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ABSTRACT
Research studying the quality of software applications continues to
grow rapidly with researchers building regression models that com-
bine a large number of metrics. However, these models are hard to
deploy in practice due to the cost associated with collecting all the
needed metrics, the complexity of the models and the black box
nature of the models. For example, techniques such as PCA merge
a large number of metrics into composite metrics that are no longer
easy to explain. In this paper, we use a statistical approach recently
proposed by Cataldo et al. to create explainable regression mod-
els. A case study on the Eclipse open source project shows that
only 4 out of the 34 code and process metrics impacts the likeli-
hood of finding a post-release defect. In addition, our approach is
able to quantify the impact of these metrics on the likelihood of
finding post-release defects. Finally, we demonstrate that our sim-
ple models achieve comparable performance over more complex
PCA-based models while providing practitioners with intuitive ex-
planations for its predictions.

1. INTRODUCTION
A large portion of software development costs is spent on main-

tenance and evolution activities [1, 2]. Fixing software defects is
one area that takes up a large amount of this maintenance effort.
Therefore, practitioners and managers are always looking for ways
to reduce the bug fixing effort. In particular, they are interested in
identifying which parts of the software contain defects, to achieve
short term goals, such as prioritizing the testing efforts for the fol-
lowing releases. In addition, practitioners are interested in un-
derstanding the main factors that impact these defects, to achieve
longer term goals, such as driving process improvement initiatives
to deliver better quality software.

An extensive body of work has focused on finding the fault-prone
locations in software systems. The majority of this work builds
prediction models that predict where future defects are likely to oc-
cur. The work varies in terms of the domains covered (i.e., open
source [3, 4] vs. commercial software [5–7]), in terms of the met-
rics used to predict the defects (i.e., using process [3] vs. code
metrics [4]) and in terms of the types of defects it aims to predict
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for (i.e., pre-release [6] vs. post-release [4] or both [8]).
At the same time, these prediction models are becoming more

and more complex over time. New studies are investigating more
aspects that may help improve prediction accuracy, which leads to
more metrics (i.e., independent variables) being input to the predic-
tion models.

Although adding more metrics (i.e., independent variables) to the
prediction models may increase the overall prediction accuracy, it
also introduces some negative side effects. First, it makes the mod-
els more complex and therefore, makes them less desirable to adopt
in practical settings. Second, adding more independent variables to
the prediction model makes determining which independent vari-
ables actually produce the effect (i.e., impact) on post-release de-
fects more complicated (due to multicollinearity [9]). The afore-
mentioned problems turn the complex prediction models into black-
box solutions that can be used to know where the defects are, but
do not provide insight into the underlying reasons for what impacts
the defects. The black-box nature of such models bug prediction is
a major hurdle in the adoption of these models in practice.

The goal of our study is to use the code and process metrics
previously used to build complex prediction models and to narrow
this set of metrics to a much smaller number that can be used in a
logistic regression model to understand what impacts post-release
defects. Understanding what impacts post-release defects can be
leveraged by practitioners to drive process changes, build better
tools (e.g., monitoring tools) and drive future research efforts.

We apply a statistical approach, recently proposed by Cataldo et
al. [5], to identify statistically significant and minimally collinear
metrics (i.e., independent variables in a logistic regression model)
that impact post-release defects. In addition, we use odds ratios to
quantify the impact of these independent variables on the depen-
dent variable, post-release defects. For example, we quantify the
increase in the likelihood of finding post-release defects if a file
increases in size by 100 lines.

We formalize our work in the following research questions:

Q1 Which code and process metrics impact the post-release de-
fects? Do these metrics differ for different releases of Eclipse?

Q2 By how much do the metrics impact the post-release defects?
Does the level of impact change across different releases?

To evaluate our approach, we perform a case study on the Eclipse
project. We were able to identify a small set (3 or 4 out of 34) of
the independent variables that explain the majority of the impact on
the dependent variable, post-release defects.

We also examine the predictive and explanative powers of the
models built using the minimal set of independent variables. The
results show that the simple logistic regression models built using
our approach (i.e. using the small set of 3 or 4 independent vari-
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ables) achieve prediction and explanative results that are compara-
ble to the more complex models that use the full set (i.e., 34) of
independent variables.

The rest of the paper is organized as follows. Section 2 presents
the related work. Section 3 describes our approach and the data
used in our study. We present the case study results and the re-
search questions posed in Section 4 and follow with a discussion
and comparison of the models built using our approach in Section 5.
Section 6 presents the threats to validity and Section 7 concludes
the paper.

2. RELATED WORK
The majority of the related work comes from the area of defect

prediction. Most of these efforts build multivariate logistic regres-
sion models (e.g., [3–5,10]) to predict faulty locations (e.g., files or
directories). We divide the related work into two categories, based
on the type of metrics used: code metrics and process metrics.

2.1 Using Code Metrics
Ohlsson and Alberg [11] use metrics that were automatically de-

rived from design documents to predict fault-prone modules. Their
set of metrics also included McCabe’s cyclomatic complexity met-
ric [12]. They performed their case study on a Ericsson Telecom
software system and showed that based on design and fault data,
one can build accurate prediction models, even before any coding
starts. Basili et al. [13] used the Chidamber and Kemerer (CK) met-
rics suite [14] to predict class fault-proneness in 8 medium-sized in-
formation management systems. Subramanyam and Krishnan [15]
performed a similar study (using the CK metrics) on a commer-
cial system and Gyimothy et al. [16] performed a similar analysis
on Mozilla. Their studies confirmed the findings by Basili’s study.
El Emam et al. [17] used the CK metrics, in addition to Briand’s
coupling metrics [18] to predict faulty classes. They reported high
prediction accuracy of faulty classes using their employed metrics.
Nagappan and Ball [6] used a static analysis tool to predict the
pre-release defect density of the Windows Server 2003. In another
study, Nagappan et al. [19] predicted post-release defects, at the
module level, using source code metrics. They used 5 different
Microsoft projects to perform their case study and found that it is
possible to build prediction models for an individual project, but
no single model can perform well on all projects. Zimmermann et
al. [4] extracted an extensive set of source code metrics and used
them to predict post-release defects.

The majority of the work that use code metrics to predict defects
leverage multiple metrics. Some of this work recognize the possi-
bility of multicollinearity problems, and therefore, employe PCA
(e.g. [6,19]). Although PCA may reduce the complexity of the pre-
diction model, it does not necessarily reduce the number of metrics
that need to be collected. In addition, once PCA is applied, it is
difficult to directly map the independent variables to the dependent
variable, since the PCs are linear combinations of many indepen-
dent variables.

2.2 Using Process Metrics
Other work use process metrics, such as the number of prior de-

fects or prior changes to predict defects. Graves et al. [20] showed
that the number of prior changes to a file is a good predictor of
defects. They also argued that change data is a better predictor
of defects than code metrics in general. Studies by Arisholm and
Briand [21] and Khoshgoftaar et al. [22] also reported that prior
changes are a good predictor of defects in a file. Hassan [3] used

the complexity of a code change to predict defects. He showed that
prior faults is a better predictor of defects than prior changes. He
then showed that using the entropy of changes is a good predictor
of defects. Moser et al. [23] showed that process metrics perform
better than code metrics, to predict post-release defects in Eclipse.
They also reported that for the Eclipse project, pre-release defects
seem to perform extremely well in predicting post-release defects.
Yu et al. [24] also showed that prior defects are a good indicator of
future defects.

The previous work using process metrics highlighted two metrics
that seemed to perform well: prior changes and prior bug fixing
changes. In our work, we annotated Zimmermann’s Eclipse data set
with the well-known historical predictors of defects, prior changes
and prior bug fixing changes.

Our work differs from previous work, in that we focus on study-
ing the impact of code and process metric on post-release defects,
rather than predict where the post-release defects are. We use sta-
tistical techniques to identify a small, statistically significant and
minimally collinear, set of the original metrics that impact post-
release defects. We also quantify the impact of these metrics on
post-release defects.

3. APPROACH
In this section, we detail the steps of our approach, shown in Fig-

ure 1. Our approach is inspired by the previous work by Cataldo
et al. [5]. In a nutshell, our approach takes as input an extensive
list of all code and process metrics (34 metrics). Then, we build
a logistic regression model and analyze the statistical significance
and collinearity characteristics of the independent variables (i.e.,
metrics) used to build the model. We eliminate the statistically in-
significant and highly collinear independent variables, which leaves
us with a much smaller (3 or 4 metrics) set of statistically signifi-
cant and minimally collinear independent variables. The small set
of metrics is then used to build a final logistic regression model,
which we use to understand the impact of these metrics on post-
release defects.

Each step of our approach is discussed in detail in the following
subsections.

3.1 Collection and Description of Input Met-
rics

We use a number of metrics to study their impact on post-release
defects. We acquired the latest version (i.e., 2.0a) of the publicly
available Eclipse data set provided by Zimmermann et al. [4]. Zim-
mermann’s data set contain a number of code metrics, as well as pre
and post-release defects. We annotate the data set with the well-
known process metrics: the total number of prior changes (TPC)
and prior bug fixing changes (BFC).

The process metrics were extracted from the CVS [25] reposi-
tory of Eclipse. We used the J-REX [26] tool, a code extractor for
Java-based software systems, to extract the annotated process met-
rics. The J-REX tool obtains a snapshot of the Eclipse CVS repos-
itory and groups changes into transactions using a sliding window
approach [27]. The CVS commit comments of the changes are ex-
amined and key words such as “bug”, “fix”, etc. are used to identify
the bug fixing changes. A similar approach was used by Moser et
al. [23] to classify bug fixing changes.

A total of 34 different metrics (shown in Table 2) were extracted
for three different releases of Eclipse – versions 2.0, 2.1 and 3.0.
All of the extracted metrics were mapped to the software locations
at the file level. We list the metrics used and provide a brief de-
scription in the following subsections.
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Figure 1: Approach overview

3.1.1 Process Metrics
Numerous previous studies by [3,20,23] show that process met-

rics perform well to predict software defects. In this subsection, we
highlight the process metrics used in our study.
1. Total Prior Changes (TPC): Measures the total number of
changes to a file in the 6 months before the release. Previous work
by Moser et al. [23] and Graves et al. [20] showed that the total
number of changes is a good indicator of future defects.
2. Prior Bug Fixing Changes (BFC): The number of bug fixing
changes done to a file in the 6 months before the release. This
metric is extracted from the CVS repository exclusively. Previous
work by Yu et al. [24] and Hassan [3] showed that the number of
previous bug fixing changes is a good indicator of future defects.
3. Pre-release defects (PRE): The number of pre-release defects
in a file in the 6 months before the release. Zimmerman et al. used
a pattern matching approach that searches for defect identification
numbers in source control change comments and used the defect
identifiers to classify the changes as bug fixing changes [4].
4. Post-release defects (POST): The number of post-release de-
fects in a file in the 6 months after the release [4]. This metric is
used as the dependent variable in our logistic regression models.

3.1.2 Code Metrics
An extensive set of code metrics was obtained from the Promise

data set provided by Zimmermann et al. [4]. The majority of the
metrics are complexity metrics that have been successfully used in
the past [4, 23] to predict post-release defects. We list, and briefly
explain the different code metrics used in our study:
1. Total Lines of Code (TLOC): Measures the total number lines
of code of a file.
2. Fan out (FOUT): Measures the number of method calls of a
file. Three measures are provided for FOUT, avg, max and total.
3. Method Lines of Code (MLOC): Measures number of method
lines of code. Three measures are provided for MLOC, avg, max
and total.
4. Nested Block Depth (NBD): Measures the nested block depth
of the methods in a file. Three measures are provided for NBD,
avg, max and total.
5. Number of Parameters (PAR): Measures the number of pa-
rameters of the methods in a file. Three measures are provided for
PAR, avg, max and total.
6. McCabe Cyclomatic Complexity (VG): Measures the McCabe
cyclomatic complexity of the methods in a file. Three measures are
provided for VG, avg, max and total.
7. Number of Fields (NOF): Measures the number of fields of the
classes in a file. Three measures are provided for NOF, avg, max
and total.
8. Number of Methods (NOM): Measures the number of methods
of the classes in a file. Three measures are provided for NOM, avg,

max and total.
9. Number of Static Fields (NSF): Measures the number of static
fields of the classes in a file. Three measures are provided for NSF,
avg, max and total.
10. Number of Static Methods (NSM): Measures the number of
static methods of the classes in a file. Three measures are provided
for NSM, avg, max and total.
11. Anonymous Type Declarations (ACD): Measures the number
of anonymous type declarations in a file.
12. Number of Interfaces (NOI): Measures the number of inter-
faces in a file.
13. Number of Classes (NOT): Measures the number of classes in
a file.

3.2 Model Building
We are interested in finding out the files that are likely to have

one or more post-release defects. Logistic regression models are
generally used for this purpose. A logistic regression model corre-
lates independent variables with a discrete dependent variable. In
our case, the independent variables are the collection of code and
process metrics and the dependent variable is a two-value variable
that represents whether or not a file has one or more post-release
defects. The model outputs the likelihood of a file to have one or
more post-release defects.

We use the glm command in the R statical package [28] to build
the logistic regression model. R provides us with a few tools that
we can use to analyze the statistical characteristics of the model we
build. We leverage these tools to study the statistical significance
and collinearity attributes of the independent variables used to build
the model.

Initially, we build a multivariate logistic regression model using
all 34 metrics as the independent variables. Then, we perform an
iterative process where we remove the statistically insignificant in-
dependent variables. Next, we perform a similar iterative process
to remove highly collinear independent variables from the logistic
regression model. This process is repeated until we reach a model
that only contains statistically significant and minimally collinear
independent variables.

3.2.1 Statistical Significance Analysis
We perform an analysis using R to study the statistical signif-

icance of each independent variable. We use the well known p-
value to determine the statistical significance. Since some of the
independent variables can have no statistically significant effect on
the likelihood of post-release defects, including them in the predic-
tion model may improve its overall prediction accuracy, but makes
it difficult to claim that they produce the effect that we are observ-
ing.

We remove all of the independent variables that have a p-value
greater than a specified threshold value. In this paper, we retained
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Table 1: Example Using Eclipse 3.0 Metrics
Iteration 1 Iteration 2 Iteration 7 Iteration 8

Metric P-value VIF P-value VIF ... P-value VIF P-value VIF

TLOC 7.72e-05 *** 27.754974 1.36e-07 *** 13.819629 ... < 2e-16 *** 1.366347 <2e-16 *** 1.362840
PRE < 2e-16 *** 1.319629 < 2e-16 *** 1.289907 ... < 2e-16 *** 1.275472 <2e-16 *** 1.244094
TPC 0.073345 + 2.782466 0.04729 * 2.733476 ... 0.06941 + 2.698888 0.0056 ** 1.093982
BFC 1.08e-05 *** 2.825389 3.93e-06 *** 2.782801 ... 2.27e-06 *** 2.739084 - -
ACD 0.087893 + 1.654916 0.00066 *** 1.437178 ... < 2e-16 *** 1.222093 0.0178 * 1.216477
FOUT avg 0.841697 46.585807 - - ... - - - -
FOUT max 0.382543 26.176911 - - ... - - - -
FOUT sum 0.948411 89.959363 - - ... - - - -
MLOC avg 0.204205 105.763769 - - ... - - - -
MLOC max 0.330231 42.238222 - - ... - - - -
MLOC sum 0.055794 + 211.302843 0.25559 28.082202 ... - - - -
NBD avg 0.092112 + 193.777683 0.09060 + 156.684860 ... - - - -
NBD max 0.169100 12.477594 - - ... - - - -
NBD sum 0.053443 + 1421.056428 0.03509 * 1206.186455 ... - - - -
NOF avg 0.328731 206.270137 - - ... - - - -
NOF max 0.229602 137.421047 - - ... - - - -
NOF sum 0.109088 256.810067 - - ... - - - -
NOI 0.654592 90.361904 - - ... - - - -
NOM avg 0.138702 236.364314 - - ... - - - -
NOM max 0.712747 154.720922 - - ... - - - -
NOM sum 0.383255 210.771232 - - ... - - - -
NOT 0.622797 87.947327 - - ... - - - -
NSF avg 0.312735 61.944164 - - ... - - - -
NSF max 0.762748 654.599118 - - ... - - - -
NSF sum 0.582049 608.061575 - - ... - - - -
NSM avg 0.619926 50.435605 - - ... - - - -
NSM max 0.832793 625.599123 - - ... - - - -
NSM sum 0.970193 544.627797 - - ... - - - -
PAR avg 0.646235 10.135751 - - ... - - - -
PAR max 0.003790 ** 3.793562 0.41411 1.471249 ... - - - -
PAR sum 0.115339 32.672658 - - ... - - - -
VG avg 0.020032 * 376.900050 0.05768 + 310.938499 ... - - - -
VG max 0.917081 23.922610 - - ... - - - -
VG sum 0.015354 * 1928.733922 0.02532 * 1513.000445 ... - - - -

(p<0.001 ***; p<0.01 **; p < 0.05 *; p<0.1 +)

all independent variables with p-value < 0.1. At the end of this
step, the multivariate logistic regression model only contains inde-
pendent variables that are statistically significant.

3.2.2 Collinearity Analysis
Multicollinearity can be caused by high intercorrelation between

the independent variables. The problem with multicollinearity is
that as the independent variables become highly correlated, it be-
comes more difficult to determine which independent variable is
actually producing the effect on the dependent variable. In addition
to making it difficult to determine the independent variable that is
causing the effect, multicollinearity causes higher standard error.
Therefore, it is beneficial to minimize collinearity within the inde-
pendent variables of the logistic regression model.

Tolerance and Variance Inflation Factor (VIF) is often used to
measure the level of multicollinearity. A tolerance value close to
1 means that there is little multicollinearity, whereas a tolerance
value close to 0 indicates that multicollinearity is a threat. The VIF
is the reciprocal of the tolerance. We used the vif command in
the Design package for R to examine the VIF values of all inde-

pendent variables used to build the multivariate logistic regression
model. In this paper, we set the maximum VIF value to be 2.5, as
suggested in [5].

Once we narrow down to only having statistically significant and
minimally collinear independent variables, we use these variables
to build the final logistic regression model.

To give an overview of the entire process, we provide an example
of the multivariate logistic regression model built for Eclipse 3.0 in
the next subsection.

3.3 Example
The multivariate logistic regression model used for Eclipse 3.0

is depicted in Table 1. Due to space limitations, we only include
the first 2 and last 2 iterations in the table.

We start by building the model using all 34 independent vari-
ables. An examination of the model statistics reveals that only 11
of the 34 metrics are statistically significant, as shown in the iter-
ation 1 column of Table 1. We removed the statistically insignif-
icant independent variables and re-built the model. Once again,
we examine the statistically significance of the independent vari-

4



Table 2: Descriptive Statistics of Examined Metrics
Metric Mean SD Min Max Skew Kurtosis

TLOC 123.3 233.4 3.0 4886.0 6.8 79.3
PRE 0.7 2.1 0 43 7.3 81.0
TPC 1.4 3.6 0 82.0 7.5 99.2
BFC 0.45 1.6 0 44.0 9.6 157.5
ACD 0.46 1.7 0 56.0 8.9 164.1
FOUT avg 3.0 3.6 0 60.2 3.0 22.3
FOUT max 11.2 17.0 0 334.0 5.2 55.1
FOUT sum 44.2 95.9 0 2162.0 6.3 55.1
MLOC avg 5.7 6.6 0 159.2 4.2 48.9
MLOC max 20.7 34.9 0 995.0 9.0 168.9
MLOC sum 83.9 190.5 0 4266.0 7.6 96.9
NBD avg 1.3 0.81 0 7.0 0.26 1.0
NBD max 2.4 1.9 0 17.0 0.72 0.47
NBD sum 16.9 29.7 0 621.0 5.9 62.3
NOF avg 2.5 6.3 0 355.0 24.8 1120.2
NOF max 2.9 6.7 0 355.0 20.6 848.8
NOF sum 3.1 7.1 0 355.0 18.0 681.5
NOI 0.16 0.37 0 1 1.8 1.3
NOM avg 8.5 13.3 0 284.0 7.2 90.4
NOM max 9.5 14.8 0 284.0 6.2 67.3
NOM sum 10.2 16.2 0 290.0 6.1 63.4
NOT 0.84 0.38 0 6.0 -1.4 5.1
NSF avg 2.1 18.5 0 1254.0 40.5 2287.0
NSF max 2.3 18.5 0 1254.0 39.9 2242.9
NSF sum 2.3 18.5 0 1254.0 39.9 2239.9
NSM avg 1.1 14.3 0 845.0 47.0 2443.7
NSM max 1.2 14.4 0 845.0 46.1 2380.5
NSM sum 1.2 14.4 0 845.0 46.0 2375.4
PAR avg 0.97 0.76 0 9.0 2.3 10.9
PAR max 2.3 1.8 0 30.0 2.2 13.9
PAR sum 12.1 41.7 0 2100.0 32.3 1392.9
VG avg 1.9 2.0 0 68.5 7.0 155.9
VG max 5.8 10.6 0 310.0 11.8 246.6
VG sum 28.5 61.9 0 1479.0 7.7 100.0

ables. This time, we observe that another 2 of the independent
variables become statistically insignificant, shown in the iteration 2
column of Table 1. We continued this process of removing the sta-
tistically insignificant independent variables, rebuilding the model,
re-examining the significance until all independent variables in the
model were significant. This was achieved after the fourth iteration.

Then, we remove all independent variables that had a VIF value
greater than 2.5. Each time a variable is removed, we made sure
to check the p-values of all independent variables left in the model
to assure they are still statistically significant. We did this for 4
more iterations. In the eighth iteration, we finally end up with a
logistic regression model that contains 4 statistically significant and
minimally collinear independent variables. The final model for the
Eclipse 3.0 release only contain ACD, PRE, TPC and TLOC as
independent variables.

4. CASE STUDY RESULTS
We performed a study on three different revisions of the Eclipse

project. We want to examine our approach on Eclipse and identify
the independent variables that produce the impact and quantify by
how much they impact post-release defects. We also examine the
evolution of these independent variables by building and comparing
the logistic regression models for 3 different releases of Eclipse.

Table 3: Metric Correlations
Metric PRE TLOC TPC BFC

POST 0.381 0.33 0.128 0.181
TLOC 0.421 1.00 0.210 0.228
PRE 1.000 0.42 0.248 0.328
TPC 0.248 0.21 1.000 0.695
BFC 0.328 0.23 0.695 1.000
ACD 0.258 0.44 0.123 0.163
FOUT avg 0.313 0.77 0.144 0.162
FOUT max 0.375 0.87 0.185 0.203
FOUT sum 0.400 0.94 0.191 0.214
MLOC avg 0.314 0.80 0.152 0.155
MLOC max 0.380 0.90 0.185 0.195
MLOC sum 0.403 0.96 0.200 0.214
NBD avg 0.303 0.74 0.158 0.171
NBD max 0.368 0.85 0.192 0.210
NBD sum 0.392 0.95 0.197 0.219
NOF avg 0.242 0.60 0.087 0.102
NOF max 0.256 0.63 0.098 0.114
NOF sum 0.260 0.63 0.102 0.118
NOI -0.160 -0.55 -0.022 -0.064
NOM avg 0.296 0.71 0.171 0.182
NOM max 0.314 0.74 0.184 0.196
NOM sum 0.319 0.76 0.186 0.200
NOT 0.160 0.55 0.022 0.064
NSF avg 0.174 0.33 0.079 0.109
NSF max 0.186 0.35 0.088 0.119
NSF sum 0.186 0.35 0.089 0.120
NSM avg 0.197 0.34 0.059 0.073
NSM max 0.202 0.35 0.063 0.075
NSM sum 0.202 0.35 0.063 0.075
PAR avg 0.094 0.26 0.076 0.044
PAR max 0.257 0.60 0.143 0.130
PAR sum 0.350 0.82 0.198 0.200
VG avg 0.300 0.78 0.136 0.139
VG max 0.359 0.87 0.170 0.178
VG sum 0.389 0.95 0.190 0.205

4.1 Preliminary Analysis of Data
Before delving into the results of our case study, we perform

some preliminary analysis on the collected metrics. We calculated
a few of the most common descriptive statistics, mean, min, max,
standard deviation (SD) which are reported in Table 2. In addition,
we calculated the skew and kurtosis measures for each metric.

Skew measures the amount of asymmetry in the probability dis-
tribution of a variable, in relation to the normal distribution. Skew
can have a positive or negative value. A positive skew value indi-
cates that the distribution is positively skewed, meaning the metric
values are mostly on the low end of the scale. In contrast, a negative
skew value indicates a negatively skewed distribution, where most
of the metric values are on the high end of the scale. The normal
distribution has a skew value of 0.

Kurtosis on the other hand characterizes the relative peakedness
or flatness of a distribution, in relation to the normal distribution.
A positive kurtosis value indicates a curve that is too tall and a
negative kurtosis value indicates a curve that is too flat. A normal
distribution has a kurtosis value of 0.

It is important to study the descriptive statistics of the metrics
used to better understand the dataset at hand and perform any needed
transformations. Most real world data have high to moderate skew
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Table 4: VIF and P-values of Code and Process Metrics in Eclipse 2.0, 2.1 and 3.0
Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Metric P-value VIF P-value VIF P-value VIF

ACD 0.0178 * 1.216477
NSM avg 0.000266 *** 1.096400
PAR max 5.25e-08 *** 1.289606
PRE < 2e-16 *** 1.178974 < 2e-16 *** 1.096400 <2e-16 *** 1.244094
TPC < 2e-16 *** 1.084916 0.0056 ** 1.093982
TLOC < 2e-16 *** 1.392259 < 2e-16 *** 1.417422 <2e-16 *** 1.362840

(p<0.001 ***; p<0.01 **; p < 0.05 *; p<0.1 +)

and kurtosis values and transformations such as log or square root
transformations are usually employed (e.g., [4, 5, 8]).

We can observe from Table 2 that most of the metrics suffer from
positive skew (i.e., all the metric values are on the low scale) and
have positive kurtosis values (i.e., too tall). To alleviate some of
the issues caused by these higher than expected skew and kurtosis
values, we log transformed all of the metrics. From this point on,
whenever we mention a metric, we actually are referring to the log
transformation of the metric.

In addition, Table 3 calculates the pairwise correlation measures
of all the metrics against the metrics that are known to perform well
in bug prediction. First, we observe that the PRE and TLOC met-
rics have higher correlation with POST than the change based TPC
and BFC metrics. Furthermore, we observe that the TLOC metric is
highly correlated with the majority of the code metrics, especially,
the FOUT, MLOC, NDB, NOF and VG metrics. Similar observa-
tions were made by Graves et al. [20]. The high correlation values
can be used as an indication of possible multicollinearity problems
that may arise if these independent variables were combined in a
single logistic regression model.

4.2 Identifying Code and Process Metrics that
Impact Post-release Defects

Q1: Which code and process metrics impact the post-release de-
fects? Do these metrics differ for different releases of Eclipse?

To answer this question, we followed the same steps outlined
in our approach section. We build the models for the 3 different
releases, Eclipse 2.0, Eclipse 2.1 and Eclipse 3.0. The results are
presented in Table 4. The results indicate that using this approach,
we are able to successfully build models for all 3 releases. In all
3 releases, all of the independent variables are statistically signifi-
cant, with p-value < 0.1 and minimally collinear, with VIF values
< 2.5. The Eclipse 2.0 and 3.0 models are composed of 4 different
independent variables, while the Eclipse 2.1 model contains only 3
independent variables.

Next, we investigate whether these independent variables are the
same for the different releases of Eclipse or whether they change
from one release to the other. Our findings indicate that some of
the independent variables change for different releases. These are
mainly the code metrics (i.e., ACD for Eclipse 3.0, NSM avg for
Eclipse 2.1 and PAR max for Eclipse 2.0). The TPC metric is in 2 of
the 3 models, while, the TLOC and the PRE metrics were apparent
in all 3 models. This finding is interesting because it shows that the
simple metrics (i.e., TLOC and PRE) are actually the most stable
independent variables in our model.

In the next subsection, we quantify the impact by each indepen-
dent variable on the post-release defects.
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Using the p-value and the VIF measures, we are able to

determine which of the code and process metrics impact
post-release defects. These metrics change for different re-
leases of Eclipse.

4.3 Quantifying the Impact of Code and Pro-
cess Metrics on Post-release Defects

Q2: By how much do the metrics impact the post-release defects?
Does the level of impact change across different releases?

We would like to quantify the impact caused by the independent
variables on post-release defects. For example, what if a file has
3 pre-release defects versus 4 pre-release defects. It would make
intuitive sense that the chance of a post-release defect will increase,
but by how much? Will an increase in 1 pre-release defect double
the chance of a post-release defect?

To quantify the impact, we use odds ratios. Odds ratios are the
exponent of the logistic regression coefficients. Odds ratios greater
than 1 indicate a positive relationship between the independent and
dependent variables (i.e., an increase in the independent variable
will cause an increase in the likelihood of the dependent variable).
Odds ratios less than 1 indicate a negative relationship, or in other
words, an increase in the independent variable will cause a decrease
in the likelihood of the dependent variable.

The value of the odds ratios indicate the amount of increase that
1 unit increase of the independent variable will cause to the depen-
dent variable. Since we log all of the independent variables, 1 unit
increase means a unit increase in the log-scale. We list the odds ra-
tios of Eclipse 2.0, Eclipse 2.1 and Eclipse 3.0 in Tables 5, 6 and 7,
respectively. The table lists the χ2, p-value and deviance explained
of each model. The last row of the table lists the difference of the
deviance explained in percent. The models are built in a hierarchi-
cal way, meaning we build starting with 1 independent variable and
keep adding the independent variables until the final model is built.

Firstly, we examine the odds ratios of Eclipse 3.0, depicted in
Table 7. It can be observed that as we add metrics to the logistic re-
gression model, the odds ratios change. This means that as we add
more independent variables to the model, the impact of the individ-
ual independent variables will vary. For example, we can see that
TLOC has an odds ratio of 2.25 in Table 7, model 1. This changes
to 1.70 in model 4. This means that if we were only using the
TLOC variable to build the logistic regression model, then increas-
ing the total lines of code by 1 log unit, increases the likelihood of
having a post-release defect by 125% (i.e., more than double the
likelihood). On the other hand, if we combined the TLOC variable
with other independent variables (as we did in model 4), then the
likelihood of finding a post-release defect due to a 1 unit increase in
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Table 5: Eclipse 2.0
Model 1 Model 2 Model 3 Model 4

TLOC 2.57*** 2.40*** 2.11*** 1.88***
TPC 1.87*** 1.62*** 1.62***
PRE 1.87*** 1.90***
PAR max 1.73***

Model χ2 979 1255 1375 1404
Model p-value <0.001 <0.001 <0.001 <0.001
Deviance Explained 17.6% 22.5% 24.7% 25.2%
Model Comparison (%) - 276 (4.9%) 120 (2.2%) 29 (0.5%)

(p<0.001 ***; p<0.01 **; p < 0.05 *; p<0.1 +)

Table 6: Logistic Regression Model Eclipse 2.1
Model 1 Model 2 Model 3

TLOC 2.05*** 1.49*** 1.44***
PRE 3.27*** 3.27***
NSM avg 1.21***

Model χ2 605 944 957
Model p-value <0.001 <0.001 <0.001
Deviance Explained 11.2% 17.5% 17.7%
Model Comparison (%) - 339 (6.3%) 13 (0.2%)

(p<0.001 ***; p<0.01 **; p < 0.05 *; p<0.1 +)

Table 7: Eclipse 3.0
Model 1 Model 2 Model 3 Model 4

TLOC 2.25*** 1.30*** 1.66*** 1.70***
TPC 2.15*** 1.10** 1.11**
PRE 3.24*** 3.28***
ACD 0.87*

Model χ2 1289 1347 1877 1883
Model p-value <0.001 <0.001 <0.001 <0.001
Deviance Explained 14.5% 15.2% 21.1% 21.2%
Model Comparison (%) - 58 (0.7%) 530 (5.9%) 6 (0.1%)

(p<0.001 ***; p<0.01 **; p < 0.05 *; p<0.1 +)

TLOC is only 70%. However, we can see from the same table that
as we add more of the independent variables to the model, the de-
viance explained and the χ2 value increase significantly, indicating
a significant improvement in the explanative power of the model.

Using model 4 in Table 7, we can see that for TLOC , TPC and
PRE the odds ratios suggest an increase in the likelihood of a post-
release defect. On the other hand, a log unit increase in number of
anonymous declaration types (ACD) produces a negative impact on
the likelihood of finding one or more post-release defects. In fact,
for every unit increase in ACD, the chance of finding a post-release
defect decreases by 13%.

We can also use the odds ratios value to examine the impact on
post-release defects if a file was to increase by 100 lines. To do
so, we exponentiate the odds ratio value for that independent vari-
able by the quantity increase in units. For example, if TLOC was
increased by 100 lines, and since we are using log this would be
2 units (i.e. log(100) = 2)). Therefore, the impact of a 100 line

increase, using model 4 in Table 7, is 1.702 = 2.89. This means
that if we increase the TLOC by 100 lines, then the chance of a
post-release defect is increased by 189%.

Comparing the odds ratios of the independent variables for dif-
ferent releases, we can see that the odds ratios change slightly. At
the same time, we can observe that they are stable, meaning, if they
are above 1 for one of the releases, they stay that way for all the
other releases. For example, the odds ratio value for TLOC is pos-
itively associated with post-release defects in all 3 releases. This
finding was also observed by Briand et al. [29]. A similar obser-
vation holds for the PRE metric as well. Studying the stability is
important because the stability of a metric tells us whether we can
draw conclusions about the impact produced by the metric for this
project.
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Table 8: Comparison of Precision, Recall and Accuracy of Prediction Models
Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Ours All metrics Ours All metrics Ours All metrics

Precision (%) 66.3 63.6 60.0 58.6 64.1 64.7
Recall (%) 28.5 32.4 15.8 17.2 25.7 26.5
Accuracy (%) 87.5 87.5 89.8 89.8 86.9 87.0
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We are able to quantify the impact produced by the code

and process metrics on post-release defects using odds ra-
tios. The impact on post-release defects changes for differ-
ent releases of Eclipse.

5. DISCUSSION
The main goal of our study is to minimize the large number of

independent variables in the multivariate logistic regression model,
in order to better understanding the impact of the various indepen-
dent variables on the dependent variable, post-release defects. In
the previous section, we performed a case study where our initial
set of metrics is 34 and we were able to reduce that number to 3 or
4 statistically significant and minimally collinear set of metrics.

Although we were successful in using our approach to under-
stand the impact of the process and code metrics on post-release
defects, a few questions still linger: How does our approach affect
the prediction accuracy of the model and how does it compare to
previous techniques used to deal with the issue of multicollinearity,
namely PCA? We answer these questions in the following subsec-
tions.

5.1 Comparing Prediction Accuracy
To study the prediction accuracy, we build two multivariate lo-

gistic regression models: one that uses all of the metrics and one
that uses the smaller set of statistically and minimally collinear
metrics. The logistic regression models predict the likelihood of
a file being defect prone or not. The output of the model is given
as a value between 0 and 1. We classified files with predicted like-
lihoods above 0.5 as defect prone, otherwise they are classified as
being defect free.

The classification results of the prediction models were stored in
a confusion matrix, as shown in Table 9.

Table 9: Confusion matrix
True Class

Defect No Defect

Predicted Defect a b
No Defect c d

The performance of the prediction model is measured using three
different measures:

1. Precision: Relates number of files predicted and observed as
defect prone to the number of files predicted as defect prone.
It is calculated as a

a+b
.

2. Recall: Relates number of files predicted and observed as
defect prone to the number of files that actually had defects.
It is calculated as a

a+c
.

3. Accuracy: Relates the total number of correctly classified
files to the total number of files. It is calculated as a+d

a+b+c+d
.

The prediction results for all 3 release of Eclipse are presented in
Table 8. The results in the table agree with previous results obtained
by Zimmermann et al. in [4]. In all releases, our results were very
close to those generated by the model that uses all 34 metrics. It
is important to highlight that the main goal of our approach is not
to achieve better prediction results. Our main goal is to understand
the impact of the independent variables on post-release defects. We
proved that we are able to study the impact without significantly
affecting the prediction accuracy of the models. Furthermore, it is
important to note here that our models are far less complex, using
only 3 or 4 metrics.�
�

�
�

Using a much smaller set of statistically significant and
minimally collinear set of metrics does not significantly af-
fect the prediction results of the logistic regression model.

5.2 Comparing with Principle Component Anal-
ysis

Multicollinearity is caused by using highly correlated indepen-
dent variables, which makes it more and more difficult to deter-
mine which one of the independent variables is producing the effect
on the dependent variable. Previous research (e.g., [6, 7, 10, 19])
addressed the multicollinearity problem by employing Principal
Component Analysis (PCA) [30]. PCA uses the original metrics
to build Principal Components (PCs) that are orthogonal to each
other. The PCs are linear combinations of the metrics. These PCs
are then used as the independent variables in the logistic regression
model.

Although using PCA solves the issue of multicollinearity, it has
its disadvantages as well. First, PCA does not necessarily reduce
the number of independent variables, since each PC is a linear com-
bination of all the input metrics. For this reason, models that use
PCA may still need to collect many input metrics. Second, once
the PCs are used to predict defects, it is very difficult to pin-point
which of the original metrics (used to build the PCs) actually pro-
duced the effect. Not being able to pin-point which of the input
metrics actually caused the effect is a major disadvantage. It makes
it much harder for practitioners and managers to understand the
prediction models, causing them to disregard the models or search
somewhere else for answers.

In this section, we compare the results of the models generated
using our approach to models that we build using PCA. We perform
this comparison to verify the validity of our approach and measure
its performance in comparison to models that would be built with
all 34 metrics.

To build the PCA models, we input all of the independent vari-
ables and build the PCs. Then, we measure the % cumulative vari-
ation when a different number of PCs is used. Based on the % of
cumulative variation we wish to achieve, we use a different num-
ber of PCs as input to the logistic regression model. For example,
in Eclipse 3.0, to achieve a % cumulative variation of 95%, we
would require a minimum of 8 PCs. To achieve a 99% cumulative
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Table 10: Comparing our approach to PCA
Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Cumulative Variability Ours 95% 99% 100% Ours 95% 99% 100% Ours 95% 99% 100%

Model χ2 1404 1375 1487 1552 957 710 981 979 1886 1451 1924 1953
No. of metrics 4 34 34 34 3 34 34 34 4 33 33 33
Min. no. of PCs - 7 15 32 - 7 15 33 - 8 15 33
Model p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Deviance Explained 25.2% 24.7% 26.7% 27.9% 17.7% 13.1% 18.1% 18.1% 21.2% 16.3% 21.7% 22.0%

Comparison (%) - +0.5% -1.5% -2.7% - +4.6% -0.4% -0.4% - +4.9% -0.5% -0.8%

variation, we require a minimum of 15 PCs. A 95% cumulative
variation was commonly used in the previous work on defect pre-
diction [6, 7, 10, 19, 31].

The main reason previous work used 95% cumulative variation
was to reduce the data needed to build the models. For example,
for Eclipse 3.0 using 8 PCs instead of 34 PCs, converts to a data
reduction of 76.5%. However, as we will show, this does not nec-
essarily mean that less metrics need to collected, as the number of
metrics used for Eclipse 3.0 is 33 out of 34. This is a data reduction
of 2.9%. For the sake of comparison, we compare the models gen-
erated using our approach, to PCA-based models that can achieve
95%, 99% and 100% cumulative variation.

To compare, we use 4 different measures. First, we measure the
χ2 value achieved by the different models. In addition, we report
the percentage of deviance explained for each model to examine
the explanative power of the models. Furthermore, we record the
number of PCs required to achieve the various levels of cumulative
proportions of variance. The number of independent variables re-
quired to build the PCA-based models is also reported. Finally, we
calculate the p-value of the models generated to make sure that the
models are statistically significant.

Our comparison is reported in Table 10. The last row of the table
represents the difference in deviance explained comparing to our
model. A positive value means our model outperforms the PCA-
based model, and vice versa. In all 3 releases, our model can out-
perform the PCA-based models with 95% cumulative probability
of variance in terms of χ2 value and deviance explained. As we
stated earlier, most of the previous work (e.g., [6,7,10,19,31]), used
the PCA-based models with 95% cumulative variation. Further-
more, we can see that our model uses far less metrics than the PCA
models. To calculate the number of metrics required for the PCA-
models, we examined the ‘loadings’ of the PCs. Hair et al. [32]
suggested that loading values below 0.4 are considered to have a
low rank in the PCs. We counted the number of metrics that have a
loading value greater than 0.4. As shown in Table 10, this number
was 34 metrics for release 2.0, 34 metrics for release 2.1 and 33
metrics for release 3.0. The only metric that did not have a loading
value greater than 0.4 is the VG sum metric in Eclipse 3.0.

Finally, we would like to point out two main advantages of our
models. First, our models require far less metrics, meaning that
there is a significant amount of savings in the effort that needs to be
put into the extraction of these metrics. Second, and most impor-
tantly, our models are simple and explainable. They can be used by
practitioners to understand the impact of the independent variables
on post-release defects. This is not easily achieved with models
that use PCA.
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Using our approach, we are able to build logistic regres-
sion models that can be used to understand the impact of
the code and process metrics on post-release defects. Our
models can achieve better explanative power than PCA-
based models that explain 95% cumulative variation.

6. THREATS TO VALIDITY
Our analysis is based on 3 different releases of the Eclipse project.

Although the Eclipse project is a large open source project, our re-
sults may not generalize to other projects. In addition, the list of
metrics used in our study to build the logistic regression models is
by no means complete. Therefore, using other metrics may yield
different results. However, we believe that the same approach can
be applied on any list of metrics. The VIF and p-value thresholds
used in our study were chosen because they proved to be successful
in previous studies [5]. Other cutoff values may be used for the VIF
and p-value and may yield slightly different results.

7. CONCLUSION
A large amount of effort has been put into prediction models that

aim to find the locations (i.e., files or folders) of defects in a soft-
ware system. As this area of research grows, a greater number of
metrics is being used to predict defects. This increase in metrics
increases the complexity of the prediction models, decreasing the
chance of their adoption in practice. In addition, increasing the
number of metrics increases the chance of multicollinearity, which
makes it difficult to determine which of these metrics actually im-
pact post-release defects.

In this paper, we put forth an approach that reduces the number
of metrics to a much smaller, statistically significant and minimally
collinear set. The small set of metrics are then used to build logistic
regression models. We use odds ratios to quantify the impact of the
various independent variables (i.e., code and process metrics) on
the dependent variable, post-release defects.

Finally, we compared the prediction accuracy of the models built
using our approach to models that use the full set of metrics. We
found very little difference in the prediction accuracy, yet our mod-
els used significantly less metrics. We also compared the explana-
tive power of the logistic regression models using our approach and
found that models built using our approach can outperform PCA-
based models that explain 95% cumulative variation, and perform
within 2.7% of PCA-based models that explain 100% cumulative
variation.
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