
Empirical Software Engineering (2023) 28:62
https://doi.org/10.1007/s10664-023-10291-1

Bugs in machine learning-based systems:
a faultload benchmark

MohammadMehdi Morovati1 ·Amin Nikanjam1 · Foutse Khomh1 ·
ZhenMing (Jack) Jiang2

Accepted: 11 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The rapid escalation of applying Machine Learning (ML) in various domains has led to
paying more attention to the quality of ML components. There is then a growth of tech-
niques and tools aiming at improving the quality of ML components and integrating them
into the ML-based system safely. Although most of these tools use bugs’ lifecycle, there
is no standard benchmark of bugs to assess their performance, compare them and discuss
their advantages and weaknesses. In this study, we firstly investigate the reproducibility and
verifiability of the bugs in ML-based systems and show the most important factors in each
one. Then, we explore the challenges of generating a benchmark of bugs in ML-based soft-
ware systems and provide a bug benchmark namely defect4ML that satisfies all criteria
of standard benchmark, i.e. relevance, reproducibility, fairness, verifiability, and usability.
This faultload benchmark contains 100 bugs reported by ML developers in GitHub and
Stack Overflow, using two of the most popular ML frameworks: TensorFlow and Keras.
defect4ML also addresses important challenges in Software Reliability Engineering of ML-
based software systems, like: 1) fast changes in frameworks, by providing various bugs for
different versions of frameworks, 2) code portability, by delivering similar bugs in different
ML frameworks, 3) bug reproducibility, by providing fully reproducible bugs with complete
information about required dependencies and data, and 4) lack of detailed information on
bugs, by presenting links to the bugs’ origins. defect4ML can be of interest to ML-based
systems practitioners and researchers to assess their testing tools and techniques.

Keywords Benchmark · Machine learning-based system · Software bug · Software
reliability engineering · Software testing

Communicated by: Andrea Stocco, Onn Shehory, Gunel Jahangirova, Vincenzo Riccio

This article belongs to the Topical Collection: Special Issue on Software Testing in the Machine
Learning Era.

� Mohammad Mehdi Morovati
mehdi.morovati@polymtl.ca

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10291-1&domain=pdf
http://orcid.org/0000-0002-7942-4791
mailto: mehdi.morovati@polymtl.ca

 62 Page 2 of 33 Empir Software Eng (2023) 28:62

1 Introduction

Recent outstanding successes in applying Machine Learning (ML) and especially Deep
Learning (DL) in various domains have encouraged more people to use them in their sys-
tems. ML-based systems refer to software systems that contain at least one ML component
(software component whose functionality relies on ML). Given the increasing deployment
of ML-based systems in safety-critical areas such as autonomous vehicles (Pei et al. 2017;
Ma et al. 2018) and healthcare systems (Esteva et al. 2019), we need to provide an acceptable
level of reliability in such systems.

Software reliability is broadly considered to be the most important software quality fac-
tor among all software quality attributes (Lyu 2007), where such attributes measure the
conformance level of the system, component, or process to the identified functional and non-
functional requirements (Pressman 2005). Software Reliability Engineering (SRE) is the
methodology to ensure failure-free operations of the software in a specified period of time.
Substantial portion of SRE techniques has been developed based on studying the lifecycle
of bugs (Radjenović et al. 2013; Lyu 2007).

It is generally accepted that standardized benchmarks are the most efficient tools for eval-
uating and comparing products and methodologies (Kistowski et al. 2015). A benchmark
must satisfy some quality criteria to be considered as standard, including relevance, repro-
ducibility, fairness, verifiability, and usability (Kistowski et al. 2015; Vieira et al. 2012). It is
also worth mentioning that benchmark construction is a long-term and iterative process that
requires the cooperation of the community (Lu et al. 2005). Accordingly, a standard bench-
mark of bugs is an essential requirement to evaluate, compare, and improve such research
on the SRE approaches focusing on the bug’s lifecycle.

Benchmark of software bugs that contains a set of real bugs is known as faultload bench-
mark (Vieira et al. 2012). Several studies on the faultload benchmark for traditional software
systems have been done, e.g., Defects4J (Just et al. 2014) (a benchmark of bugs in Java open
source projects hosted on GitHub), BugBench (Lu et al. 2005) (a benchmark of C/C++ pro-
grams’ bugs), ManyBugs (Le Goues et al. 2015) (a benchmark of defects in C programming
language), and Bears (Madeiral et al. 2019) (a Java bug benchmark for automatic program
repair). On the other hand, some faultload benchmarks such as JaConTeBe (Lin et al. 2015)
(a benchmark of java concurrency bugs) are designed for specific types of bugs. Accord-
ingly, defect4ML also ignores general bugs and considers bugs that are related to the ML
components.

Similar to other faultload benchmarks, benchmark of ML-based systems’ bugs is the
basic necessity for comparing, tuning, and improving testing techniques/tools of ML-
based systems. Extracting, reproducing, and isolating real bugs in traditional software still
need considerable time and effort. Concerning the higher complexity level of the ML-
based systems in comparison with traditional ones (Amershi et al. 2019) and challenges in
the engineering of ML-based systems (Galin 2004), providing reproducible bugs in these
systems might require more effort. Although preceding studies have developed some bench-
marks of bugs in ML-based systems (Kim et al. 2021; Wardat et al. 2021), they totally
disregarded the standard benchmark criteria. As an example, Denchmark (Kim et al. 2021)
does not provide enough information to reproduce and trigger bugs. Meanwhile, several
studies on the testing of ML-based systems have used synthetic bugs for assessment (Nikan-
jam et al. 2021a, b) which may bias their evaluation by hiding potential weaknesses. Some
others have also used a limited number of real bugs (Wardat et al. 2021; Schoop et al. 2021)
that may not be representative of a thorough evaluation, implying an incorrect measure of

Empir Software Eng (2023) 28:62 Page 3 of 33 62

the proposed approach’s reliability. So, in this research we aim to answer the following
research questions:

RQ1. What are the key factors in reproducibility of reported bugs in ML-based systems?
RQ2. What are the important factors in verifiability of ML-based systems’ bug-fixes?
RQ3. What are the challenges of generating standard faultload benchmark in ML-based
systems?

To answer these research questions, firstly, we investigate 5 public datasets of ML-based
systems’ bugs and manually check 513 and 498 bugs that they provided from GitHub and
SO, respectively. Then, we checked 1264 additional bug-fix commits extracted from ML-
based systems repositories. Furthermore, we review 798 Stack Overflow (SO) posts related
to TensorFlow (Abadi et al. 2016) and Keras (Chollet and et al 2018) frameworks. We
examine the reproducibility and verifiability of the bugs in ML-based systems, as two of the
most demanding criteria of standard benchmark.

We also provide a faultload benchmark of ML-based systems namely defect4ML.
Figure 1 illustrates a high-level view of the proposed benchmark. The base layer is the
benchmark containing the database of bugs. The next layer, Python virtual environment,
refers to the environment that should be configured to run applications and trigger the bugs.
Because each buggy application has different dependencies and requires different sorts of
libraries to be triggered, a Python virtual environment would be the best solution for run-
ning buggy applications in isolation. The top layer represents the potential usage of bugs
which is mostly ML testing tools such as NeuraLint and DeepLocalize. Given the high cost
of providing bugs from ML-based systems that satisfy standard benchmark criteria, we set
100 bugs (62 from GitHub and 38 from SO) as our goal for the first release of defect4ML.
The included bugs are classified into different categories, based on various criteria including
Python version, ML framework, violated testing property, and bug type. Different users such
as developers, distributors, and researchers of ML-based systems testing tools/techniques
can benefit from our proposed benchmark. They can use defect4ML to evaluate their pro-
posed approaches for bug detection, or localization and compare them with previous works.
Besides, defect4ML has potential to be used for automatic bug repairing tools. To this end,
users should remove modifications from bug-fix which are not related to the reported bug
(similar to methodology used in Jiang et al. 2021). The data generated/analysed during the
current study are available in the benchmark repository.1

The contributions of this study can be summarized as follows:

– First standard benchmark of ML-based systems’ bugs: Proposed benchmark satis-
fies all of the standard benchmark criteria (e.g. relevance, fairness, etc)

– Large-scale and accurate bug benchmark: We collected the bugs from GitHub com-
mits and SO posts to provide a large-scale benchmark. Besides, we applied several
steps (including manual checking) to filter the bugs and extract the ones satisfying our
defined criteria. We have also provided fine-grained classifications based on different
criteria (such as ML framework, bug type, etc.) to enable users to filter the bugs and
collect a desired subset. Users can also add new bugs to the benchmark and raise a
request for removing an existing bug to keep the benchmark up-to-date.

– Bug reproducibility: Our analysis revealed that only about 5.3% of all reviewed
GitHub bugs and near to 3.34% of reported bugs in SO posts are reproducible. However,

1http://defect4aitesting.soccerlab.polymtl.ca/

http://defect4aitesting.soccerlab.polymtl.ca/

 62 Page 4 of 33 Empir Software Eng (2023) 28:62

Fig. 1 High-level view of the benchmark

all bugs in defect4ML are completely reproducible. We have also provided contextual
information for each bug including the needed version of Python, dependencies (nec-
essary libraries and corresponding version), data, and the process of triggering bugs, to
allow for reproducibility.

– Bug-fix verifiability: Our analysis revealed that only a small portion of the studied
ML-based systems’ bugs (i.e., 13.3% of collected bugs from GitHub in defect4ML)
can be verified by the provided test cases in their applications. Moreover, none of the
reviewed bugs reported in SO posts has test cases.

– Detailed information of the bugs: We provide the URL to the origin of gathered bugs
in our proposed benchmark that includes textual information about bugs including:
buggy entities such as file name and line of code, bug’s root cause, and the fixed version
(how the bug got fixed).

– Diversity: We have covered 30 different types of bugs based on the taxonomy pro-
posed by Humbatova et al. (2020) (including 95 types of ML-related bugs), to promote
diversity of defect4ML. Besides, we used GitHub and SO as the primary sources of
collecting bugs. To gather bugs from GitHub, we have also explored repositories devel-
oped by users with different levels of expertise. In addition, we have presented bugs
based on the two most popular ML frameworks, TensorFlow and Keras (Yalçın 2021;
Humbatova et al. 2020).

Empir Software Eng (2023) 28:62 Page 5 of 33 62

The rest of the paper is organized as follows. We explain the background of the study
in Section 2. The methodology followed to answer the research questions is explained in
Section 3. The results of analyzing collected bugs and the proposed benchmark is described
in Section 4. Section 5 represents the discussion of our study. Then, the related works are
mentioned in Section 6. We discuss threats to the validity of this research in Section 7.
Finally, we conclude the paper in Section 8.

2 Background

This section introduces concepts of ML-based systems and SRE in these systems, the gen-
eral picture of the benchmark, and the criteria it should meet to be considered a standard
benchmark.

2.1 ML-Based System

Software systems including at least one ML component are known as ML-based systems.
ML components are defined to be software components working based on ML algorithms
with the aim of proving intelligent behavior (Martı́nez-Fernández et al. 2021). An ML com-
ponent may be only a small part of a much larger system. Figure 2 shows a high-level view
of the ML-based systems exposing the role of the ML component in them.

To simplify the design, implementation, and integration of ML components in software
systems, several ML frameworks such as TensorFlow (Abadi et al. 2016), Keras (Chollet
and et al 2018), and PyTorch (Paszke et al. 2019) have been developed. They help developers
to create, train, and then deploy various types of ML models. Hence, ML frameworks play a
vital role in developing ML-based systems (Zhang et al. 2020). Similar to any other software
components, ML components are also error-prone. However, current ML frameworks do
not provide any capability to validate and verify the developed ML components.

2.2 Bugs in ML-Based Systems

In general, software bug is known as the inconsistency between the existing and expected
software functionality, also called deficiency in satisfying software requirements (Zubrow

Fig. 2 An high-level view of the ML-based systems (Sculley et al. 2015)

 62 Page 6 of 33 Empir Software Eng (2023) 28:62

2009). Accordingly, ML bug refers to the deficiencies in ML components, which may lead
to discrepancies between existing and the required behavior of ML component (Zhang et al.
2020). An ML bug can occur in the ML framework (Jia et al. 2021b; Rivera-Landos et al.
2021; Tambon et al. 2021), program code (Islam et al. 2019; Zhang et al. 2018b), or the data.
So, researchers study the bugs in each area separately (Zhang et al. 2020). In this study, we
just investigate the bugs in program code and do not consider bugs in ML framework and
data.

There are three different testing levels for ML-based systems: model testing, integration
testing, and system testing (Riccio et al. 2020). At the model testing level, we consider
the ML component in isolation and ignore other software components. Integration testing
level aims to assess the interaction between ML and other components. System testing level
studies all software components to evaluate the ML-based system’s conformance to the
intended requirements. Accordingly, we can consider three different categories of bugs in
ML-based systems, each one related to one of testing levels.

– Bugs in ML components: At this level, we consider the ML components in isolation
and study the bugs inside them ignoring other components of the system.

– Bugs in any component that affect functionality of ML components: At this level, all
identified bugs in the previous level have been taken into account plus the bugs which
are out of the ML components but affect the ML component’s functionality. In this
paper, we call this category as ML-related bugs.

– Bugs in all software components: At this level, we do not make any difference among
ML components and others considering all system bugs as the same.

Based on the definition of faults in IEEE standard glossary of software engineering ter-
minology (2010), software fault is manifestation of a bug in software. In other words, when
a software bug causes an incorrect software operation, it becomes a software fault (Galin
2004). Concerning that faults emerge from the discordance between software requirements
and the existing behavior, faults can be functional or non-functional. Functional faults refer
to the inability of the software to meet the required functionality. Non-functional faults
stem from the deficiencies in methodologies to achieve the required functionality, not the
functionality. An ML fault is also considered as an inadequacy in the behavior of the ML
component (Humbatova et al. 2020; ISO 2019). A software fault results in a failure only
when a user tries to use the faulty software component, leading to fault activation (Galin
2004). Generally speaking, failure in software engineering is known as the inability of the
system or its components to fulfill required functions (Riccio et al. 2020). Faults in ML-
based systems may also lead to bad performance, crash, data corruption, hang, and memory
out of band which are considered as failure in these systems (Islam et al. 2019).

2.3 SRE in ML-Based Systems

Because of the essential differences between the paradigm of traditional and ML-based
software systems, we are facing several new challenges in SRE of ML-based systems. Vari-
ous studies have acknowledged the significant challenges in SRE of the ML-based systems.
Fast changes in the new versions of ML frameworks is one of the major challenges that
Islam et al. (2020) reported. As an example, they exposed that almost 26% of operations
have been changed from version 1.10 to 2.0 in TensorFlow. Code portability is another
crucial challenge in the SRE of ML-based systems (Lenarduzzi et al. 2021). There are mul-
tiple ML frameworks (e.g. TensorFlow, Keras, PyTorch, etc.) just for Python programming

Empir Software Eng (2023) 28:62 Page 7 of 33 62

language. Although they have some similarities, there are major differences among them.
Therefore, understanding and porting ML codes from one framework to another can be a
nontrivial task. Bug reproducibility is another significant challenge in the SRE of ML-based
systems (Zhang et al. 2018b). Wardat et al. (2021) also reported the lack of detailed infor-
mation regarding the bugs in ML-based systems as a basic challenge in SRE of ML-based
systems. We aim to cover these challenges in our proposed benchmark.

SRE techniques mostly use the lifecycle of bugs (Lyu 2007). One of the major SRE
approaches using the bug’s lifecycle is fault removal that aims to detect the existing faults
and remove them. Such techniques use validation and verification approaches to cope with
reliability concerns that are known as software testing techniques. Overall, software testing
is considered as one of the most complicated tasks of the software development process. It
is well-accepted that the complexity of the testing has a direct relation with the complexity
level of the system to be tested (Galin 2004). That means, by increasing the complexity of
the system, testing becomes more complicated to be able to deal with the system quality
flaws. It has also been proved that the complexity level of the ML-based systems stays at a
higher place compared to traditional ones (Amershi et al. 2019). Consequently, testing of the
ML-based systems is considered as more complicated tasks, in comparison with traditional
software systems.

ML testing properties refer to the conditions that are needed to be guaranteed for a trained
model during testing. In other words, ML testing properties represent the quality attributes
that should be tested and satisfied in ML-based systems (Zhang et al. 2020). Existence
of bugs in ML-based systems may result in violation of various ML testing properties,
depending on the impact of bugs on the system. In this study, we used the introduced ML
testing properties by Zhang et al. (2020) which are briefly reviewed in this subsection.
Correctness represents the probability that the ML system works in the right way, as it
is intended. Model relevance checks the complexity of the ML model to make sure it is
not more complicated than required. In fact, model relevance aims at preventing model
overfitting. Overfitting happens when the complexity of the employed ML algorithm is more
than required. Robustness is defined as the extent to which the ML system is able to handle
invalid inputs and functions correctly. Efficiency refers to the speed at which ML systems
operate and perform the defined tasks (e.g., prediction). Fairness ensures that ML systems
make decisions without bias. Interpretability is the degree to which humans can understand
the reasons behind the decisions that ML systems make. Although testing properties have
been categorized into six different classes, they may overlap with each other (Zhang et al.
2020).

Bad performance, crash, data corruption, hang, incorrect functionality, and memory out
of bound are symptoms of ML-related bugs which are known as various failure types in ML
systems (Islam et al. 2019; Zhang et al. 2018b). Bad/poor performance refers to the situation
where the accuracy of the ML component is not as good as expected. Crash is the most
common symptom of ML-related bugs in which ML-based software stops running with or
without showing an error message. Data corruption means data has been corrupted when it
passes the network which leads to wrong output. When the ML software stops responding to
the input without prompting an error, it is known as hang. Incorrect functionality refers to the
situation that ML software behavior differs from the expected, without any error. Memory
out of bound occurs due to the unavailability of required memory for training. It should be
also taken into consideration that symptoms of bugs belonging to each ML testing property
can be different. For instance, if the correctness testing property of an ML component gets
violated, its symptoms may be any of known types such as bad performance, crash, hang,
etc.

 62 Page 8 of 33 Empir Software Eng (2023) 28:62

It should be also taken into consideration that symptoms of bugs belonging to one ML
testing property can be different. For instance, when the correctness testing property of the
ML component has been dissatisfied, its symptoms may be any of known ML-based systems
failure types such as bad performance, crash, hang, etc.

It is not surprising that researchers have used testing techniques from traditional software
systems to cope with testing challenges of ML-based systems. However, traditional test-
ing methodologies would not be sufficient and efficient testing approaches for ML-based
systems (Marijan et al. 2019). Traditional testing methods require adaptation to the context
of ML to be effective for them (Bourque et al. 1999). Moreover, the concept of quality is
not well-defined in ML-based systems and its terminology is different from the traditional
ones (Lenarduzzi et al. 2021; Borg 2021). It is also worth noting that the intrinsic difference
between ML-based and traditional software systems generates new types of bugs which do
not exist in the traditional software systems (Riccio et al. 2020). For instance, the behavior
of the ML-based systems is heavily dependent on factors such as training dataset, hyper-
parameters, optimizer, etc. Besides, it is hardly possible for humans to debug the learned
behavior which is encoded by weights within the ML model.

Several studies have been carried out to provide tools to test ML-based systems. Wardat
et al. (2021) conducted research to localize the bugs in ML-based systems. They explained
that because understanding ML models’ behavior is challenging, existing debugging meth-
ods for ML-based systems do not support localization of the bugs. They provided a dynamic
mechanism to analyze the ML components and implemented an alternative “callback”
mechanism in Keras to collect the detailed information of the ML component during the
training phase. Then, their proposed tool analyzes the collected data to discover possi-
ble bugs and their root causes. Islam et al. (2020) carried out an empirical study on the
challenges that the automated repairing tools should address. They reviewed SO posts and
GitHub bug fixes using the five most popular ML frameworks (Caffe,2 Keras,3 Tensor-
Flow,4 Theano,5 and Torch6) to identify fix patterns. They classified the bug-fix patterns
specially used in Deep Neural Networks (DNN) into 15 different categories and provided
various solutions to fix bugs belonging to different classes. Schoop et al. (2021) offered a
system namely UMLAUT to assist non-expert users in identifying, understanding, and fix-
ing bugs in the DL programs. UMLAUT can be attached to the DL program to check the
model structure and its behavior. Then, it suggests the best practices to improve the qual-
ity of ML components. Nikanjam et al. (2021a) provided an automatic fault detection tool
for DL programs namely NeuraLint that validates the DL programs by detecting faults and
design inefficiencies in the implemented models. They identified 23 different rules using
graph transformations to detect various types of bugs in DL programs.

2.4 Benchmark

Benchmark is known as a standard tool for the competitive evaluation of systems and for
making comparisons amongst systems or components, in terms of specific characteristics

2https://caffe.berkeleyvision.org/
3https://keras.io/
4https://www.TensorFlow.org/
5https://github.com/Theano/Theano
6http://torch.ch/

https://caffe.berkeleyvision.org/
https://keras.io/
https://www.TensorFlow.org/
https://github.com/Theano/Theano
http://torch.ch/

Empir Software Eng (2023) 28:62 Page 9 of 33 62

like performance, security, and efficiency (Vieira et al. 2012). It is widely acknowledged that
a standardized benchmark is the most significant requirement to evaluate and compare the
methodologies (Kistowski et al. 2015). To generate a standardized benchmark, several cri-
teria should be satisfied in the development process of the benchmark, including (Kistowski
et al. 2015; Vieira et al. 2012):

– Relevance: asserts that the result of benchmark can be used to measure the performance
of the operation in the problem domain. That is to say, how the benchmark behavior
relates to the behavior of interest to its consumers. Relevance is mostly considered as
the most important factor of any standard benchmark (Kistowski et al. 2015). Without
providing relevant information to the benchmark users, it is highly possible that the
benchmark will not be in the users’ interest, even if it gives perfect services for other
criteria. As a general rule of thumb, the benchmark that is well-suited for a particular
domain has limited applicability, while the benchmark trying to cover a broader range
of domains will be less meaningful for any specific domains (Huppler 2009).

– Reproducibility: refers to the benchmark ability to provide the same results while it is
run using the same configuration.

– Fairness: explains that all competing systems be able to use the benchmark equally.
In other words, the benchmark should be usable for all systems, without generating
artificial limitations.

– Verifiability: ensures that the benchmark results are accurate.
– Usability: means that the benchmark should be understandable easily to prevent

credibility shortage. Credibility shows the level of confidence that users have in the
results (Rodrı́guez-Pérez et al. 2018). Ease of use is also another important property
belonging to this criterion.

Faultload benchmark is one of the main categories of standard benchmark that includes
a set of faults and tries to provide experience of the real faults occurring in the system. It
is also commonly confirmed that faultload benchmark is the most complex one among all
benchmark categories, because of the complicated nature of the faults (Vieira et al. 2012).

Concerning the drastic influence of ML in several safety-critical areas during the last
few years, the reliability engineering of ML-based systems has become more crucial. A
faultload benchmark of ML-based systems can play a vital role in the assessment of methods
working on the reliability engineering of the ML-based systems. Although there may exist
a great number of benchmarks in each software domain, a few numbers of them satisfied
requirements of the standard benchmark (Vieira et al. 2012). Accordingly, there are several
public datasets of bugs in ML-based systems provided as either replication package of their
study or a faultload benchmark, but they have some considerable problems. For example,
bug’s dataset provided in Zhang et al. (2018b) does not provide any information about the
application dependencies and ignores reproducibility of the collected bugs entirely. Besides,
several reported bugs were based on deprecated versions of Python (older than version 3.6)
which might be inefficient for assessment of the current ML-based systems testing tools.

Another public bugs dataset that is provided by Islam et al. (2020) has some similar prob-
lems. Firstly, they completely disregarded the reproducibility of the bugs. While dealing
with the dependency challenge, we came across bugs unrelated to the ML or which occurred
in old versions of Python (older than 3.6). On the other hand, some mentioned bugs were
based on ML frameworks which are discontinued. For instance, this public dataset noted 15
bugs using Theano (a Python library to define, optimize, and evaluate mathematical expres-
sions) (Al-Rfou et al. 2016). With regards to the fact that Theano is a deprecated library and

 62 Page 10 of 33 Empir Software Eng (2023) 28:62

not supported anymore, adding bugs that use Theano would not be valuable. Also, it reported
17 bugs based on Torch (Collobert et al. 2002), a scientific computing framework for ML
algorithms, which development has been deactivated since 2018 (Organisation 2021).

Similar to the former studies, in the public bugs dataset published by Humbatova et al.
(2020), many reported bugs depend on Python older than 3.6. We also found several com-
mits mentioned as bug-fix, while they are not a real bug like (2016) or not accessible like
(2018). Lack of dependency information is another shortcoming of this public dataset.

It is worth noting that datasets provided in Humbatova et al. (2020), Islam et al. (2020),
and Zhang et al. (2018b) are replication packages of those studies and authors do not aim
to introduce a faultload benchmark. However, those datasets can be useful for researchers
who are studying bugs in ML-based systems.

In the public bugs dataset that Wardat et al. (2021) have delivered, the reproducibility
of the bugs received no attention resulting in many non-reproducible bugs. Besides, the
coverage of the provided bugs is also relatively limited. That is to say, they cover limited
types of bugs in ML-based systems.

To the best of our knowledge, there is no benchmark for ML-based systems’ bugs that
satisfies the mentioned criteria of the standard benchmark.

3 Methodology

In this section, we describe the methodology that we followed to answer our RQs. To
this end, we need to collect and investigate the ML-related bugs. Figure 3 represents the
methodology that we used to collect the bugs for answering our RQs.

We used two main sources to gather bugs: (1) public datasets of previous studies on the
bugs in ML-based systems, and (2) ML-related bugs reported in GitHub or SO. To gather the
bugs from the prior research, we reviewed several articles that were about bug’s lifecycle in
ML-based systems and provided public bugs datasets (Zhang et al. 2018b; Islam et al. 2020;
Wardat et al. 2021; Humbatova et al. 2020). As the second source, we extracted the bugs
reported in (a) bug-fix commits of GitHub repositories or (b) SO posts. We focused on two
of the most popular ML frameworks, TensorFlow and Keras (Yalçın 2021; Humbatova et al.
2020), respecting the well-known popularity metrics (Zerouali et al. 2019) (e.g., number
of stars and number of forks) of their GitHub repositories. Table 1 represents the detailed
information regarding the popularity metrics of the selected ML frameworks (on the date
we checked them).

Fig. 3 Methodology of collecting bugs

Empir Software Eng (2023) 28:62 Page 11 of 33 62

Table 1 Detailed information
about the selected ML
frameworks

ML Framework #stars #forks #subscribers

TensorFlow 160K 85.7K 8K

Keras 52.2K 18.8K 2K

We narrowed down our study to the bugs in DL systems, based on the main categories
of DL systems faults’ taxonomy provided by Humbatova et al. (2020): model, tensors and
input, training, GPU usage, and API categories. “Model” refers to the bugs related to the
structure of the model (such as (2018)). “Tensor and input” category covers the bugs regard-
ing the problems in the shape and format of data (such as (2018)). “Training” includes the
bugs in the model training process (such as (2018)). “GPU usage” category deals with bugs
occurred when using GPU devices in DL systems (such as (2018)). “API” refers to the
problems related to the API usage in ML frameworks (such as (2018)).

To examine the collected bugs and remove those which could not satisfy the standard
benchmark criteria in manual checking step, we used some exclusion criteria:

– bugs using Python version older than 3.6. The reason behind this criterion is
removing applications using deprecated version of Python or ML frameworks.

– bugs irrelevant to the identified ML frameworks (TensorFlow and Keras). Some
of the collected buggy applications use ML frameworks other than our favorable (e.g.,
Caffe). They are collected because their repositories have had “tensorflow” or “keras”
keywords in their description. So, we remove them using this criterion.

– bugs without dependency information. One of the most significant needed informa-
tion to reproduce bugs is their dependencies. We applied this criterion to filter out bugs
that are not reproducible.

– bugs without required data or description for achieving it. Used data while fac-
ing the bug is another key requirement for reproducing ML-based systems’ bugs. We
establish this criterion to delete irreproducible bugs.

– bugs which are not related to the ML. With respect to our primary aim to investi-
gate characteristics of ML-related bugs and provide faultload benchmark of ML-based
systems, we use this criterion to exclude bugs that their root cause is not ML.

– bugs with description in any language other than English. Because we use commit
messages as material to inform the users about the detailed information of bug and the
bug-fix solution, we deleted the commits that use other languages than English for their
commit messages.

3.1 Collecting Bugs from Public Datasets

Zhang et al. (2018b) carried out a study on the bugs in TensorFlow programs to identify
the root causes and symptoms of various types of bugs. They provided a public dataset of
88 and 87 bugs studied in their paper, extracted from GitHub and SO, respectively. After
applying exclusion criteria, we obtained 9 GitHub related bugs to be added to the bench-
mark. But none of their reported bugs from SO remains after applying exclusion criteria.
Islam et al. (2020) provided a public dataset along with their research on the bug fix patterns
in DNN programs. DNN program refers to the DL model and training algorithm, where
they investigated for bug fix patterns. Their public dataset contains 347 and 320 bugs from
GitHub and SO, respectively. By filtering bugs using the exclusion criteria, we obtained 8

 62 Page 12 of 33 Empir Software Eng (2023) 28:62

Table 2 Detailed information
regarding the collected bugs from
public datasets

Dataset Num of collected bugs

GitHub SO

Zhang et al. (2018b) 9 0

Islam et al. (2020) 8 3

Wardat et al. (2021) 4 14

Humbatova et al. (2020) 0 0

Nikanjam et al. (2021a) 8 10

Total 29 27Bold italics mean final results or
total of some sub-categories

reproducible GitHub related bugs and 3 SO related. Wardat et al. (2021) provided a bench-
mark of bugs in DNN programs using Keras. They reported 11 and 29 bugs from GitHub
and SO, respectively. After applying our refinement process, we obtained 4 GitHub related
and 14 SO related bugs to add to the benchmark. Humbatova et al. (2020) studied different
types of bugs in DL programs and proposed a taxonomy on the identified bugs. They also
published the dataset of their studied bugs containing 60 bugs from GitHub and 109 from
SO. Our filters eliminated all their mentioned bugs and we could not achieve any bug from
their dataset. Nikanjam et al. (2021a) delivered a public dataset with their automatic bug
detection tool including 34 real bugs in DL programs, 26 from SO and 8 from GitHub. After
checking their provided bugs using mentioned exclusion criteria, we added 8 of GitHub
bugs and 10 SO ones to the benchmark.

Table 2 represents the number of bugs that we added to defect4ML from public datasets
of bugs. It is also worth noting to mention that some SO bugs are repetead in different public
datasets. As an example, post (2016) exists in three public datasets (Nikanjam et al. 2021a;
Wardat et al. 2021; Islam et al. 2020).

3.2 Collecting Bugs from GitHub

GitHub7 is considered the most significant resource of open source software repositories
in the computer programming community. As of September 2020, GitHub hosts more than
56 million users and about 190 million software repositories (GitHub 2021) including more
than 28 million public repositories. GitHub provides API to simplify the data extraction
process that allows developers to create their own requests and extract preferred data. We
also used GitHub rest API v3 (2021) to gather repositories.

3.2.1 Selection of ML-based Systems Repositories

To collect the ML-based systems’ repositories, we used GitHub search API. Firstly, we lim-
ited the results to the repositories that use Python programming language which is defined
as “Python” and “Jupyter Notebook” programming languages in GitHub. Python is the
most popular programming language for ML (Voskoglou 2017; Gupta 2021). On the other
hand, Keras and TensorFlow also provide Python APIs. As it is mentioned, we analyzed

7https://github.com/

https://github.com/

Empir Software Eng (2023) 28:62 Page 13 of 33 62

ML-based systems that use TensorFlow and/or Keras. We extracted the repositories using
each of TensorFlow and Keras separately. To this end, we used “tensorflow” and “keras”
keywords to extract the repositories using these ML frameworks. In the next step, we limited
the repositories to the ones with at least one push after 2019. This criterion is to decrease the
possibility of reviewing repositories using the old versions of ML frameworks or Python,
which may not be beneficial to add to the benchmark. At the same time, since it does not
prevent the inclusion of repositories using old versions of Python or ML framework, we
also filter those repositories during our manual inspection. Furthermore, repositories that
are forked or defined as “disabled” are excluded in the search query.

GitHub search API limits the users to access just the first 1000 results. So, we divided the
whole duration of search for push command from Jan 1, 2019 to Aug 30, 2021 (the time we
run the queries) into snapshots of 5 days to restrict the number of results to less than 1000.
That is to say, we raised 192 search requests for each ML framework to extract repositories.
We collected 30,387 and 51,151 repositories that use Keras and TensorFlow, respectively. In
the filtering process, we did not filter the repositories based on the popularity criteria (e.g.,
number of stars, number of commits, etc.) to keep more diversity in the collected bugs. In
other words, we aimed to collect as much as bugs from developers with various expertise
levels to avoid generating the benchmark using a biased set of bugs.

3.2.2 Selection of Bug-fix Commits

To extract bug-fix commits from the collected repositories, we searched commits’ mes-
sages for a list of bug-related keywords (bug, fail, crash, fix, resolve, failure, broken, break,
error, hang, problem, overflow, issue, stop, etc.), which are used successfully in the litera-
ture (Abidi et al. 2019a, b, 2021). We also used PyDriller (Spadini et al. 2018), a python
library to mine the GitHub repositories, to collect bug-fix commits. In this step, we col-
lected 157,190 bug-fix commits from repositories using TensorFlow and 98,562 from the
ones using Keras. To exclude bug-fix commits which are irrelevant to ML, we performed
another filtering step based on the approach used successfully in Humbatova et al. (2020).
We searched a list of keywords that are related to the various bug types in ML components
(e.g., optimize, loss, layer, etc.) in the commits’ messages and exclude ones with none of
those keywords. Thus, we reached 38,463 and 26,326 bug-fix commits for TensorFlow and
Keras, respectively.

Afterwards, we used sampling with 95% for confidence level and 5% for confidence
interval that gives us 380 bug-fix commit for repositories using TensorFlow and 379 for
Keras. In the next step, we manually checked all of the gathered bug-fix commits, applied
the exclusion rules, and removed the inappropriate ones. To achieve exclusion criteria, the
first author reviewed 200 bug-fix commits and shared the results with the second and third
authors (all with more than 2 years of experience in engineering ML-based systems). After
three meetings, we achieved an agreement on the following exclusion criteria:

– Bug-fix commits with messages written in languages other than English.
– Bug-fix commits that do not demonstrate the problem clearly.
– Bug-fix commits which used ML frameworks other than TensorFlow or Keras.

Besides, based on the changed LOC and manipulated APIs by the commit, we consider
the bug-fix commits that can be categorized as one of the most recent taxonomy of DL
bugs (Humbatova et al. 2020). To identify ML-related bug-fix commits, the first two
authors separately checked the 100 randomly selected bug-fix commits, 50 from repositories

 62 Page 14 of 33 Empir Software Eng (2023) 28:62

Table 3 Detailed information
about the number of remaining
bug-fix commits after each
filtering step

ML frameworks

TensorFlow Keras

All extracted ML-based repos 51151 30387

Bug-fix commits 157190 98562

ML-related bug-fix commits 38463 26326

Sampled bug-fix commits 380 379

Added bugs to the benchmark 17 29Bold italics mean final results or
total of some sub-categories

developed using TensorFlow and 50 by Keras, attaining 54.7% agreement using Cohen’s
Kappa (McDonald et al. 2019). So, we had two meetings to recognize the main reasons for
disagreements and resolve them. Next, we again checked the 100 reviewed bug-fix com-
mits achieving 89.6% agreement based on Cohen’s kappa which is considered as almost
perfect agreement (McHugh 2012). Afterward, the first author reviewed the rest of ran-
domly selected bug-fix commits. Then, the second author checked those bug-fix commits
that gained a level of agreement of 86.4%. Concerning most of the reviewed repositories
do not provide complete information of their dependencies, we tried to find the match ver-
sion of the used ML framework with the date of bug-fix commit. For instance, it is obvious
that commits which are done before March 5, 2018 could not use Keras higher than version
2.1.4, because the release date of Keras 2.1.5 is March 6, 2018 (Keras 2016). Afterward,
we attempted to find out the Python version and complete list of required libraries and their
version, matching the version of used ML framework. Finally, we achieved 38 bug-fix com-
mits which meet benchmark requirements. Then, we continued checked manually 505 other
bug-fix commits from repositories using TensorFlow and/or Keras randomly to attain our
goal. Table 3 represents the number of bugs that we added to the defect4ML from GitHub.

With respect to the need for both buggy and fixed versions of the application for each
identified bug in our proposed benchmark, we have provided a snapshot of the application’s
repository exactly before fixing the bug. To this end, we use git log -p <fileName>
command and extract the commit prior to the bug-fix (fileName refers to the buggy file
that bug-fix commit will change). Using that commit, we can gather the version of repository
exactly before fixing reported bug.

3.3 Extracting Bugs from Stack Overflow

Stack Overflow8 (SO) is taken into account as the largest Q&A platform for software
developers, with over 21 million questions and 14 million registered users on March
2021 StackOverflow (2021). To collect intended posts, we used Stack Exchange Data
Explore9 platform, where one can gather information regarding SO posts using SQL
queries. Like for data extraction from GitHub, we used some criteria for filtering SO posts
and collecting relevant ones. In the first step, we collected posts that have “tensorflow” or
“keras” as post tags. So, we gathered 50,001 and 37,887 question regarding TensorFlow
and Keras, respectively. Besides, 21,908 posts have both “tensorflow” and “keras” tags at
the same time. We considered all of them as posts related to Keras. Then, we filtered out

8https://stackoverflow.com/
9https://data.stackexchange.com/stackoverflow/query/new

https://stackoverflow.com/
https://data.stackexchange.com/stackoverflow/query/new

Empir Software Eng (2023) 28:62 Page 15 of 33 62

Table 4 Detailed information
about the number of remaining
posts after each filtering out step

ML frameworks

TensorFlow Keras

All extracted posts 50001 37887

Posts with accepted answer 18821 14590

Sampled posts 376 374

Added bugs to the benchmark 3 7

the posts without an accepted answer where one can not make sure of fixing the issue, in
the SO posts without accepted answer. So, we reached 18,812 posts regarding TensorFlow
and 14,590 about Keras. Afterward, we used sampling with 95% and 5% for confidence
level and confidence interval, respectively. Thus, we attained 376 posts related to Tensor-
Flow and 374 for Keras. It is worth noting that instead of selecting the posts randomly, we
selected the posts with the highest scores. Next, we manually checked all of the collected
bugs’ root cause to keep ones related to the ML and remove irrelevant ones. Similar to the
GitHub manual checking step, we used some exclusion criteria to filter out the irrelevant
SO posts. To obtain exclusion criteria, The first author analyzed 100 SO posts, 50 related
to the TensorFlow and 50 regarding Keras with the highest score and discussed the results
with the second author. After two meetings, we reached the following exclusion criteria:

– posts which mentioned conceptual questions about ML/DL components (such
as (2018)).

– posts related to the users questions on developing ML/DL components, not resolving a
bug (such as (2017)).

– posts that their root causes were not ML and they were just the typical programming
mistakes (such as (2018)).

– posts that do not include the required script to reproduce the bug.
– posts without mentioning the employed dataset or a clear description about it (such

as (2017)).

In the next step, the first author checked the 50 posts with the highest score for each ML
framework (a total of 100) to identify relevant ones. In the next step, the second author
reviewed them which obtained 89.3% agreement using Cohen’s kappa. Then, the first
author labeled the rest of the SO posts and the second author checked them, gaining 87.4%
agreement.

From the availability of the required data viewpoint, we can categorize the SO posts into
three main categories. First, the posts that mention popular datasets such as MNIST (LeCun
et al. 1998) or CIFAR-10 (Krizhevsky et al. 2009) (such as (2019)). We utilized Keras
datasets10 to reproduce bugs belonging to this group. Second, posts that provide the link to
achieve the needed data to reproduce the bugs (such as (2018)). Third, posts that did not
give any description about the required data (such as (2018)). To address the required data
problem of the posts that belong to this group, we tried to reproduce the bug using popular
datasets. In case of inability to reproduce the reported bug with the same root cause or
symptom, we excluded the post.

10https://keras.io/api/datasets/

https://keras.io/api/datasets/

 62 Page 16 of 33 Empir Software Eng (2023) 28:62

By manual investigating 376 sampled bugs related to TensorFlow and 374 regarding
Keras (750 in total), we achieved 10 reproducible bugs (3 TensorFlow and 5 Keras) to add
to the defect4ML. Table 4 depicts the number of bugs that we added to defect4ML from SO
posts. We continued manual checking for 48 more randomly selected SO posts regarding
Keras that concluded 2 bugs to be added to defect4ML.

3.4 Labeling Collected Bugs

To categorize the collected bugs, we used three kinds of labels, firstly based on violated
testing property (Zhang et al. 2020), secondly bug type, and finally according to symptoms
of bugs (Islam et al. 2019). Bug type refers to the class of ML bug taxonomy (Hum-
batova et al. 2020) to which the reported bug belongs. For the first step, the first two
authors held a meeting to discuss ML testing properties and achieve common understand-
ing on each ML testing property. Then, the first two authors labeled the first 25% bugs
reaching 85.7% agreement based on Cohen’s kappa (McDonald et al. 2019) which is inter-
preted as almost perfect agreement (McHugh 2012) and allows us to continue labeling
the rest of bugs. To assign ML testing property to each bug, we studied commit mes-
sage or SO post message to understand the property to which bug-fix aims. For instance,
a GitHub commit (2018) which is trying to improve the performance of the ML model is
categorized as efficiency property. As another example, GitHub (2018) that resolves the
problem in the model structure is labeled as correctness. For labeling the rest of bugs,
we labeled them in three parts (25% of bugs in each part) and held a meeting after each
part to identify the major reasons of disagreements and resolve them. In the case of dis-
agreements between two raters, they discussed disagreements with the third author which
result in labeling all bugs consistently, which is used in previous studies successfully (Shen
et al. 2021). Finally, we achieved 88.6% agreement using Cohen’s kappa after labeling
all bugs.

For the second labeling step, the first two authors labeled the 25% bugs separately achiev-
ing a 58% agreement based on Cohen’s kappa (McDonald et al. 2019), which is known as a
moderate agreement (McHugh 2012). Hence, to improve their understanding of bug types,
they had a meeting to have a clear knowledge about each label, identify the main reasons of
disagreements, and build a common understanding of bug types. Afterward, raters labeled
the first 25 bugs again resulting in 87% agreement, implying an almost perfect agreement
between them. The rater continues labeling the rest of bugs with this approach in three parts
(every 25% of the bugs in each part). After labeling bugs in each part, we had a meet-
ing to recognize the main reasons behind the disagreements and resolve them. Finally, we
achieved 88.7% agreement by labeling all bugs, using Cohen’s kappa. For the remaining
disagreements, we used methodology mentioned for labeling bugs based on the violated
properties.

To label the bugs according to their symptoms, firstly we had a meeting to achieve
an obvious understanding about symptom of ML-related bugs. Next, the first two authors
labeled 25% of the bugs gaining 88.5% agreement that is interpreted as almost perfect
agreement (McHugh 2012). Then, raters labeled the rest of bugs in three parts (similar to
two prior steps) reaching 91.4% agreement using Cohen’s kappa (McDonald et al. 2019).
To achieve consistent labels for all bugs, raters discussed the disagreements with the third
author and resolved them (same as previous steps).

Empir Software Eng (2023) 28:62 Page 17 of 33 62

4 Results

Generally, we manually checked 513 and 498 reported ML-related bugs extracted fron
GitHub and SO, and provided in previous articles. Also, we collected 64,789 bug fix com-
mits from ML-based systems repositories using TensorFlow and/or Keras. We selected
1264 out of them randomly and manually checked them as well for satisfaction of standard
benchmark criteria. Moreover, we manually inspected 798 SO posts related to TensorFlow
and/or Keras. In the following, we present our answers to each of our formulated research
questions.

4.1 RQ1. Key Factors in Reproducibility of ML-Related Bugs

Bug reproducibility plays a key role in this study, because it is taken into account as a sub-
stantial challenge in SRE of ML-based systems on the one hand (Zhang et al. 2018b) and in
the benchmark generating on the other hand (Kistowski et al. 2015). To make sure of repro-
ducibility of the collected bugs, we did several manual checking steps. Firstly, we checked
the buggy application for needed dependencies information to run it without dependency
issues. In the next step, we looked into needed data for running the buggy application and
triggering the reported bug. After addressing dependency and data requirements of each
bug, we faced some new challenges while trying to run the buggy applications. Regarding
the extracted ML-related bugs from GitHub, we have found several bugs with compilation
errors while they are running (such as (2017)). Besides, some of the bugs were not trig-
gered using the mentioned condition in bug-fix commit (such as (2018)). We coped with the
reproducibility problem of 62 out of 1777 (513 from public datasets and 1264 from GitHub)
reviewed ML-related bugs extracted from GitHub.

About the reported bugs in SO, almost all of the scripts mentioned in the posts are just
code snippets, not a complete code of the ML component, as it is popular in SO. There-
fore, we had to complete them by the default configuration and then check to ensure that
the considered bug would occur. In some cases, we failed to use the bug after spending con-
siderable time. Moreover, most of the SO posts do not include the required dependency and
data information to reproduce the reported bugs. We could reproduce 38 out of 1296 (498
from public datasets and 798 from SO) SO posts.

4.2 RQ2. The Important Factors in Verifiability of FixingML-related Bugs

Software verification refers to the process of checking software to ensure that it achieves
defined goals without any bug (2017). To verify the fixing of reported bugs, we need to
ensure that the mentioned problem will be resolved after applying the fix. Software systems
use software testing methods to verify their goals and objectives (Lyu 2007). We investigated
all reproducible ML-related bugs for the test cases provided by buggy applications that

 62 Page 18 of 33 Empir Software Eng (2023) 28:62

check the verification of the software component consisting of reported bugs. We found
10 out of 75 buggy applications extracted from GitHub that can be verified using provided
test cases by the applications. In case the buggy application does not give any test cases,
we have to trust the bug-fix commit message to verify the bug fixes, like almost all of the
previous articles studying ML-related bugs and their fixes (Humbatova et al. 2020; Zhang
et al. 2018b; Islam et al. 2020).

Verifiability of fixing reported bugs in SO posts is a more severe challenge. Most of the
scripts mentioned in SO posts are code snippets and do not have additional information
like test cases. So, we could not verify any of the reproducible ML-related bugs extracted
from SO using provided test cases by developers who ask the question. Instead, we used the
accepted answer flag to verify bug fixes.

4.3 RQ3. Providing a Standard Faultload Benchmark for ML-Based Systems

Overall, we collected 100 bugs for defect4ML, 62 from GitHub, and 38 from SO. Table 5
shows the detailed information of collected bugs. We will explain the challenges we faced
while generating the defect4ML and its merits in comparison with others in the upcoming
subsections. Figure 4 also depicts the the distribution of bugs, based on their symptoms.

4.3.1 Satisfied Criteria of Standard Benchmark

We consider all criteria of standard faultload benchmark as the challenges of generating
standard bug benchmark in ML-based systems. We will describe the methodologies we used
to satisfy each criterion in the upcoming subsections.

Relevance To meet the relevance criterion, we just include ML-related bugs in defect4ML.
Because there are well-suited benchmarks for traditional programming bugs (non ML-
related bugs) such as Widyasari et al. (2020), Madeiral et al. (2019), Le Goues et al. (2015),
Lu et al. (2005), Just et al. (2014), and Lin et al. (2015), we exclude any bugs that are not
related to ML. For example, commit (2019) which is related to the fix in README file has
been excluded from defect4ML.

Reproducibility To fulfill reproducibility, we have provided accurate information required
for reproducing bugs. The information consists of complete list of dependencies (all needed
libraries and their exact version including ML framework), Python version compatible
with ML framework and other libraries that application uses, used dataset while facing the
reported bug, and the instruction to activate the bug.

Empir Software Eng (2023) 28:62 Page 19 of 33 62

Table 5 Detailed information of bugs

Source Framework Bug category Bug type #bugs Total

GitHub

TensorFlow

API

Deprecated API 2

6Missing variable initialization 1

Wrong API usage 1

Model

Missing softmax layer 1

4Wrong network architecture 1

Wrong type of activation function 1

Wrong weights initialisation 1

Tensors & inputs
Tensor shape mismatch 1 2
Wrong shape of input data 1

Training

Redundant data augmentation 1

8Suboptimal learning rate 2

Wrong loss function calculation 4

Wrong selection of loss function 1

Keras

API

Deprecated API 3

8Missing API call 2

Missing argument scoping 1

Wrong API usage 2

Model

Missing dense layer 1

14

Suboptimal network structure 4

Wrong filter size for convolutional layer 1

Wrong layer type 2

Wrong network architecture 3

Wrong type of activation function 3

Tensors & inputs Wrong tensor shape 1 1

Training

Missing preprocessing step 1

19

Suboptimal batch size 4

Suboptimal number of epochs 4

Wrong loss function calculation 1

Wrong optimisation function 4

Wrong selection of loss function 5

SO

TensorFlow
API Deprecated API 2 2

Tensors & inputs Wrong input format 1 1

Keras

API
Wrong API usage 4 5
Deprecated API 1

Model

Suboptimal network structure 1

11Missing Flatten layer 2

Wrong type of activation function 8

Training

Suboptimal learning rate 3

9Wrong loss function 2

Missing preprocessing 4

Tensors & inputs

Tensor shape mismatch 2

10Wrong type of input data 1

Wrong shape of input data 6

Wrong tensor shape 1

Total 100

Bold italics mean final results or total of some sub-categories

 62 Page 20 of 33 Empir Software Eng (2023) 28:62

Fig. 4 Distribution of bugs’ symptoms in defect4ML

Fairness We have applied three main measures to meet the fairness and prevent generating
artificial limitations for defect4ML. Firstly, we have equipped the benchmark with two of
the most popular ML frameworks (TensorFlow and Keras (Yalçın 2021; Humbatova et al.
2020)). Secondly, we have used the taxonomy of bugs in DL programs introduced in Hum-
batova et al. (2020) and tried to label the benchmark bugs based on the leaves of that
taxonomy. We have covered 30 types of bugs mentioned in this taxonomy. So, the bench-
mark can satisfy various users’ requirements who focus on specific types of bugs. We have
also provided different types of bugs using various versions of ML frameworks and Python.

Verifiability We have implicitly satisfied this criterion because all collected bugs are real
and discussed in GitHub projects or SO posts. The benchmark also provides a link to the
bug’s origin (GitHub bug-fix commit or SO post) for all bugs. Bug-fix commit messages and
SO posts represent detailed information about the occurrence of the bug and the solution to
fix it. The benchmark delivers two versions of the application where the bug has occurred,
i.e., the buggy and fixed (or clean) versions. The Buggy version indicates the version of the
application before fixing the bug. The Fixed version refers to the application after fixing the
identified bug. Regarding the verifiability of fixing bugs collected for defect4ML, 10 out of
62 reproducible ML-related bugs gathered from GitHub are verifiable by the provided test
cases and the rest based on the bug-fix commit massage. We also used accepted answer flag
for SO posts that prove the verifiability of the solution provided to resolve the reported bug.

Usability We aim to generate an understandable benchmark by delivering information with
each bug, such as violated testing property, bug’s type, and a link to the bug’s origin.

Users can achieve detailed information regarding the bug’s root cause, symptoms, and
possible fixing methods using the mentioned link. We have also provided several catego-
rizations (bug’s origin, Python version, ML framework, violated testing property, and bug’s
type) to prepare a set of bugs that fit users’ aims. Users may use defect4ML for different
goals, such as assessing the ability of testing tools that focus on bug detection, repair, and
localization.

Empir Software Eng (2023) 28:62 Page 21 of 33 62

4.3.2 Addressed SRE Challenges in ML-based Systems

Several new challenges in the SRE of ML-based systems make it more complicated com-
pared to the traditional software systems (Islam et al. 2020; Wardat et al. 2021). Neglecting
these challenges may deteriorate the satisfaction level of relevance, reproducibility, verifi-
ability, and usability of ML-based systems. We rise to these challenges in defect4ML to
ensure the relevance of our proposed benchmark. In the following subsections we elaborate
on the methods used to handle each challenge.

Fast Changes inML Frameworks To handle the challenge of fast changes in the ML frame-
work, users need to have the exact information regarding the version of the used ML
framework in the application containing the bug. We have presented this information for
current bugs in defect4ML.11 Also, defect4ML has been equipped with bugs that appeared
in different versions of each ML framework.

Code Portability To tackle the code portability challenge, defect4ML has provided dif-
ferent bugs that occurred in the applications developed using the two most popular ML
frameworks: TensorFlow and Keras (Yalçın 2021; Humbatova et al. 2020). Therefore, users
have access to a list of bugs in their preferred ML framework, without requiring porting
bugs from one ML framework to another one. Users can also enhance the benchmark by
adding bugs from ML frameworks other than those studied in this paper or recreating bugs
in new ML frameworks.

Bug Reproducibility Bug reproducibility is known as one of the most critical challenges
in all SRE areas. But it is a more severe challenge in ML-based systems, because of direct
effect on the other challenges of SRE in ML-based systems such as fast changes of ML
frameworks and code portability. This difficulty may result from 1) a high amount of oper-
ational changes in versions of the ML frameworks (Islam et al. 2020), and 2) different
dependencies specified for every single version of ML frameworks (Zhang et al. 2018b).
To meet this challenge, we have delivered a complete list of dependencies (and correspond-
ing versions) needed to run the application.11 We have also presented specific configuration
of each bug including Python version, and process to trigger the bug.12 Moreover, because
of the substantial effect of data in ML components operations (Zhang et al. 2020; Felderer
and Ramler 2021), we have delivered the required training/testing datasets to reproduce the
bugs.

Lack of Detailed Information about the Bugs When an ML component faces a bug, the
compiler mostly gives no detailed information regarding the root cause of the bug or the
exact bug location. For example, the compiler may not recognize the ML model structural
bugs, or provides just an error message to inform the developer about the existence of a
problem in the ML model structure. But it does not give any clue (such as bug location) to
the developer for debugging the ML model. Figure 5 shows a sample script trying to imple-
ment a classifier for XOR problem using Keras (bug #84 of defect4ML) (2016). Although
loss remains constant during training (because of wrong activation function in the last dense
layer), compiler does not give any information about the problem to the user. To cope with

11In requirements.txt file, that consists of detailed information of dependencies per bug.
12In conf.ini file, that contains the required configuration per bug.

 62 Page 22 of 33 Empir Software Eng (2023) 28:62

Fig. 5 Sample implementation of XOR classification problem using Keras (2016)

this challenge, we use GitHub bug-fix commit messages and SO posts description that give
detailed bugs specifications and the possible solutions to fix them. Bug-fix commit mes-
sages may also include the link to the raised issue in the issue tracker, which has in-depth
information about the bug.

4.3.3 Artifacts

Each bug consists of several components to meet the prerequisites of the benchmark. These
components include:

– Buggy and fixed versions of the application: each bug has two different versions of
the application containing that bug. Buggy version is the application including the bug
and is generally used to evaluate ML-based systems testing tools’ ability to detect the
bugs. Fixed version is the same application just after fixing the bug and is mainly used
to assess the repairing tools. Repairing tools try to detect the bugs and provide another
version of the application where the identified bug has been fixed based on the best
practices.

– Dependencies (Required libraries): each bug comes with a complete list of dependen-
cies required to run the buggy version (e.g., ML framework and its version, and needed
libraries and their versions).

– Data: All bugs are equipped with the needed data to trigger the reported bug.
– Configuration: that is used to produce bug categorization on the benchmark. More-

over, the process of running the application to trigger the bug is mentioned in the
configuration.

– Test case: Each bug has its own test case which can execute the buggy application
and trigger the bug, without requiring any user’s manipulation. It has been exposed that
providing test cases to discover bugs in ML-based systems is more effective than using
assertion inside the application (Jia et al. 2021a). Besides, the test case enables users to
observe the effect of the bug and compare the behavior of the system in buggy and fixed
versions. Because the result of an ML application could be different for each run, even
with the same hyperparameters and dataset, providing assertion on exact values can be
ineffective for ML application, as shown by Nejadgholi and Yang (2019). Hence, we
use a range for assertion of provided test cases in defect4ML. Besides, according to the
previous studies showing that accuracy of fixed and buggy version will be close to each

Empir Software Eng (2023) 28:62 Page 23 of 33 62

other, in case the buggy version does not lead to crash/hang (Jia et al. 2022), we use the
average result of running buggy and fixed versions 10 times each to address challenges
of determining threshold in the provided assertions.

– Detailed description: each bug has a detailed description including its root cause,
symptom, and an explanation that represents the situation triggering the bug to ease
understanding of bugs.

Users who want to use defect4ML bugs should be informed that we provide test case
assertions on that part of results mentioned as symptoms of bug in GitHub issues/SO posts.
For example, in bug #92, the user obviously asked for a solution to resolve the problem
of low accuracy. Thus, we provide assertions on the accuracy of the buggy and fixed ver-
sions. As reported in Wardat et al. (2022), diagnosing an ML bug may require running the
code, collecting information on training and validation phases, and monitoring various val-
ues. We are aware that relying on model accuracy to diagnose a bug in ML applications may
not always be precise (Pham et al. 2021), because of the non-deterministic nature of ML
applications leading to different results/accuracy in various executions with the same hyper-
parameters and dataset. To this end, in cases where a bug is detected based on its impact on
the model accuracy, we run each version of an ML application multiple times (mostly 10
times) in the test cases and use the averaged accuracy achieved in multiple executions.

We have classified bugs based on different criteria in defect4ML. The first criterion is
testing properties of ML-based systems (Zhang et al. 2020) which includes correctness,
model relevance, robustness, security, efficiency, fairness, interpretability, and privacy. This
criterion refers to the conditions that should be guaranteed for the trained model.

Correctness refers to the ability of a trained model to predict unseen future data cor-
rectly (Zhang et al. 2020). That is, when an ML model is not designed and/or trained
optimally, it can manifest low accuracy during test or deployment. Thus, to meet correct-
ness which requires model accuracy improvement, developers should revise the designed
ML model based on recommendations of ML experts. As an example, in the code shown
in Fig. 5, because of using the wrong activation function (softmax) in the last dense layer,
model accuracy stays near 66%. In fact, the softmax activation function is helpful, where the
number of target classes is more than 2. Thus, removing this activation function resolves the
problem and increases the model accuracy. All of the currently presented bugs in defect4ML
fall into the correctness category.

Model relevance checks for a proper match between the design of the model and training
data (Kirk 2014). In other words, model relevance asserts that a designed ML model should
not be more complicated than what is required. Model overfitting usually leads to low model
relevance (Zhang et al. 2019). Providing a neural network with unnecessary hidden layers
may cause model overfitting, and then low model relevance. For example, when a model
is more complex and has more learning capacity than needed, it may fit noises of training
data resulting in contaminating model generalization (Hawkins 2004). Thus, decreasing
model learning capacity (adding dropout layer, weight decay, etc) would improve model
generalization and accordingly, model relevance.

Robustness is defined as the degree to which an ML system can handle any perturba-
tion on ML components (e.g. data) (IEEE 1990; Zhang et al. 2020). A trained ML model
should be able to handle small perturbation on data, like adversarial samples. As an exam-
ple, studies showed that existence of adversarial examples in safety-critical systems (such
as autonomous vehicles) may lead to significant improvement in the robustness of the
system (Tian et al. 2018; Zhang et al. 2018a).

 62 Page 24 of 33 Empir Software Eng (2023) 28:62

Security refers to the resiliency of a ML system against harmful or dangerous actions
by illegal access or manipulation of ML components (Xue et al. 2020). Systems with low
accuracy may deal with data poisoning if perturbed data is employed as training data. A
security attack may mislead a trained model or lead a model to be trained badly by manip-
ulating training data (Liu et al. 2020). For example, accessing “stop sign” training data of
an autonomous vehicle and manipulating it to decrease detection performance of the model
may lead to a catastrophe (Zhu et al. 2019).

Efficiency measures consumed computational resources for training or inferring pro-
cesses in the ML system (Zhang et al. 2020). Overall, an ML system suffering from
suboptimal model structure may need more training time compared to the optimal model
structure. For example, training an ML model aiming at decreasing loss may be faced with
stopping loss decrement after some training loops (Brownlee 2020). Afterwards, continuing
training may be considered a waste of resources. Hence, ML developers use early stopping
to monitor evaluation metrics and cease training, whenever training no longer improves
evaluation metrics (Rice et al. 2020).

Fairness aims at preventing ML decisions to suffer from ethical issues (e.g. human rights,
discrimination, etc.) (Chouldechova and Roth 2018). In general, human beings have a bias
in labeling or collecting data (Barocas and Selbst 2016). Fairness ensures that ML decisions
are in the right way and free of bias. Unfair models may produce discrimination, where they
do not work for some subpopulations. An example of an unfair model can be a medical
image processing model that works inaccurate, except for white males.

Interpretability refers to the degree that reasons behind decisions made by ML models
can be understandable by human beings (Lipton 2018). As an example, an ML model with
high interpretability used for medical treatment decisions may be trusted more by medical
experts. Last but not least, privacy aims at protecting private information that can be used as
training data (Dwork 2008; Zhang et al. 2020). For example, data used for an ML model that
plays a role of assistant in medical treatment decisions should preserve privacy of patients
information.

Another filtering criterion is the ML framework used to implement the buggy ML com-
ponent. To indicate the types of bugs, we used the taxonomy of DL bugs proposed by
Humbatova et al. (2020).

4.3.4 Provided API

In order to deliver an easy-to-use benchmark, we provide a web application endpoint for
defect4ML (accessible via http://defect4aitesting.soccerlab.polymtl.ca). Figure 6 repre-
sents a screenshot of the defect4ML web application. Users can browse the bugs, and filter
them based on different criteria to attain a list of bugs that is suitable for their goals. Since
defect4ML is in the process of expansion, we have provided the possibility for the users to
add new bugs to the benchmark or raise a request for removing the existing ones. Users can
submit new bugs by providing an artifact of the bug. Detailed explanation of adding new
bugs has been presented in benchmark web application page.

5 Discussion

This section presents an example application of defect4ML as a case study: comparing two
ML-based systems testing tools: NeuraLint and DeepLocalize.

http://defect4aitesting.soccerlab.polymtl.ca

Empir Software Eng (2023) 28:62 Page 25 of 33 62

Fig. 6 A screenshot of defect4ML web application

5.1 Benchmark Applications

According to the characteristics of the defect4ML, it can be beneficial to studies on bugs
in ML-based systems. Developers of ML-based systems testing tools can use defect4ML
to show the advantages of their proposed tools and techniques compared to the existing
ones. The researchers can also use our proposed benchmark to evaluate existing ML-based
systems testing tools and clarify the most critical challenges that should receive attention
from new studies. We provide a case study of using defect4ML to evaluate ML-based sys-
tems testing tools. So, the primary goals of this case study are the assessment of ML-based
systems testing tools and comparing them.

In this case study, we compare two testing tools for ML-based systems. We selected two
up-to-date testing tools published recently: NeuraLint (Nikanjam et al. 2021a) and DeepLo-
calize (Wardat et al. 2021). NeuraLint is a model-based automatic fault detection tools for
DL programs. The authors proposed a meta-model for DL programs that contains their basic
properties. To detect the bugs, NeuraLint first extracts the graph of the DL program from
its code. In the next step, it identifies the bugs using graph transformations that represent
detection rules. It is worth noting that NeuraLint is based on static analysis of DL programs
meaning that it does not need to run the DL program to identify the bugs.

DeepLocalize is another testing tool that can analyze DL programs, detect the bugs, and
localize them automatically. It provides a customized callback function for Keras that col-
lects DNN detailed information during the training process. In other words, DeepLocalize
analyses the DNN training traces to identify the possible bugs and their root causes (e.g.,
faulty layers or hyperparameters). Unlike NeuraLint that analyzes the DL programs stat-
ically, DeepLocalize uses dynamic analysis. That is, DL programs should be executable
without any compilation error to be analyzable by DeepLocalize.

Concerning the fact that NeuraLint can analyze the DL programs that have been written
in one file, we had a limited number of bugs to use. On the other hand, due to the exis-
tence of compile-time errors in the buggy version of some bugs, they are not usable for
DeepLocalize.

 62 Page 26 of 33 Empir Software Eng (2023) 28:62

Ta
bl
e
6

R
es

ul
ts

of
st

ud
ie

d
to

ol
s

as
ca

se
st

ud
y

B
ug

ID
So

ur
ce

Fr
am

ew
or

k
V

io
la

te
d

pr
op

er
ty

B
ug

ty
pe

N
eu

ra
L

in
tr

es
ul

t
D

ee
pL

oc
al

iz
e

re
su

lt

25
G

itH
ub

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ne
tw

or
k

N
o

id
en

tif
ie

d
er

ro
r

ba
tc

h
4

la
ye

r
9

:e
rr

or
in

ar
ch

ite
ct

ur
e

fo
rw

ar
d

26
G

itH
ub

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ty
pe

of
N

o
id

en
tif

ie
d

er
ro

r
ba

tc
h

4
la

ye
r

11
:e

rr
or

in

ac
tiv

at
io

n
fu

nc
tio

n
fo

rw
ar

d

44
G

itH
ub

K
er

as
E

ff
ic

ie
nc

y
Su

bo
pt

im
al

ne
tw

or
k

N
o

id
en

tif
ie

d
er

ro
r

ba
tc

h
4

la
ye

r
12

:e
rr

or
in

st
ru

ct
ur

e
fo

rw
ar

d

80
SO

K
er

as
C

or
re

ct
ne

ss
M

is
in

g
fl

at
te

n
la

ye
r

L
ac

k
of

po
ol

in
g,

m
is

si
ng

×
fl

at
te

n

84
SO

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ty
pe

of
ac

tiv
at

io
n

W
ro

ng
ac

tiv
at

io
n

fu
nc

tio
n,

ba
tc

h
0

la
ye

r
2

:e
rr

or
in

fu
nc

tio
n

w
ro

ng
un

its
’

sh
ap

e
de

lta
w

ei
gh

ts

86
SO

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ty
pe

of
ac

tiv
at

io
n

W
ro

ng
ac

tiv
at

io
n

fu
nc

tio
n,

ba
tc

h
0

la
ye

r
0

:e
rr

or
in

fu
nc

tio
n

w
ro

ng
la

ye
rs

’
st

ru
ct

ur
e

fo
rw

ar
d

88
SO

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ty
pe

of
ac

tiv
at

io
n

W
ro

ng
ac

tiv
at

io
n

fu
nc

tio
n

×
fu

nc
tio

n

89
SO

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ty
pe

of
ac

tiv
at

io
n

W
ro

ng
ac

tiv
at

io
n

fu
nc

tio
n

ba
tc

h
0

la
ye

r
0

:e
rr

or
in

fu
nc

tio
n

fo
rw

ar
d

92
SO

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

ty
pe

of
ac

tiv
at

io
n

W
ro

ng
ac

tiv
at

io
n

fu
nc

tio
n,

ba
tc

h
0

la
ye

r
9

:e
rr

or
in

fu
nc

tio
n

w
ro

ng
w

in
do

w
si

ze
fo

r
de

lta
w

ei
gh

ts

sp
at

ia
lf

ilt
er

in
g

95
SO

K
er

as
C

or
re

ct
ne

ss
W

ro
ng

A
PI

us
ag

e
N

o
id

en
tif

ie
d

er
ro

r
m

od
el

do
es

no
tl

ea
rn

11
1

SO
K

er
as

C
or

re
ct

ne
ss

M
is

si
ng

pr
ep

ro
ce

ss
in

g
N

o
id

en
tif

ie
d

er
ro

r
E

rr
or

in
de

lta
w

ei
gh

ts

11
2

SO
K

er
as

C
or

re
ct

ne
ss

M
is

si
ng

fl
at

te
n

la
ye

r
M

is
si

ng
fl

at
te

n
×

Empir Software Eng (2023) 28:62 Page 27 of 33 62

We selected 20 bugs randomly from defect4ML, 10 from SO bugs and 10 from GitHub
based ones. With respect to the limitations of the NeuraLint and DeepLocalize tools, we
could just use 12 out of 20 which are usable for at least one of the tools. Table 6 demonstrates
the result of evaluating NeuraLint and DeepLocalize. The cells filled with × refer to the
samples that have compile-time errors and could not be used by DeepLocalize.

Table 6 demonstrates the result of evaluating NeuraLint and DeepLocalize. The cells
filled with × refer to the samples that have compile-time errors and could not be used by
DeepLocalize. Based on the gathered results, NeuraLint was able to identify bugs in 9 out
of 10 samples. Besides, it has detected design issues in some examples, in addition to the
reported bugs. Design issues are poor design and/or configuration decisions that can have a
negative impact on the performance and then quality of a DL-based software system (Nikan-
jam and Khomh 2021; Nikanjam et al. 2021a). For instance, bug #91 is related to the wrong
activation function of the DL model, while NeuraLint has also identified that window size
for spatial filtering does not define properly. Conversely, DeepLocalize could localize the
bug correctly in 1 out of 4 samples.

6 RelatedWork

The closest work to our proposed benchmark was carried out by Kim et al. (2021) provid-
ing a benchmark of bugs in ML-based systems, which is called Denchmark. They extracted
4577 bugs reported in the issue tracker of 193 GitHub repositories. Although their bench-
mark was the first bug benchmark focused on ML-based systems, their study has several
shortcomings. Firstly, they have considered repositories with various programming lan-
guages such as Java, C, C++, Python, etc., without considering any categorization on them.
So, developers might have to inspect and then categorize the bugs based on their favorite
programming languages, which can be time-consuming. The second drawback is igno-
rance of the big difference between bugs related to the ML (ML-related bugs) and other
ones. Denchmark has reported all bugs without any differentiation. Moreover, this study has
taken no notice of bug reproducibility, which is one of the main challenges in the SRE of
ML-based systems (Zhang et al. 2018b). Last but not least, this benchmark has neglected
standard benchmark criteria, which may result in benchmark effectiveness detriment.

Wardat et al. (2021) also provided a benchmark of 40 bugs to validate their proposed
tool. They offered 11 bugs from GitHub and 29 bugs from SO and introduced them as a
benchmark of bugs in ML-based systems. The first concern about their proposed benchmark
is ignorance of the standard benchmark criteria (e.g., relevance, reproducibility, fairness)
and SRE challenges in ML-based systems. Besides, no information has been provided about
the execution process of applications extracted from GitHub to trigger the bug.

7 Threats to Validity

We now discuss the threats to validity of our study.

7.1 Internal Validity

The primary source of internal threat to the validity of the results provided in this study
can be the categorization of bugs. To diminish this threat, we used the predefined taxonomy
of bugs in DL programs discussed in Humbatova et al. (2020). Another internal threat to

 62 Page 28 of 33 Empir Software Eng (2023) 28:62

our proposed benchmark can be the manual inspection of the bugs and making decisions
about their inclusion or exclusion. The first author (a PhD student and practitioner of ML
development) reviewed 100 bug-fix commits and discussed the result with the second and
third authors (two PhDs with research background in engineering ML-based systems) to
mitigate this threat. After three meetings, we reached an agreement on the including and
excluding rules of filtering the bug-fix commits. To ensure that the benchmark consists of
real bugs, we used just the SO posts with an accepted answer and bug-fix commits that
clearly explain the bug and its symptoms. Verifiability of the bug fixes may be the last
internal threat to the validity of this research. To counteract this threat, we used different
methods for ML-related bugs extracted from GitHub and SO.

Regarding the bugs extracted from GitHub, if the buggy applications do not provide
appropriate tests to verify the bug fix, we used bug fix commit messages that clearly men-
tion the changes to fix the reported bug. To verify bugs gathered from SO posts, we only
used the posts with an accepted answer that is considered as evidence of fixing the bug
correctly.

7.2 External Validity

The most crucial threat to the external validity of this study is its limitation to the Ten-
sorFlow (Abadi et al. 2016) and Keras (Chollet and et al 2018) frameworks. Firstly, we
have selected them because they are two of the most popular ML frameworks (Yalçın 2021;
Humbatova et al. 2020). Second, we have provided the feature to add new bugs using any
ML framework to the benchmark and request to remove the existing bugs from it by any
user. Furthermore, to achieve the highest diversity of ML-related bugs, we did not use any
popularity-based filter on the GitHub repositories. We collected the bugs from the reposito-
ries developed by users with various expertise levels. Another thread to the external validity
of this study can be the selection of Python as programming language of ML-based sys-
tems development. The main reason behind the selection of Python is the fact that it is the
most used programming language for developing ML components (Voskoglou 2017; Gupta
2021). As a result, a larger variety of ML-related bugs can be found in ML-based systems
based on the Python programming language and defect4ML will be also usable for a higher
number of users.

8 Conclusion and FutureWorks

The growing tendency to apply ML-based systems in safety-critical areas increases the
demand for reliable ML-based systems. A benchmark of bugs in ML-based systems, a
faultload benchmark, is a key requirement for assessing the effectiveness of studies on ML-
based systems’ reliability (like testing) which are based on bugs’ lifecycle. In this study,
we reviewed 1777 ML-related bugs from GitHub and 1296 from SO which are related to
the ML-based systems using two of the most common ML frameworks, TensorFlow and
Keras, and represented that only near 3.48% of GitHub bugs and 2.93% of reported bugs
in SO are reproducible. Besides, we showed that almost 13.3% of fixing of all reproducible
bugs extracted from GitHub can be verified by their provided test cases. However, none
of the SO posts has test cases for verifying bug fixes. We have also proposed defect4ML,
a faultload benchmark of ML-based systems consisting of 100 bugs extracted from the
software systems using TensorFlow and/or Keras (62 from Github, and 38 from SO). All
of the standardized benchmark criteria have been satisfied by our proposed benchmark.

Empir Software Eng (2023) 28:62 Page 29 of 33 62

defect4ML also addresses the main SRE challenges in ML-based systems by providing
bugs in various ML frameworks with different versions, comprehensive information regard-
ing dependencies and required data to trigger the bug, detailed information about the type
of bugs, and link to the origin of the bug. Concerning the ongoing nature of creating bench-
marks, we plan to add more bugs to cover all types of bugs in ML-based systems. Moreover,
we are going to improve defect4ML to be usable for automatic bug repair toolsi. Besides,
we will add bugs based on other ML frameworks (such as PyTorch) to improve the coverage
of the defect4ML.

Acknowledgements This work was supported by: Fonds de Recherche du Québec (FRQ), the Canadian
Institute for Advanced Research (CIFAR) as well as the DEEL project CRDPJ 537462-18 funded by the
National Science and Engineering Research Council of Canada (NSERC) and the Consortium for Research
and Innovation in Aerospace in Québec (CRIAQ), together with its industrial partners Thales Canada inc,
Bell Textron Canada Limited, CAE inc and Bombardier inc.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016)
Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16). Savannah, USENIX, pp 265–283

Abidi M, Grichi M, Khomh F, Guéhéneuc YG (2019a) Code smells for multi-language systems. In:
Proceedings of the 24th European conference on pattern languages of programs, pp 1–13

Abidi M, Khomh F, Guéhéneuc YG (2019b) Anti-patterns for multi-language systems. In: Proceedings of
the 24th European conference on pattern languages of programs, pp 1–14

Abidi M, Rahman MS, Openja M, Khomh F (2021) Are multi-language design smells fault-prone? An
empirical study. ACM Trans Softw Eng Methodol (TOSEM) 30(3):1–56

Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J, Belikov
A, Belopolsky A et al (2016) Theano: a python framework for fast computation of mathematical
expressions. arXiv e-prints pp arXiv–1605

Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, Nagappan N, Nushi B, Zimmermann T (2019) Soft-
ware engineering for machine learning: a case study. In: 2019 IEEE/ACM 41st international conference
on software engineering: Software engineering in practice (ICSE-SEIP). IEEE, pp 291–300

Barocas S, Selbst AD (2016) Big data’s disparate impact. Calif Law Rev 104(3):671–732. http://www.jstor.
org/stable/24758720. Accessed 11 Jan 2022

Borg M (2021) The aiq meta-testbed: pragmatically bridging academic ai testing and industrial q needs. In:
International conference on software quality. Springer, pp 66–77

Bourque P, Dupuis R, Abran A, Moore JW, Tripp L (1999) The guide to the software engineering body of
knowledge. IEEE Softw 16(6):35–44

Brownlee J (2020) Use early stopping to halt the training of neural networks at the right time.
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-
using-early-stopping/. Accessed: 2022-12-29

Chollet F et al (2018) Keras: the python deep learning library. Astrophysics Source Code Library, pp ascl–
1806

Chouldechova A, Roth A (2018) The frontiers of fairness in machine learning. arXiv:1810.08810
Collobert R, Bengio S, Mariéthoz J (2002) Torch: a modular machine learning software library. Tech. rep.

Idiap
Developer guideline documentation G (2021) Github rest api. https://developer.github.com/v3/. Accessed:

2021-7-27
Dwork C (2008) Differential privacy: a survey of results. In: International conference on theory and

applications of models of computation. Springer, pp 1–19
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean

J (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29
Felderer M, Ramler R (2021) Quality assurance for ai-based systems: overview and challenges (introduction

to interactive session). In: International conference on software quality. Springer, pp 33–42
Galin D (2004) Software quality assurance: from theory to implementation. Pearson Education, England
GitHub (2021) Github official website. https://github.com/about. Accessed: 2021-7-27

http://www.jstor.org/stable/24758720
http://www.jstor.org/stable/24758720
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/
http://arxiv.org/abs/1810.08810
https://developer.github.com/v3/
https://github.com/about

 62 Page 30 of 33 Empir Software Eng (2023) 28:62

Gupta S (2021) What is the best language for machine learning? https://www.springboard.com/blog/
data-science/best-language-for-machine-learning. Accessed: 2021-10-06

Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput 44(1):1–12
https://github.com/dpressel/baseline/commit/4dad463 (2016). Accessed: 2021-11-01
https://stackoverflow.com/questions/34311586 (2016). Accessed: 2021-11-01
https://stackoverflow.com/questions/38080035 (2017). Accessed: 2021-11-01
https://stackoverflow.com/questions/42264649 (2017). Accessed: 2021-11-01
https://github.com/suchaoxiao/keras-frcnn modify/commit/2f51f68 (2017). Accessed: 2021-11-01
https://github.com/albu/albumentations/commit/fec1f3b (2018). Accessed: 2021-11-01
https://github.com/vmelan/cifar-experiment/commit/561c82e (2018). Accessed: 2022-06-01
https://stackoverflow.com/questions/53119432 (2018). Accessed: 2021-11-01
https://github.com/acflorea/keras-playground/commit/d44c90c (2018). Accessed: 2022-06-01
https://github.com/keras-team/keras-tuner/commit/3758611 (2018). Accessed: 2022-06-01
https://github.com/hunkim/DeepLearningZeroToAll/commit/9f8fb94 (2018). Accessed: 2022-06-01
https://stackoverflow.com/questions/44924690 (2018). Accessed: 2021-11-01
https://stackoverflow.com/questions/58636087 (2018). Accessed: 2021-11-01
https://stackoverflow.com/questions/50079585 (2018). Accessed: 2021-11-01
https://github.com/PhilippeNguyen/kinopt/commit/fdee16f (2018). Accessed: 2021-11-01
https://stackoverflow.com/questions/56103207 (2019). Accessed: 2021-11-01
https://github.com/vaclavcadek/keras2pmml/commit/4795ec6 (2019). Accessed: 2021-11-01
Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in

deep learning systems. In: Proceedings of the ACM/IEEE 42nd international conference on software
engineering, pp 1110–1121

Huppler K (2009) The art of building a good benchmark. In: Technology conference on performance
evaluation and benchmarking. Springer, pp 18–30

IEEE standard for system, software, and hardware verification and validation (2017). IEEE Std 1012-
2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std 1012-2016/Cor1-2017), pp 1–260.
https://doi.org/10.1109/IEEESTD.2017.8055462

IEEE standard glossary of software engineering terminology (1990). IEEE Std 610.12-1990, pp 1–84.
https://doi.org/10.1109/IEEESTD.1990.101064

ISO/IEC/IEEE international standard—systems and software engineering—vocabulary (2010).
ISO/IEC/IEEE 24765:2010(E), pp 1–418. https://doi.org/10.1109/IEEESTD.2010.5733835

Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on deep learning bug characteristics.
In: Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, pp 510–520

Islam MJ, Pan R, Nguyen G, Rajan H (2020) Repairing deep neural networks: fix patterns and challenges. In:
2020 IEEE/ACM 42nd international conference on software engineering (ICSE). IEEE, pp 1135–1146

Jia L, Zhong H, Huang L (2021a) The unit test quality of deep learning libraries: a mutation analysis. In:
2021 IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 47–57

Jia L, Zhong H, Wang X, Huang L, Lu X (2021b) The symptoms, causes, and repairs of bugs inside a deep
learning library. J Syst Softw 177:110935

Jia L, Zhong H, Wang X, Huang L, Li Z (2022) How do injected bugs affect deep learning? In: 2022 IEEE
International conference on software analysis, evolution and reengineering (SANER). IEEE, pp 793–804

Jiang Y, Liu H, Niu N, Zhang L, Hu Y (2021) Extracting concise bug-fixing patches from human-written
patches in version control systems. In: 2021 IEEE/ACM 43rd international conference on software
engineering (ICSE). IEEE, pp 686–698

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
pp 437–440

Keras (2016) Keras 2.1.5. https://github.com/keras-team/keras/releases/tag/2.1.5. Accessed: 2021-11-01
Kim M, Kim Y, Lee E (2021) Denchmark: a bug benchmark of deep learning-related software. In: 2021

IEEE/ACM 18th international conference on mining software repositories (MSR). IEEE, pp 540–544
Kirk M (2014) Thoughtful machine learning: a test-driven approach. O’Reilly Media, Inc.
Kistowski JV, Arnold JA, Huppler K, Lange KD, Henning JL, Cao P (2015) How to build a benchmark. In:

Proceedings of the 6th ACM/SPEC international conference on performance engineering, pp 333–336
Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images
Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The manybugs and

introclass benchmarks for automated repair of c programs. IEEE Trans Softw Eng 41(12):1236–1256
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition.

Proc IEEE 86(11):2278–2324

https://www.springboard.com/blog/data-science/best-language-for-machine -learning
https://www.springboard.com/blog/data-science/best-language-for-machine -learning
https://github.com/dpressel/baseline/commit/4dad463
https://stackoverflow.com/questions/34311586
https://stackoverflow.com/questions/38080035
https://stackoverflow.com/questions/42264649
https://github.com/suchaoxiao/keras-frcnn_modify/commit/2f51f68
https://github.com/albu/albumentations/commit/fec1f3b
https://github.com/vmelan/cifar-experiment/commit/561c82e
https://stackoverflow.com/questions/53119432
https://github.com/acflorea/keras-playground/commit/d44c90c
https://github.com/keras-team/keras-tuner/commit/3758611
https://github.com/hunkim/DeepLearningZeroToAll/commit/9f8fb94
https://stackoverflow.com/questions/44924690
https://stackoverflow.com/questions/58636087
https://stackoverflow.com/questions/50079585
https://github.com/PhilippeNguyen/kinopt/commit/fdee16f
https://stackoverflow.com/questions/56103207
https://github.com/vaclavcadek/keras2pmml/commit/4795ec6
https://doi.org/10.1109/IEEESTD.2017.8055462
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.2010.5733835
https://github.com/keras-team/keras/releases/tag/2.1.5

Empir Software Eng (2023) 28:62 Page 31 of 33 62

Lenarduzzi V, Lomio F, Moreschini S, Taibi D, Tamburri DA (2021) Software quality for ai: where we are
now? In: International conference on software quality. Springer, pp 43–53

Lin Z, Marinov D, Zhong H, Chen Y, Zhao J (2015) Jacontebe: a benchmark suite of real-world java concur-
rency bugs (t). In: 2015 30th IEEE/ACM international conference on automated software engineering
(ASE). IEEE, pp 178–189

Lipton ZC (2018) The mythos of model interpretability: in machine learning, the concept of interpretability
is both important and slippery. Queue 16(3):31–57

Liu X, Xie L, Wang Y, Zou J, Xiong J, Ying Z, Vasilakos AV (2020) Privacy and security issues in deep
learning: a survey. IEEE Access 9:4566–4593

Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y (2005) Bugbench: benchmarks for evaluating bug detection tools.
In: Workshop on the evaluation of software defect detection tools, vol 5. Chicago

Lyu MR (2007) Software reliability engineering: a roadmap. In: Future of software engineering (FOSE’07).
IEEE, Minneapolis, pp 153–170

Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y et al (2018) Deepgauge:
multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd ACM/IEEE inter-
national conference on automated software engineering. Association for Computing Machinery (ACM),
New York, pp 120–131

Madeiral F, Urli S, Maia M, Monperrus M (2019) Bears: an extensible java bug benchmark for automatic
program repair studies. In: 2019 IEEE 26th international conference on software analysis, evolution and
reengineering (SANER). IEEE, pp 468–478

Marijan D, Gotlieb A, Ahuja MK (2019) Challenges of testing machine learning based systems. In: 2019
IEEE International conference on artificial intelligence testing (AITest). IEEE, pp 101–102

Martı́nez-Fernández S, Bogner J, Franch X, Oriol M, Siebert J, Trendowicz A, Vollmer AM, Wagner S (2021)
Software engineering for ai-based systems: a survey. arXiv:2105.01984

McDonald N, Schoenebeck S, Forte A (2019) Reliability and inter-rater reliability in qualitative research:
Norms and guidelines for cscw and hci practice. Proc ACM on Human-Comput Interact 3(CSCW):1–23

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia Medica 22(3):276–282
Nejadgholi M, Yang J (2019) A study of oracle approximations in testing deep learning libraries. In: 2019

34th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 785–796
Nikanjam A, Khomh F (2021) Design smells in deep learning programs: an empirical study. In: 2021 IEEE

International conference on software maintenance and evolution (ICSME), pp 332–342
Nikanjam A, Braiek HB, Morovati MM, Khomh F (2021a) Automatic fault detection for deep

learning programs using graph transformations. ACM Trans Softw Eng Methodol 31(1).
https://doi.org/10.1145/3470006

Nikanjam A, Morovati MM, Khomh F, Braiek HB (2021b) Faults in deep reinforcement learning programs:
a taxonomy and a detection approach. arXiv:2101.00135

Organisation T (2021) Torch official github repository. https://github.com/torch/torch7. Accessed: 2021-9-1
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al

(2019) Pytorch: an imperative style, high-performance deep learning library. arXiv:1912.01703
Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: automated whitebox testing of deep learning systems.

In: Proceedings of the 26th symposium on operating systems principles. Association for Computing
Machinery (ACM), New York, pp 1–18

Pham HV, Qian S, Wang J, Lutellier T, Rosenthal J, Tan L, Yu Y, Nagappan N (2021) Problems and
opportunities in training deep learning software systems: an analysis of variance. In: Proceedings of the
35th IEEE/ACM international conference on automated software engineering, ASE ’20. Association for
Computing Machinery, New York, pp 771–783. https://doi.org/10.1145/3324884.3416545

Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan
Radjenović D, Heričko M, Torkar R, Živkovič A (2013) Software fault prediction metrics: a systematic

literature review. Inf Softw Technol 55(8):1397–1418
Riccio V, Jahangirova G, Stocco A, Humbatova N, Weiss M, Tonella P (2020) Testing machine learning

based systems: a systematic mapping. Empir Softw Eng 25(6):5193–5254
Rice L, Wong E, Kolter Z (2020) Overfitting in adversarially robust deep learning. In: International

conference on machine learning. PMLR, pp 8093–8104
Rivera-Landos E, Khomh F, Nikanjam A (2021) The challenge of reproducible ml: an empirical study on the

impact of bugs
Road vehicles—safety of the intended functionality. Standard (2019). https://www.iso.org/standard/70939.

html. Accessed 11 Jan 2022
Rodrı́guez-Pérez G, Robles G, González-Barahona JM (2018) Reproducibility and credibility in empirical

software engineering: a case study based on a systematic literature review of the use of the szz algorithm.
Inf Softw Technol 99:164–176

http://arxiv.org/abs/2105.01984
https://doi.org/10.1145/3470006
http://arxiv.org/abs/2101.00135
https://github.com/torch/torch7
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3324884.3416545
https://www.iso.org/standard/70939.html
https://www.iso.org/standard/70939.html

 62 Page 32 of 33 Empir Software Eng (2023) 28:62

Schoop E, Huang F, Hartmann B (2021) Umlaut: debugging deep learning programs using program struc-
ture and model behavior. In: Proceedings of the 2021 CHI conference on human factors in computing
systems, pp 1–16

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison
D (2015) Hidden technical debt in machine learning systems. Adv Neural Inf Process Syst 28:2503–2511

Shen Q, Ma H, Chen J, Tian Y, Cheung SC, Chen X (2021) A comprehensive study of deep learning compiler
bugs. In: Proceedings of the 29th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, pp 968–980

Spadini D, Aniche M, Bacchelli A (2018) PyDriller: python framework for mining software repositories.
In: Proceedings of the 2018 26th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering—ESEC/FSE 2018. ACM Press, New York,
pp 908–911. https://doi.org/10.1145/3236024.3264598

StackOverflow: Stack overflow annual developer survey. https://insights.stackoverflow.com/survey/2021
(2021). Accessed: 2022-04-01

Tambon F, Nikanjam A, An L, Khomh F, Antoniol G (2021) Silent bugs in deep learning frameworks: an
empirical study of keras and tensorflow

Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: automated testing of deep-neural-network-driven autonomous
cars. In: Proceedings of the 40th international conference on software engineering, pp 303–314

Vieira M, Madeira H, Sachs K, Kounev S (2012) Resilience benchmarking. In: Resilience assessment and
evaluation of computing systems. Springer, pp 283–301

Voskoglou C (2017) What is the best programming language for machine learning. https://towards
datascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7.
Accessed: 2021-10-06

Wardat M, Le W, Rajan H (2021) Deeplocalize: fault localization for deep neural networks. In: 2021
IEEE/ACM 43rd international conference on software engineering (ICSE). IEEE, pp 251–262

Wardat M, Cruz BD, Le W, Rajan H (2022) Deepdiagnosis: automatically diagnosing faults and recommend-
ing actionable fixes in deep learning programs. In: Proceedings of the 44th international conference on
software engineering, pp 561–572

Widyasari R, Sim SQ, Lok C, Qi H, Phan J, Tay Q, Tan C, Wee F, Tan JE, Yieh Y et al (2020) Bugsinpy: a
database of existing bugs in python programs to enable controlled testing and debugging studies. In: Pro-
ceedings of the 28th ACM joint meeting on European software engineering conference and symposium
on the foundations of software engineering, pp 1556–1560

Xue M, Yuan C, Wu H, Zhang Y, Liu W (2020) Machine learning security: threats, countermeasures, and
evaluations. IEEE Access 8:74720–74742

Yalçın OG (2021) Top 5 deep learning frameworks to watch in 2021 and why tensorflow. https://
towardsdatascience.com/top-5-deep-learning-frameworks-to-watch-in-2021-and-why-tensorflow-
98d8d6667351. Accessed: 2022-12-29

Zerouali A, Mens T, Robles G, Gonzalez-Barahona JM (2019) On the diversity of software package pop-
ularity metrics: an empirical study of npm. In: 2019 IEEE 26th international conference on software
analysis, evolution and reengineering (SANER). IEEE, pp 589–593

Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018a) Deeproad: Gan-based metamorphic testing and
input validation framework for autonomous driving systems. In: 2018 33rd IEEE/ACM international
conference on automated software engineering (ASE). IEEE, pp 132–142

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018b) An empirical study on tensorflow program bugs.
In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis,
pp 129–140

Zhang J, Barr ET, Guedj B, Harman M, Shawe-Taylor J (2019) Perturbed model validation: a new framework
to validate model relevance

Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: survey, landscapes and horizons. IEEE
Trans Softw Eng

Zhu C, Huang WR, Li H, Taylor G, Studer C, Goldstein T (2019) Transferable clean-label poisoning attacks
on deep neural nets. In: International conference on machine learning. PMLR, pp 7614–7623

Zubrow D (2009) IEEE Standard classification for software anomalies. IEEE Computer Society

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manu-
script version of this article is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1145/3236024.3264598
https://insights.stackoverflow.com/survey/2021
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/top-5-deep-learning-frameworks-to-watch-in-2021-and-why-tensorflow-98d8d6667351
https://towardsdatascience.com/top-5-deep-learning-frameworks-to-watch-in-2021-and-why-tensorflow-98d8d6667351
https://towardsdatascience.com/top-5-deep-learning-frameworks-to-watch-in-2021-and-why-tensorflow-98d8d6667351

Empir Software Eng (2023) 28:62 Page 33 of 33 62

Affiliations

MohammadMehdi Morovati1 ·Amin Nikanjam1 · Foutse Khomh1 ·
ZhenMing (Jack) Jiang2

Amin Nikanjam
amin.nikanjam@polymtl.ca

Foutse Khomh
foutse.khomh@polymtl.ca

Zhen Ming (Jack) Jiang
zmjiang@cse.yorku.ca

1 SWAT Lab., Polytechnique Montréal, Montréal, Canada
2 York University, Toronto, Canada

http://orcid.org/0000-0002-7942-4791
mailto: amin.nikanjam@polymtl.ca
mailto: foutse.khomh@polymtl.ca
mailto: zmjiang@cse.yorku.ca

	Bugs in machine learning-based systems: a faultload benchmark
	Abstract
	Introduction
	Background
	ML-Based System
	Bugs in ML-Based Systems
	SRE in ML-Based Systems
	Benchmark

	Methodology
	Collecting Bugs from Public Datasets
	Collecting Bugs from GitHub
	Selection of ML-based Systems Repositories
	Selection of Bug-fix Commits

	Extracting Bugs from Stack Overflow
	Labeling Collected Bugs

	Results
	RQ1. Key Factors in Reproducibility of ML-Related Bugs
	RQ2. The Important Factors in Verifiability of Fixing ML-related Bugs
	RQ3. Providing a Standard Faultload Benchmark for ML-Based Systems
	Satisfied Criteria of Standard Benchmark
	Relevance
	Reproducibility
	Fairness
	Verifiability
	Usability

	Addressed SRE Challenges in ML-based Systems
	Fast Changes in ML Frameworks
	Code Portability
	Bug Reproducibility
	Lack of Detailed Information about the Bugs

	Artifacts
	Provided API

	Discussion
	Benchmark Applications

	Related Work
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion and Future Works
	References
	Affiliations

