable package

contains a list of build artifacts, which are compiled and packaged

in a multi-threaded manner. The sequence of these build artifacts in

the deliverable package is not deterministic, as it depends on which

thread execution finishes first. As a consequence, although the con-

tents of each build artifact are equivalent during two build instances,

but the deliverable package as a whole is not. As shown in Table 2,

during the build processes of liquibase-percona-4.3.1.jar, the

entries are not ordered the same, causing the resulting deliverable

package to be different.
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Solution: Use JavaBEPFix to mitigate this issue. In particular, after

the original deliverable package is generated, it first unpacks the

deliverable package and then re-packages the build artifacts in a

deterministic way (e.g., by name).

4.2.4 [RC4] Other tools. Build processes of some Java-based sys-

tems depend on third-party tools or plugins. These tools and plugins

might introduce non-determinism into build artifacts, causing non-

equivalences in the deliverable packages.

[P12] Properties in files. Some properties in MANIFEST.MF files

might be randomly ordered. For example, the Export-Package

property records the packages that are visible outside the deliv-

erable package. In the build of dropwizrd-metrics-4.2.1.jar,

the list of Export-Package does not have the consistent sequence.

Similar issue is identified with the Private-Package attribute. This

is caused by a third-party build plugin tool.

Solution: Use JavaBEPFix to mitigate this issue. In particular, it

will automatically locate the non-deterministic file properties (e.g.,

Private-Package and Export-Package) in MANIFEST.MF file and

sort the relevant properties.

[P13] JSP compilation. JSP is a Java-based technique to create

dynamically generated webpages. The JSP files can be parsed to

Java source code files so that they share all the APIs and functional-

ities provided by JVM. To do that, techniques such as Tomcat Jasper

engine are applied. A source of non-determinism is identified dur-

ing this process, as the caching option in the Jasper engine cause

the generated source code to have non-equivalent static variable

definitions as shown in Table 2.

Solution: Use JavaBEPEnv can mitigate this issue. It sets the caching

option to false and prevents the inconsistent information being

generated through dynamic instrumentation.

4.2.5 [RC5] Compound effects. Some non-equivalences are due to

a combination of root causes such as multi-thread and JDK behavior.

[P14] Lambda expressions. This pattern occurs when there are

multiple lambda expressions in the source code. When compiling

with lower versions of JDK in a multi-threaded setting, the ID of the

same lambda expressions may be assigned in a different way [23].

As shown in Table 2, the IDs of the lambda expressions of the two

files, L1.java and L2.java, are different when the two files are

compiled in a different order.

Solution: Upgrade JDK to a version that is newer than jdk8-b44.

5 DISCUSSION

In this section, we discuss how our approach can help on tackling

related industrial challenges to build verifiability of Java-based

systems and present some future research directions.

Towards trustworthy software supply chains. Software supply

chain attacks explore the dependency relationships between differ-

ent software components and target software systems. One form

of supply chain attack is the injection of malicious code during the

build process [29], particularly by hijacking third-party libraries

distributed through central repositories and linked to the built pack-

age. Verifiable build plays an important role in preventing this type

of software supply chain attack. In particular, systems with a verifi-

able build can have their integrity jointly verified by independent

builders that share checksums of the generated build artifacts, such

that others can compare against the build artifacts that they pro-

duce themselves. For example, Lamb and Zacchiroli [26] discuss

how reproducible builds can help OSS users in establishing trust

in distributed packages through package managers. Compared to

deliverable packages built locally, those in the remote central repos-

itories usually suffer from more types of non-equivalences due to

inconsistent build environment, lack of automated techniques, and

other related factors. Our approach proposes an important step to

support a trustworthy software supply chain, as it helps developers

to deploy verifiable build artifacts in central repositories.

Comparison across different OS platforms. Deliverable pack-

ages should be verifiable even when built across different OS plat-

forms, as one major advantage of Java is the compatibility across

different OSs. We have conducted additional experiments on 13 CA

projects on both Linux andWindows platforms. Our results show

that the deliverable packages are verifiable when built in Linux and

Windows separately by applying our approach. However, when

comparing the deliverable packages between Linux andWindows,

none of the build packages are equivalent. This is due to the envi-

ronmental differences between the two OS platforms. Take the build

processes for Logback as an example. The two OS platforms can

have different users, which triggers the [P4] pattern. In addition,

even using the same JDK versions, there are differences in the class

files while building in Linux andWindows. Although one of the

main advantages of Java is that software systems can be “built once

and run anywhere”, the verifiability of the build across different

platforms is still not satisfied. This issue can be currently resolved

by specifying the OS platforms as part of the build specifications

or using pre-setup VMs. Such requirement is in accordance with

the definition of build verifiability [18]. However, mitigating the

sources of non-determinism from different platforms remains to be

an interesting piece of future work.

Comparison among systems implemented in different pro-

gramming languages. Due to the different setups of interpreted

vs. compiled programming languages, the mitigation strategies also

differ in the following two aspects: (a)Different approaches for same

mitigation strategies: Various prior work has been done towards

build verifiability for C/C++-based systems [30–32]. The strategy

of control in our prior work [32] is similar to JavaBEPEnv proposed

in this paper. This mechanism intercepts non-determinism intro-

ducing functions (e.g., functions that return timestamp) and returns

pre-defined values. However, the approach in [32] cannot be di-

rectly used in Java-based systems. The control strategy of our prior

work focuses on process level, where the system level functions are

intercepted. However, in the build process of Java-based software

systems, JVM is the only process that is instantiated. Furthermore,

simply intercepting the JVM process will likely cause the congestion

in the build process, as many multi-threaded operations in JVM is

time-sensitive. (b) Java-specific patterns: As shown in Table 2, there

are three common patterns associated with non-equivalent build

artifacts between Java- and C/C++-based systems. However, there

are also eleven patterns that are unique for Java-based systems. For

example, six patterns that are caused by JDK behavior are specific

to Java-based systems. Other software systems that are built on top

of JVM (e.g., Kotlin and Scala) may benefit from our approach and

future work should investigate the build verifiability for systems

written in JVM-supported programming languages.
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6 THREATS TO VALIDITY

In this section, we present the threats to validity.

External Validity.We try to be as comprehensive as we can in our

case study by selecting 46 projects from Reproducible Central, and

13 projects from commercially adopted OSS systems. However, our

approach and our mitigation strategies towards build verifiability

may not cover all the build verifiability scenarios for Java-based

systems. In addition, our approach and findings are only limited to

Java-based systems and may not be applicable to software systems

written in other programming languages.

Internal Validity. To avoid confounding factors, we ensure the

build environment is consistent before we perform our experiments.

Although Java is a programming language that is OS independent,

we still only perform our experiments on the same OS platforms

(either Linux orWindows) depending on the usage scenarios. This

setup is in accordance with the definition of build verifiability [18].

Construct Validity. To check if the build is verifiable, we track

all the deliverable packages generated by the build process. For

example, a build process generates 100 deliverable packages (e.g.,

100 jar files). If there is at least one jar file which is not verifiable,

we do not consider the build verifiable. Our approach is similar to

the prior work in this area [30–32].

7 CONCLUSIONS

Build verifiability is essential for software security and trustworthi-

ness. While various prior work has been done to ensure verifiable

build for C/C++ systems, there is a lack of systematic solution

for Java-based systems. In this paper, we propose a systematic

approach towards build verifiability in Java-based systems. Our

approach includes a unified process and two main techniques: a

tool JavaBEPEnv, which controls non-deterministic behavior from

the build tools, and another tool JavaBEPFix, which interprets non-

determinism by post-processing non-equivalences in build artifacts.

Case studies show that among 59 OSSs which are not build veri-

fiable, 55 (93%) projects are now build verifiable by applying our

approach. We also present a mitigation guideline, which includes

all the sources of non-determinism we encountered and the corre-

sponding mitigation strategies. Last, we discuss some challenges

and provide some open research problems.
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