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Abstract—Snippets of logging code are output statements (e.g.,
LOG.info or System.out.println) that developers insert into a
software system. Although more logging code can provide more
execution context of the system’s behavior during runtime, it is
undesirable to instrument the system with too much logging code
due to maintenance overhead. Furthermore, excessive logging
may cause unexpected side-effects like performance slow-down
or high disk I/O bandwidth. Recent studies show that there
are no well-defined coding guidelines for performing effective
logging. Previous research on the logging code mainly tackles
the problems of where-to-log and what-to-log. There are very few
works trying to address the problem of how-fo-log (developing
and maintaining high-quality logging code).

In this paper, we study the problem of how-fo-log by character-
izing and detecting the anti-patterns in the logging code. As the
majority of the logging code is evolved together with the feature
code, the remaining set of logging code changes usually contains
the fixes to the anti-patterns. We have manually examined 352
pairs of independently changed logging code snippets from three
well-maintenance open source systems: ActiveM(Q, Hadoop and
Maven. Our analysis has resulted in six different anti-patterns
in the logging code. To demonstrate the value of our findings,
we have encoded these anti-patterns into a static code analysis
tool, LCAnalyzer. Case studies show that LCAnalyzer has an
average recall of 95% and precision of 60% and can be used
to automatically detect previously unknown anti-patterns in the
source code. To gather feedback, we have filed 64 representative
instances of the logging code anti-patterns from the most recent
releases of ten open source software systems. Among them, 46
instances (72%) have already been accepted by their developers.

Keywords-anti-patterns; logging code; logging practices; em-
pirical studies; software maintenance;

I. INTRODUCTION

Logging is a common programming practice that developers
use to record the runtime behavior of a software system. Logs
have been used widely in industry for a variety of tasks (e.g.,
monitoring [1], debugging [2], remote issue resolution [3],
test analysis [4], security and legal compliance [3], [5], and
business decision making [6]). Logs are generated by the
logging code that developers insert into the system. There
are typically four components in a snippet of logging code: a
logging object, a verbosity level, static texts and dynamic con-
tents. Figure 1 shows an example. The logging object is LOG,
the verbosity level is debug, the static texts are Replaced
Scanner Readers at row and dynamic contents are
Bytes.toString(viableRow.getRow()).

Unlike other aspects in the software development process
(e.g., code refactoring [8] and release management [9]), recent

public void updateReaders() throws IOException {
this.lock.writeLock().lock();

try {

ViableRow viableRow = getNextViableRow();
openReaders(viableRow.getRow());
LOG.debug("Replaced Scanner Readers at row " +
Bytes .toStr‘ing([\L_ia_b_le_ﬁoEg_?t&_o@l) )

} finally {
this.lock.writeLock().unlock();

¥

}

Fig. 1: An example of low quality logging code which caused
crash of the HBase server due to a NullPointerException [7].

empirical studies show that there are no well-established
logging practices in industry [10], [11]. Developers usually
need to rely on their common sense to perform their logging
actions. In general, there are three challenges associated with
establishing effective logging practices:

1) The problem of where-to-log is about deciding the
appropriate logging points. Snippets of logging code
can be inserted at various locations in the source code
(e.g., inside the try & catch exception blocks, inside
the condition blocks, etc.) to provide insights into the
system’s runtime behavior. However, excessive logging
can bring additional maintenance overhead and cause
performance slow-downs [12]. Hence, developers need
to be selective when choosing the logging points.

2) The problem of what-to-log is about providing sufficient
information in the logging code. The static texts provide
a short description of the execution context and the dy-
namic contents indicate the current execute state. When
composing a snippet of logging code, the static texts
should be clear and easy to understand and the dynamic
contents should be coherent and up-to-date [13], [14].

3) The problem of how-to-log is about developing and
maintaining high quality logging code. Logging is a
cross-cutting concern, as the logging code is scattered
across the entire system and tangled with the feature
code [15]. Although there are language extensions (e.g.,
Aspect] [16]) to support better modularization of the
logging code, many industrial and open source systems
still choose to inter-mix the logging code with the
feature code [11], [17], [18]. Hence, it is difficult to



develop and maintain high quality logging code, while
the system evolves.

Existing log characterization studies focus on addressing
the challenges of “where-to-log” [10], [12], [19] and “what-
to-log” [13], [14], [20]. There are very few works tackling the
problem of “how-to-log” except partially in [18], where Yuan
et al. developed a verbosity level checker to detect inconsistent
verbosity levels. As there are already many lines of logging
code in the open source and industrial systems, low quality
logging code can hinder program understanding [14] and cause
unexpected system failures [7]. Figure 1 shows a real-world
bug in the logging code that caused the crash of the HBase
system. Since the object ViableRow or the return value
of the method call viableRow.getRow () can be null,
HBase was crashed once the NullPointerException
was thrown. Hence, in this paper, we study the problem of
“how-to-log” by focusing on characterizing and detecting anti-
patterns in the existing logging code. Similar to the design [21]
and performance anti-patterns [22], we define anti-patterns in
the logging code as recurrent mistakes which may hinder the
understanding and maintainability of the logs.

In this paper, we have conducted a comprehensive study on
characterizing anti-patterns in the logging code by manually
going through more than six years of the logging code changes
of three popular open source software systems (ActiveMQ,
Hadoop and Maven). Our study has resulted in six anti-
patterns in the logging code. To demonstrate the usefulness
of our findings, we have developed a static analysis tool,
called LCAnalyzer, which can automatically detect these anti-
patterns. The contributions of this paper are:

1) This is the first systematic study on providing guidelines
on developing and maintaining high quality logging
code. Case studies show that the characterized six anti-
patterns in the logging code are general and exist in the
ten studied open source software systems.

2) Our static analysis tool, LCAnalyzer, yields an average
recall of 95% and precision of 60% and can automati-
cally reveal many previously unknown instances of the
anti-patterns in the logging code.

3) To gather developers’ perceptions on whether the anti-
patterns are worth fixing, we have filed a total of 64 rep-
resentative anti-pattern instances from the most recent
releases of ten different open source software systems.
So far, 46 instances (72%) have already been confirmed
or fixed by their developers. This has demonstrated the
importance and the impact of our work.

4) To support independent verification or replication of our
study, we have provided a replication package [23] in
this paper. This package, which contains the LCAnalyzer
tool and the verified anti-pattern instances from real-
world systems, can be useful for other researchers who
are interested in studying the logging practices.

Paper Organization

The rest of the paper is organized as follows. Section II
introduces the our process of characterizing the anti-patterns

in the logging code. Section III explains the resulting anti-
patterns and discusses our static analysis tool, LCAnalyzer.
Section IV evaluates the performance of LCAnalyzer. Sec-
tion V describes the results after applying LCAnalyzer on
the most recent releases of ten different open source software
systems and the initial developer feedback. Section VI presents
the threats to validity. Section VII discusses the related work.
Section VIII concludes this paper.

II. OUR PROCESS OF CHARACTERIZING ANTI-PATTERNS
IN THE LOGGING CODE

We follow a grounded-theory fashion [24] to characterize
anti-patterns in the logging code, since there are no prior
works in this area. The majority of the logging code is
changed together with the feature code for various software
maintenance tasks (e.g., renaming of functions or class at-
tributes, changing condition expressions, etc.) [17], [18]. The
independent logging code changes are likely the fixes to the
anti-patterns. Hence, in order to characterize the anti-patterns
in the logging code, we focus on isolating and analyzing
the logging code changes, which occur independently of the
feature code changes. Figure 2 shows our process. First,
we extract the fine-grained code changes from the historical
code repositories. Second, we apply heuristics to automatically
identify the extracted code changes which contain changes to
the logging code. Then, we use program analysis techniques
to automatically categorize the logging code changes into two
types: (1) logging code changes due to co-changes in the fea-
ture code; and (2) independent logging code changes. Finally,
we conduct manual analysis on the independent logging code
changes to characterize the anti-patterns in the logging code.

In this paper, we will analyze the independent logging code
changes from three popular open software systems: ActiveMQ,
Hadoop and Maven as shown in Table I. These systems are
from different application domains: ActiveMQ is a message
broker middleware; Hadoop is a distributed BigData compute
platform; and Maven is a client application used for build
management and build automation. We pick these systems as
our study subjects because of their popularity (used by millions
of people worldwide) and rich development history (six to ten
years). Each of the changes has been carefully peer-reviewed
and discussed before they are accepted into the repository [25].
We have built a local mirror of the three systems using the
online data dumps [26].

A. Extracting Fine-Grained Code Changes

First, we run J-REX [27] on the historical code repository
of these three systems to extract the source code and the
meta information of each commit (e.g., commit ID, commit
logs, etc.). Different revisions of the same source code files
are recorded separately. For example, the source code of
the first and the second commits of Foo.java are recorded
as Foo_vl.java, Foo_v2.java, respectively. Then we use
ChangeDistiller (CD) [28] to extract the fine-grained source
code changes between each pair of the adjacent revisions
(e.g., code changes between Foo_vl.java and Foo_v2.java).
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Fig. 2: Our process of characterizing anti-patterns in the logging code.

TABLE I: The three studied systems used in our characteri-
zation process.

System Code history Total Logging Indep.
(begin, end)  revisions changes logging changes
ActiveMQ  (12/02/2005, 9,677 2,757 571
10/19/2014) (20.7%)
Hadoop (01/06/2008, 25,944 10,077 2,843
10/20/2014) (28.2%)
Maven (12/15/2004, 29,362 3,164 943
11/01/2014) (29.8%)

CD first parses the two file revisions into two Abstract Syntax
Trees (ASTs), then compares them using the tree differencing
algorithm. The output from CD is a list of fine-grained code
changes (e.g., a method invocation in a function is updated or
a class attribute is renamed).

B. Identifying Logging Code Changes

Similar to [10], [17], [18], [29], we apply heuristics to
automatically identify the code revisions containing logging
code changes. Our approach uses regular expressions to iden-
tify logging code using keywords (e.g., “log”, “trace”,
“debug”, etc.) in the code snippets. After the initial regular
expression matching, the resulting dataset is further filtered
to remove code snippets that contain mismatched words like
“login”, “dialog”, etc. We then remove the logging code
(e.g., the code snippets for logging object initializations) which
do not generate logs. We achieve this by excluding code
snippets that contain assignments (“="). The fourth column
in Table I shows the total number of logging code changes
for the three systems. For example, there are 2,757 snippets
of logging code changes in ActiveMQ.

C. Categorizing Logging Code Changes

In general, there are two types of logging code changes: (1)
changes in the logging code due to co-changes in the feature
code; and (2) independently changed logging code. We have
developed a program to automatically identify the co-changed
logging code. Our program, which uses JDT [30], identifies the
logging code and the feature code co-changes using program
dependency analysis. We will explain our technique using a
running example shown in Figure 3.

First, the program analyzes the changed feature code to
identify the modified entities (e.g., updates to function Foo

TestBackpressure.java
Revision: 803762
1ong|‘Ey'Ee‘sFeF$e‘c_}= Long.valueOf(stat.split(" ")[3]) / SLEEP_SEC / 1000; |

Syste_m._ou_t._p?i_ntln("data rate was " +!_b_y?e?PEr§e_c_!+ " kb /second");

Revision: 806335
long jkbytesPersecl= Long.valueOf(stat.split(" ")[3]) / TEST_DURATION_SECS / 1eee;|

(a) An example of the logging code co-changed with feature code

ActiveMQSession.java
Revision: 1071259
Transaction Rollback"); |
Revision: 1143930

[LoG. debug(getSessionId() + "

LOG.debug(getSessionId() + " Transaction Rollback, [BAdiI" +
[transactionContext .getTransactionid());1

(b) An example of the independently changed logging code

Fig. 3: An example of co-changed and independently changed
logging code.

or renaming of local variable bar, etc.). For example, the
variable bytesPerSec is updated to kbytesPerSc in
Figure 3(a). Then, the program categorizes various changed
components of the logging code. In Figure 3(a), only the
dynamic content, variable bytesPerSec, is updated. Finally,
the program tries to match the categorized changed compo-
nents in the logging code to the modified entities in the feature
code. If all the changed components in a snippet of logging
code can be matched to the modified entities in the feature
code, this snippet of logging code is considered as being co-
changed with the feature code. For changes in the static texts,
after filtering out the common words (e.g., “the”, “a”, etc.), we
tokenize the changes into an array of words. If we can match
all the changed words in the static texts and all the changed
components in the dynamic contents to modified feature code
entities, we consider this code snippet as co-changed logging
code. For the logging code example show in Figure 3(a), as
the only change in the logging code is a variable update and
we can find the matching modified entity in the feature code,
it is considered to be a snippet of co-changed logging code.

The remaining set of logging code changes are indepen-
dently changed logging code, as one or multiple changed
components cannot be matched with corresponding mod-
ified feature code entities. In Figure 3(b), method invo-
cation transactionContext.getTransactionId()
and static text “txid” are added to provide more execution
context. As there is no corresponding feature code changes,
it is a snippet of independently changed logging code. We
have randomly sampled 377 instances of logging code changes




which corresponds to a 95% confidence level and +5%
confidence interval. Our method achieves a precision of 97%.
The reason for the 3% misclassification is mainly due to some
co-changed textual changes cannot matched exactly word-by-
word to the modified changed entities. For example, the words
“resizable” and “array” in the static texts cannot be exactly
matched with the updated variable “resizeableArray”. The last
column in Table I shows the number of independently changed
logging code and their percentage with respect to the total
number of logging code changes. For example, there are only
2,843 instances of independently changed logging code in
Hadoop. This corresponds to 28.2% (% x 100%) of the
total logging code changes.

D. Manual Analysis

Our hypothesis is that such independently changed logging
code is usually for addressing anti-patterns issues. To validate
our hypothesis, we have manually gone through 352 pairs
of independently changed logging code. This corresponds to
a confidence level of 95% with a confidence interval of £
5%. We use the stratified sampling technique [31] to ensure
representative samples are selected and studied from each
project. The portion of the sampled code snippets from each
project is equal to the relative weight of the total number
of independently changed logging code for that project. For
example, there are 943 snippets of independently changed
logging code in Maven out of a total of 4,357 from all
three projects. Hence, 76 (% x 352) snippets are selected
for Maven. For each of the selected code snippet, we have
carefully compared the selected and the previous revisions to
understand the rationales behind the logging code changes.

Table II shows the results of our manual analysis. It contains
a total of nine reasons for independently changing the logging
code. Each row in the table corresponds to one particular type
of rationale. It contains the description and the number of
instances found in the three studied systems. If we cannot find
any instances of one rationale for that system, we indicate
that cell as “-”. The nine different rationales belong to two
different categories: “what-to-log” and “how-to-log”. As this
dataset only contains the changes to the existing logging code,
there are no logging code changes in the category of “where-
to-log”. There are a few instances in the row of “Others”, as we
cannot find the reasons for those changes. We have found four
rationales of logging code changes in the category of “what-
to-log”. They take up more than 70% of the sampled code
snippets. This shows the importance of studying the problem
of “what-to-log” [20], [32]. Since this is not the focus of this
paper, we will not further expand our analysis in this category.

There are five rationales in the category “how-to-log”. Each
corresponds to the different fixes to the anti-patterns in the
logging code. Among these three systems, Hadoop has the
largest number of instances in each rationale. This is not an
indication of lower quality logging code in Hadoop, as the logs
from Hadoop are actively being monitored and analyzed [33].

TABLE II: Our manual analysis results on the independently
changed logging code.

Category Rationale Hadoop ActiveMQ Maven
Adding more context 81 27 31
Clarifying/correcting contents 62 7 17

What-to-log Fixing typos in the static texts 14 2 11
Removing redundant info 13 4 3

Checking nullable variables 12 - -

Removing object casting 3 - -

How-to-log  Correcting logging levels 3 - 2
Refactoring logging code 33 4 7

Changing output format 3 - -

Others - 6 2 5
Total - 230 46 76

Rather, it is because the size of LOC and LLOC! in Hadoop
is much bigger than ActiveMQ and Maven. In Section V,
we have investigated in more details on the relation among
LOC, LLOC and the number of anti-pattern instances. Log
refactoring is a common rationale among all three systems.
This shows that developers from all three systems are making
an effort to improve the maintainability of their logging code.

To characterize the anti-patterns in the logging code, we
have analyzed the code revisions before the independently
changed logging code. We will describe the details of these
anti-patterns in the next section.

IIT. ANTI-PATTERNS IN THE LOGGING CODE

In the previous section, we have found five different ratio-
nales dedicated for fixing and improving the maintainability
of the logging code (“How-to-log”). In this section, we will
describe the anti-patterns in the logging code by studying
the source code before these fixes. In general, as shown in
Figure 4, there are five categories of anti-patterns in the
logging code, corresponding to the five rationales that we have
found. For each category of anti-patterns, we show an example
code snippet extracted from real-world systems. There is one
anti-pattern in each category, except in “Logging code smells”,
as there are two different types of logging code smells found in
our manual analysis. Hence, in total, there are six anti-patterns
in the logging code.

In sections III-A, III-B, III-C, III-D and II-E, we will
describe the symptoms, the impacts, and the fixes of each anti-
pattern. To ease explanation, we will use the code snippets
shown in Figure 4 as our running examples. In section III-F,
we will discuss about our logging code analysis tool, LCAn-
alyzer, which can automatically detect the six anti-patterns.

A. Nullable Objects

In the logging code, the dynamic contents are generated
during runtime. However, in some cases, the objects used in
the dynamic contents can be null. If not being careful, such
snippet of logging code would cause a NullPointerException

'In this paper, LOC means “lines of code” and LLOC means “lines of
logging code”.



Name Example
if (proxy != null && invocationHandler != null && invocationHandler instanceof Closeable) {
} else {

Nullable LOG.error("Could not get invocation handler " + invocationHandler +

objects " for proxy " +|proxyl+ ", or invocation handler is not closeable.");
¥

(a) RPC.java (Revision: 1177399)
Explicit cast |DataNode.LOG.warn("Added missing block to memory " +|(Block)diskBlockInfo}; |
(b) FSDataset.java (Revision: 1202013)
Wrong " + containerld);

[LoG info("DEBUG;--- Container FINISHED:

verbosity level

(c) FifoScheduler.java (Revision:1178631)

Duplication with a method’s definition (Dup1)

public Str‘lrgﬁetRemoteName() {

r‘etur‘nl_

}

. this.channel =
Logging
code smells 1

channel socket() getRemoteSoc

public SocketTransceiver(SocketChannel channel) {

cMmﬂ______________________

LOG.info("open to - dkhannel socket() getRemoteSocketAddress(xz

ketAddress() toStrlng(

1)

(d) SocketTransceiver.java (Revision:798646)

Duplication with a local variable’s definition (Dup2)

remoteAddress = |-s -ge?cRemoteSoc ketAddre r‘essTrtoSt rlﬁgT)"

LOG.warn("Invalid access token in request from
+ ErgtRendtesocketAddress O +

" for replacing block " + block);

(e) DataXceiver.java (Revision' 802264)

LOG.debug("Creating scanner over
starting at key '"

Malformed
output

+
-
+|sta
-

- N

B
rt

ytes.toString(tableName) +
Rowl+ "'");

(f) HTable.java (Revision: 656868)

Fig. 4: Code snippet examples of anti-patterns in the logging code.

and cause the system to crash. In the else block of Figure 4(a),
the object proxy can be null. Although this example will
not cause a NullPointerException, the logging code is not
informative regarding nullablity of proxy. The fix in this case
is to check the nullability of proxy and handle the output
differently.

B. Explicit Cast

Explicit casting informs the system to forcibly convert
an object into a particular type. It might cause runtime
type conversion errors and system crash. In Figure 4(b)
diskBlockInfo was explicitly casted as the Block type.
The fix is to remove the explicit cast and let the system decide
during runtime the type of diskBlockInfo.

C. Wrong Verbosity Level

Many systems use verbosity level to control the types of
information recorded into log files. For example, the log4j
framework [34] provides multiple verbosity levels: FATAL,
ERROR, WARN, INFO, DEBUG and TRACE. Each of these
verbosity levels can be used for different software development
activities. For example, if the verbosity level is set to be INFO,
all the logs instrumented with INFO and higher levels (a.k.a.,
FATAL, ERROR, WARN) are printed whereas lower level logs
(a.k.a., DEBUG and TRACE) are discarded. Although there
are recommended guidelines on what types of information
to record at each verbosity level [35], they are not strictly
followed by developers. This anti-pattern may cause logging
overhead and large volumes of redundant logs during log




analysis. In Figure 4(c), although the verbosity level is set to
be INFO, the static texts suggest that this snippet of logging
code is used for debugging purposes. The fix is to change the
logging level to “DEBUG”.

D. Logging Code Smells

Code smells are symptoms of bad design and implementa-
tion choices [8]. In addition to code smells, researchers define
test smells to be poor design and implementation choices when
developing test cases [36]. In a similar fashion as code smells
and test smells, in this paper, we define logging code smells to
be poor design and implementation choices when developing
the logging code. As one snippet of effective logging code con-
tains clear and easy to understand static texts, and coherent and
up-to-date dynamic contents, the resulting logging code can be
very long. Long logging snippets would hinder understanding
and increase maintenance overhead. Hence, efforts are made to
reduce the length of some long logging code snippets. Below
we describe two particular anti-patterns:

o Duplication with the Definition of Another
Method (Dupl): In Figure 4(d), the method call
channel.socket () .getRemoteSocketAddress
is functionally equivalent as getRemoteName (). The
fix is to replace this method call sequences with a shorter
method call (getRemoteName ()).

o Duplication with the Definition
Variable (Dup2): In Figure
variable remoteAddress and the method call
s.getRemoteSocketAddress () point to the
same contents in memory. The fix here is to replace
the method call sequences with the local variable
remoteAddress.

Local
local

of a
4(e), the

The result after the change is functionally equivalent, but
shorter logging code.

E. Malformed Output

Some objects do not have a human readable format defined.
If they are printed directly, the logs can be malformed. In
Figure 4(f), the variable startRow is a byte array, which
does not have human readable format defined. The fix is to
call Bytes.toString () method to properly format the
variable startRow before printing.

F. LCAnalyzer

To evaluate the usefulness of our findings, we have imple-
mented a tool called LCAnalyzer, which automatically scans
the source code to detect the six aforementioned anti-patterns
in the logging code. LCAnalyzer, which is a static code
analyzer implemented using JDT [30], flags the anti-patterns in
the logging code using ASTs. For example, to check whether
one logging code snippet contains the Dup2 anti-pattern: we
first identify the method which contains this logging code.
Then, in this method we extract all the variable declaration
statements and variable assignment statements before this
logging code. If there are at least one method invocation
sequences in this logging code snippet matched with one of
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Fig. 5: The recall and precision of LCAnalyzer.

the variable declarations or assignments, this code snippet will
be flagged as containing the Dup2 anti-pattern.

We have conducted two different case studies in this paper.
In section IV, we evaluate the performance of LCAnalyzer. In
section V, we have applied LCAnalyzer on the most recent
releases of ten different open source software systems to
evaluate the generalizability of our anti-patterns and to gather
developer feedback.

IV. EVALUATING THE PERFORMANCE OF LCANALYZER

Here we present our first case study, which is to evaluate the
performance of LCAnalyzer. Sections IV-A and I'V-B describe
our process of evaluating the recall and the precision of
LCAnalyzer, respectively.

A. Evaluating the Recall of LCAnalyzer

Constructing the Oracle Dataset: Unfortunately, there is no
readily available oracle dataset which contains the verified in-
stances of the anti-patterns in the logging code. To evaluate the
performance of LCAnalyzer, we have built an oracle dataset
by ourselves. The first author of this paper randomly selected
a set of files from historical releases of three studied projects
(ActiveMQ, Hadoop and Maven). Some of these files contain
snippets of the verified anti-patterns (fixed by developers in the
later revisions). In addition to these verified code snippets, the
first author also manually went through every line of logging
code in case there are any missing anti-patterns instances that
are not addressed by the open source developers. The process
was repeated until there are at least three verified instances
of each type of anti-patterns. This process lasted for 2 weeks.
Then, this set of files were handed over to a Master student
(MScl), who has no prior knowledge of logging code anti-
patterns. Before MScl started examining the content of these
files, he was only presented with the definitions of six anti-
patterns of logging code. The anti-pattern detection algorithm
and the goal of the experiment were not disclosed to him. The
results between the first author and the MScl were compared
and reconciled. The final resulting oracle dataset contains over
60 verified instances of anti-patterns.

Recall Results: We have applied LCAnalyzer on the oracle
dataset. The blue dotted bars in Figure 5 show the recall
results. In general, LCAnalyzer can detect 309 anti-pattern



LOG.info("Caught an AmazonClientException, which means the client encountered " +

"a serious internal problem while trying to communicate with S3, " +

"such as not being able to access the network.");

Fig. 6: An example code snippet that is a logging anti-pattern
but LCAnalyzer fails to flag.

JobStateLol_dS_ta_ts'F getState();
try {

getStateMachine().doTransition(event.getType(), event);
} catch (InvalidStateTransitonException e) {

LOG.info(jobId + "Job Transitioned from " + oldState + "

i

(a) Unexpected variable update

brivate void logEditsLocally(long firstTxId, int numTxns, lbyte[] datal {

editLog.logEdit(data.length, Id;a’;

(b) Intentional logging of byte arrays

Fig. 7. Code snippets that LCAnalyzer mistakenly flags as
logging anti-patterns.

instances, as the recalls among all types of anti-patterns are
80% and above. In particular, LCAnalyzer can detect all
the anti-pattern instances in Dup2, Explicit cast, Malformed
output, and Nullable objects.

In one logging code snippet, it includes a function call
from one external library. As LCAnalyzer cannot extract the
definition of that function, it misses two instances of Dupl.
The reason for 80% recall in “Wrong verbosity level” is
because LCAnalyzer uses an AST-based detection approach
and it cannot understand the sentiment of the logging code.
Figure 6 shows one such example. Although the verbosity
level is INFO, the static texts (“a serious internal
problem”) suggest that the verbosity level should be WARN,
ERROR or FATAL instead.

We have also calculated the average recall of LCAnalyzer,
by averaging the recall values across six anti-patterns. The
overall average recall for LCAnalyzer is 95%.

B. Evaluating the Precision of LCAnalyzer

To calculate the precision, we have manually examined
all of our detected anti-pattern instances from our oracle
dataset. The bars with red diagonal lines in Figure 5 show the
precision results. There are two main reasons for the relative
low precision for LCAnalyzer:

1) Unexpected variable update: Although some variables
are defined in the same way as the method invocation
sequences contained in the logging code, the values
of these variables were modified. Figure 7(a) shows
a falsely identified case of DUP2. oldState is
defined as getState () at the beginning. However,
it was later modified by the method sequences
getStateMachine () .doTransition (event.
getType (), event).Hence, getState () cannot
be replaced by oldState in the logging code.

2) Intentional logging: Although some snippets of logging
code contain the symptoms of the anti-patterns, devel-

TABLE III: The ten studied open source systems and their
release information.

Domain Name Version LOC LLOC Aspect)?
CloudStack 49.0 572,461 11,433 Yes
Server Hadoop 2.7.2 954,484 12,570 No
erve HBase 122 433,709 7466 No
Tomcat 8.5.4 303,922 2,927 No
ArgoUML 0.35.1 198,035 1,400 Yes
Client jEdit 5.3.1 122,061 752 No
Maven 3.3.9 78,525 400 No
Middleware/ ActiveMQ 5.14.0 385,293 6,211 No
framework Camel 2.17.3 803,039 7,369 Yes
GWT 2.8.0RC2 756,374 1,550 No

opers perform these actions intentionally. Figure 7(b)
shows an example of falsely identified instances of
Malformed output. Although data is a byte array,
developers intend to output binary data in this case.
We have also calculated the average precision of LCAna-
lyzer in a similar manner as the average recall. The average
precision for LCAnalyzer is 60%.

The Case study on a verified dataset shows that our static
logging code analysis tool, LCAnalyzer, can be used to suc-
cessfully detect anti-pattern instances in the logging code.
To further improve the performance of our tool, researchers
can look into other techniques (e.g., data flow analysis or
natural language processing) to encode and detect the anti-
patterns.

V. DETECTING ANTI-PATTERNS IN THE OPEN SOURCE
SOFTWARE SYSTEMS

As the case study in the previous section shows satisfactory
performance of LCAnalyzer, we apply this tool on the latest
releases of ten different open source software systems. Our
goal is to see how generalizable our characterized anti-patterns
are. Table III shows the list of studied releases and their details.
All these systems are actively maintained and used by millions
of users worldwide. We have included the three studied
systems in Section II, as we want to check whether the six
anti-patterns still exist in their latest releases. In addition, we
have also included other systems, especially systems not from
Apache Software Foundation, to check the generalizability
of our anti-patterns. Among these ten selected systems, four
systems belong to the Server domain, three systems are from
the Client domain and the remaining three systems are from
the Middleware/framework domain.

The last two columns in Table III show the total lines
of source code (LOC) and lines of logging code (LLOC)
for each system. In general, the systems in the Server and
the Middleware/framework domains contain more LOC and
LLOC than systems in the Client domain. In addition, there is
a strong correlation (a Spearman correlation value of 0.71)
between LOC and LLOC indicating that larger code base
implies more logging code. Three (CloudStack, ArgoUML and
Camel) out of the ten studied systems also use Aspect] as part



of their logging solutions. However, these systems still contain
hundreds or thousands of lines of logging code. There is no
relation between the amount of logging code and whether the
systems use Aspect] or not.

We have applied LCAnalyzer on the latest releases of
the aforementioned ten systems. Our detection results are
tabulated in Table IV. Each row corresponds to one system and
each column refers to the number of instances for that anti-
pattern. For example, Hadoop contains 8 instances of “Wrong
verbosity level” which is 3.8% (%*100%) of the total number
of detected anti-patterns instances (210). In general, all ten
systems contain anti-pattern instances. In particular, the two
anti-patterns (Dupl and Dup2) in the category of “Logging
code smells” contain the biggest number of instances in nine
out of ten systems (except Maven). Although developers have
already addressed many of the past anti-pattern instances in
Hadoop, ActiveMQ and Maven, there are still many instances
in their latest releases.

The systems in the Server and Middleware/Framework do-
mains contain more anti-pattern instances than systems in the
Client domain. However, these systems also contain more lines
of code. Hence, in order to investigate the relation between
the amount of anti-pattern instances and the size of systems,
we have calculated the Spearman correlation values between
the total number of anti-pattern instances for each type of
anti-pattern and LLOC. We denoted this as corr(LLOC, x)
in the second last row of Table IV, in which “x” refers to
a particular type of anti-pattern. For example, the correlation
between LLOC and Dupl is 0.87. This correlation value is
bolded due to its statistical significance (a.k.a., p-value <
0.05). Similar calculations are done between the anti-patterns
and LOC. The results are shown in the last row of Table IV.
There are medium to strong correlations between the number
of anti-pattern instances and LLOC in five out of the six anti-
patterns. This means that the larger the amount of logging
code is, the harder it is to maintain. However, we do not see
a clear connection between the anti-pattern instances and the
overall system sizes (LOC).

Our characterized anti-patterns are general, as we can find
their instances across various types of systems. There is a
medium to strong correlation between the amount of logging
code and the number of anti-pattern instances. As many
industrial and open source systems contain large volumes of
logging code [6], [10], [17], [18], this motivates the needs
of further research into best practices of developing and
maintaining high quality logging code.

Initial Feedback from Developers

We have selected 64 representative instances from ten open
source systems mentioned above and filed online issue reports
to gather developer feedback. So far, 46 instances (71.9%)
have been accepted by their developers, 12 (18.7%) are under
discussion, and 6 (9.4%) are rejected. There are two main
reasons for the rejected instances:

/%%
* Dump out contents of $CWD and the
* environment to stdout for debugging
*/

private void dumpOutDebugInfo() {

LOG.info("Dump debug output");

}

Fig. 8: LCAnalyzer considers this snippet of logging code as
an anti-pattern instance. But the Hadoop developer considered
it as “intentional logging” and rejected the issue [37].

o Intentional logging: Figure 8 shows one such example
from Hadoop. The INFO level logging code contains the
debug message. However, the developer rejected this
instance, as she indicated this was done intentionally
(“Not sure if this should change to debug level, since
the function is called intentionally ... ”).

e Developer’s openness: The developer of jEdit rejected
all the filed anti-patterns instances due to his negative
perceptions on the static analysis tools (“Please do not
submit code analysis tool results as bug.”).

72% of the reported instances have been accepted/confirmed
by their open source developers. This has clearly demon-
strated the importance and the value of this research.

VI. THREATS TO VALIDITY

In this section, we will discuss the threats to validity.

A. Internal Validity

We characterize the anti-patterns in the logging code by
focusing on independently changed logging code, as these
changes are likely the fixes to the existing logging code. Our
approach may miss some instances of logging code fixes, as
some of the co-changed logging code may be doing logging
code fixing and feature code co-evolution in one commit.
However, this might be a minor case, as previous studies [17],
[18] show that most of the logging code co-changes are for
co-evolution with feature code.

We have developed a dependency-based approach to auto-
matically select independently changed logging code. If we
can find corresponding modified entities in the feature code
for all the changed components in the logging code in one
code commit, this snippet of logging code is considered as
co-changed with the feature code. Otherwise, it is a snippet
of independently changed logging code. As our approach has
yield a relatively high precision 97%, we believe that we have
obtained most of the independently changed logging code.

B. External Validity

We have focused on characterizing and detecting logging
anti-patterns in Java-based systems. Some of our derived
findings and code anti-patterns may not be directly applicable
to systems implemented in other programming languages.



TABLE IV: Our detection results on the latest release of ten open source software systems. The Spearman correlation numbers
in the last two rows are shown in bold if they are statistically significant (p < 0.05).

Category System Wrong Dupl Dup2 Nullable Malformed Explicit Total Total
verbosity level objects outputs cast anti-patterns  log lines
ClouStack 0 (0.0%) 125 (42.7%) 91 (31.1%) 17 (5.8%) 57 (19.5%) 3 (1.0%) 293(2.6%) 11,433
Server Hadoop 8 (3.8%) 113 (53.8%) 59 (28.1%) 10 (4.8%) 5 24%) 15 (7.1%) 210 (0.7%) 28,616
HBase 0 (0.0%) 95 (61.7%) 36 (23.4%) 7 (4.5%) 15 (9.7%) 1 (0.6%) 154(2.1%) 7,466
Tomcat 2 (6.5%) 8 (25.8%) 12 (38.7%) 3 (9.7%) 3 (9.7%) 3 (9.7%) 31(1.1%) 2,927
ArgoUML 0 (0.0%) 4 (20.0%) 6 (30.0%) 8 (40.0%) 0 (0.0%) 2 (10%) 20(1.4%) 1,400
Client jEdit 0 (0.0%) 2 (20.0%) 5 (50.0%) 3 (30.0%) 0 (0.0%) 0 (0.0%) 10 (1.3%) 752
Maven 4 (28.6%) 8 (57.1%) 1 (7.1%) 1 (7.1%) 0 (0.0%) 0 (0.0%) 14 (3.5%) 400
Middleware/ ActiveMQ 4 (5.3%) 31 (41.3%) 26 (34.7%) 10 (13.3%) 3 (4.0%) 1 (1.3%) 75(1.2%) 6,211
Framework Camel 2 (2.7%) 21 (284%) 21 (28.4%) 5(6.8%) 20 (27.0%) 5 (6.8%) 74(1.0%) 7,369
GWT 4 (7.0%) 41 (71.9%) 11 (19.3%) 1 (1.8%) 0 (0.0%) 0 (0.0%) 57(3.7%) 1,550
corr(LLOC, x) - 0.27 0.87 0.90 0.78 0.65 0.71 - -
corr(LOC, x) - 0.53 0.61 0.54 0.29 0.29 0.70 - -

However, we feel that our history-based approach to char-
acterize logging anti-patterns is generic and can be used to
study the anti-patterns in the logging code developed in other
programming languages (e.g., C or .NET).

We have characterized six different anti-patterns in the
logging code by studying the historical changes in three
popular open source systems: ActiveMQ, Hadoop and Maven
in Apache Software Foundation. We have picked these systems
due to the following two reasons: (1) they come from different
application domains (Middleware, Server and Client) and (2)
these three systems are actively maintained. All the committed
source code has been carefully peer-reviewed [25]. We start
our anti-pattern characterization process from Hadoop, and
then move on to ActiveMQ and Maven. We have noticed that
no additional anti-patterns have been identified in ActiveMQ
and Maven. Furthermore, the case study in Section V shows
that these anti-patterns also exist in many other non-Apache
open source systems. This gives us some confidence in terms
of the generalizablility of the anti-patterns. However, our
catalog of anti-patterns may not be complete. We plan to
address this problem by looking into other analysis approaches
and studying more systems in the future.

C. Construct Validity

As there is no existing benchmarking dataset for anti-
patterns in the logging code, we have built an oracle dataset
ourselves to evaluate the performance of LCAnalyzer. The
dataset, which has been compiled and verified by two different
persons, contains the verified instances of anti-patterns in the
logging code. These two persons include the first author of the
paper and another Master student who has no prior knowledge
of logging code anti-patterns. Our process of building the
oracle dataset is similar to many other papers (e.g., [38], [39],
[40]). However, we acknowledge that our oracle dataset may
be incomplete (a.k.a., missing some anti-pattern instances).

VII. RELATED WORK

There are three areas of research related to this paper: (1)
empirical studies on the existing logging practices, (2) tools

for understanding, developing and maintaining logging code,
and (3) code smells and refactoring.

A. Empirical studies on the existing logging practices

Industry studies show that there are no well-defined best
practices to guide developers on developing and maintaining
the logging code [10], [11]. Hence, it is worthwhile to study
the logging practices of existing systems and learn from them.

Yuan et al. [17], [18] conducted a quantitative study on
the logging code of several large-scale open source software
systems. They have found that developers are constantly
making an effort to improve the quality of their logging code.
Shang et al. [29] studied the relation between the spread of the
logging code and system quality. They found that log related
metrics (e.g., log density) were strong predictors of post
release defects. Kabinna et al. [32] performed a quantitative
study on the rationale of logging code changes. They built
a data mining classifier to model the historical logging code
changes. Their study showed that file ownership, developer
experience, log density, and SLOC are important factors for
deciding whether a snippet of logging code needs to be
changed. Kabinna et al. [13] studied the migrations of logging
libraries of several systems. They found that systems migrate
their logging libraries to gain additional functionalities, to
improvement maintainability, and to enhance performance.
Over 70% of the migrated systems suffer from migration bugs
afterwards.

Our work is different from the above works, as we focus on
studying the rationales behind independently changed logging
code. Our qualitative study on the logging code has resulted
in six anti-patterns in the logging code, which can be used to
detect and improve the quality of existing logging code.

B. Tools for better understanding, developing and maintaining
logging code

We further divide this area of research into three categories:

o Where-to-log tackles the problem of where to place the

logging points. Yuan et al. [2] proposed a program

analysis-based approach to inferring additional logging



points to assist debugging. Fu et al. [10], [19] used a data
mining-based approach to automatically identifying the
important factors impacting the locations of the logging
points. Ding et al. [12] used a constraint solving-based
method to determine, during runtime, the optimal logging
points which incur minimum performance overhead but
maximum runtime information.

o What-to-log tackles the problem of adding sufficient run-
time execution information. Yuan et al. [20] proposed a
program analysis-based approach to suggesting additional
variables to be added into the existing logging points to
facilitate error diagnosis.

e How-to-log tackles the problem of developing and main-
taining high quality logging code. Kiczales et al. [15] pro-
posed Aspect Oriented Programming (AOP) to automat-
ically develop and maintain the logging code. However,
there are still many open source and industry systems
which place the logging code along side with the feature
code. In this aspect, only Yuan et al. partially studied this
problem in [18]. They used a clone detection-based ap-
proach to automatically identifying inconsistent verbosity
levels. Our paper is the first work which systematically
studies the problem of “How-to-log” by characterizing
and detecting the anti-patterns in the logging code.

C. Code smells and refactoring

Code smells are symptoms of bad design and imple-
mentation choices [8]. Code smell can increase change/fault
proneness and decrease program understandability [41], [42].
There are various approaches to automatically detecting code
smells in the source code (e.g., AST-based approach [40],
[43]), history-based approach [39], [44] and text mining-based
approach [45]).

In addition to code smells, researchers define test smells to
be poor design and implementation choices when developing
test cases [36]. Studies also show that test smells have a strong
negative impact on program comprehension and software
maintenance [46]. Van Rompaey et al. [47] proposed a metric-
based technique to detect test smells.

In this paper, we have found that one of the top rationales of
independently changed logging code is about log refactoring.
Hence, we define the logging code smells as poor design and
implementation choices when developing the logging code.
We have proposed two symptoms of the logging code smells:
Dupl and Dup2. Both symptoms are to address the problems
of: (1) duplication in logging code, and (2) long logging code.
This paper is the first work which proposes the idea of logging
code smells and their symptoms.

VIII. CONCLUSIONS AND FUTURE WORK

Developers instrument their systems with logging code to
gain insights about the systems’ runtime behaviour. It is
challenging to develop and maintain high quality logging
code due to the lack of well-defined coding guidelines. In
this paper, we have characterized six anti-patterns in the
logging code by carefully studying the development history of

three open source software systems from different application
domains: ActiveMQ, Hadoop and Maven. To demonstrate the
usefulness of our findings, we have developed LCAnalyzer,
which statically scans through the source code searching for
anti-pattern instances. Case studies show that LCAnalyzer,
which has a high recall (95%) and a satisfactory precision
(60%), can detect many anti-pattern instances in ten different
open source software systems. We have filed a few selective
instances to their issue tracking systems. So far, we have
received very positive feedback from the Hadoop and the
Tomcat developers.

Verifiability: We have provided a data package to support
independent verification or replication of our study [23]. The
package consists of three sets of data:

1) The Characterization Dataset contains the set of man-
ually examined independently changed logging code
snippets and our analysis results.

2) The Oracle Dataset contains the list of source code files
and our verified instances of anti-patterns in the logging
code.

3) The Anti-pattern Instances Dataset contains the list
of anti-pattern instances detected by LCAnalyzer for the
recent releases of ten open source software systems. In
addition, the filed anti-pattern instances, the issue IDs
and their current status are also included.

In the future, we want to improve the precision of LCAna-
lyzer by incorporating additional analysis techniques (e.g., data
flow or natural language processing). In addition, we plan to
expand our anti-pattern catalog of logging code by studying
the development history of other systems (e.g., smartphone
applications or industry systems). Finally, we also want to
solicit more feedback from developers in terms of what are
other good/bad logging code practices.
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