
Studying the Use of Java Logging Utilities in the Wild

Boyuan Chen
York University
Toronto, Canada

chenfsd@cse.yorku.ca

Zhen Ming (Jack) Jiang
York University
Toronto, Canada

zmjiang@cse.yorku.ca

ABSTRACT

Software logging is widely used in practice. Logs have been used

for a variety of purposes like debugging, monitoring, security com-

pliance, and business analytics. Instead of directly invoking the

standard output functions, developers usually prefer to use logging

utilities (LUs) (e.g., SLF4J), which provide additional functionalities

like thread-safety and verbosity level support, to instrument their

source code. Many of the previous research works on software

logging are focused on the log printing code. There are very few

works studying the use of LUs, although new LUs are constantly

being introduced by companies and researchers. In this paper, we

conducted a large-scale empirical study on the use of Java LUs in

the wild. We analyzed the use of 3, 856 LUs from 11, 194 projects

in GitHub and found that many projects have complex usage pat-

terns for LUs. For example, 75.8% of the large-sized projects have

implemented their own LUs in their projects. More than 50% of

these projects use at least three LUs. We conducted further quali-

tative studies to better understand and characterize the complex

use of LUs. Our �ndings show that di�erent LUs are used for a

variety of reasons (e.g., internationalization of the log messages).

Some projects develop their own LUs to satisfy project-speci�c

logging needs (e.g., de�ning the logging format). Multiple uses of

LUs in one project are pretty common for large and very large-

sized projects mainly for context like enabling and con�guring the

logging behavior for the imported packages. Interviewing with 13

industrial developers showed that our �ndings are also generally

true for industrial projects and are considered as very helpful for

them to better con�gure and manage the logging behavior for their

projects. The �ndings and the implications presented in this paper

will be useful for developers and researchers who are interested in

developing and maintaining LUs.

KEYWORDS

empirical software engineering, logging code, logging practices;

ACM Reference Format:

Boyuan Chen and Zhen Ming (Jack) Jiang. 2020. Studying the Use of Java

Logging Utilities in the Wild. In 42nd International Conference on Software

Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380408

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380408

1 INTRODUCTION

Execution logs (a.k.a., logs) have been used widely in practice for a

variety of purposes (e.g., system monitoring [53, 62], failure diag-

nosis [79, 80], and business analytics [6, 41]). Logs are generated

during runtime by the output statements that developers insert into

the source code. Instead of directly invoking the standard output

functions like System.out.print, developers prefer to instrument

their systems using logging utilities (LUs) (e.g., SLF4J [64] for Java

and spdlog [65] for C++) due to additional functionalities like

thread-safety (synchronized logging in multi-threaded systems),

data archival con�guration (automated rotation of the log �les),

and verbosity levels (controlling the amount of logs outputted).

Unlike many of the software engineering tasks (e.g., code refac-

toring [15] and release management [28]), there are no well-de�ned

guidelines for software logging. Recently, there have been many

research works devoted to the area of where-to-log (deciding the

appropriate logging points) [11, 16, 80, 85, 87], what-to-log (provid-

ing su�cient execution context in the logging code) [25, 38, 82],

and how-to-log (developing and maintaining high quality logging

code) [9, 10, 39, 40, 81]. However, all of these works focus on im-

proving the quality of log printing code (e.g., LOG.info("User "

+ username + " authenticated")). There are only two research

works on the migration [33] and the con�guration [86] of the LUs.

It is important to study the use of LUs due to these three reasons:

Measuring the Adoptions of the LUs: Although there are al-

ready many LUs available (e.g., [1, 42, 43, 64]), new LUs are contin-

uously introduced by companies (e.g., Flogger from Google [19])

and researchers (e.g., NanoLog [78] and Log++ [48]). It is not clear

whether these LUs are adopted and used in the wild.

Understanding the Complex Use of the LUs: Incorporating

multiple LUs in one project may cause various issues during com-

pilation [45, 66], deployment [50, 68], and runtime [26, 27]). How-

ever, many software systems still use more than one LUs in their

projects [76]. For example, Hadoop, which is a very well-maintained

popular open source Big Data platform, contains not only six exter-

nal LUs (Apache Commons Logging, java.util.logging, Log4j

1.x, Log4j 2, SLF4J, Jetty logging) and implements their own

LU in their project. IntelliJ Idea, which is a very popular IDE,

uses 12 LUs in their project. It is important to study this phenomena

in order to suggest best practices for the system developers and to

identify future directions for the LU designers and researchers.

Assessing the Impact of LUs on the Logging Code: On one

hand, the structure of logging code is a result of adopting cer-

tain LUs. For example, it is generally recommended to specify the

logging needs as rules via Aspect Oriented-Programming (AOP)

constructs to improve system modularity [35] and use centralized

logging [30] to support internationalization (a.k.a., outputting the

log messages in di�erent human lanaguages). On the other hand,

extra care are needed in order to cope with the complex use of LUs

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Boyuan Chen and Zhen Ming (Jack) Jiang

in one project. For example, many projects nowadays reuse existing

functionalities by importing third-party packages, which also use

LUs. However, there is no empirical study to assess the impact of

the logging code due to the use of the LUs.

In this paper, we have performed a large-scale empirical study

on the use of Java LUs in the wild. We focus on Java, because it is

currently ranked as the most popular programming language in the

world based on the TIOBE index [73]. Many popular software sys-

tems (e.g., Android-based mobile applications [54, 69], IDEs [13, 29],

web servers [3, 59], and Big Data platforms [2, 24]) are implemented

in Java and logging is prelevant in these systems [8, 83]. We have

examined 11,194 open source Java-based projects in GitHub, which

uses 3,856 LUs. We have uncovered four important �ndings and

implications. To ensure the usefulness and generalizability of our

�ndings from open source systems, we also interviewed 13 in-

dustrial developers on the use of LUs. We summarize our main

contributions and �ndings as follows:

• This is the �rst empirical study on the complex use of LUs

in the wild.

• 3,856 LUs are currently being used by 11,194 projects in

GitHub. The number of used LUs increases as the systems

grow bigger, as larger-sized projects usually reuse existing

functionalities by importing third-party packages, which also

use LUs. Many projects also implement their own LUs to

satisfy project-speci�c needs. Our �ndings raise developers’

awareness on the complexity of the LUs in their systems as

well as the need to manage these LUs to better monitor and

debug systems’ runtime behavior.

• In addition to the quantitative study, we have also conducted

a qualitative study to understand and characterize the ratio-

nales behind the complex use of LUs for di�erent projects.

Such results can guide researchers to propose more general

logging solutions for various logging context.

• To support independent veri�cation or further research on

the use of Java LUs, we have provided a replication pack-

age [70] in this paper. This package can be useful for other

researchers who are interested in studying and improving

the logging practices.

Paper Organization. The rest of this paper is organized as follows.

Section 2 provides an overview of our approach and describes our

studied projects. Section 3 and 4 quantitatively and qualitatively

study the use of the LUs in the wild. Section 5 explains our inter-

view process and describes our observations. Section 6 discusses

the signi�cance of our �ndings and presents some future work.

Section 7 describes the related works. Section 8 explains the threats

to validity and Section 9 concludes the paper.

2 OVERVIEW

In this section, we will provide an overview of our approach to

empirically studying the use of Java LUs in the wild and describe

our studied projects.

2.1 Our Approach

We followed a mixed-methods approach characterized by a sequen-

tial explanatory strategy [12] to analyze the use of LUs. We �rst

extracted the source code from popular Java-based GitHub projects

(Section 2). Then we performed a quantitative study on measuring

the degree of adoption of di�erent LUs as well as comparing the

number of used LUs across di�erent projects (Section 3). We also

tracked the number of projects which also implement their own

LUs. Afterwards, we performed a qualitative study (Section 4) by

manually studying the use of LUs among di�erent projects. Since

our study is performed on open source projects, we also cross-

validated our �ndings by interviewing 13 experienced developers

who work on commerical systems (Section 5).

2.2 Studied Projects

To study the use of Java LUs in the wild, we focused on analyzing

Java-based projects from GitHub. GitHub is currently the largest

code hosting site with more than 100 million projects as of April

2019 [17].We built a local GHTorrent [20] database from theMySQL

dump. This database, which was last updated on 2019-06-01, con-

tains the meta information of a project such as the corresponding

GitHub URL, the project name, and the main programming lan-

guage(s). We extracted a list of GitHub URLs for all the Java-based

projects for post-processing.

We further �ltered the list of GitHub projects to avoid potential

perils in our analysis [34]. One GitHub project may be forked or

cloned by others, whose source code can be identical or very similar

to the orignal one. This would introduce noise into our study. Hence,

we only selected projects which are neither a fork nor a clone of

other projects. Furthermore, the number of stars that a project has

indicates its popularity. Similar to prior works [5, 36, 58], we further

�lterd the list of projects to ensure they have at least 30 or more

stars. We ended up with 25, 611 Java projects. We downloaded the

soure code for the most recent releases of these projects by invoking

the GitHub APIs.

3 QUANTITATIVE STUDY

In this section, we �rst analyzed the selected projects to identify

the list of LUs that are used. Then we measured the degree of LUs

which are adopted and used. Finally, we compared the use of LUs

among di�erent projects.

3.1 Identifying LUs in Each Project

We developed a heuristic-based technique to identify LUs in each

project. First, we excluded Java �les, which were either in a test

folder or containing the keyword of “test” in their �le names, as

they are probably not related to the core features of the projects

under study. Then we used JDT [31] to parse the remaining Java

�les to identify a list of imported statements and function invoca-

tions for each Java class. We made sure these imported classes are

used by checking if there is one or more methods been invoked

in that class. We further �ltered the list of import statements in

each Java class, so that only packages or Java classes whose names

contain patterns like “logging”, “logger” or “.log.” were kept. These

packages or classes are considered as LUs. For logging in Aspect-

Oriented Programming (AOP), we �rst identi�ed Java �les with

import statements that contain “aspectj”. Since AspectJ can do

more than logging, we subsequently parsed the Java �les to check

whether they use any of the LUs identi�ed by the above rules.

Studying the Use of Java Logging Utilities in the Wild ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

If a project used more than one LUs and their package names

were similar, we merged them as one LU. For example, if the follow-

ing two LUs, Foo.Bar.Baz.ConsoleLogger and Foo.Bar.Baz.File

Logger, were identi�ed in one project, we merged them into one

LU (Foo.Bar.Baz).

To verify the correctness of our heuristic-based technique, we

randomly sampled 441 �les and manually examined the identi-

�ed LUs. Our technique yield an precision of 96%. Some of the

Java classes are misclassi�ed as LUs as the identi�ed log-related

Java classes did not implement log printing functions. For exam-

ple, LoggerProvider.java in the Ninja framework [46] was not

considered as an LU, since this class did not provide any log print-

ing functions other than a utility function that returns an SLF4J

logging object.

3.2 Measuring the Adoptions of LUs

We further classi�ed the size of these projects into the following

�ve bins based on their number of Java classes using the de�nitions

from [47]. Table 1 shows the results. For example, there are a total

of 761 large-sized projects, whose number of Java classes is between

1, 000 and 5, 000. Among them, 728 projects (a.k.a., 95.7%) adopt

one or more LUs. There is a clear trend of increasing adoptions of

LUs as the size of the projects get bigger.

For the subsequent studies, we removed all the projects which

did not use any LUs, since they are not relevant to this paper. We

also excluded the projects whose size was very small, as many of

them are not considered as useful projects (e.g., trial projects for

self-studying, and collections of code snippets). After �ltering, there

were 11, 194 Java projects remaining, which used 3, 856 distinct LUs.

Table 1: Measuring the Adoptions of LUs Among the Java-

based GitHub projects.

Bins Total # of % of Projects

(# of classes) Projects Used LUs

Very Small [0, 20) 11,390 43.2%

Small [20, 100) 7,781 72.5%

Medium [100, 1000) 5,576 84.3%

Large [1000, 5000) 761 95.7%

Very Large [5000,∞) 103 97.1%

Total 25,611 63.1%

3.3 Comparing the Use of LUs Among Projects

Depending on where these LUs were implemented, we further

classi�ed the list of used LUs in each project as External LU (ELU)s

or Internal LU (ILU)s. It is an ELU, if the implementation of this

LU is not inside the project under study. Otherwise, it is an ILU.

For example, Hadoop uses �ve di�erent ELUs: Apache Commons

Logging, java.util.logging, Log4j 1.x, Log4j 2, SLF4J, Jetty

logging and implements its own ILU, which is mainly used for

auditing purposes. Table 2 shows the results of the percentage of

projects that use ELUs, ILUs, or both. For example, among all the

728 Large-sized projects that used LUs, 95.3% of them are ELUs,

75.8% of them implemented their own ILUs in their projects, and

0

5

10

15

20

�mall ✁edium ✂arge ✄☎✆✝ ✂arge
Size ✞✟ ✠✡☛ ☞✌✞✍☛✎✠

N
u

m
b

e
r

o
f

L
U

s

✏
✑
✒
✓
✔✕
✖
✗
✘
✙
✚
✛✜
✢✒
✘
✣

Figure 1: The Distritbutions of the Number of Adopted LUs

in Each Project Grouped by the Size of the Projects.

71.2% used both types of LUs. Overall, there are 866 ELUs used by

11, 194 projects. 26.7% of the studied projects have implemented

their own ILUs.

The percentage of projects that adopted ELUs and ILUs shown

in the second and the third columns increases as the size of projects

increases. When comparing the LUs within the same bins, there

are always more projects using ELUs than ILUs. However, almost

all of the very large-sized projects implemented their own LUs. The

combined use of ILUs and ELUs also increase dramatically as project

sizes become large or very large.

Table 2: Comparing the Complexity of the Uses of LUs

Among Projects.

Project % of Projects Using

Size (ELU ILU Both)

Small (97.2% 12.7% 9.9%)

Medium (95.3% 34.6% 29.9%)

Large (95.3% 75.8% 71.2%)

Very Large (97.0% 92.0% 89.0%)

Total (96.3% 26.7% 23.0%)

We further examined the number of LUs that were used in each

project. For each project, we counted the number of LUs, which

included both ELUs and ILUs. We grouped projects based on their

sizes and visualized their distributions using boxplots in Figure 1.

The width of the boxplot is proportional to the number of projects

in that group. Since there are much more small-sized projects in

our study, it is the widest. The red dashed line connects the median

points for each bin. The median usage for the small-sized projects

is one. It increases as the size of the project increases. For the very

large-sized projects, the median number of LUs used is four. The

project that adopts the biggest number of LUs is within the group

of very large-sized projects. It is an enterprise web platform ([57]),

in which 21 LUs are used!

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Boyuan Chen and Zhen Ming (Jack) Jiang

We conducted a Kruskal-Wallis test [37] to statistically check if

their distributions are identical. The p-value was smaller than 0.05,

which indicated statistically sign�cant di�erences among the dis-

tributions of LUs across di�erent project sizes. This clearly demon-

strates the complexity of the use of LUs in our studied projects.

The �ndings in our quantitative studies motivated us to conduct

the subsequent qualitative studies (Section 4) to �gure out the

rationales behind them.

Findings: (1) There are 3, 856 LUs, of which 866 are ELUs, being

used by over 11, 000 projects. (2) 96.3% of the studied projects adopt

at least one ELU and 26.7% adopt at least one ILU. (3) As the project

size becomes larger, more LUs will be integrated into the project.

This is especially the case for large and very large-sized projects.

Implications: The LUs are used widely among di�erent Java

projects. However, as the size of the project increases, the complex-

itity of the use of LUs also increases. Multiple LUs are used in many

of the medium to very large-sized projects. This is contradictive

to the common understanding of developers [71, 74, 76, 77] and

researchers [33], as only a handful of popular Java LUs (e.g., Log4j

1.x, Log4j 2, and SLF4J) are compared and discussed.

4 QUALITATIVE STUDY

In this section, we conducted a qualitative study on the use of the

LUs. We manually examined their source code in order to answer

the following RQs:

• RQ1:What are the external LUs beingused in thewild?

As shown in Section 3, there were 866 ELUs being used by

11,194 projects. The goal of this RQ is to characterize the

rationales of di�erent ELUs.

• RQ2:Whydodevelopers implement ILUs in their projects?

26.7% of the studied projects have implemented their own

internal LUs. This is especially the case for the large or very

large-sized projects, in which 75.8% and 92.0% of them con-

tain ILUs. The goal of this RQ is to extract the project-speci�c

logging needs by studying the use of ILUs.

• RQ3: How are multiple LUs used in the wild? Many of

the studied projects, especially for the large or very large-

sized projects, use multiple LUs. The goal of this RQ is to

characterize the usage context associatedwith usingmultiple

LUs in one project.

4.1 RQ1: What are the external LUs being used
in the wild?

In this RQ, we will characterize the rationales behind the use of

individual ELUs. For each ELU, we calculated the number of projects

that adopted it. We sorted ELUs by their popularities (a.k.a., the

number of projects that used them) and selected the top-100 most

popular ELUs, which are used by 95% of the studied projects.

For each of these 100 ELUs, we manually examined the online

documentation, release notes, and blog posts for these ELUs to un-

derstand their features and capabilities. Then we studied the source

code of the projects which used them to extract their usage context.

Our �ndings are summarized in Figure 2. Generally, there are four

reasons behind the use of ELUs: (1) General-purpose logging, (2)

LU interactions, (3) Internationalization, and (4) Modularization.

4.1.1 General-purpose Logging. General-purpose logging refers to

the most common logging usage context, which requires: (1) ver-

bosity levels, which are to control the amount of log message out-

putted; (2) con�gurations, which are used to specify various options

and policies to format and output the logs; and (3) thread safety,

which is to ensure the logs are recorded in sequence for a multi-

threaded system.

Among the top-10 most popular LUs, 8 are for general-purpose

logging. Six ELUs (SLF4J, Log4j 1.x, Log4j 2, java.util.logging,

Apache Commons Logging, and LogBack) are considered as general-

purpose LUs for desktop or server-based systems and two ELUs

(android.util.Log and Timber [72]) are general-purpose LUs for

Android-based systems. As shown in Figure 2, a log printing func-

tion from a general-purpose ELU generally consists of four parts:

the logging object (LOG), the verbosity level (debug), the static texts

describing the logging context ("parsing File"), and the dynamic

contents revealing the runtime information (file).

Among all the desktop or server-based ELUs, SLF4J is the most

popular ELU due to its improved performance and compatibility

with other LUs [71, 74, 76]. There are many Android projects (4, 477)

in our study. Most of them are small-sized projects that used the

default ELU from Android SDK (i.e., android.util.Log).

4.1.2 LU Interactions. LU interactions concerns about con�gurat-

ing and controlling the logging behavior for the imported packages.

Many Java-based projects are built on top of existing packages,

many of which contain ILUs. In order to con�gure and control the

logging behavior for one imported package, developers have to in-

voke the logging APIs from this package. For example, 161 projects

use the okhttp3 [52] to send and receive data from network. In

order to enable logging for the okhttp3 package, developers of

the bitcoin-wallet project [7], which is a Bitcoin payment app

for Android, invokes the addInterceptormethod from okhttp3’s

ILU as shown in Figure 2. 83 out of the top-100 ELUs in this study

are used for this reason. Hence, LU interactions is the main reason

why there are so many ELUs used in the wild.

4.1.3 Internationalization. Internationalization concerns about adapt-

ing the logs to other human languages (e.g., German or Chinese). In

order to support internationalization, developers �rst need to create

a centralized �le, which stores a list of pre-de�ned log message

templates. Each of the log message template comprises four parts:

the verbosity level, the parameterized string, the logging methods,

and the message ID.

The third row of Figure 2 shows one such example. This code

snipeet is from Hibernate-ORM, which is a popular Object-Relational

Mapping (ORM) framework. Inside the centralized �le, CoreMessage

Logger.java, there are two annotations (@LogMessage and @Message)

for each logging method and the message ID. @LogMessage con-

tains a key/value pair, which de�nes the verbosity level (level

= WARN) of this log message. @Message provides the parameter-

ized string, which contains the static texts (I/O reported cached

file could not be found) and placeholders for parameters %s.

The message ID is an integer, that can be used to uniquely identify

this log message. The logging method which implements this log

message is cachedFileNotFound. It takes in two parameters: the

�le path and the error message. In order to output this log message,

the cachedFileNotFound method needs to be invoked. The code

Studying the Use of Java Logging Utilities in the Wild ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Rationales
% of Top-

100 ELUs

% of

Projects

Top 2 LUs

(where applicable)
Code Examples

General-

Purpose
12% 89.9%

androi�.util.Log (1)

SLF4J(2)

LU Interactions 83% 14.3%

okhttp3.logging.HttpLog

gingInterceptor (8)

io.netty.handler.logging.

LoggingHandler (11)

Internationaliza

tion
4% 1.0%

JBoss Logging (15)

org.glassfish.jersey.

logging (29)

Modularization 1% 1.7% AOP Logging (1✁)

static final Logger LOG = LoggerFactory.getLogger(Configuration.class);
...
LOG.debug("parsing File " + file);

Coniguration.java (Hadoop, using SLF4J)

@Around("execution(* org.unitedinternet.cosmo.service.
ContentService.getRootItem(..)) &&" + "args(user)")

public Object checkGetRootItem(ProceedingJoinPoint pjp, User user)
throws Throwable {

LOG.debug("in checkGetRootItem(user)");
...

public class StandardContentService implements ContentService {
...
public HomeCollectionItem getRootItem(User user) ...

SecurityAdvice.java (cosmo using AOP Logging)

StandardContentService.java (cosmo using AOP Logging)

@LogMessage(level = WARN)
@Message(value = "I/O reported cached file could not be found : %s : %s",
id = 23)
void cachedFileNotFound(String path, FileNotFoundException error);

...
catch (FileNotFoundException e) {
log.cachedFileNotFound(serFile.getName(), e);

}

CoreMessageLogger.java (Hibernate-ORM, using JBoss Logging)

CacheableFileXmlSource.java (Hibernate-ORM, using JBoss Logging)

HttpLoggingInterceptor loggingInterceptor = new HttpLoggingInterceptor();
...
final OkHttpClient.Builder httpClientBuilder = new OkHttpClient.Builder();
...
httpClientBuilder.addInterceptor(loggingInterceptor);

Constants.java (bitcoin-wallet, using okhttp3.logging.HttpLoggingInterceptor)

Figure 2: The Rationales Behind the Use of Top-100 Most Used ELUs.

snippet in CacheableFileXmlSource.java shows one example of

how this log message can be invoked during runtime. It is used

within a catch block to handle an exception.

To translate the log messages into di�erent human languages,

developers need to create a translation property �le and de�ne

internationalized labels for each log message. For example, the

property �le log_en_FR.properties would contain all the French

labels for all of the above English log messages.

The most common ELU for Internationalization is JBoss Log-

ging [30]. Although there are three other ELUs, which also support

this usage context, they are just wrappers of the JBoss Logging.

4.1.4 Modularization. Modularization concerns about improving

the modularity of the logging code. Logging code is a cross-cutting

concern, as it inter-mixes with the feature code. Only one ELU,

AOP-based logging, is used for this reason. AOP is a programming

paradigm, which is designed to improve modularity by reducing

the amount of cross-cutting concerns [35]. Logging is considered

as one of its common use cases.

In order to perform AOP-based logging, developers need to pro-

vide rules through aspect �les. A typical aspect �le consists of

pointcuts and advice. A pointcut is to de�ne the point of execution

where the cross-cutting concern (e.g. logging) needs to be applied.

An advice is the additional code (e.g. logging code) instrumented.

Figure 2 shows a real-world example from cosmo, a calendar

server that implements CalDAV protocol. The �le Security

Advice.java is the aspect �le. The instrumented points (pointcuts)

are de�ned through the annotation. In this example, the annotation

@Around means both the beginning and the end of the methods

will be instrumented. The value within the brackets specify the

instrumented methods. In this example, any methods with the name

getRootItem within package org.unitedinternet.cosmo.serv

ice.ContentService and parameter type as user will be instru-

mented. The instrumented code (advice) is de�ned via method

checkGetRootItem. It contains a log printing statement with the

message in checkGetRootItem and the user name. The code

snippet in StandardContentService.java shows how a log mes-

sage is actually generated. This class implements the interface

ContenService, which is within the speci�ed package. It contains

a method getRootItem, of which the parameter is user. There-

fore, this method quali�es the pre-de�ned instrumented rule above.

Hence, during runtime, the above logging statment will be executed

while entering and exiting this method. In general, only 2% of our

studied projects adopted AOP-based logging. This matches with

previous empirical studies [4, 51], which indicated the very limited

use of AOP in the wild.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Boyuan Chen and Zhen Ming (Jack) Jiang

Findings: There are four main reasons behind the use of ELUs: (1)

General-purpose logging, (2) LU interactions, (3) Internationaliza-

tion, and (4) Modularization. Majority of the projects use ELU for

general-purpose logging. 83 out of the top-100 mostly used ELUs

are used for LU interactions. Some ELUs provide unique features

like internationalization andmodularization, but they are only used

by a very small number of projects.

Implications: Many ELUs are used, as developers need to enable

and con�gure the logging behavior for the imported packages. It

is important to manage these LUs to better monitor and debug

systems’ runtime behavior. An existing study [23] shows that log

con�gurations are one of the main source of errors for Java-based

projects. Unfortunately, only one tool [86] is developed to detect

invalid loggers in the con�guration �les. To e�ectively monitor

and debug systems’ behavior, developers need to �gure out how

to con�gure the logging behavior for the imported packages and

how to interact these LUs with the LUs in their own projects.

Hence, techniques to recover the logging architecture and conduct

automatic con�guration are needed.

4.2 RQ2: Why do developers implement ILUs
in their projects?

It is not clear why many projects have still implemented their ILUs

even there are 866 ELUs available in the wild. To investigate the ra-

tionales behind this, out of 2, 990 projects which have implemented

ILUs, we randomly selected 341 of them for close manual examina-

tion. This corresponds to a con�dence level of 95%with a con�dence

interval of ±5%. We used the strati�ed sampling technique [21] to

ensure representative samples are selected from projects of di�er-

ent sizes. The portion of the sampled projects within di�erent sized

projects is equal to the relative weight of the total number of the

projects with that size. For example, there are a total of 721 small-

sized projects which contain ILUs. Hence 82 (7212990 ×341) small-sized

projects are selected.

For each selected project, we carefully studied how their ILUs are

being used by reading through the source code. We also examined

the relevant commit logs, issue reports, and pull requests [22] to

look for the rationales on why ILUs are implemented. In the end, we

have identi�ed three project-speci�c logging needs as shown in Fig-

ure 3: (1) De�ning the logging format, (2) Compatibility with other

LUs, and (3) Ease of con�guration and dependency management.

4.2.1 Defining the Logging Format. Log messages are generally

loosely structured, which contain free formed texts. Many projects

de�ne their own format of the log messages, so that they can be au-

tomatically parsed and analyzed. For example, the Hadoop project

introduces audit logging in order to satisfy the security compliance

requirements. The format of the auditing logs vary across di�erent

Hadoop components. For example, in hadoop-common component

shown in Figure 3, an interface (KMSAuditLogger) is �rst de�ned

with amethod logAuditEvent, which de�nes the auditingmethods

to be invoked. To facilitate code reuse, SimpleKMSAuditLogger im-

plements this interface by using the adapter pattern. It implements

the logAuditEvent method by invoking the info method from

an SLF4J logger object. The logAuditEvent method contains a

switch statement, in which depending on the actual event, di�erent

audit logs will be outputted. The resulting audit logs are much more

structured compared to the regular loosely de�ned log messages.

Other ILUs like Cassandra’s StatusLogger also fall into this case.

4.2.2 Compatibility with other LUs. Many of the studied projects

can be packaged and used by other projects. For reusable pack-

ages, it is preferred to be �exible and compatible with di�erent

ELUs, as developers always want to use the most up-to-date LUs in

their projects. Since LU migrations require high manual e�orts and

are error-prone [33], developers usually implement their ILUs to

separate the coupling of their logging code with the LUs.

Vert.x [75] is a popular tool-kit for building reactive applica-

tions on the JVM. It receives more than 10,000 stars on GitHub. It

suppports four general purpose Java ELUs: java.util.logging,

Log4j 1.x, Log4j 2, and SLF4J. This functionality is realized by

implementing the strategy design pattern to unify the APIs among

these four ELUs. These four ELUs do not share the same set of ver-

bosity levels. Therefore, the ILU needs to provide a uni�ed interface

(LogDelegate) for their logging methods. The LogDelegate inter-

face de�nes a set of common logging APIs (e.g., info, error). Sepa-

rate implementation classes are introduced to wrap around the four

popular general purpose ELUs: java.util.logging, Log4j 1.x,

Log4j 2, and SLF4J. Figure 3 shows a code snippet for JULLogDel

egate, which adapts the functionalities of java.util.logging to

the common interface de�ned by LogDelegate. To implement the

error method, it calls the log method along with the verbosity

level SEVERE and the variable message from java.util.logging.

4.2.3 Ease of Configuration and Dependency Management. One of

the common errors associated with logging is the con�guration

of LUs [23]. The main cause of this is due to complex dependency

structures [26, 27, 45, 50, 66, 68]. Hence, about 29.3% of the ILUs are

implemented to ease the con�guration and dependency manage-

ment issues. They are usually built from the ground up using only

the standard JDK libraries and are not dependent on any ELUs to

minimize the e�ort to manage dependencies. Figure 3 shows one ex-

ample. This code snippet is from Slick2D, which is a 2D Java game

library. This ILU is designed to be lightweighted and easy to use. It

logs the complete error information with timestamps to the console.

Findings: There are three project speci�c needs, which lead to

the implementation of ILUs: (1) de�ning the logging format, (2)

compatibility with other LUs, and (3) ease of con�guration and

dependency management. Among these three needs, de�ning the

logging format is the most common one. 55.3% of the sampled

projects implemented ILUs for this speci�c need. As the size of the

projects grow larger, more projects implement ILUs to satisfy the

needs of compatability with other LUs.

Implications: Although more than 20% of the sampled projects

implemented their own ILUs from the ground up. These ILUs are

mainly used internally for debugging purposes. They are usually

not intended to be used by other projects, since they might not

satisfy the general logging needs (e.g., not thread-safe). Additional

tools and techniques need to be developed to automatically warn

developers who imported packages which implement ILUs.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Boyuan Chen and Zhen Ming (Jack) Jiang

KieRuntimeLogger logger=KieServices.Factory.get().
getLoggers().newFileLogger(session,"log/correlation");

(b) CorrelationExample.java (�pen✁✂✄, using KieRuntimeLogger)

pipeline.addLast("logger", new LoggingHandler(LogLevel.INFO));

(a) InboundConnectionInitiator.java(Cassandra, using Netty LoggingHandler)

Figure 5: An Example of using Multiple LUs for interaction

with LUs from the imported packages.

import org.apache.maven.plugin.logging.Log;
...
public File resolveById(String id, Log log)

throws MojoFailureException {
...

log.debug("Resolving artifact " + id + " from ”
+ projectRepositories);

Dependency31Helper.java (karaf)

Figure 6: An Example of using Multiple LUs for managing

the logging contents.

4.3.1 Interaction with LUs from the imported packages. Many Java-

based software systems use third party packages, which also contain

LUs. In order to have full observability of the resulting systems, it

is important to enable logging across all the components. Figure 5

shows two di�erent examples on how to con�gure or enable logging

for the imported packages. However, due to the API variabilitiy of

these LUs, di�erent techniques are needed in order to enable or

con�gure their logging behavior. For example, Netty uses event-

based programming. To enable the logging of the Netty package,

the Cassandra developer needs to add the LoggingHandler. In

order to enable logging for Kie, the OpenNMS developer needs to

create a new logger to output the logs to a �le. The more third

party packages are used, the more interactions there are with the

LUs from these imported packages. This is one of the main reasons

why many large or very Large-sized projects use more LUs than the

smaller sized projects.

4.3.2 Managing the logging contents. In addition to con�guring

and enabling the logging behavior for the imported packages, some-

times the studied projects also use the LUs from the imported pack-

ages for additional logging. This is mainly to ensure the relevant

logging contents are stored in the same location. Maven is a popular

tool to build and manage Java projects. The core of Maven consists

of a set of plugins. Each plugin is reponsible for a particular func-

tionality. For example, clean, which is used to clean up the build

arti�cats, and compiler, which is used to compile Java sources,

are two default plugins. During execution, the logs generated from

these plugins will be redirected to the same storage location. If

other projects intend to develop Maven plugins, they are advised to

use the LUs from Maven to generate build related logs [49], so that

Maven-related information can be aggregated to one centralized

location, which is easy to analyze and archive. Figure 6 shows one

such example. On one hand, karaf uses their own LU to record

system-speci�c information. On other hand, it uses the LU from

Maven to record build related logs.

4.3.3 Forma�ing logging messages across di�erent components. In

some cases, one LU may not satisfy all the logging needs for one

for (InstanceStatus status : instanceStatusList) {
if (INSTANCE_RUNNING !=

status.getInstanceState().getCode()){
LOGGER.debug("Instances are up but not

all of them are in running state.");
return false;

}
}

ASGroupStatusCheckerTask.java (cloudbreak)

Figure 7: An Example of using Multiple LUs for developer

convenience.

project. For example, as shown in Figure 3, Hadoop uses SLF4J

for generating execution logs, which are used for debugging and

monitoring purposes. It also uses ILU to generate audit logs to

satisfy security requirements.

4.3.4 Developer convenience. Some of the top-100 projects use

AOP-based logging. However, the developers also include logging

code, which is instrumented using general-purpose ELUs. This is

mainly due to developer convenience. For example, cloudbreak

uses AOP-based logging, but it also uses SLF4J. Figure 7 shows one

such example. Since checking the instance state is a very localized

concern, it is much faster to instrument with the general purpose

LU than AOP-based logging. Similar cases also apply to LUs, which

are used for internationalization. For example, Hibernate uses the

JBoss logging to support internationalization. However, instead of

putting the log messages into the centralized �le, the developer

chose to place their log message along with the feature code for

debugging purposes.

Findings: There are four usage contexts behind the use of multi-

ple LUs in one project: (1) interaction with LUs from the imported

packages; (2) managing the logging contents; (3) formatting log-

ging messages across di�erent components; and (4) developer

convenience. Except for developer convenience, the percentage of

these usage contexts increases as the project sizes increase.

Implications: Logging is considered as a cross-cutting concern,

as the logging code scatters across the entire system and inter-

mixes with the feature code. To cope with this challenge, AOP is

introduced. However, AOP cannot be used to satisfy the current

logging needs, due to their inconvenience on specifying localized

logging context. More importantly, for large-scale projects which

use many third party packages, it is necessary to enable and con-

�gure the logging behavior for these imported packages in order

to gain full observability of the entire systems. The management of

the logging behavior for these packages is rather complex and in-

troduces another form of cross-cutting concerns. Further research

is urgently needed to develop tools or techniques to automatically

manage and modularize such concerns.

5 INTERVIEWS

Although we have analyzed 425 Java-based projects, our study

focuses on Java-based open-source projects in GitHub. In order to

assess the generalizability of our �ndings, we conducted a semi-

structured inteview with 13 experienced industrial developers. We

decided to conduct semi-structured interviews instead of surveys so

Studying the Use of Java Logging Utilities in the Wild ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

that we can interact with the participants in a more �exible way. For

example, we have prepared a set of questions before-hand. During

the interview, we sometime asked follow-up questions based on

participants’ answers on the �y [32].

5.1 Participants

Similar to [60], the participants are from the authors’ personal con-

tacts. All of them are working at large-scale software companies.

The development experience of the participants ranges from one to

eight years. The types of projects that participants are working on

vary from server-side projects (9), frameworks (3), and client appli-

cation (1). All these projects have been widely used by millions of

users worldwide. The programming languages that the participants

use daily include Java, PHP, C++, C#, Python, and Go.

5.2 Findings

All of the participants have inserted, deleted, updated logging code

in their development activities. It rea�rms that software logging is

a pervasive practice [8].

5.2.1 Cross-validation of our findings. We presented our �ndings

on the rationales behind the use of ELUs and ILUs, as well as the

usage context for multiple LUs. Then we asked the participants:

(1) whether their projects adopt one or more of the studied LUs;

(2) whether our characterized usage context and the logging needs

would be useful for them; and (3) if there are any additional infor-

mation to add or comment on.

Some participants mentioned that they did adopt one or more of

the studied LUs in this paper. However, the rationales (e.g., JBoss-

style logging) is a bit di�erent. All participants felt that the �ndings

and code examples from this study can help them better con�gure

and manage the logging behavior for their projects.

• ELUs: All participants acknowledged that the general-purpose

logging is the most commonly used logging need. However,

they also acknowledge the challenges on co-evolving the

logging code with the rapidly changed feature code, as the

logging code is inter-mixed with the feature code. Although

the participants aggreed that AOP-based logging is a great

idea, only two of the interviewed participants used AOP-

based logging in their projects. This is mainly due to (1) high

learning curve of a di�erent programming paradigm, (2) dif-

�cult to translate logging concerns into rules (a.k.a., advice),

and (3) lack of automated support for legacy logging code.

Compared to open-source projects, there is a much higher

portion of industrial projects (7/13) that adopted the LUs

that centralize the log messages (a.k.a., JBoss-style logging).

One participant mentioned that in addition to internation-

alization, the centralized logging-style can: (1) improve the

accuracy and the speed of the log processing task [88]; and

(2) attach additional meta information (e.g., issue resolution

strategies) with the message ID for better �eld support.

• ILUs: The participants mentioned that the choice of LUs

were decided by the software architects or senior developers.

Once the LUs were set up, only under very rare cases that

they will migrate or modify LUs. None of them have directly

modi�ed the existing LUs. We asked the participants what

type of LUs were used in their projects. Three of them said

they directly use open source LUs such as Log4j [42] (Java)

and log4net [44] (C#). The rest of them use ILUs included

in their project. The rationales behind implementing ILUs

are similar to our �ndings from the open source projects.

• The use of Multiple LUs: The participants are surprised

about the use of multiple LUs. Five of them did not realize

the need to do this until we presented our �ndings. They

complained about the challenges on debugging and moni-

toring their projects, which use many third-party packages.

By leveraging our �ndings and code examples, they can en-

able and manage the logging behavior from these imported

packages, which will greatly improve the observability of

the overall systems.

5.2.2 Beyond Logging. Five participants mentioned that they have

integrated tracing tools (e.g., opentracing [55]) or Application Per-

formance Monitoring (APM) tools (sentry [61], Google �rebase [14],

etc.) into their systems. They applied these tools to replace some of

the logging functionalities such as crash reporting and collection of

the pro�ling data. Unlike logging, most of these tools do not need de-

velopers to arbitrarily write code to record the desired information.

For example, one participant mentioned that they adopted Spring-

sleuth [67]. It is a distributed tracing tool which can automatically

record the interactions between multiple Sprint Boot microservices.

These tools pre-instrument output statements to record information

such as RPC calls and stack traces, and they need minimum con�g-

uration e�orts. The participants also mentioned that although these

tools are useful, they still cannot completely replace the needs for

software logging in their projects.

6 DISCUSSIONS

Logs have been used extensively in practice. Instead of invoking

output functions like System.out.println, developers prefer to use

logging utilities (LU) to instrument their systems. This paper cate-

gorizes the complex use of LUs in the wild and presents multiple

implications which are useful for developers and researchers. In

this section, we will discuss the signi�cance of our �ndings and

present some future work.

6.1 Complex Use of LUs

There are generally four reasons to use LUs: (1) general-purpose

logging, (2) LU interactions with imported packages, (3) internation-

alization of the log messages, and (4) modularization of the logging

code. Larger projects tend to use multiple LUs in one project to sat-

isfy one or more of the following usage context: (1) interaction with

LUs from various imported packages, (2) managing the logging con-

tents, (3) formatting logging messages across di�erent components,

and (4) developer convenience. Many projects also implement their

own LUs to satisfy project speci�c needs like de�ning the logging

format, compatibility, and ease of con�guration and dependency

management. Such �ndings would be useful for developers and

researchers who are interested in developing and maintaining LUs:

• Our �ndings raise developers’ awareness that their systems

can contain multiple LUs due to the imported packages. It is

important to manage these LUs to better monitor and debug

systems’ runtime behavior.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Boyuan Chen and Zhen Ming (Jack) Jiang

• To e�ectively monitor and debug systems’ behavior, develop-

ers need to �gure out how to con�gure the logging behavior

for the imported packages and how to interact these LUs

with the LUs in their own projects. Hence, techniques to

recover the logging architecture are needed.

• To ensure QoS, best practices and anti-patterns for manag-

ing LUs are needed, particularly in the following areas: (1)

selecting the appropriate default verbosity levels for LUs for

good observability with low overhead; and (2) correlating

logging information across di�erent LUs in one project.

• In addition to common LUs (e.g., Log4j or SLF4J), many

projects also use additional ELUs or implement ILUs. These

LUs are project-dependent and require implementation/-

maintenance e�ort. The �ndings in the paper can guide

researchers to propose more general techniques to satisfy

such logging needs.

6.2 Beyond LUs

Certain �ndings in this paper may be applicable to other utilities.

It is important to study the use of di�erent utilities in the wild due

to: (a) multiple utilities (e.g., database/testing frameworks and ad li-

braries) with same/similar functionalities can be used in one project;

and (b) cross-cutting concerns (e.g., logging, analytics and security)

are implemented not only in the projects’ code but also in the im-

ported packages. E�ectively managing such concerns is an open

problem, which is important for development and maintenance of

such systems [18, 84].

7 RELATED WORK

In this section, we discuss two realted research areas.

7.1 Empirical Studies on Logging Practices

There are no well-established logging guidelines in neither indus-

trial [16, 56] nor open source systems [8, 63, 81]. Hence, it is impor-

tant to derive best practices and common mistakes by studying the

current logging practices. Shang et al. [63] found that the amount

of logging code is correlated with the amount of post-release bugs.

Kabinna et al. [33] studied the logging library migrations for 33

Apache-based Java projects. They found that migrating logging

libraries requires high manual e�orts and is error-prone. Zhi et

al. [86] conducted an exploratory study on the con�guration as-

pects of the LUs.

Our work is di�erent from the above studies in the following

three aspects: (1) this paper is the �rst study on the use of LUs, which

includes both ELUs (a.k.a., logging libraries) as well as ILUs. (2) The

scale of our study is much bigger than the previous ones, as we have

studied over 11,194 Java-based GitHub projects, which uses 3,856

LUs. (3) Di�erent from all of the above works, which are mainly

quantitative studies, we have performed both the quantitative and

the qualitative studies on the use of Java-based LUs.

7.2 Improving the Quality of the Logging Code

This area can be further divided into three parts: (1) where-to-log,

(2) what-to-log, and (3) how-to-log.

• where-to-log is related to the problem of selecting appropri-

ate logging points in the source code. Fu et al. [16] proposed

a data-mining based approach to automatically extract the

important attributes which a�ect the locations of the log-

ging points. Zhu et al. [87] proposed a machine-learning

based technique to learn common logging points based on

the code structures. Yuan et al. [80] proposed a program-

analysis based method to add logging points for debugging

purposes. Ding et al. [11] proposed a constraint solving based

method to select the optimal logging points which incur min-

imum performance overhead while keeping the maxmium

runtime information. Zhao et al. [85] came up with a tool

Log20, which automatically places the logging points under

certain overhead threshold.

• what-to-log is related to the problem of providing complete

runtime information in the logging code. Yuan et al. [82]

proposed a program analysis based approach to add addi-

tional variables into existing logging statements so that more

complete execution paths can be recovered, thus improving

the diagnosability. He et al. [25] characterized the static texts

inside logging statements for 10 Java and 7 C# projects. They

provided an NLP-based description generation tool to auto-

matically generate static texts in logging statements.

• how-to-log is related to the problem of designing and main-

taining high quality logging code. Yuan et al. [81] partially

studied the inconsistent verbosity level problem through a

clone based approach. Li et al. learned from code changes

in history to predict just-in-time logging code changes [39]

and to suggest the most approapriate verbosity levels [38]

through machine learning-based approaches. Chen et al. [9]

summarized six types of anti-patterns within logging state-

ments and proposed a tool to automatically detect them. Li

et al. [40] proposed an automated tool to detect duplicate

logging code smells. Chen et al. [10] proposed an approach

to extract the Logging-Code-Issue-Introducing changes.

Our study lies within the category of how-to-log, but di�ers

with the above works in the sense that our focus is on the LUs

instead of the log printing code.

8 THREATS TO VALIDITY

In this section, we will discuss the threats to validity.

8.1 External Validity

We conducted our study only on 11,194 Java-based open source

projects. We cross-validated our �ndings by interviewing with in-

dustrial developers. Although our approach can be easily adapted

to another study on the use of LUs, our �nding may not be general-

izable to projects written in other programming languages.

8.2 Internal Validity

In our study, we removed all of the very small-sized projects, since

only a small fraction of them use LUs and most of them are trial

projects for self-studying and collections of code snippets. We also

removed forked projects, since they are likely duplications of the

base ones. We also removed unpopular projects which contain few

stars. This practice is similar to many of the previous empirical

studies on GitHub-based proejcts [5, 36, 58].

Studying the Use of Java Logging Utilities in the Wild ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

8.3 Construct Validity

In our study, we used a heuristics-based approach to count the

adoptions of LUs. We made our best e�orts to avoid bringing in

any false positives. Through manual veri�cation of the randomly

selected samples, our approach yields an precision of 96%.

9 CONCLUSION

In this paper, we conducted a large-scale empirical study on the

use of Java LUs in the wild. We studied 11, 194 Java-based projects

in the GitHub. These projects use 3, 856 LUs. Our �ndings suggest

that the complexity of the use of LUs increases as the project size in-

creases. Although many projects only use LUs for general-purpose

logging, the actual logging needs vary from project to project. The

main reason behind multiple use of LUs is to enable or manage the

logging behavior of the imported packages. Many projects choose

to implement their own ILU mainly for de�ning the project-speci�c

format of their logging code. The �ndings and the implications pre-

sented in this paper will be useful for LU designers and researchers

as well as system developers.

REFERENCES
[1] Apache Commons Logging. 2019. https://commons.apache.org/proper/commons-

logging/. Last accessed: 07/23/2019.
[2] Apache Hadoop. 2019. https://hadoop.apache.org/. Last accessed: 08/22/2019.
[3] Apache Tomcat. 2019. http://tomcat.apache.org/. Last accessed: 08/22/2019.
[4] Sven Apel, Don Batory, Sven Apel, and Don Batory. 2008. How AspectJ is used:

An analysis of eleven Aspectj programs. Journal of Object Technology (JOT)
(2008).

[5] Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. 2019. A Large Scale Study
of Long-Time Contributor Prediction for GitHub Projects. IEEE Transactions on
Software Engineering (TSE) (2019).

[6] Titus Barik, Robert DeLine, Steven Drucker, and Danyel Fisher. 2016. The Bones
of the System: A Case Study of Logging and Telemetry at Microsoft. In Companion
Proceedings of the 38th International Conference on Software Engineering (ICSE-C),
2016.

[7] Bitcoin Wallet. 2019. Bitcoin Wallet app for your Android device. https://github.
com/bitcoin-wallet/bitcoin-wallet. Last accessed: 08/23/2019.

[8] Boyuan Chen and Zhen Ming (Jack) Jiang. 2016. Characterizing logging practices
in Java-based open source software projects – a replication study in Apache
Software Foundation. Empirical Software Engineering (EMSE) (2016).

[9] Boyuan Chen and Zhen Ming (Jack) Jiang. 2017. Characterizing and Detect-
ing Anti-patterns in the Logging Code. In Proceedings of the 39th International
Conference on Software Engineering (ICSE), 2017.

[10] Boyuan Chen and Zhen Ming (Jack) Jiang. 2019. Extracting and studying the
Logging-Code-Issue- Introducing changes in Java-based large-scale open source
software systems. Empirical Software Engineering (EMSE) (2019).

[11] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang
Fu, Dongmei Zhang, and Tao Xie. 2015. Log2: A Cost-aware Logging Mechanism
for Performance Diagnosis. In Proceedings of the 2015 Usenix Annual Technical
Conference (ATC), 2015.

[12] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research.

[13] Eclipse Java IDE. 2019. . https://www.eclipse.org/ide/. Last accessed: 08/22/2019.
[14] Firebase. 2019. A mobile and web application development platform . https:

//�rebase.google.com/. Last accessed: 08/23/2019.
[15] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.

Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc.

[16] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where Do Developers Log? An Empirical
Study on Logging Practices in Industry. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE-C), 2014.

[17] GitHub features. 2019. https://github.com/features. Last accessed: 07/29/2019.
[18] Mathieu Goeminne and TomMens. 2015. Towards a survival analysis of database

framework usage in Java projects. In Proceedings of 31st International Conference
on Software Maintenance and Evolution (ICSME), 2015.

[19] Google Flogger. 2019. A Fluent Logging API for Java. https://github.com/google/
�ogger. Last accessed: 07/23/2019.

[20] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR), 2013.

[21] Jiawei Han. 2005. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[22] Ahmed E. Hassan and Richard C. Holt. 2004. Using Development History Sticky
Notes to Understand Software Architecture. In Proceedings of 12th International
Workshop on Program Comprehension (IWPC), 2004,.

[23] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. 2018. Study-
ing and detecting log-related issues. Empirical Software Engineering (EMSE)
(2018).

[24] HBase. 2018. Apache HBase. https://hbase.apache.org. Last accessed: 01/29/2018.
[25] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R. Lyu. 2018. Character-

izing the Natural Language Descriptions in Software Logging Statements. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE), 2018.

[26] How to enable logging in dubbo? 2019. https://blog.csdn.net/JDream314/article/
details/44620767. Last accessed: 08/21/2019.

[27] How to enable logging in Jetty. 2019. https://stackover�ow.com/questions/
25786592/how-to-enable-logging-in-jettyt. Last accessed: 08/21/2019.

[28] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional.

[29] IntelliJ IDEA. 2019. https://www.jetbrains.com/idea/. Last accessed: 08/22/2019.
[30] JBoss Logging. 2019. https://developer.jboss.org/wiki/JBossLoggingTooling. Last

accessed: 07/16/2019.
[31] JDT Java Development Tools. 2019. https://eclipse.org/jdt/. Last accessed:

07/23/2019.
[32] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 35th International Conference on Software Engineering (ICSE),
2013.

[33] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. 2016.
Logging Library Migrations: A Case Study for the Apache Software Foundation
Projects. In Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), 2016.

[34] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel Ger-
man, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repositories (MSR),
2014.

[35] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming.

[36] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. 2016. A Large Scale
Study ofMultiple Programming Languages and Code Quality. In Proceedings of the
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2016.

[37] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. Journal of the American Statistical Association (JASA) (1952).

[38] Heng Li, Weiyi Shang, and Ahmed E. Hassan. 2017. Which Log Level Should
Developers Choose for a New Logging Statement? Empirical Software Engineering
(EMSE) (2017).

[39] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. 2017. Towards just-
in-time suggestions for log changes. Empirical Software Engineering (EMSE)
(2017).

[40] Zhenhao Li, Tse-Hsun Chen, Jinqiu Yang, and Weiyi Shang. 2019. DL�nder:
characterizing and detecting duplicate logging code smells. In Proceedings of the
41st International Conference on Software Engineering (ICSE), 2019.

[41] Jimmy Lin and Dmitriy Ryaboy. 2012. Scaling big data mining infrastructure: the
twitter experience. SIGKDD Explorations 14, 2 (2012), 6–19.

[42] Log4J. 2019. A logging library for Java. http://logging.apache.org/log4j/1.2. Last
accessed: 07/23/2019.

[43] LOG4J 2. 2019. Apache Log4j 2. http://logging.apache.org/log4j/2.x. Last accessed:
07/23/2019.

[44] log4net. 2019. log4net A logging library for .NET. https://logging.apache.org/
log4net/. Last accessed: 07/23/2019.

[45] Logging dependency con�icts. 2019. https://cloud.tencent.com/developer/ask/
121135. Last accessed: 08/21/2019.

[46] LogProvider in Ninja. 2019. https://github.com/ninjaframework/ninja. Last
accessed: 08/22/2019.

[47] Cristina Lopes and Joel Ossher. 2015. How Scale A�ects Structure in Java Pro-
grams. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2015.

[48] Mark Marron. 2018. Log++ Logging for a Cloud-native World. In Proceedings of
the 14th ACM SIGPLAN International Symposium on Dynamic Languages (DLS),
2018.

[49] Maven plugin development guide. 2019. http://maven.apache.org/guides/plugin/
guide-java-plugin-development.html. Last accessed: 08/23/2019.

[50] Multiple logging implementations found in Spring Boot. 2019. https:
//stackover�ow.com/questions/52911393/multiple-logging-implementations-

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Boyuan Chen and Zhen Ming (Jack) Jiang

found-in-spring-boot. Last accessed: 08/21/2019.
[51] Freddy Munoz, Benoit Baudry, Romain Delamare, and Yves Le Traon. 2013. Usage

and Testability of AOP: An Empirical Study of AspectJ. Information and Software
Technology (IST) (2013).

[52] OkHttp - an HTTP client for Android, Kotlin, and Java. 2019. https://github.com/
square/okhttp. Last accessed: 08/23/2019.

[53] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012. Advances and Challenges
in Log Analysis. Communications of ACM (2012).

[54] Omni-Notes: note-taking application for Android. 2019. https://github.com/
federicoiosue/Omni-Notes. Last accessed: 08/21/2019.

[55] Opentracing: vendor-neutral APIs and instrumentation for distributed tracing.
2019. https://opentracing.io/. Last accessed: 07/23/2019.

[56] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry Practices and Event Logging: Assessment of a Critical Software De-
velopment Process. In Companion Proceedings of the 37th International Conference
on Software Engineering (ICSE-C), 2015.

[57] Liferay Portal. 2019. Liferay Portal - an open source enterprise web platform.
https://github.com/liferay/liferay-portal. Last accessed: 08/22/2019.

[58] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. 2017.
A Large-scale Study of Programming Languages and Code Quality in GitHub.
Communications of the ACM (2017).

[59] Red Hat Wild�y. 2019. https://wild�y.org/. Last accessed: 08/22/2019.
[60] Mohammed Sayagh, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo. 2018.

Software Con�guration Engineering in Practice: Interviews, Survey, and System-
atic Literature Review. IEEE Transactions on Software Engineering (TSE) (2018).

[61] Sentry - cross-platform application monitoring, with a focus on error reporting.
2019. https://sentry.io. Last accessed: 08/23/2019.

[62] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W.
Godfrey, Mohamed Nasser, and Parminder Flora. 2014. An exploratory study of
the evolution of communicated information about the execution of large software
systems. Journal of Software: Evolution and Process (JSEP) (2014).

[63] Weiyi Shang, Meiyappan Nagappan, and Ahmed E. Hassan. 2015. Studying the
relationship between logging characteristics and the code quality of platform
software. Empirical Software Engineering (EMSE) (2015).

[64] Simple Logging Facade for Java (SLF4J). 2019. https://www.slf4j.org/. Last
accessed: 08/12/2019.

[65] spdlog - Very fast, header-only/compiled, C++ logging library. 2019. https:
//github.com/gabime/spdlog. Last accessed: 07/23/2019.

[66] Spring Boot pull request 4341. 2019. https://github.com/spring-projects/spring-
boot/issues/4341. Last accessed: 08/21/2019.

[67] Spring Cloud Sleuth. 2019. https://spring.io/projects/spring-cloud-sleuth. Last
accessed: 08/23/2019.

[68] StackOver�ow: Disable Logback in SpringBoot. 2019. https://stackover�ow.com/
questions/23984009/disable-logback-in-springboot/23991715. Last accessed:
08/01/2019.

[69] Telegram - a cloud-based instant messaging service. 2019. https://github.com/
DrKLO/Telegram. Last accessed: 08/21/2019.

[70] The replication package. 2020. https://www.eecs.yorku.ca/~chenfsd/resources/
icse2020_replication.zip. Last accessed: 01/26/2020.

[71] The State of Logging in Java. 2019. https://stackify.com/logging-java/. Last
accessed: 08/21/2019.

[72] Timber - a logger with a small, extensible API which provides utility on top of
Android’s normal Log class. 2019. https://github.com/JakeWharton/timber. Last
accessed: 08/23/2019.

[73] TIOBE Index for August 2019. 2019. https://www.tiobe.com/tiobe-index/. Last
accessed: 07/23/2019.

[74] Ultimate Guide to Logging. 2019. https://www.loggly.com/ultimate-guide/java-
logging-basics/. Last accessed: 08/21/2019.

[75] Vert.x - a tool-kit for building reactive applications on the JVM. 2019. https:
//github.com/eclipse-vertx/vert.x. Last accessed: 08/23/2019.

[76] What’s Up with Logging in Java? 2019. https://stackover�ow.com/questions/
354837/whats-up-with-logging-in-java. Last accessed: 07/23/2019.

[77] Why not use java.util.logging? 2019. https://stackover�ow.com/questions/
11359187/why-not-use-java-util-logging. Last accessed: 07/23/2019.

[78] Stephen Yang, Seo Jin Park, and John Ousterhout. 2018. NanoLog: A Nanosec-
ond Scale Logging System. In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC), 2018.

[79] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. SherLog: error diagnosis by connecting clues from run-time
logs. In Proceedings of the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2010.

[80] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming Tang,
Yuanyuan Zhou, and Stefan Savage. 2012. Be Conservative: Enhancing Failure
Diagnosis with Proactive Logging. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI), 2012.

[81] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing Logging Prac-
tices in Open-source Software. In Proceedings of the 34th International Conference
on Software Engineering (ICSE), 2012.

[82] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2011.
Improving Software Diagnosability via Log Enhancement. In Proceedings of the
16th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2011.

[83] Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun (Peter) Chen. 2019. Studying
the characteristics of logging practices in mobile apps: a case study on F-Droid.
Empirical Software Engineering (EMSE) (2019).

[84] Ahmed Zerouali and Tom Mens. 2017. Analyzing the evolution of testing li-
brary usage in open source Java projects. In Proceedings of the 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2017.

[85] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. 2017. Log20: Fully Automated Optimal Placement of Log Printing State-
ments Under Speci�ed Overhead Threshold. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP), 2017.

[86] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, , and Tao Xie. 2019.
An Exploratory Study of Logging Con�guration Practice in Java. In In Proceedings
of the 35th IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2019.

[87] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei
Zhang. 2015. Learning to Log: Helping Developers Make Informed Logging Deci-
sions. In Proceedings of the 37th International Conference on Software Engineering
(ICSE), 2015.

[88] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.
Lyu. 2019. Tools and benchmarks for automated log parsing. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering in
Practice, (ICSE-SEIP), 2019.

