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Abstract
Machine Learning (ML) academic publications commonly provide open-source implemen-
tations on GitHub, allowing their audience to replicate, validate, or even extend the ML
algorithms, data sets and metadata. However, thus far little is known about the degree of
collaboration activity happening on such ML research repositories, in particular regarding
(1) the degree to which such repositories receive contributions from forks, (2) the nature
of such contributions (i.e., the types of changes), and (3) the nature of changes that are not
contributed back to forks, which might represent missed opportunities. In this paper, we
empirically study contributions to 1,346 ML research repositories and their 67,369 forks,
both quantitatively and qualitatively, by building on Hindle et al.’s seminal taxonomy of
code changes. We found that while ML research repositories are heavily forked, only 9% of
the forks made modifications to the forked repository. 42% of the latter sent changes to the
parent repositories, half of which (52%) were accepted by the parent repositories. Our qual-
itative analysis on 539 contributed and 378 local (fork-only) changes extends Hindle et al.’s
taxonomy with two new top-level change categories related to ML (Data and Dependency
Management), and 16 new sub-categories, including nine ML-specific ones (input data,
parameter tuning, pre-processing, training infrastructure, model structure, pipeline perfor-
mance, sharing, validation infrastructure, and output data). While the changes that are not
contributed back by the forks mostly concern domain-specific features and local experimen-
tation (e.g., parameter tuning), the origin repositories do miss out on a non-trivial 15.4% of
Documentation changes, 13.6% of Feature changes and 11.4% of Bug fix changes.
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1 Introduction

The notion of “Software Engineering for Machine Learning/Artificial Intelligence”
(SE4ML/SE4AI) is becoming widespread in the software engineering community, with
software engineering conferences featuring dedicated tracks and with dedicated venues
appearing (RAISE, SEMLA, CAIN). The term “machine learning software” can mean dif-
ferent things depending on the context, spanning across a wide range of software projects
from project-specific applications to third-party ML frameworks, to ML pipelines using
such frameworks.

At one end of the spectrum, Machine Learning (ML) frameworks like Tensorflow1

and PyTorch2 provide generic implementations of ML classification, regression, recom-
mendation, and clustering algorithms, for use in any possible domain. At another end of
the spectrum, end user applications integrate models into their code base to make domain-
specific predictions. Since those models are domain-specific, an infrastructure is needed
to continuously ingest data, perform pre-processing, build, tune and evaluate ML models
specific to a given domain (e.g., image recognition or fraud detection), by orchestrating
scripts and ML framework tools that produce datasets, models and evaluation/execution
metadata (Idowu et al. 2021). This infrastructure is called an ML pipeline (Amershi et al.
2019; Nahar et al. 2022), and forms the core of any organization’s ML activities, cater-
ing to interdisciplinary teams of data scientists, data engineers, and developers (Sato et al.
2019). An important subset of ML pipelines is produced in the context of published aca-
demic papers (Fan et al. 2021). Typically, researchers would upload a preprint of their
work on ArXiv, including a GitHub repository with the pipeline code and (potentially) a
labeled data set to train the pipeline on. Alternatively, other researchers or open-source
developers might open-source an implementation or dataset of such a paper. Such code
and data allow the open-source community to leverage state-of-the-art ML research to
develop applications and benefit from the publications’ ideas. Popular online indexes like
PapersWithCode3 or ModelDepot4 provide searchable lists of papers, and their associated
artifacts like implementations and/or datasets. Given the popularity5 of these ML pipeline
open-source projects, the remainder of this paper focuses on this subset of ML pipeline
projects.

While ML pipelines, including those related to an academic publication, typically are
shared in the form of GitHub repositories6, an important question is to what extent such
projects benefit from the open-source collaboration models leveraged by traditional (non-
AI) GitHub projects, as opposed to just being an “online backup” or a “replication package”.
The typical GitHub collaborative coding model would see the OSS community fork an
ML research project (Zhou et al. 2020), make changes to the source code, and push those
changes back to the original project using Pull Requests (PRs). The developers of the origi-
nal project would then check such PRs and accept or reject the proposed changes. Accepted
PRs would then lead to code changes being merged in the ML research repository, a

1https://www.tensorflow.org
2https://pytorch.org
3https://paperswithcode.com
4https://modeldepot.io/
5In August 2022, PapersWithCode indexed more than 77,640 academic AI publications along with their code
bases.
6In the remainder of this paper, we use the term “ML research repositories” to identify such ML pipelines.

https://www.tensorflow.org
https://pytorch.org
https://paperswithcode.com
https://modeldepot.io/
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so-called upstream change. Oftentimes, community developers could also make changes
for their own use that they would not contribute back, i.e., so-called downstream changes.
GitHub’s collaborative forking model has been known to improve the productivity of mul-
tifaceted software development and management tasks like making new features, handling
issues, sharing knowledge, adding documentation, and managing upstream and downstream
code (Zhou et al. 2020).

While OSS collaborations in non-ML software are extensively studied by researchers
(Biazzini and Baudry 2014; Hu et al. 2016; Lima et al. 2014; Zhou et al. 2019, 2020), this
is not the case in the context of ML. Certain assumptions of established software engineer-
ing activities like requirements engineering, software design, and quality assurance are no
longer valid (Washizaki et al. 2019; Ozkaya 2020), while a typical ML development team no
longer only features traditional developer and tester roles, but also data scientists and data
engineers (Amershi et al. 2019). Such multi-disciplinary collaboration leads to a wide range
of different artifacts other than source code that require proper versioning and traceability
with the code (Idowu et al. 2021).

Among the emerging software engineering practices replacing existing models of (multi-
disciplinary) collaboration in the context of SE4ML, the types of code changes made on
typical ML pipelines need to be explored to capture the nature of such community-based
changes and compare them to pre-ML types of changes. In particular, in 2008, Hindle et al.
(2008) presented a seminal taxonomy of code changes for traditional (non-ML) software,
which identified seven code change dimensions, along with 24 sub-categories of changes
(Table 1). Despite being 13 years old at the time of writing this paper, the taxonomy is still
authoritative today. However, the advent of the ML era within the collaborative development
environment calls for the need to substantially revise this taxonomy.

Hence, this paper empirically studies changes in ML research repositories and their
forks, using a mixed-methods approach. First, we quantitatively mine the community col-
laborations to 1,346 ML research repositories (containing implementations of 1,144 arXiv
publications) obtained via ModelDepot’s “Deep Search” engine to analyze the behavior
involving their forks, i.e., how active is online collaboration on ML research repositories?
We then perform a large-scale qualitative analysis of 539 upstream and 378 downstream
changes, adapting Hindle et al.’s (2008) taxonomy of code changes. Notably, we address
the following research questions:

– RQ1: To what extent do ML research repositories form the basis of other contrib-
utors’ work?
ML research repositories are heavily and transitively forked, yet overall only 9% of
forks made modifications. 41.6% of the latter forks sent changes back to the parent ML
research repositories (i.e., upstream changes), half of which (52%) were accepted by
the parent repositories. The time taken to merge those pull requests is about four times
faster than for NPM packages on GitHub (Dey and Mockus 2020) and 24 times faster
than for GitHub projects in general (Gousios et al. 2014).

– RQ2: What are the types of changes in ML research repositories?
Using the seminal code change taxonomy of Hindle et al. (2008) as a starting point,
we identified two new categories of changes in ML research repositories, namely
Data, and Dependency Management. Furthermore, we refined the taxonomy with 16
new sub-categories of changes. Nine of the sub-categories (i.e., input data, parameter
tuning, pre-processing, training infrastructure, model structure, pipeline performance,
sharing, validation infrastructure, and output data) are ML-specific, while seven (i.e.,
add dependency, remove dependency, update dependency, file permissions, internal
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Table 1 Hindle et al.’s taxonomy of change types for traditional SE (Hindle et al. 2008)

Category Sub-Category Definition

Maintenance Bug fix Fixing bugs (e.g., adding exception control, conditional statements)

Cross Cross-cutting changes (e.g., logging)

Maintenance Performing activities during maintenance cycle other than fixing bugs

Parameter list change Updating in the parameters list

Debug Setting up debug, tracking process (e.g., printing variable values,

execution times)

Meta-Program Documentation Changing the software documentation (e.g., read-me file,

code comments)

Build/Config Changing build or work-space configuration files

(e.g., setup.txt or .yml)

Testing Adding unit tests, bench-marking, changing test environment

Internationalization Adding language support other than English

Non-Functional Refactor Structural changes without changing the behavior

Source Code (e.g., renaming

Change variables, optimizing code)

Clean up Deleting code not used by the program (e.g., print statements,

comments, unused imports)

Indent Adding proper indentation or formatting the code

Token replace Renaming tokens like variable or method names

Source Merge Merging commits or pull requests

Management Source control Managing repository files (e.g, adding files to git ignore)

Versioning Changing the software release version

Branching Creating a side development branch from the main branch

External Code submitted by developers who are not a part of the core team

Implementation Feature Adding new functional features

Platform Changing hardware or platform-specific code (e.g., changing

GPU hardware acceleration, changing file access

for a new platform)

Module Add module Adding modules/directories/files

Management Move module Moving modules/directories/files

Remove module Removing modules/directories/files

Legal Licence Changing copyright or authorship

documentation, add auto-generated code, and program-metadata) are more general
sub-categories.

– RQ3: How do downstream changes differ from upstream changes in ML research
repositories?
Manual comparison of changes contributed back by the forks to the origin ML repos-
itory (upstream changes) with changes not contributed back (downstream changes)
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shows that downstream changes typically are domain-oriented and add input/output
data, perform parameter tuning, add new functional features, and perform other
non-functional changes like indentation, refactoring or cleaning up the source code.
In contrast to this, upstream changes benefit the parent repository by updating depen-
dencies or fixing bugs for the parent repository. Both downstream and upstream
contributions add documentation, and fix bugs.

The remainder of the paper is organized as follows: Section 3 presents the data collection
and design of our study. Section 2 summarises the related literature. Section 4 discusses the
motivation, approach, and results for each of our research questions. Section 6 discusses
threats to the validity of our study while Section 5 explains the implications of our findings.
Finally, Section 7 concludes the paper.

2 RelatedWork

2.1 Code Change Classification

Prior work in code change taxonomies initiated in 1976 with Swanson et al.’s work on iden-
tifying changes during software maintenance in terms of corrective, adaptive and perfective
(Swanson 1976). The goal of such taxonomies originated from the need to enhance software
decision-making.

These changes were adopted as extended-Swanson categories by Hindle et al. (2008) in
the latter seminal taxonomy of software changes in 2008. A detailed description of Hindle et
al.’s taxonomy is provided in Table 1. Despite its important role, the taxonomy is in need of
updates. For instance, software development has become more collaborative since 2008 due
to platforms like GitHub, leading to additional change types that would need to be added to
the taxonomy in Table 1. Furthermore, the types of changes required in an ML setting like
ML pipelines could lead to further missing change types, which this paper aims to study.
Hence, our qualitative study builds on Hindle et al.’s change taxonomy, extending it with
two new high-level change categories and 15 new sub-categories of changes.

Later work shifted direction from establishing taxonomies to automated classification
of code changes in terms of activities defined by such change taxonomies. In Hindle et al.
(2009) later publication, the authors automatically classify maintenance changes into cor-
rective, adaptive, perfective, feature addition, and non-functional improvement categories
using ML techniques. Yan et al. (2016) improved this approach of classifying code changes
using a Discriminative Probability Latent Semantic Analysis (DPLSA) approach, which
showed its benefits in multi-category classifications of code change activities during the
evolution of software. Recently, in 2021, Ghadhab et al. (2021) further improvised the
classification of code changes using BERT (Bidirectional Encoder Representations from
Transformers) approach.

Code change taxonomies are used for a variety of purposes. In 2009, Benestad et al.
(2009) performed a literature survey on publications that assessed the impact of individ-
ual code changes on the maintenance and evolution of software systems. Wu et al. (2011)
extracted missing links between bugs and committed changes by creating an automated tool,
Relink. Furthermore, Bissyandé et al. (2013) evaluated the efficacy of linking bug reports
to code changes by benchmarking Relink against alternative bug-linking solutions. Cortés-
Coy et al. (2014) used code changes to automatically generate commit messages. Faragó
and Hegedũs (2014) studied code changes to understand the impact of change operations
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(like add/update/delete) on ISO/IEC-9126 quality attributes of software. Software
developers and researchers developing such tools may wish to inculcate our extended
taxonomy of code changes to better support the development of ML systems.

2.2 Multi-Repository Software Development via Forking

Many researchers study collaborative development. For instance, Zhou et al. (2019) identi-
fied efficient practices for developers collaborating using forks. The authors build regression
models to correlate efficient practices with respect to the behavior around forking. They
found how the modularity of a code base and its contributions, as well as upfront man-
agement of which bugs require fixing by contributors, correlate with higher contribution
volume and pull request acceptance.

Later, in 2020, in a follow-up work (Zhou et al. 2020), elucidated the perceptions around
“hard forks” (forks that split development into a competing line of a new repository),
against those of “social forks” (forks that create a public copy of the repository on a social
website like BitBucket or GitHub). While hard forking traditionally has been considered
a bad practice for developers and users (Fogel 2005), the authors found that the percep-
tions around hard forking have changed in modern times. Nowadays, hard forks emerge
out of social forks, and are seen as a positive non-competitive alternative to the original
repository. Constantino et al. (2020) identified the rationales, processes, and challenges
behind collaborative activities on GitHub by conducting surveys. The authors found that
GitHub collaborations contribute to software development, issue management, repository
management, and documentation tasks.

Brisson et al. (2020) studied collaborations on GitHub projects by analyzing transitive
forks, user statistics, pull requests, and issues. Furthermore, Biazzini and Baudry (2014)
identified dispersion metrics for fork-induced code changes. Ren et al. (2018) developed a
web UI for the management of forking-based collaborations with features like fork search-
ing and tagging. Other research (Rahman and Roy 2014; Zhang et al. 2018) studies the
nature of upstream contributions in the form of Pull Requests and identifies the nature of
competing contributions.

However, none of this prior research studies the collaborative development of ML soft-
ware. We build on the results from prior studies to compare the forking dynamics of ML
research repositories.

2.3 Software Engineering for Machine Learning

ML systems are substantially different from traditional software systems and hence need
dedicated research. For example, Washizaki et al. (2019) found that ML software engineer-
ing design patterns differ from those of non-ML software. Furthermore, in 2020, Ozkaya
(2020) illustrated how the stochastic nature of ML changes the software development prac-
tices in ML. Overall, Martı́nez-Fernández et al. (2021) performed a literature review on
Software Engineering for AI-based systems.

Recent widespread advances in ML have instigated researchers to study the maintenance
activities and challenges in ML code. In 2019, Amershi et al. (2019) uncovered the chal-
lenges in managing ML software at Microsoft, in particular identifying the typical ML
pipeline and corresponding software activities. Furthermore, Zhang et al. (2019) and Arpteg
et al. (2018) studied the software challenges faced in deep learning applications. Samba-
sivan et al. (2021) identified data engineering challenges for which multiple roles of data
engineers (like data collectors, annotators, ML developers, and data licensing teams) require
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powerful data infrastructure in order to support machine learning processes. In the context
of the data lifecycle used for ML, Polyzotis et al. (2018) illustrated the challenges faced at
Google. O’Leary and Uchida (2020) also studied problems with creating ML pipelines from
existing code at Google.

The work of Fan et al. (2021) is the closest to our paper. While the authors study a similar
dataset as ours (i.e., 1,149 academic ML(AI) repositories referencing ArXiv publications),
the authors focus on characterizing popular versus unpopular academic repositories in terms
of the number of stars on GitHub, and analyzing factors correlations between the number of
paper citations and GitHub repository metrics. However, our paper is the first to study the
extent of actual OSS collaborations happening on ML research repositories (instead of paper
activity based on those repositories), and to manually identify the nature of code changes
performed on such ML pipeline projects.

3 Data Collection and Experiment Setup

Figure 1 presents an overview of our data collection procedure along with the design of
our empirical study to address the research questions of the introduction. RQ1 quantita-
tively studies the OSS collaboration characteristics on ML research repositories, while RQ2
and RQ3 perform a qualitative analysis on the nature of changes performed during this
collaboration.

3.1 Data Collection

ModelDepot was a popular online model store containing 1) a catalogue of pre-trained
ML models, and 2) a GitHub search engine for ML model pipeline implementations called
“Deep Search”. The latter engine effectively was an index of GitHub projects related to
ML, allowing to search the projects based on name, ML framework (e.g., Tensorflow),

ModelDepot.io
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Fig. 1 Data collection and processing steps
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programming language, and five model categories (i.e., “computer vision”, “natural
language”, “reinforcement learning”, “generative” and “audio”). At the time this study was
conducted in summer 2019, ModelDepot indexed over 50,000 ML implementations.

While both ModelDepot and its major competitor at that time, PapersWithCode, indexed
GitHub repositories, we selected ModelDepot for our study because it was the most popular
and diverse at the time of crawling the data (i.e., 50,000 model implementations compared
to 8,500 on paperswithcode.com7). The fact that ModelDepot did not require manual contri-
butions to register new models, but leveraged its automated “Deep Search” engine to track
new ML model repositories, was another reason why we opted for ModelDepot. To collect
the ModelDepot data, we built a scraper (crawler) to mine ML projects in the “Computer
Vision” and “Machine Learning” categories, which were the two most common categories
of models8. After sorting by the search engine’s “best match” feature, we then focused on
the top 5,000 non-fork projects.

Since this paper focuses on the evolution of ML model pipelines produced by researchers
or inspired by the work of researchers, we filtered the 5,000 crawled projects using string
matching to check the readme files for the presence of the term “arxiv” (referring to an
ArXiv URL of an academic paper). This yielded 1,346 ML research repositories as our
dataset for this study. Within this dataset, 1,144 unique academic papers were referenced
and 23% of these publications were referenced more than once. One of these publications,
“Deep Residual for Image Recognition”9 was referenced the most (46) by the repositories
in our dataset.

To further verify the soundness of our dataset, we did a separate analysis to check the
quality of the studied ArXiv publications. To do so, from our dataset of 1,346 ML research
repositories, we used a 95% confidence interval and a 10% confidence interval to obtain
a sample of 94 repositories. For each of the 94 repositories, we checked whether their
referenced ArXiv papers:

– were peer-reviewed?
– involved authors from the industry?
– had any of the authors amongst the people contributing to the repository’s development?

To check whether publications were peer-reviewed, we looked at whether the ArXiv
paper was also published at another venue, by leveraging scholar.google.com. Next, to check
whether the authors were from the industry, we looked at the email addresses and the des-
ignations of the authors presented in the publication. Finally, we check whether the authors
contributed to the repository.

As such, we found that all repositories from our inspected sample of 94 repositories are
implementations of academic ML research. The ArXiv paper(s) referenced in the reposito-
ries’ README file clearly showed the intention to implement the published algorithms, not
just mentioning the work as a comparison or reference. Only 30% of the repositories were
developed by the referenced publications’ authors themselves, while the other other
70% were implemented by other researchers or by open-source developers. We observed
that the latter repositories basically referenced the paper(s) they were implementing. Since
those repositories still represent an implementation of an ML publication shared with the
open-source community, all of these represent genuine ML pipeline research repositories
that we focus on in our research.

7https://twitter.com/paperswithcode/status/1091315540092768257
8https://web.archive.org/web/20190404211946/https://modeldepot.io/search/results?q=
9https://arxiv.org/abs/1512.03385

scholar.google.com
https://twitter.com/paperswithcode/status/1091315540092768257
https://web.archive.org/web/20190404211946/https://modeldepot.io/search/results?q=
https://arxiv.org/abs/1512.03385
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For instance, a repository named darkflow10 referenced two academic publications1112 to
indicate that they implemented the image processing algorithm YOLO, proposed by the said
research. Another repository, ActivityRecognition13 presented multiple publications141516

within the “Reference Papers” section of its ReadMe, for the same reason. While both
repositories have no indication that one of the publications’ authors was a contributor, the
repositories clearly indicate that they implemented the referenced academic research.

Furthermore, 81% of the repositories implemented peer-reviewed publications, indi-
cating that the implemented research is high quality. Finally, 59% of the repositories
referenced publications involving authors from the industry, indicating how repository
development focuses on industry-relevant research.

3.2 Quantitative Analysis of Forking in ML Research Repositories (RQ1)

To analyze the dynamics of OSS collaboration through forks of ML research reposito-
ries (RQ1), we use the GitHub Search API17 to analyze each of the 1,346 repositories in
our dataset. We perform our quantitative analysis via seven metrics related to forking as
described in Table 2. Three out of these metrics (the bolded ones in Table 2) are adapted
from Brisson et al. (2020).

Given a large number of forks, Brisson et al. (2020) suggested that fork data is noisy.
For this reason, we introduce the concept of Forks with changes to identify forks
with modifications. Such Forks with changes contain at least one commit that does
not occur in the parent repository (downstream changes), or contributed back at least one
commit via a pull request (upstream changes).

To identify forks with downstream changes, we first calculate for each fork F the set of
commits SF whose commit id does not occur in the parent repository. Since the resulting
set SF of fork commits could still contain commits that have been merged upstream through
rebasing (changing their commit id), we then check for each commit in SF to see if any
commit in the parent repository has the same commit message subject, author name, and
author date, since those metadata fields have been found to be stable during rebase (German
et al. 2016). If so, we remove those commits from SF , since they also exist in the parent
repository. Since we may be missing cases where a fork had all of its commits merged as
PRs, we then check the list of forks that submitted PRs using the GitHub Search API, and
add such forks into SF . If the resulting SF is not empty, we consider each F in SF to be a
changed fork.

We used the Star# and Fork# metrics to measure the popularity of repositories,
as indicated by Borges and Valente (2018). We computed the First Fork time and
Final fork time metrics to indicate the temporal aspects of ML research reposito-
ries. The First Fork time indicates the speed of the OSS community in adapting an
ML implementation, whereas the final fork time indicates the longevity of collaboration
activities on ML pipeline code.

10https://github.com/thtrieu/darkflow
11https://arxiv.org/pdf/1506.02640.pdf
12https://arxiv.org/pdf/1612.08242.pdf
13https://github.com/mohammed-elkomy/two-stream-action-recognition
14https://arxiv.org/pdf/1406.2199.pdf
15https://arxiv.org/pdf/1604.07669.pdf
16https://arxiv.org/pdf/1507.02159.pdf
17https://docs.github.com/en/rest/reference/search

https://github.com/thtrieu/darkflow
 https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1612.08242.pdf
https://github.com/mohammed-elkomy/two-stream-action-recognition
 https://arxiv.org/pdf/1406.2199.pdf
https://arxiv.org/pdf/1604.07669.pdf
https://arxiv.org/pdf/1507.02159.pdf
https://docs.github.com/en/rest/reference/search
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Table 2 Metrics used in RQ1

Metric Definition

Star# # users who starred the repository.

Fork# # forks created from the repository.

Forks with changes# # forks where the forked code base is modified.

PR# # PRs sent to the parent repository. by its forks.

PR Accept% (# PRs merged into parent repository) / (PR#)

First Fork Time # Days between creation of a repository, and its first fork.

Final Fork Time # Days between creation of a repository, and its final fork.

The bolded metrics are adapted from Brisson et al. (2020)

In addition, we calculate for each repository the number of forks, both direct and tran-
sitive, as a measure of the value of these repositories for the OSS community in terms of
collaborative potential. We call the direct forks of a repository level-one transitivity, while
a transitivity of level-two indicates the transitive forks of the direct (level-one) forks, and
so on. The higher the proportion of repositories with at least one level-two fork, the more
collaboration seems to happen.

3.3 Qualitative Analysis of Change Types in Forks (RQ2/RQ3)

Since ML software has obtained a prominent place in software engineering, and the nature
of the machine learning software lifecycle is substantially different from that of traditional
software (Amershi et al. 2019), one would expect further change types to be added. ML
practitioners use data pre-processing techniques, iteratively tune model hyperparameters
for obtaining the most optimal ML model under the data science life cycle (Amershi et al.
2019; Nahar et al. 2022). Reusing ML software requires users to understand the rationale
behind the ML implementations, instigating users to change their code for documenting the
internal working of the ML code. All of this has led to a variety of types of artifacts other
than source code that require changes as well (Idowu et al. 2021). In this study, we build
on Hindle et al.’s taxonomy to identify the types of changes in ML research repositories by
studying a statistically significant sample of 1) fork PRs merged by the parent ML research
repository (i.e., upstream changes) and 2) commits within the forked repositories that were
not submitted as PRs (i.e., downstream changes). We describe our qualitative analysis
process below:

1. Selection of repositories for sampling.
Since not all forked repositories made changes, let alone sent them as PRs upstream,

we first select the repositories having the most active forks. To do so, we ordered the
repositories by our metric Forks with changes and obtained the top 5 percentile,
i.e., 23 repositories. Overall, these 23 repositories had 10,817 downstream commits and
445 PRs. From these, using a 95% confidence level and 5% confidence interval, we
obtain a statistically representative sample of 1) 207 PRs containing 539 upstream com-
mits (upstream sample18), and 2) 378 downstream commits (Downstream Sample).

18PRs on GitHub are not limited to just one commit.
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Both samples were stratified, such that repositories with a higher proportion of
Forks with changes had more data points in the samples. Since a PR can com-
prise multiple commits, we selected all the commits for the sample of 207 PRs and
obtained 539 upstream commits. Similar to obtaining the stratified upstream sample,
we used the proportion of #Commits with respect to the Forks with changes of
each of the 23 parent repositories for creating the stratified downstream sample.

2. Study Participants. We used teams from two universities to manually classify the
types of changes in upstream and downstream commits. University-A classified
downstream changes while University-B classified upstream changes. Both teams
included two or more grad students, and one faculty member, all having knowledge of
ML and non-ML software design and development. Due to the large-scale nature of our
study, we employed four coders in team A and three coders in Team B.

3. Extending taxonomy of changes. From the sample of 378 downstream commits,
Team-A first performed a pilot study on an initial sample of 78 commits to validate
the extent to which Hindle et al.’s (2008) taxonomy was able to classify code changes
or required refinements. The 78 commits were distributed across the three coders of
Team-A such that each commit had two coders and each coder had 26 commits in
common with each of the other coders. The assignment of commits to each coder was
anonymous.

Each coder then individually coded their 52 (2 × 26) assigned commits, identifying
all types of changes within the commits under study (more than one type of change
could apply). In cases where the change (sub-)type could not be found using Hindle’s
change categories, the coders individually could create a new category. Once finished,
the coders met online discussing only the new types of changes that they had identified,
without considering the specific commits tagged with these new types. The proposed
new types could be merged, renamed, or removed until a consensus was reached.

Team-A then re-labeled their samples using the enhanced Hindle’s taxonomy. Once
done, the coding results were combined into a spreadsheet. In the first phase, each coder
had to check the commits they were assigned that had conflicting coding results. This
was done asynchronously by adding comments on the spreadsheet. If a coder was in
accord with the other coder’s interpretation, a disagreement was resolved; otherwise, it
was left open. In a second phase, the remaining disagreement cases were then discussed
in person by Team-A, possibly refining the taxonomy.

With this final version of the taxonomy, Team-A started labeling the remainder of
its samples, using the same style of assignment as for the initial 78 (i.e., anonymously
sharing the same number of commits with each other coder). In parallel, Team-B was
assigned the 207 PRs in a similar manner. While both teams could still make changes
to the taxonomy during this coding, we observed saturation in the labels after tagging
the initial set of 78 downstream commits, i.e., no new (sub-)categories were identified
in the later part of labeling the 300 downstream samples and 539 upstream samples.

4. Calculation of inter-rater agreement. Once coding was finished, both teams individu-
ally used the spreadsheet-based and in-person resolution of disagreements used initially
for the first 78 cases. To calculate inter-rater agreement, since each sample was rated by
two participants, we use Krippendoff’s Alpha (Krippendorff 2011) as our metric for the
inter-rater agreement. This metric supports multi-label classification by multiple par-
ticipants. A similar approach of obtaining inter-rater agreement in a multi-rater setting
was used by Li et al. (2020) to manually tag logging data, and Salza et al. (2018) to
classify mobile app updates.
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Across the three coding activities (78 and 300 commits for Team-A, and 207 PRs
for Team-B), the teams reported high agreements with a Krippendoff’s α=98% on
the sample of 378 downstream changes and a Krippendoff’s α=92% for the sample of
539 upstream changes. These values of inter-rater agreements are high and reflect the
statistical robustness of our data labeling results.

Given that the final change taxonomy spans 39 change sub-categories, and that we coded
378 downstream commits and 207 upstream PRs (containing 539 commits) across two
teams of seven coders (and two universities), the resulting empirical study was non-trivial.
For instance, in the downstream change19 performed by fork “BoseAslCohort” for the
project “Youtube-8m”, the authors manually inspected changes for 27 changed files, which
included 11,755 code additions. Overall, it took an estimated six man-months to finish the
qualitative study.

4 Case Studies

4.1 RQ1: ToWhat Extent doML Research Repositories Form the Basis of Other
Contributors’ Work?

Motivation Currently, there is no empirical evidence regarding the extent to which 1) open-
sourcing ML research code helps the OSS community in building new applications and 2)
the OSS community contributes and helps maintain the original ML research implemen-
tations. In contrast, for non-ML software, prior research (Zhou et al. 2019; Biazzini and
Baudry 2014; Brisson et al. 2020; Rahman and Roy 2014; Zhang et al. 2018) has stud-
ied the nature of multi-repository development and maintenance of OSS projects. Hence,
in this RQ, we analyze the OSS development activities around research-based ML pipeline
repositories.

Approach As discussed in Section 3, we extract 1,346 GitHub repositories having refer-
ences to machine learning ArXiv publications, then use the GitHub Search API20 to obtain
the metrics identified in Table 2.

Results

4.1.1 Forks With Changes

Only 9% of forks of the ML research repositories have modifications to the forked
source code (i.e., have Forks with changes) Overall, 82.5% of the 1,346 repositories
had forks. Figure 2 shows the cumulative percentage of those repositories with a fork having
at least one Fork with changes. Since 51.6% of the repositories do not have any fork
modification (only non-changed forks), and the slope of the curve is gentle and linear until
90%, the percentage of ML research repositories with Forks with changes is low.

19https://github.com/BoseAslCohort/youtube-8m/commit/c1b01315bafc24e83248cd862a9324bb21d4d52d
20https://docs.github.com/en/rest/reference/repos

https://github.com/BoseAslCohort/youtube-8m/commit/c1b01315bafc24e83248cd862a9324bb21d4d52d
https://docs.github.com/en/rest/reference/repos
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4.1.2 Popularity of ML Research Repositories

ML Research Repositories Have a High Median star# of 22 and fork# of 8. These
numbers stand in stark comparison to the datasets used by prior research for non-ML repos-
itories. We observed a median of zero stars and forks for the replication dataset provided
by Brisson et al. (2020), consisting of 13,431 projects. The comparisons of star# and
forks# for Brisson’s dataset with our study are statistically significant with Wilcoxon
Rank sum p − value < 0.01. Star# and fork# are highly correlated (Spearman
ρ=0.94) as shown by the data distribution in Fig. 3. As indicated by the darker color at the
low end of star# and fork# in Fig. 3, 20% of the repositories have less than five stars
and five forks.

These results again contrast to the low correlation of 0.45 found by Brisson et al. on
their non-ML dataset of 13,431 repositories, suggesting a much weaker connection between
stars and forks. Several hypotheses might explain this contradiction, and require future work
to be validated. For example, due to the current hype of AI technologies, ML reposito-
ries might be substantially more popular than non-ML repositories. It could also be that,
due to the quick succession of new AI algorithms, the OSS community uses forks for the
purpose of “bookmarking” or keeping copies of interesting ML research implementations
(Kalliamvakou et al. 2014). One indication of the latter hypothesis could be the high per-
centage (91%) of forks without any code change (i.e., non-changed forks) that we found
earlier.

4.1.3 Speed and Longevity of Forking

Forks onML repositories appear as fast as the 11th day (median 11.5 days), while fork-
based collaboration sustains a median of 2.6 years. Fig. 4 shows the distribution of the
time of the first and the final (at the time of analysis) fork for each repository in our dataset.
A median ML research repository receives its first forks on the 11th day after creation date,
while an ML research repository is forked till a median of 2.6 years of the creation of the

Fig. 2 Percentage of Forks with changes across studied repositories. 52% repositories do not have any
modifications to the forked source code
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Fig. 3 Hexbin for Star# (logged) and Fork# (logged) indicates high correlation. Popularity can be
indicated by either of the metrics

repository. Although the final fork time may be impacted by the time of our analysis,
nevertheless, a value of 2.6 years definitely shows that the ML repositories are not just data
dumps but can foster online collaboration.

4.1.4 Transitive Forking

Transitive forks (i.e., fork repositories with their own forks) are present in 20% of
ML research repositories. We observed 67,369, 1,581, 44, and 7 cases of direct forks,
level-two, level-three, and level-four forking transitivity for 1,110, 226, 28, and 3 ML

Fig. 4 The first forking time represents the speed of the open source community in adapting ML research
repositories, whereas the final forking time represents the longevity of making contributions to the ML
repositories
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research repositories respectively. Hence, 226 out of 1,346 repositories, i.e., 20%, have at
least one transitive fork (since the 28 with level-three forks are a subset of the 226, etc.).
The ML research repository with the highest forking transitivity in our dataset includes the
Autopilot-TensorFlow project21, which is an implementation of self-driving car research22.
This project has 281 direct forks, 10 level-two, 3 level-three, and 5 level-four transitive
forks.

We compare our findings to the fork transitivity results reported by Brisson et al. (2020),
who conducted an analysis of the March 2019 GHTorrent dataset and reported 12,171
level-one, 778 level-two, 84 level-three, 11 level-four, and 2 level-five forks. A χ2 test
of independence between these findings and ours yielded a p − value < 0.01, repre-
senting a statistically significant difference in data distribution between ML and non-ML
repositories.

4.1.5 Upstream Contribution

In terms of upstream contributions to the ML research repository, 41.6% of
Forks with changes send changes back to the original repositories. A total of 607
pull requests were submitted upstream by Forks with changes, out of which 316 were
merged into the original repositories. This resulted in 52.1% acceptance. This value is
slightly lower than that of a recent study on NPM packages by Dey and Mockus (2020),
who reported a PR acceptance rate of 60%.

27.5% of the upstream PRs were submitted on the same day as that of the creation
of the fork. In particular, a fork takes a median of 22 hours to submit a PR. After receiv-
ing a PR, the parent ML research repository takes a median of seven hours to review the
upstream changes before deciding on them, as shown by the violin plots in Fig. 5. This is
approximately four times faster than the median PR acceptance times (27.7 hours) for NPM
packages on GitHub (Dey and Mockus 2020). Another study performed on 1.9 million PRs
on GitHub in 2013 by Gousios et al. (2014) reported a median of seven days to merge a PR.

4.2 RQ2: What are the Types of Changes in ML Research Repositories?

Motivation Since Hindle et al.’s (2008) taxonomy of changes focused on traditional soft-
ware systems known in 2008, this research question performs a qualitative analysis to

21https://github.com/SullyChen/Autopilot-TensorFlow
22https://arxiv.org/pdf/1604.07316.pdf

https://github.com/SullyChen/Autopilot-TensorFlow
https://arxiv.org/pdf/1604.07316.pdf
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Fig. 5 Time spent in sending PRs (left) and merging the PRs into the upstream parent repository (right)

identify the types of changes made in ML research repositories, possibly extending Hin-
dle’s change taxonomy. Through this, we wish to help software practitioners in building
and maintaining ML software, which not only involves code changes but also changes to
many other kinds of artifacts (Idowu et al. 2021) (e.g., dataset and models). Furthermore,
training/education teams need an understanding of the types of code changes to better equip
students and novice developers in supporting ML applications.

Approach In RQ1, we observed that 52% of the PRs sent by Forks with changes
are merged into the parent ML research repository. In this research question, we qualita-
tively analyze 1) the types of changes that were merged with the parent repositories, which
we call upstream changes; and 2) the types of changes that were performed within the
forked repositories, but not pushed to the parent repository, which we call downstream
changes. Using the sampling and coding approach discussed in Section 3.3, the coders of
Team A and Team B validated and enhanced Hindle et al.’s (2008) taxonomy. This section
reports on the new change (sub-)categories identified in the analyzed code changes of ML
repositories.

Results Hindle et al.’s (2008) change taxonomy was extended with two new categories
and 16 new sub-categories of changes. Only one of the two new high-level change cat-
egories was ML-specific, i.e., Data, while the other one, i.e., Dependency Management,
represents an update to the original taxonomy related to modern library dependency man-
agement activities (which may have been less relevant 13 years ago). A graphical summary
of the extended taxonomy of change (sub-)categories is provided in Fig. 6. In the subsections
below, we briefly describe and illustrate each new (sub-)category and how it complements
the existing taxonomy:

4.2.1 Maintenance

Code changes performing software maintenance activities. We identified four new mainte-
nance change sub-categories in the context of machine learning.
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Fig. 6 Enhanced version of Hindle’s change taxonomy. The bolded change (sub-)categories were identified
by this study

– Pre-processing
Definition: Source code changes related to manipulation, cleaning, and filtering
of data before feeding it to the model training or inference components of an ML
pipeline.
Explanation: ML model training needs high-quality, clean data (Ng 2021) making data
pre-processing a vital part of the ML pipeline (Amershi et al. 2019). Pre-processing
changes internally mutate and clean the ingested data such that it can be consumed by
the ML model, for example by changing the text-embeddings for NLP data. In con-
trast to the Data category, which deals with the ingestion or egestion of external data
to/from the ML pipeline, pre-processing changes deal with internal data manipulation,
and hence is a maintenance activity.
Notable Instances: In an image processing application (Pre-processing example 2018),
pre-processing changes involve changing image color formats (Grayscale, RBG, BGR)
before feeding the images to the ML model.

– Parameter Tuning
Definition: Changes made to hard-coded (hyper-)parameter values for tweaking the
performance or functionality of an ML pipeline.
Explanation: A machine learning pipeline consists of many different phases (e.g., data
preprocessing, feature extraction, model training, and validation) that, together, aim to
generate models with the best fit possible. Each of these phases (Amershi et al. 2019)
involves choosing values for various thresholds, model hyper-parameters, and other
configuration options, many of which have hard-coded values. Hence, ML pipeline
developers often find themselves tweaking these hard-coded values while building the
model or preprocessing the data (i.e., parameter tuning). Even in the case of model
hyper-parameters, which are optimized during the model training process, their initial
(hard-coded) value or range often has to be chosen well for quicker convergence during
training. In contrast to model structural changes, which change the model building
code at a structural level, parameter changes are performed at the variable (value) level.
Notable Instances: The model hyper-parameter variable, weights regularizer in project
youtube-8m (Parameter tuning example 2017), was changed from 1e−5 to 1e−8.
In another image processing application (Parameter tuning example 2 2017), adding
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a sliding window variable for pre-processing of video frames is a parameter tuning
change.

– Model Structure
Definition: Structural change to the source code responsible for training the machine
learning model.
Explanation: Model structural changes involve changing the code encompassing the
structure of deep learning models or the various functions or modules that manipulate
the model during training, such as adding functions for dropout layers, loss functions,
or regularizers for a model class. These changes are different from parameter tuning
changes since they are at a structural level rather than the variable level.
Notable Instances: In file train val.py of tf-faster-rcnn project23, the
model structure was changed to accommodate features related to im0age and mask
height and width, which manifested in numerous structural changes to the model
building process (Model structure example 2018).

– Training Infrastructure
Definition: Pipeline-level changes performed for training the model.
Explanation: Amershi et al. (2019) identified the canonical components of a typical
ML pipeline, such as data wrangling, feature engineering, and model training. Making
changes in one component (for instance, a different dataset schema) may manifest
in other pipeline components (e.g., data pre-processing, feature engineering, model
training, etc.). As such, training infrastructure changes correspond to any pipeline-level
changes to the logic driving the ML model training phases. This is similar to how
Hindle et al. (2008)’s original Build/Config change sub-category focuses on the logic
driving the compilation (build) process, in contrast to changes to the actual source code
(in our case: changes to, for example, the training scripts themselves).
Notable Instances: While adding a new demo in a semantic segmentation
project (Training infrastructure example 2017), 12 files pertaining to the ML pipeline
were changed. This was accompanied by a new training driver script24 for the new
demo data. Clearly, the model building pipeline had to be updated at multiple places to
accommodate this new data.

– Pipeline Performance
Definition: Any change pertaining to the run-time efficiency of the ML pipeline.
Explanation: ML operations are computationally expensive and time-consuming. Iter-
atively retraining ML pipelines to find optimal values for model hyper-parameters and
data cleaning configurations exacerbates performance needs. Hence, this sub-category
of code changes involves any changes improving the run-time efficiency of the ML
pipeline.
Notable Instances: Re-writing specific ML operations related to Principle Compo-
nents Analysis (PCA) in Tensorflow in a project (Pipeline Performance example 2018)
enabled higher computation efficiency. In particular, CPU utilization dropped from
5,600% to 240%.

23https://github.com/shikorab/tf-faster-rcnn
24https://github.com/TSchattschneider/PointCNN/commit/1827a79b2ede15007a06d327d95f10bc0753420

https://github.com/shikorab/tf-faster-rcnn
https://github.com/TSchattschneider/PointCNN/commit/1827a79b2ede15007a06d327d95f10bc0753420


Empir Software Eng           (2023) 28:60 Page 19 of 34   60 

4.2.2 Meta Program

As identified by Hindle et al., Meta Program25 changes update the metadata of the program
(i.e., data required by the project, but not the source code). For instance, makefiles, and
readme (external-documentation) files. We identified three new change sub-categories.

– Sharing
Definition: Changes in the way the source code of ML projects are presented or
deployed to enable better collaboration between different roles involved in an ML
project.
Explanation: In the modern collaborative development era, projects are shared with
other developers and end users (Zhou et al. 2020). In the case of ML pipelines, such
changes involve converting python scripts into Jupyter notebooks better suited for
understanding and working with complex ML operations (Bloice and Holzinger 2016);
or sharing the dependency environment via docker containers, enabling others to
quickly deploy and run experiments on their infrastructure.
Notable Instances: A docker file was created for the project Neural-style (Sharing
example 2016). Another project changed the demo jupyter notebooks files (Sharing
example 2018) to disseminate the developed ML project and its parameters.

– Validation Infrastructure
Definition: Changes made to the ML model validation component of an ML
pipeline (Amershi et al. 2019).
Explanation: Validation changes involve changes to any modules or components
responsible for driving the evaluation of a trained ML model’s (accuracy) performance,
possibly comparing to the performance of prior trained models or earlier iterations of
the trained model. This kind of change is similar to Training Infrastructure change, but
focuses on the validation infrastructure instead of the training infrastructure.
Notable Instances: The file evaluate3.py was added in an image processing
project (Validation example 2017) to evaluate the model’s performance by comparing
the predicted labels (annotations on images) against the true labels.

– Internal documentation
Definition: Changes that explain the internal workings of the ML code to developers.
Explanation: Internal documentation changes clarify the fine-grained implementation
of the code, with developers and data scientists as the intended audience. Such changes
not only add code comments but could also add log statements to the code, for example,
a succession of print statements, to better comprehend the workings of ML pipeline
operations. Internal documentation changes differ from external documentation, since
the latter explicitly document a project for end-users, typically using README files or
API documentation.
We introduce internal documentation as an augmentation to Hindle et al.’s (2008) Doc-
umentation sub-category, as they did not provide any distinction between internal and
external documentation.
Notable Instances: In a FasterRCNN project (Internal documentation example-1 2017),
ambiguous internal documentation about an internal flag variable using DEFINE bool

25Note that Hindle et al.’s meta program change category is unrelated to the field of Metaprogramming
(https://en.wikipedia.org/wiki/Metaprogramming).

https://en.wikipedia.org/wiki/Metaprogramming
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was rectified. In another project (Internal documentation example-2 2017), the grammar
of the comments that explain the internal working of the code was fixed.

4.2.3 Module Management

As identified by prior research, module management changes the way files are named
and organized into source code modules. In addition to Hindle et al.’s sub-categories
(i.e., add, rename and delete module), we identified a new change sub-category, Adding
auto-generated code.

– Adding auto-generated code
Definition: Adding new files to the project that are generated automatically by external
tools, alternative IDEs, or varying environment configurations.
Notable Instances: A commit involving 8,491 added lines of code and 3,813 deleted
lines of code across three C files (Adding auto-generated files example 2018) corre-
sponded to a re-generated C implementation of the Non-Maximum Suppression (NMS)
algorithm, typically used for selecting the best bounding boxes of objects in an image.
Since pure Python implementations of this algorithm are not scalable, data scientists
tend to use the Cython dialect of Python, which allows generating efficient C code.

4.2.4 Data Category [NEW]

Any change to the infrastructure that handles ingestion/egestion of domain-specific data
(e.g., for training or testing) required by an ML pipeline, or to the metadata of said data
(e.g., directory paths). Note that this category does not involve committing actual data files,
since Git repositories are not the right place to store large-scale data.

– Input Data
Definition: Code changes to the logic responsible for loading data or ingesting external
data into an ML pipeline.
Explanation: ML pipelines need to deal with a variety of data storage platforms (e.g.,
CSV files, SQL database, Kafka, data lakes) to obtain domain-specific input data.
Hence, this sub-category of changes relates to the logic of dealing with such data
platforms and the data schemas of ingested data.
Notable Instances: File extract tfrecords main.py in project, Youtube-8m
(Input data example 2017), added functionality to load external video frames data and
feed it in the right data format to the ML pipeline.

– Output Data
Definition: Changing the way the output data of the ML program is stored.
Explanation: Output data changes pertain to the way the results/output of the ML
pipeline’s are saved to the file system. Such changes may be needed to improve the
integration of a model or its prediction results into an end-user application (e.g., UI
applications or dashboards), or in other pipelines.
Notable Instances: The faster-rcnn demo program was changed to save its output to an
image file (Output data example 2018).

– Project Metadata
Definition: Changing the metadata of all data files an ML project manages.
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Explanation: ML pipelines contain a variety of metadata about the input and out-
put data that they ingest/egest, such as paths of base directories or specific data files,
license information of said data, etc. Hence, project metadata changes include adding,
updating or deleting such metadata. This does not include changes to the actual data
(pre-processing) or the infrastructure used to ingest/egest such data (Input Data/Output
Data), only to the project metadata.
Notable Instances: Project directories for loading various model artifacts like model
graphs and pretrained models were updated in a facenet implementation (Project data
example 2017).

4.2.5 Source Management

Hindle et al. described Source management as changes performed due to the way a version
control system is being used by a project. Along with the five sub-categories identified by
Hindle et al. (2008), we identified one new sub-category.

– Changing file permissions
Definition: Changes adding, updating, or removing file permissions (like executability
of a script).
Explanation: Traditional programs and ML operations are often run on shared high-
performance computers (typically Unix-based servers). Managing file permissions is
essential for assigning ownership of files while dealing with multiple users, thereby
enforcing security.
Notable Instances: The file start.sh was given 775 permissions (Change file permission
example 2017) since it’s previous 664 permission did not allow the script to be executed
by the owner of the file or its Unix user group.

4.2.6 Dependency Management [NEW]

While we identified this new category related to handling third-party dependencies (e.g.,
libraries or packages of a Linux distribution) on code changes of the studied ML
pipelines, the management of such dependencies is common across both ML and non-ML
projects (Decan et al. 2019; Pashchenko et al. 2020; Mukherjee et al. 2021).

– Add Dependency
Definition: Adopting a new third-party dependency in the source code.
Explanation: Adoption of a new third-party dependency typically requires adding the
name and version of the dependency to a configuration file, as well as adding import
statements to various files in the source code, in order to declare the dependency to
compilers or interpreters.
Notable Instances: Addition of new import statements like
“from tensorflow.python.lib.io import file io”
(Adding/removing dependency example 2019).

– Remove Dependency
Definition: Stopping the adoption of a third-party dependency.
Explanation: Removing an unused import statement from a source code file, or even
removing the actual third-party dependency from the list of dependencies of a file.
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Notable Instances: Removal of unused import statements (Adding/removing depen-
dency example 2019).

– Update Dependency
Definition:After the adoption of a dependency, changes might be needed to the meta-
data of the dependency.
Explanation: This change category involves updating the metadata of a dependency,
for example, to keep the dependency compatible with the code base, or vice versa. This
typically includes updating the dependency version.
Notable Instances: Change of the cloudml-gpu runtime version from “1.0” to
“1.8” (Update dependency example 2018).

4.2.7 Mapping the Updated Change Taxonomy to Amershi’s ML Pipeline Architecture

In Fig. 7, we provide an association between the nine new ML-specific categories of code
changes identified in this research to the ML pipeline architecture of Amershi et al. (2019).
We notice that most (6) of the identified change categories apply to the data cleaning
and model training phases, followed by the feature engineering (4) and model evalua-
tion (3) phases. On the other hand, none of the change types map to the initial phases of
model requirements, and data collection, since those involve tasks performed by manage-
ment and data engineers, respectively. Similarly, the end phases, namely, model deployment
and model monitoring, are geared towards third-party applications where the trained model
is integrated and deployed by MLOps engineers into (amongst others) dashboards, UI
applications, and back-end servers for prediction.

Hindle et al.’s (2008) taxonomy of software code changes had to be extended with two high-
level change categories (ML-specific Data, and genericDependency management). We also
extended the taxonomy by identifying 16 new sub-categories of changes, nine of which
(i.e., input data, parameter tuning, pre-processing, training infrastructure, model structure,
pipeline performance, sharing, validation infrastructure, and output data) are ML-specific.
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Fig. 7 ML-specific sub-categories mapped to Amershi et al.’s (2019) ML pipeline architecture
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4.3 RQ3: How do Downstream Changes Differ From Upstream Changes in ML
Research Repositories?

Motivation In RQ1, we observed that 41.6% of Forks with changes submit upstream
contributions back to the ML research repositories. Since this means that contributions by
more than half of the forks were never sent upstream, it is interesting to understand the
nature of such contributions, i.e., what did the ML community need in addition to the origi-
nal development in the parent repository (merged PRs), and what did the authors of the ML
repository miss out on (i.e., code changes not contributed back)? In particular, the upstream
changes studied in this paper help to identify the missing aspects of the original ML parent
repository contributed back by the OSS community. Conversely, understanding the down-
stream changes studied in this paper helps us determine to what extent essential features or
contributions have been missed.

Approach This RQ uses the sample of 378 downstream changes and 539 upstream changes
labeled with high inter-rater agreements in RQ2, but this time to analyze the prevalence of
each change sub-category of the taxonomy in Fig. 6. In particular, we compute the percentage
of upstream and downstream changes for each (sub-)category, then compare our findings
between downstream and upstream changes. These results are summarized in Fig. 8.

Results For both upstream and downstream commits, heavy changes occur in Docu-
mentation (Meta program), Bug fixes and Model training (Maintenance); and adding
new features (Implementation). Figure 8 shows substantial peaks in the Maintenance
and Meta program categories. We attribute such results to the nature of the data sci-
ence life cycle, where ML pipelines require substantial maintenance activities during
experimentation with and tweaking of data and models. ML tasks include multiple
iterations of updating data pre-processing, tuning parameters, updating model building
code, and improving pipeline performance.

Fig. 8 Percentage of change sub-categories present in the 378 samples of Downstream commits and 539
samples of Upstream commits. Values above y = 0.0% (plotted using a lighter color palette) indicate the
percentage of upstream changes containing a specific change sub-category, whereas values below y = 0.0%
(darker color palette) indicate the same for downstream changes
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Maintenance changes are much more prevalent in downstream commits than in
upstream commits. This is visible through the higher percentages of non functional and
data changes in downstream commits. We attribute this imbalance to downstream users
adapting ML research for their domain-specific tasks, rather than improving the upstream
repository for generic usage. In order to improve personal understanding of the ML
code, downstream users added changes from the new change sub-category, internal doc-
umentation, such as added print statements. In contrast, we found no cases of internal
documentation in upstream commits.

We also observed nine cases of our new sub-category change evaluation for downstream
changes, while none for upstream commits. Intuitively, downstream developers needed
scripts to train and test models (potentially after making some other changes) against their
domain-specific data. Conversely, there were 45 cases of our new change sub-category,
Dependency Management, in upstream commits. Such changes add, update or remove
ML library dependencies. Finally, accepted PRs were merged into either a project’s main
branch or alternative branches, which led to more instances of merging changes (Source
Management) in upstream commits than in downstream commits.

Noticeable Instances of the Most Popular Pre-AI Change Categories In the results of
RQ3, we notice that three of the top four most occurring change types across upstream and
downstream commits, i.e., Bug Fix, Documentation, and Feature, belong to Hindle’s pre-
AI taxonomy. Hence, here we provide some examples of those change sub-categories in the
context of ML-based pipeline projects.

1. External Documentation: In the project TensorBox, the README.md file was updated
to present information about how to manually download external dependencies (e.g.,
CUDA version) and how to set up and configure the corresponding runtime environ-
ment (External documentation example 2017). This was a downstream change.

2. Bug Fix: In the project tf-faster-rcnn, a bug in the test rpn function was fixed in
a downstream change as indicated by its commit message (Bug fix example 1 2019).
In another project, Kitti-Seg, the order of height and width parameters was incor-
rectly swapped, as indicated by the commit message for the upstream change (Bug fix
example 2 2017).

3. Feature: In a downstream commit for project PointCNN (Feature example 2018), new
features were added allowing to set GPU flags and the CUDA path, and to create project
directories for saving the model, if not yet existing.
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5 Implications

In this section, we discuss the implications of our findings for software researchers, ML
practitioners, the OSS ML community, toolsmith engineers, and ML educators.

5.1 Implications for Researchers

We extended Hindle et al.’s taxonomy of code changes (Hindle et al. 2008) with two new
categories and 16 new sub-categories of changes. Researchers can use our extended tax-
onomy to obtain a holistic picture of software changes in ML pipelines. In particular,
nine (input data, parameter tuning, pre-processing, training infrastructure, model structure,
pipeline performance, sharing, validation infrastructure, and output data) of the ML-related
categories of code changes indicate a need for revising and adapting existing best practices
towards the needs of software engineering for ML systems. This is only exacerbated by
the prevalence of the internal and external documentation change sub-categories, indicat-
ing difficulties for developers to comprehend complex ML code and keep track of hefty ML
pipelines.

Our work also updates existing code-change dimensions towards modern SE
paradigms in SE4AI. Even though some code change categories identified by Hindle et
al. still apply in the context of ML pipelines, we were able to better understand their appli-
cability within our context of ML pipelines. For instance, studying software bugs has been
an important focus of the software engineering community for decades. With the advent
of ML, recently many studies (Chen et al. 2022; Tizpaz-Niari et al. 2020; Cheng et al.
2018; Dwarakanath et al. 2018) started focusing on bugs in the machine learning domain.
However, thus far the scope of these types of ML studies is limited to machine learning
frameworks, while bugs in the different phases and components of actual ML pipelines or
even end-user ML applications are not yet explored in depth. For example, initial studies
found that the data wrangling phase introduces a variety of pipeline-level (Amershi et al.
2019) challenges, including pipeline-level bugs.

As another example, we split the “documentation” category of Hindle’s change taxon-
omy into “internal” and “external” documentation, since our analysis of ML pipeline code
changes made it especially apparent that both cater to a different audience in the mod-
ern SE paradigm of collaborative development. In particular, the (external) API-level or
application-level documentation is aimed toward black-box (re)use of a given project, while
the fined-grained (internal) documentation instead explains the inner working and state of
processing of the code to people interested in changing, or at least better understanding it.
Such a distinction may not have been that obvious 13 years ago (Hindle et al. 2008).

5.2 Implications for Toolsmiths

An updated taxonomy of code changes can help toolsmiths in adapting and innovating
software engineering tools. As mentioned in Section 2, code change data is used for a
variety of purposes such as extraction of missing traceability links (Wu et al. 2011), auto-
generation of commit messages (Cortés-Coy et al. 2014), and analysis of quality impact
(Faragó and Hegedũs 2014). At the same time, current development environments and tools
used by developers need to be modernized as well.

Our observed instances of code changes spanning across the Maintenance, Dependency
Management, Source management, and Data domains imply a need for toolsmiths to bet-
ter support ML engineering teams in handling requirements, managing data dependencies,
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configurations, training ML models. For example, given that many developers add com-
ments to the code to better understand the ML logic, code bases might get polluted. The
boom of Jupyter Notebooks (Granger and Pérez 2021) for data science only provides a
workaround to this problem (Wang et al. 2020), which might not scale to real-life ML
practices of large systems. Hence, perhaps less invasive annotation or other functionality is
required in future IDEs.

As another example, code changes play an important role in tracking bugs (Zhao et al.
2017; Kim et al. 2011; Shivaji et al. 2012). An updated taxonomy of code changes may
enable a more effective automated classification of bug reports or code changes submitted
for code review. For example, most automated change classification techniques focus on a
limited number of possible change types. Our results could also help fault localization and
defect prediction researchers improve their models.

5.3 Implications for Educators

Software educators may wish to update their curricula to revise future training of (ML)
software engineers. Moreover, novice software developers need training on practices related
to Dependency management, to be better equipped to use and support ML frameworks.
Overall, ML practitioners need to be aware of the change taxonomy to anticipate future
changes that occur in ML software.

Particularly, Fig. 7 provides a map for educators of the different ML-related change
(sub-)types to expect while providing a travel guide for education and training teams. Since
ML-based organizations tend to have a distributed team with overlapping roles ranging
from data developers, data scientists, statisticians, DevOps engineers, to software develop-
ers, software teams may wish to leverage such a map for a clearer understanding of the roles
and responsibilities w.r.t. the nature of development changes performed by a specific role.

5.4 Implications for OSS Community

Organizations and/or individuals wishing to open-source theirMLRepositories should
have realistic assumptions. While our findings show that organizations and researchers
do not necessarily “dump” their ML research implementations on GitHub, but receive and
merge open-source contributions, this is not guaranteed. For one, only 9% of forks are
Forks with changes, of which 41.6% send contributions upstream via a pull request,
about half of which (52.1%) are accepted into the parent repository (see RQ1).

Two lessons can be learned from this. On the one hand, the ML research repositories are
missing out on almost 60% of forks having contributions that are never sent back upstream.
Even the 41.6% of forks that do contribute might not contribute back all contributions they
have made. While it is OK for changes like parameter tuning not to be contributed back,
the “lost” contributions of forks also include 16% of new bug fixes, 13% of new features
for the ML pipeline, etc. Future work should look into why those were never sent back.

On the other hand, of those contributions that were propagated back, only half were
merged. Future work should consider the reasons for rejection of this work, i.e., to what
extent was rejection based on the quality of the contribution versus the contribution being
too tied to the contributor’s own use case, or even versus the responsiveness of the ML
repository owners. Whichever the outcome, and similar to traditional open-source develop-
ment, receiving many high-volume contributions requires effort (Rahman and Roy 2014).
Researchers can gain leverage from our updated taxonomy to pay special attention to ML
pipeline components that are updated while maintaining ML code.
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6 Threats to Validity

Threats to Internal Validity Qualitative studies can be subject to researcher bias. To min-
imize this, we used multiple participants (i.e., two teams with four people in Team-A,
and three people in Team-B) for the manual coding of changes. Both teams had in-depth
knowledge of software development, as well as SE4ML. Furthermore, the teams pair-wise
labeled each sample and achieved high inter-rater agreements of Krippendoff’s α = 98%
for Team-A and α = 92% for Team-B.

Threats to Construct Validity In Section 3, we mine ML pipeline repositories implement-
ing algorithms published in ArXiv papers. For this, we check whether a repository cites an
ArXiv research paper in its README file. Analysis of a sample of 94 such repositories
in Section 1 showed that all repositories citing an ML ArXiv publication are influenced by
the research and can be termed as a “ML research repository”, irrespective of whether the
repository is created by the authors of the ML research publication (30%) or by external
members of the community (70%).

Threats to External Validity For answering our RQ2, we analyzed both the types of
changes made by PRs merged into the upstream parent repository and by downstream
changes performed within the forks but never sent upstream. However, we do not study
changes rejected by the upstream repository. While future work should analyze such cases,
we feel confident about the completeness of our taxonomy, as we reached saturation in
obtaining new labels within the initial 78 samples of downstream commits. No new cat-
egories were found in the later part of 300 downstream or any of the 539 upstream
commits.

Moreover, we focused on the repositories implementing image processing or machine
learning in ModelDepot, since they were the most popular on Modeldepot and cover a wide
range of popular ML application domains. Future work should focus on other domains like
NLP and Audio Processing.

Finally, we sampled our data for qualitative analysis only from the 23 repositories that
were at the top five percentile of Forks with changes. We put such a filter to select repos-
itories with the maximum amount of activity in terms of downstream commits and pull
requests which may thereby manifest as upstream commits. While we need “popular or
active trends” to study rich and meaningful data that has low noise, nonetheless, this poses
a threat to external validity as is also indicated by prior research (Kalliamvakou et al. 2014;
Santos et al. 2015; Bird et al. 2009).

Threats to Reliability Validity These threats take into account the replication of our study.
After our data collection process from ModelDepot finished and the analysis was well
underway, the website was shut down. However, ModelDepot only pointed to the reposito-
ries hosted on GitHub. To mitigate this threat, we provide26 our lists of 1,346 repositories,
along with the ArXiv papers cited by these repositories. We also provide a snapshot of the
mined forking data at the time of our analysis for our quantitative investigation of RQ1.
The replication data for qualitative analysis of RQ2, RQ3 consists of the labeled sample of
upstream and downstream changes to ensure the reproducibility of our study.

26https://github.com/SAILResearch/suppmaterial-22-aaditya-ml change taxonomy

https://github.com/SAILResearch/suppmaterial-22-aaditya-ml_change_taxonomy
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7 Conclusion

Open-source community developers use and refine OSS repositories. Although prior studies
have investigated the nature of open source contributions in non-ML software, one can
imagine the nature of such community changes, as well as the way in which developers
collaborate, to be different for Machine Learning projects. Hence, this paper studies the
forking dynamics and the types of changes performed in 67,369 forks of 1,346 ML pipeline
projects related to research publications.

We found that, while most forks (91%) do not modify an ML research repository after
forking it, 41.6% of the forks with modifications contribute valuable changes to the par-
ent ML research repository, with a 52.1% acceptance rate. We performed an extensive
qualitative study that identified the types of changes in ML software. We identified one
new top-level change category, Data, in the context of ML, and one more generic cat-
egory (Dependency management). Along with this, we extend the taxonomy of changes
by adding 15 new sub-categories, including nine ML-specific ones (input data, output
data, program data, sharing, change evaluation, parameter tuning, pipeline performance,
pre-processing, model training) and seven generic ones (i.e. adding dependency, remov-
ing dependency, updating dependency, file permissions, internal-documentation, adding
auto-generated code and project metadata).

Our results aim to help software practitioners in having a better understanding of ML
changes that can be leveraged while training new developers, and to support building and
maintaining ML software. Furthermore, future work should look deeper into the reasons
why potentially valid Documentation, Feature and Bug fix changes were not contributed
back upstream.
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