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Abstract
Ethereum is a blockchain platform that supports smart contracts. Smart contracts are pieces
of code that perform general-purpose computations. For instance, smart contracts have been
used to implement crowdfunding initiatives that raised a total of US$6.2 billion from Jan-
uary to June of 2018. In this paper, we conduct an exploratory study of smart contracts.
Differently from prior studies that focused on particular aspects of a subset of smart con-
tracts, our goal is to have a broader understanding of all contracts that are currently deployed
in Ethereum. In particular, we elucidate how frequently used the contracts are (activity
level), what they do (category), and how complex they are (source code complexity). To con-
duct this study, we mined and cross-linked data from four sources: Ethereum dataset on the
Google BigQuery platform, Etherscan, State of the DApps, and CoinMarketCap. Our study
period runs from July 2015 (inception of Ethereum) until September 2018. With regards
to activity level, we notice that it is concentrated on a very small subset of the contracts.
More specifically, only 0.05% of the smart contracts are the target of 80% of the transac-
tions that are sent to contracts. New solutions to cope with Ethereum’s limited scalability
should take such an activity imbalance into consideration. With regards to categories, we
highlight that the new and widely advertised rich programming model of smart contracts is
currently being used to develop very simple applications that tend to be token-centric (e.g.,
ICOs, Crowdsales, etc). Finally, with regards to code complexity, we observe that the source
code of high-activity verified contracts is small, with at most 211 instructions in 80% of
the cases. These contracts also commonly include at least two subcontracts and libraries
in their source code. The comment ratio of these contracts is also significantly higher than
that of GitHub top-starred projects written in Java, C++, and C#. Hence, the source code
of high-activity verified smart contracts exhibit particular complexity characteristics com-
pared to other popular programming languages. Further studies are necessary to uncover the
actual reasons behind such differences. Finally, based on our findings, we propose an open
research agenda to drive and foster future studies in the area.
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1 Introduction

Ethereum is a blockchain platform (Wood 2017). A blockchain platform is a distributed,
chronological database of transactions that is shared and maintained across nodes that
participate in a peer-to-peer network (Swan 2015). The decentralized architecture of a
blockchain enables transactions to be confirmed without the need of a central entity (e.g., a
bank or a credit card company).

The Ethereum platform was crowdfunded in the second semester of 2014 and raised
approximately US$15.6 million.1 As of August 2018, the Ethereum platform has achieved
an impressive market capitalization of US$42.3 billion.2 The Ethereum platform is slowly
gaining more and more attention from the media, with articles about it in traditional media
outlets such as The Economist (2018) and The New York Times (2017). Enterprise versions
of the Ethereum platform are also already being conceived with the support of industry-
leading companies such as Intel, Microsoft, J.P. Morgan, and Accenture.3

At the heart of the Ethereum platform are smart contracts (Szabo 1994). A smart contract
is simply a non-modifiable general purpose computer program. Different from app stores,
Ethereum not only hosts smart contracts, but also executes them. Smart contracts are written
in Solidity, whose syntax is similar to that of JavaScript. Smart contracts are commonly
used to create a tradeable digital token, which can represent a currency, an asset, a virtual
share, a proof of membership, etc. Smart contracts also commonly define how these tokens
are meant to be distributed. For instance, a smart contract might define a token with a fixed
supply or even act as a central bank that can issue tokens.

Smart contracts have been successfully used to implement crowdfunding initiatives for
startup companies. Typically, a company creates a smart contract that defines a new token
(in this case, a cryptocurrency), sets a certain supply for this token, defines the presale
period, defines safeguards measures for investors (e.g., the contract might hold the money
of an investor until a specific date or goal is reached), and operationalizes the sale itself.
And all of this happens without the need of a centralized arbitrator or clearinghouse. Such
crowdfunding contracts are often referred to as initial coin offerings (ICOs). According to
the ICO WatchList4 website, a record of US$6.2 billion were raised via ICOs from January
to June in 2018. According to the same website, 82.2% of all their tracked ICOs were
implemented as smart contracts on the Ethereum platform.

The former example shows how smart contracts can be used as stand-alone applica-
tions. However, smart contracts can also be used to implement the backend of a certain
application. Such blockchain-powered applications are advertised by the Ethereum platform
creators as decentralized applications (ÐApps). One prominent example is the CryptoKit-
ties game,5 which allows users to purchase, collect, breed, and sell virtual cats. The craze

1The dollar amount reported considers the exchange rate during which the crowdfunding took place (Jul
22th 2014 until Sep 2nd 2014). We proceed analogously for all other crowdfunding amounts reported in this
paper. More information is available at: https://cryptoslate.com/coins/ethereum/
2Market capitalization is the multiplication of a company’s shares by its current stock price. In the virtual
coin world, a company’s share corresponds to the total coin supply. As of August 3rd 2018, Ethereum has a
total ether supply of 101,104,524 with a market price of US$418.26 per ether, yielding an impressive market
capitalization of US$42.3 billion. More information is available at https://coinmarketcap.com/currencies/
ethereum/historical-data
3https://entethalliance.org
4https://icowatchlist.com/
5https://cryptokitties.co
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around the game was so intense that it has once managed to significantly slow down all
transaction processing on Ethereum (BBC 2017). Some virtual cats have been sold for more
than US$100,000 (exchange rate taken at time of sale6).

With the recent popularity of smart contracts and their inherent association with finan-
cial transactions, the software engineering research community has primarily focused on
examining the security aspects of smart contracts (Luu et al. 2016; Kalra et al. 2018; Chen
et al. 2018; Tikhomirov et al. 2018; Grishchenko et al. 2018; Wan et al. 2017). As such,
a more global view of smart contracts remained uncharted. In this paper, we conduct an
exploratory study in which we aim to characterize three fundamental properties of smart
contracts, namely: activity level, category, and source code complexity. Our investigation
of activity level aims to explore how intensively smart contracts have been used and how
concentrated this usage is. Our investigation of categories aims to uncover what smart con-
tracts have been used for. Finally, our investigation of code complexity aims to quantify
complexity according to several dimensions.

We study all smart contracts in the Ethereum platform that were created via contract
creation transactions (1.9M contracts). We characterize smart contracts by cross-linking
data from several sources: Ethereum dataset in Google BigQuery,7 Etherscan8 (primary
Ethereum explorer website), State of the ÐApps9 (curated list of ÐApps), and CoinMarket-
Cap10 (coin market capitalization tracker). In the following, we list our research questions
and key results:

RQ1) What is the activity level of smart contracts? Activity is concentrated on a very
small subset of the contracts. More specifically, only 0.05% of the smart contracts are the
target of 80% of the transactions that are sent to contracts. The source code is available
for 73.1% of these high-activity contracts.

RQ2) What are the categories of high-activity smart contracts? Despite the hype
around blockchain-powered applications and their presumable suitability for several
use-cases, our results suggest that at least 41.3% of the high-activity contracts revolve
around transferring, selling, and distributing tokens. In particular, 5 out of the top-10
contracts with highest activity belong to Currency Exchange ÐApps.

RQ3) How complex is the source code of verified smart contracts? The source code
of high-activity verified contracts is small, with at most 211 instructions in 80% of the
cases. These contracts also commonly include at least two subcontracts and libraries in
their source code. The comment ratio of these contracts is significantly higher than that
of GitHub top-starred projects written in Java, C++, and C#.

In summary, our empirical results led us to conclude that: (i) new solutions to cope with
Ethereum’s limited scalability should take the activity imbalance into consideration, (ii)
researchers and practitioners should be aware that the main application of smart contracts
at this time is constrained to simple token management, and (iii) source code of high-
activity verified smart contracts exhibit particular complexity characteristics compared to
other popular programming languages.

6https://kittysales.herokuapp.com
7https://bigquery.cloud.google.com/dataset/bigquery-public-data:ethereum blockchain
8https://etherscan.io
9https://www.stateofthedapps.com
10https://coinmarketcap.com
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Paper Organization The remainder of this paper is organized as follows. Section 2 defines
key concepts surrounding smart contracts. Section 3 explains the data collection procedures
that we employed to obtain the smart contracts and their associated metadata. Section 4
presents and discusses the results of our research questions. Section 5 introduces an open
research agenda to guide future studies in smart contracts. Section 6 presents the different
perspectives from which prior research has studied smart contracts. Section 7 discusses the
threats to the validity of our study. Finally, Section 8 concludes the paper.

2 Background: Blockchain, Smart Contracts, and Related Concepts

In this section, we describe concepts that are key to our study. Sections 2.1 and 2.2 define
blockchain and smart contracts respectively. Sections 2.3 and 2.4 explain how one interacts
with and verifies smart contracts respectively. Section 2.5 defines token, token contracts,
and mintable token contracts. Finally, Section 2.6 introduces ÐApps.

2.1 Blockchain

A blockchain is a distributed, chronological database of transactions. This database is shared
and maintained across nodes that participate in a peer-to-peer network. The name blockchain
comes from the manner in which transactions are stored. More specifically, transactions
are packaged into blocks and these blocks are linked to one another as a chain. There
are currently several offerings of blockchain platforms. Popular ones include: Bitcoin,11,
Ethereum,12 EOS,13 POA,14 Nxt,15 and Hyperledger Fabric.16

Adding a new transaction to a blockchain requires confirmation from several nodes of
the network, which all abide to a certain consensus protocol. The Ethereum platform uses

11https://bitcoin.org
12https://ethereum.org
13https://eos.io
14https://www.poa.network
15https://www.jelurida.com/nxt
16https://www.hyperledger.org/projects/fabric
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the computationally costly Proof-of-Work (PoW) consensus protocol (Jakobsson and Juels
1999), which requires nodes to solve a hard mathematical puzzle. The computing power
required to solve the hard mathematical puzzle ensures that tampering with the data is infea-
sible. In particular, the PoW consensus protocol ensures that there is no better strategy to
find the solution to the mathematical puzzle than enumerating the possibilities (i.e., brute
force). On the other hand, verification of a solution is trivial and cheap. Ultimately, the
PoW consensus protocol ensures that a trustworthy third-party (e.g., a bank) is not needed
in order to validate transactions, enabling entities who do not know or trust each other to
build a dependable transaction ledger.

Other consensus protocols include Proof-of-Stake (e.g., used by Nxt) and Delegated
Proof-Of-Stake (e.g., used by EOS). In Proof-of-Stake protocols,17 “a set of validators
take turns proposing and voting on the next block, and the weight of each validator’s vote
depends on the size of its deposit (i.e. stake)”. Proof-of-Stake thus do not consume large
quantities of electricity and discourage centralized cartels. Ethereum developers plan to
transition from Proof-of-Work to Proof-of-Stake in 2020.

Independently of the consensus protocol, once a block is appended to a blockchain,
its contents cannot be altered without changing every other block that came after it. In
practice, a transaction in Ethereum is deemed final and irreversible after six block confir-
mations (i.e., after six new blocks have been added to blockchain). More generally, due to
the PoW consensus protocol, it is impossible to change the contents of old blocks with-
out owning more than 50% of the computing power that runs Ethereum (a.k.a., a 51%
attack).

An introduction to blockchain platforms and surrounding concepts can be found in the
books by Swan (2015) and Richmond (2018).

2.2 Smart Contracts

Ethereum supports smart contracts. Blockchain platforms that support smart contracts are
often referred to as programmable blockchains (Bitcoin is not a programmable blockchain).

The term smart contract was coined by Szabo (1994). According to him, “a smart con-
tract is a computerized transaction protocol that executes the terms of a contract.” More
recently, with the advent of Ethereum and other sophisticated blockchain platforms, the
concept of smart contracts has become much broader, representing any general-purpose
computation.

Ethereum both hosts and executes smart contracts. This is a key distinction compared
to mobile app stores, which only host applications. The execution aspect, coupled with
the ledger characteristics of a blockchain, enables keeping track of the activity of smart
contracts.

Source Code and Bytecode The source code of a smart contract is typically written in
Solidity, whose syntax is similar to that of Javascript. The structure of a Solidity smart con-
tract resembles that of a class (as in object-oriented programming). An illustrative example
is shown in Fig. 1. Similarly to the Java compiler, the Solidity compiler also produces a
bytecode version of the source code, which is executed by the Ethereum Virtual Machine
(EVM). The Ethereum bytecode is an assembly language made up of several opcodes (low-
level instructions). Most importantly, only the bytecode of a smart contract is stored in

17https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
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Fig. 1 An example of a smart contract written in Solidity
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Ethereum. More details about Solidity and its bytecode format can be found in Solidity’s
official documentation.18

Subcontracts and Libraries In order to enable separation of concerns, the Solidity lan-
guage provides subcontracts and libraries constructs. Similarly to nested classes (as in
object-oriented programming), subcontracts and libraries have each a specific purpose. Sub-
contracts enable developers to establish object-oriented relationships between contracts,
such as inheritance and interface implementation. Libraries often provide a set of utility
methods that are mindful of corner-cases or optimize processing time (e.g., a library to per-
form mathematical operations without incurring into underflows and underflows). In the
example depicted in Fig. 1, there are two subcontracts (ERC20 and MyCoin) and two
libraries (SafeMath and VectorSum).

2.3 Interacting with Smart Contracts

The Ethereum platform supports two types of accounts: user accounts and smart contract
accounts. Both accounts are uniquely identified with a 40-digit hexadecimal ID, which is
often referred to as the address of the account. Similarly to accounts, all transactions are
also uniquely identified by a 40-digit hexadecimal ID.

A user account can deploy contracts to the blockchain and interact with them. The
deployment is done by means of a transaction19 sent to the blockchain. This transaction
is commonly referred to as the contract creation transaction. A smart contract receives its
address as a result of the execution of the contract creation transaction. A smart contract can
also be deployed by an existing contract. This process occurs through a mechanism com-
monly known as an internal transaction. Internal transactions are not real transactions, as
they are not kept on the blockchain. Our study does not cover contracts created via internal
transactions.

A user account interacts with a contract by sending transactions to its functions. These
transactions are ultimately function calls. Each smart contract transaction burns a certain
amount of gas units depending on which and how many instructions are executed during
runtime. This concept is known as the gas usage of a transaction. Hence, in order to send
a transaction, the user has to set two parameters: gas price and gas limit. Gas price is the
amount of money that the user is willing to pay for one unit of gas. Gas price is given in
Ether, which is Ethereum’s cryptocurrency (Section 2.5). Gas limit is the maximum amount
of gas units that the user is willing to pay for. The transaction fee that the user has to pay is
thus gasprice × gasusage, which is at most gasprice × gaslimit . Gas payment covers
the costs of the computing power.

2.4 Verifying Smart Contracts

When a developer uploads a smart contract to the Ethereum platform, only its bytecode
version is stored. Therefore, it is up to the developer to publish the corresponding source
code somewhere. The Etherscan website, which is the primary Ethereum explorer website,

18https://solidity.readthedocs.io
19Example of a transaction that created a smart contract: https://etherscan.io/tx/0xebcbe706f9959c8b98a72
bcd42fed545d3cf60fe3fa801186d5fef2249dac91a

https://solidity.readthedocs.io
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provides a code transparency mechanism known as contract verification. This mechanism
offers developers the possibility of publishing the source code of their contracts in Ether-
scan, so that it is available to the whole community that is interested in the Ethereum
platform. The code verification mechanism works as follows: (i) the developer uploads the
source code and indicates a particular version of the Solidity compiler, (ii) Etherscan com-
piles the code using the developer-indicated compiler version, (iii) Etherscan checks if the
generated bytecode matches the bytecode that is stored on the blockchain. If there is a per-
fect match, then the contract is deemed as verified and the source code becomes publicly
available on Etherscan in less than 5 minutes.20

2.5 Cryptocurrency, Tokens, and Coins

A cryptocurrency is digital and represents money. A cryptocurrency is native to its own
blockchain. In the case of Ethereum, the cryptocurrency is called Ether and is abbrevi-
ated as ETH. Ether can be transferred between user accounts. In addition, as mentioned
in Section 2.3, Ether must also be paid by anyone who wants to run a transaction on the
Ethereum platform, as it covers the costs of computing power. In terms of usage, Ether
(ETH) is not much different than traditional currencies like USD Dollars (USD) and Euros
(EUR). The only practical difference is that we have metal coins and pieces of paper
to represent dollars and euros in the physical world. Instead, cryptocurrencies are purely
virtual.

Tokens are created on top of existing blockchains. Tokens are used to represent digital
assets that are tradeable (and usually fungible), including everything from commodities to
voting rights. Every token has a name and an acronym (popularly known as a symbol) and
any smart contract can define a new token. It is common for tokens to represent money.
Therefore, in practice, (crypto)coins and tokens are frequently used interchangeably. For
instance, a crowdfunding initiative that is implemented as a distribution of tokens is more
commonly referred to as an ICO (Initial *Coin* Offering) instead of an ITO (Initial *Token*
Offering). There are several physical and virtual currency exchanges21 around the world
that buy and sell (crypto)coins, as well as exchange one (crypto)coin for another.

Token Contract A token contract is a special kind of smart contract that defines a token and
keeps track of its balance across user accounts. Ethereum has two main technical standards
for the implementation of tokens, known as the ERC20 interface and the ERC721 inter-
face. The standardization allows contracts to operate on different tokens seamlessly, while
also fostering interoperability between contracts. From an implementation perspective,
ERC20 and ERC721 interfaces are object-oriented interfaces defining several functions,
such as totalSupply(), balanceOf(address who), and transfer(address
to, uint256 value) (check IERC20 in Fig. 1). In this paper, we study both token
contracts and non-token contracts.

Mintable Token and Mintable Token Contact A mintable token is a special kind of token
that has a non-fixed total supply. Most mintable token contracts are ERC20 token contracts
with an added mint() function, which increases the total token supply upon invocation.

20https://etherscan.io/apis#contracts
21Examples include IDEX (https://idex.market), ForkDelta (https://forkdelta.app), and Bancor (https://www.
bancor.network). IDEX is described in Appendix.
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Optionally, a burn() function is also included to decrease the total supply. Bitcoin (BTC),
the official cryptocurrency of the homonymous blockchain plaform, is a mintable token. In
particular, 12.5 newly created BTCs are given as a reward to those who put the next block
on the Bitcoin blockchain platform.

2.6 Decentralized Applications (ÐApps)

A smart contract can be an application in itself. For instance, a smart contract might define
a token (coin) and implement an ICO for it. Alternatively, a smart contract might be used
as the backend of a multi-tiered application. In this sense, a smart contract can also be a
building block of something larger.

Any application that relies on one or more smart contracts as its backend is known as
a decentralized application (ÐApp). Therefore, ÐApps contrast to more traditional appli-
cations in which the backend code runs on centralized servers. The frontend of ÐApps
can be implemented in any programming language. Commonly, it is implemented with a
combination of HTML5, CSS, and web3.js (a Javascript API for Ethereum).

As we mentioned earlier, a list of curated ÐApps can be seen on the State of the ÐApps
website.

3 Data Collection

Conducting our study involved cross-linking data from several sources, namely: Google
BigQuery, Etherscan, CoinMarketCap, and State of the ÐApps. Google BigQuery is a
scalable data analytics platform that contains several public datasets, including one for
the Ethereum platform. Google set up nodes on their cloud infrastructure that synchro-
nize with the Ethereum blockchain. The data is updated daily. Etherscan is the most
popular Ethereum explorer. Similarly to Google, Etherscan collects the data by having
nodes set up on the Ethereum blockchain. The data is updated on their website in real
time, allowing users to explore Ethereum through a web browser. CoinMarketCap is a
website that tracks the market capitalization of cryptocurrencies. Finally, The State of
the ÐApps is a website with a curated list of ÐApps. Each ÐApp has an associated
webpage in State of the ÐApps, where relevant metadata is shown, including the cate-
gory of the ÐApp, its description, and the address(es) of the smart contract(s) it uses
(if available).

In the following, we describe the specific pieces of data on which we relied in order to
answer our research questions. An overview of the data collection process is shown below
in Fig. 2.

1: Retrieve addresses, number of transactions, and token symbol of all smart con-
tracts. We relied on the live public Ethereum dataset available in Google BigQuery
to determine the list of all contracts and their associated metadata, including number
of received transactions and token symbol (for token contracts). We do note that this
dataset does not track contracts created via internal transactions (Section 2.3).

2: Identify verified contracts. We used the REST APIs provided by Etherscan to
determine the list of verified contracts.22 We obtained 42,256 verified contracts.

22https://etherscan.io/apis#contracts

https://etherscan.io/apis#contracts
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Fig. 2 An overview of our data collection process. Dashed lines indicate a connection to a data source

3: Determine number of received transactions. We analyzed the number of received
transactions by verified and non-verified contracts. The output of this step was the main
source of information for tackling RQ1.

4. Obtain market capitalization and establish link to ÐApps. Since cryptocurrencies
play a key role in Ethereum, we determined their market capitalization using data from
the CoinMarketCap website. In addition, we wanted to discover the category of each
smart contract. To this end, we also linked smart contracts to the list of ÐApps from
State of the ÐApps, using the contract address field as the key. Performing this linkage
involved crawling the webpage of each ÐApp available on State of the ÐApps. We
emphasize, however, that not all contracts belong to a ÐApp. The output of this step
was the main source of information for tackling RQ2.

5: Obtain source code of smart contracts. We used Etherscan’s REST API to down-
load the source code of verified contracts. We highlight that verified contracts are
provided with the explicit expectation that they are not private (i.e., they are pro-
vided so that others can examine and scrutinize them). In addition, we do not reuse
nor redistribute source code, and thus we do not infringe on copyright or code
licenses. Hence, our usage of the source code is in accordance to Etherscan’s usage
terms.23

6: Parse source code using Solidity Parser. In order to investigate the complexity of
the source code, as well as to identify subcontracts, libraries, and code comments, we
wrote a JavaScript program that works on top of a Solidity parser made available by
Federico Bond.24 The parsed source code pieces were the main source of information
for tackling RQ3.

23https://etherscan.io/source-code-usage-terms
24https://github.com/federicobond/solidity-parser-antlr
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4 Results

4.1 RQ1: What is the Activity Level of Smart Contracts?

Motivation The hype around blockchain technology and the success of games like Cryp-
toKitties might persuade researchers and industries into thinking that platforms such
as Ethereum host a vast number of killer applications. Hence, in this research ques-
tion, we analyze the activity level of smart contracts and determine how concentrated
it is.

Approach We use the number of transactions that a contract received as a proxy for their
activity level. We analyze the distribution of the number of received transactions in order to
gain insights into contract usage.

As described in Section 3, our data contains the number of transactions that a contract
received since its creation until the day before we started the data collection process. We
refer to this timeframe as the age of a contract. As part of this research question, we also
investigate whether there is correlation between the number of transactions that a contract
received and its age.

Finally, we investigate the current idle time of contracts, which we define as the time
elapsed between a contract’s last transaction and the data collection date. We analyze cur-
rent idle times in order to determine the fraction of contracts that are no longer active.
More specifically, we cluster the current idle time observations using the Jenks natural
breaks optimization method (Jenks and Caspall 1971) with the support of the classInt
R package.25 The Jenks method is designed to determine the best arrangement of values
into different classes by reducing the variance within classes and maximizing the variance
between classes. The number of clusters nc is an input parameter. We analyze the empirical
cumulative distribution of the current idle time variable in order to pick nc and then evaluate
our choice using the goodness-of-fit measure, which indicates how well the Jenks clustering
fits the data.

We use the Spearman’s rank correlation coefficient (ρ) to evaluate the relationship
between variables (e.g., number of transaction and the age of a contract). We choose this
correlation coefficient because it does not require normally distributed data. We assess
Sperman’s ρ using the following thresholds (Evans 1995), which operate on 2 decimal
places only: very weak for |ρ| ≤ 0.19, weak for 0.20 ≤ |ρ| ≤ 0.39, moderate for
0.40 ≤ |ρ| ≤ 0.59, strong for 0.60 ≤ |ρ| ≤ 0.79, and large for |ρ| ≥ 0.80.

25https://cran.r-project.org/web/packages/classInt
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In the following, we summarize the three metrics used in this investigation:

– Activity level of a contract: Number of transactions that a contract received from its
creation until the day before our data collection date.

– Age of a contract: Number of days elapsed between contract creation and the day before
our data collection date.

– Current idle time of a contract: Number of days elapsed between the last transaction
received by a contract and the day before our data collection date.

Results Result 1) 67.5% of all contracts never received any transaction. 94.7% of all
contracts received less than 10 transactions. Figure 3a depicts the empirical cumulative
distribution function (ECDF) for the number of received transactions per contract. 67.5% of
the contracts have never received transactions. Moreover, 94.7% of the contracts received
less than 10 transactions. This result makes it clear that a remarkable proportion of the
contracts in the Ethereum platform have been seldom used.

Result 2) 0.05% of all contracts received 80% of all transactions sent to contracts.
We sort the contracts in descending order of number of transactions and plotted the curve
shown in Fig. 3b. As the curve indicates, only an exceptionally small portion of the contracts
concentrate the vast majority of all transactions sent to contracts. Throughout the remainder
of this paper, we call them high-activity contracts.

Result 3) Only 8% of the high-activity contracts are currently inactive. In Fig. 4, we
show the current idle time of the high-activity contracts. As the curve indicates, the vast
majority of these contracts have a very short current idle time, which indicates that they
are all still active. After a pronounced knee in the curve, we notice that there are contracts
that have been idle from 100 days to as long as 964 days. From this analysis, we conclude
that it would make sense to cluster the data in three groups: active contracts, recent-inactive
contracts, and long-inactive contracts. We thus ran the Jenks clustering procedure with nc

= 3, which produced the following intervals: [0, 96.0], (96.0, 448.8], (448.8,+∞] (check
red dashed lines in Fig. 4). The obtained goodness-of-fit is 0.95, thus indicating that the
clustering appropriately fits the data. Our analysis thus suggests that contracts that have
been idle for at least 96 days (approximately 3 months) can be considered inactive. Most
importantly, only 8% of the high-activity contracts are inactive.

Result 4) Older contracts do not necessarily receive more transactions. One may
hypothesize that older contracts would be more likely to receive more transactions.
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Fig. 3 a 67.5% of the contracts have never been used. 94.7% of the contracts received less than 10
transactions. b 0.05% of the contracts received 80% of the transactions sent to contracts
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Fig. 4 The dashed lines delimit the three intervals produced by the Jenks clustering procedure. These inter-
vals denote active contracts, inactive contract, and long inactive contracts (from left to right). Only 8% of the
high-activity contracts are currently inactive

However, this hypothesis does not hold for our data, as we observed only a very weak corre-
lation between a contract’s age and its number of transactions (ρ = 0.13). To gain a deeper
insight into the relationship between a contract’s age and its number of transactions, we plot
a heatmap (Fig. 5). Analysis of this map reveals that there are few observations in the top-
right corner position. In fact, the contract with the highest number of transactions is 582
days old (i.e., it is a middle-aged contract).

To confirm our results, we perform an additional analysis: we compare the age of high-
activity contracts against the average age over all contracts. The violin plot depicted in Fig. 6
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Fig. 5 Heatmap plot showing the relationship between a contract’s age and its number of received
transactions
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0 250 500 750 1000
Age of high−activity contracts (days)

Fig. 6 Distribution of the age of high-activity contracts. The red dashed line indicates the average age of a
contract

shows the distributions of age for high-activity contracts. A violin plot is a compact visu-
alization that highlights the density of a continuous distribution (with an optional boxplot
included inside it). We use a red dashed line to indicate the average age over all contracts
(295.6 days). What we observe is that the median age of high-activity contracts is actually
lower than the average age of contracts. Hence, older contracts do not necessarily receive
more transactions.

Result 5) Verified contracts represent only 2.2% of all contracts. Yet, 71.9% of all
transactions sent to contracts target verified contracts. As shown in the summary box
of the data collection section (Section 3), verified contracts account for only 2.16% of all
contracts. Yet, as shown in Fig. 7, verified contracts received more transactions (median
= 3, mean = 2,247, sd = 62,888) than non-verified contracts (median = 0, mean = 19.4,
sd = 2,155). A two-sided Mann-Whitney test indicates that the difference is statistically
significant at α = 0.05 (p-value < 2.2e-16). In order to understand the practical significance
of this difference, we compute the Cliff’s Delta (δ) effect-size score. We assess it using the
following thresholds (Romano et al. 2006): negligible for |δ| ≤ 0.147, small for 0.147 <

|δ| ≤ 0.33, medium for 0.33 < |δ| ≤ 0.474, and large otherwise. We observe that the effect
size is large (δ = 0.55). More generally, we observe that 71.9% of all transactions sent
to contracts target verified contracts. In addition, 73.1% of the high-activity contracts are
verified contracts. Hence, verified contracts play a key role in the Ethereum platform with
regards to activity level.

Since correlation does not imply causation, it is possible that there is a confounding
factor behind the high-activity of verified contracts (i.e., the identified high activity is not
related to the availability of the source code per se). Further studies are necessary to better
understand the characteristics of verified contracts.

Implications Ethereum’s scalability is severely limited. According to Vitalik Buterin, co-
founder and inventor of Ethereum:

As far as the big problems, my top three at this point are probably scalability, pri-
vacy, and usability. So scalability, Ethereum blockchain right now can process 15
transactions a second, really we need like 100,000.

(transcribed from an interview given to ABRA26 in March 2019)

26https://www.youtube.com/watch?v=u-i mTwL-FI

https://www.youtube.com/watch?v=u-i_mTwL-FI
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Fig. 7 Verified contracts received more transactions than non-verified contracts

There are currently two types of solutions being proposed to scale Ethereum (Buterin
2018; Gudgeon et al. 2019): Layer-1 solutions (i.e., those that modify Ethereum itself, such
as Ethereum 2.0) and Layer-2 solutions (i.e., those that are built on top of Ethereum). While
both types of solutions are likely to substantially improve Ethereum’s throughput, they
do not consider our main finding: activity level is severely skewed. We see the following
immediate implications:

1. Understanding and monitoring the (contract) transaction validation workload is trivial,
since this workload is driven by a very small number of contracts.

2. There is currently no way to ensure a fair utilization of the Ethereum processing power.
In particular, there have been a series of events where the Ethereum blockchain got con-
gested due to the activity of a single smart contract. For instance, a Chinese company
developed a gambling game in which a player “wins the jackpot” if such a player is the
last one to “buy a ticket” (i.e., send a transaction). A blog post27 commented:

The gambling game FOMO congested the Ethereum network once again earlier
this month. [...]. Though just recently the small contract once again consumed
some 20% [of all the gas] before peaking up to 36.4% at some point. To get a taste
what this means for the Ethereum network, the regular fees for an Ethereum trans-
action surged from $0.01 to $0.50. Notably, the Asian daytime hours correspond
with high activity rates.

In other words, if a single smart contract strongly attracts a niche of users who
abruptly start sending a remarkable number of transactions towards such a contract,
then Ethereum gets massively impacted. We believe that the ability of users to have their
transactions processed in a timely manner (provided that they pay reasonable transac-
tion fees) should not be hindered due to a niche of users who decided to play FOMO or
breed CryptoKitties.

27http://ftreporter.com/attention-please-fomo-games-are-clogging-ethereum/

http://ftreporter.com/attention-please-fomo-games-are-clogging-ethereum/
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We envision that an activity-imbalance aware architecture would be able to provide
separate classes of service depending on the current activity level of a contract (or a
contract’s function). For instance, a given smart contract could receive progressively
lower priority (e.g., by means of an extra processing fee) as more and more transactions
are sent to it. In this scenario, we also foresee wallets monitoring and communicating
these priorities to users. More generally, we believe that the designers of future versions
of Ethereum should be mindful of blockchain utilization fairness (e.g., preventing a
single contract from utilizing most of the processing power of the blockchain).

3. The high skew in the activity level of contracts poses questions to the ability of
Ethereum to handle denial of service (DoS) attacks. While such attacks would be costly
(since the costs of such attack transactions must be paid), the impact on the whole
blockchain (and the world economy) would be substantial – imagining a world where
blockchains are the backbone of all commerce. We also note that such attacks are con-
siderably trivial since one does not even need to target a large number of contracts.
Today, we are already seeing signs of the potential impact of DoS attacks, where ÐApp
developers are communicating manually through side-channels and advising their users
to manipulate their fees in order to cope with blockchain cloggings. The figure below
shows an example from CryptoKitties: the development team increased the cost of a
smart contract function in order to incentivize miners (Fig. 8).

Future work opportunities that derive from our results and the aforementioned implica-
tions are listed in Section 5.

4.2 RQ2: What are the Categories of High-Activity Smart Contracts?

Motivation A blockchain platform such as Ethereum has distinct properties (e.g., fully-
distributed, immutability of recorded information, ledger capabilities) compared traditional
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Fig. 8 Cryptokitties tweet during Ethereum congestion

software architectures. Although media outlets have systematically published about promis-
ing blockchain use-cases (Vilner 2018; Marr 2018), there is limited evidence-supported
knowledge about the state of this well-hyped technology. In particular, the categories of
currently deployed smart contracts remain fairly unknown. In this research question, we
investigate the categories of high-activity contracts (i.e., the 0.05% of the contracts that
received 80% of the transactions sent to contracts). Our goal is to uncover the types of smart
contracts that are of interest to the user base of the Ethereum platform.

Approach Given the key role of cryptocurrencies in blockchain platforms, we first deter-
mine the percentage of token contracts in the set of high-activity contracts. We detect token
contracts by checking whether they implement either the ERC20 interface or the ERC721
interface (Section 2.5). Subsequently, we match the name of these token contracts against
the regular expression shown below in order to spot token managers:

(ICO)|(Sale)|(.+Coin$)|(.?Token$)|(ERC20)|(ERC721)

Token managers are contracts that focus primarily on the manipulation of tokens. For
instance, they offer functions to transfer tokens, mint tokens, or manage an ICO. The
Ethereum tutorial on how to create cryptocurrencies28 shows several examples of generic
token management functions. In order to uncover the financial relevance of the tokens
defined in the token contracts, we checked their market capitalization in the CoinMarketCap
website.

As part of this research question, we also investigate how frequently high-activity con-
tracts are linked to a ÐApp (Section 2.6). For the cases in which the link is established,
we report the category of the ÐApp (as recorded by State of the ÐApps). As explained in
Section 3, we link contracts to ÐApps from State of the ÐApps using the contract address
as key. The rationale behind establishing this link is to obtain a broader understanding of
the practical context in which smart contracts are used.

28https://www.ethereum.org/token

https://www.ethereum.org/token
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Lastly, we identify and describe the top-10 contracts with highest activity level. If a top-
10 contract belongs to a ÐApp, then we report the category as recorded by State of the
ÐApps. Adversely, if a top-10 contract is not linked to a ÐApp, then we determine the
category ourselves based on an inspection of the smart contract code and its associated
metadata.

Results Result 6) 72.9% of the high-activity contracts are token contracts. These token
contracts account for an impressive market capitalization of US$12.7 billion. 72.9% of all
high-activity contracts are token contracts. In particular, 60.4% of all high-activity contracts
are verified token contracts. Token contracts typically constitute a technological solution for
selling and managing the shares of a company (e.g., via an ICO). We highlight, however,
that the product offered by the company does not necessarily live on the Ethereum platform.
For instance, the EOS token defined in a token contract represents the shares of a company
proposing a brand new blockchain platform called EOS. To get an idea of the financial
relevance of token contracts, we searched for their associated cryptocurrency symbols in
the CoinMarketCap website. We were able to find the market capitalization of 50% of the
cryptocurrencies. The violin plot shown in Fig. 9 depicts the market capitalization values as
of September 16th 2018 (1 ETH = US$220.59). The sum of the market capitalization values
is US$12.7 billion.

Result 7) At least 41.3% of all high-activity contracts are likely simple token man-
agers. As mentioned in the approach, we matched the name of high-activity contracts with
a regular expression in order to detect token managers. We observed that 41.3% of all high-
activity contracts are (verified) token contracts that match the regular expression. This result
suggests that almost half of the high-activity contracts are likely simple token managers.

Result 8) Games, Currency Exchanges, and Gambling are the prominent categories
of high-activity contracts that belong to a ÐApp. Although only 8.1% of the high-activity
contracts belong to a ÐApp, these ÐApp contracts received more transactions than non-
ÐApp contracts. Only 8.1% of the high-activity contracts are linked to a ÐApp listed in
State of the ÐApps. The remaining high-activity contracts either do not really belong to any
ÐApp or the ÐApp to which they are linked is not listed in State of the ÐApps. In Fig. 10,
we show the counts for each category. The names of the categories come straight from State
of the ÐApps. The prominent categories are Games, (Currency) Exchanges, and Gambling.

Although only 8.1% of the high-activity contracts belong to a ÐApp, we highlight that
these contracts received a remarkable number of transactions. We compared the number
of transactions received by ÐApp contracts and non-ÐApp contracts (in the universe of
high-activity contracts) using a two-tailed Mann-Whitney test (α = 0.05) and the results

$273 $10,000 $1,000,000 $100,000,000 $2,759,067,551
Market Capitalization in (USD) (log10 scale)

Fig. 9 The market capitalization of verified token contracts with high activity shown on a log10 scale (median
= US$6.3M, mean = US$32.6M, sd = US$166.1M)
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Fig. 10 Number of verified contracts with high activity and that belong to a ÐApp grouped by category.
Games, (Currency) Exchanges, and Gambling are the prominent categories

indicated that the difference is statistically significant (p-value = 0.005808). Cliff’s delta
(δ = 0.17) indicates that the difference is small (nevertheless non-negligible).

Result 9) 5 out of the top-10 contracts with highest activity level are part of Exchange
ÐApps. The top-10 contracts in terms of activity level (number of received transactions)
are shown in Table 1. Together, these contracts received 22.5% of all transactions sent to
contracts in Ethereum. The column Tx. denotes the number of received transactions. The
column LoC denotes the counts for lines of code (excluding code comments). The last
column indicates whether the contract is verified. We notice a lack of heterogeneity, as 5
out of the top-10 contracts are Exchange ÐApps. In Appendix, we describe these top-10
contracts in more details.

Implications Our findings indicate that, despite the hype around blockchain-powered
applications and their presumable suitability for an infinite range of use-cases, the het-
erogeneity of deployed applications seems constrained. From a software development

Table 1 The top-10 contracts with highest activity level in Ethereum

Rank Contract name DApp name Category Token Creation date Tx. LoC Verif.

symbol (Y/N)

1 EtherDelta ForkDelta Exchange – 09-02-2017 10.3M 233 Y

2 Exchange IDEX Exchange – 27-09-2017 4.4M 151 Y

3 DSToken – ICO EOS 20-06-2017 2.9M 263 Y

4 KittyCore CryptoKitties Game CK 23-11-2017 2.5M 971 Y

5 TronToken - Token mgt. TRX 28-08-2017 1.9M 71 Y

6 [Unknown] Poloniex Exchange – 18-10-2016 1.7M - N

7 ReplaySafeSplit Bittrex Exchange – 25-07-2016 1.5M 20 Y

8 Controller Bittrex Exchange – 12-08-2017 1.5M 132 Y

9 Bitcoinereum Bitcoinereum Mintable BTCM 10-10-2017 1.4M 132 Y

Token

10 OMGToken OmiseGO Wallet OMG 05-07-2017 1.3M 185 Y
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perspective, 41.3% are simple token managers. In addition, 5 of the top-10 contracts are
currency exchanges. Hence, most of the usage in Ethereum is still tied to the simple manipu-
lation of tokens. It is also noteworthy that a simple application such as CryptoKitties remains
as one of the key drivers of the traffic on the network.

Our results leave us questioning what the rationale behind such simple applications
is. The CryptoKitties team reported technical challenges. Bryce Bladon (CryptoKitties
Founding Team member) questions whether the whole application should be on the
blockchain:

One of the big things we learned was that although a lot of the very interesting
aspects of blockchain technology have to do with decentralization. At the same time,
we believe that certain centralized features can be a way to alleviate decentralized
demand, and having much of the transactional weight tied to a sidechained scaling
solution is a very interesting option. While interacting with the blockchain is what
makes this interesting, it isn’t necessarily everything. We found that there were a lot
users who buy and breed cats – stuff that requires directly transacting on the net-
work – but there are also users who just wanna browse or upvote or engage with the
community.

The following quote29 from the CryptoKitties team discusses a bug that could not be
fixed in practice:

We could fix Unexpected Kitty Fleas by making a change to a single line of solidity
code. However, if we push the fix through, all Siring Auctions would need to be can-
celled and reposted (that’s over 40,000 auctions), and our users wouldn’t be able to
sire their cats for 12+ hours. Simply put: it makes more sense for us to issue refunds
at a loss AND donate the entirety of the overpayment to charity than it does to fix such
a minor issue (and disrupt a key part of the game for nearly a full day).

Hence, there might be technical challenges behind the lack of more sophisticated appli-
cations. Further studies are necessary in order to extensively uncover the reasons behind the
simplified usage of Ethereum. Future work opportunities that derive from our results and
the aforementioned implications are listed in Section 5.

29https://medium.com/cryptokitties/unexpected-kitty-fleas-91c565547b11

https://medium.com/cryptokitties/unexpected-kitty-fleas-91c565547b11


Empirical Software Engineering

4.3 RQ3: How Complex is the Source Code of Verified Smart Contracts?

Motivation The Ethereum platform creators advertise smart contracts as a mechanism that
enables the transparent specification and enforcement of business rules, financial clauses, or
any general governing rule (Wood 2017). However, smart contracts are ultimately computer
code, meaning that it can get complex and not easily digestible by non-specialists who wish
to simply use these contracts. For instance, as we showed in RQ2, EtherDelta is a popular
Exchange ÐApp. Although its developers advocate transparency of the business rules (as
they are all exposed in the smart contract), understanding the contract itself is far from
trivial. In fact, the developers of EtherDelta posted a thread on reddit30 to explain what
their contract does and how. In this research question, we set out to investigate the code
complexity of smart contracts and how it evolved. As such, we analyze verified contracts
only. As observed in RQ1, verified contracts play a major role in the Ethereum platform.

We interpret code complexity as a broad concept. We thus investigate it from four distinct
angles: (a) code size (number of instructions), (b) complexity of control flow (cyclomatic
complexity), (c) code organization (number of subcontracts and libraries), and (d) documen-
tation. Investigating these four complexity angles will help us better understand the coding
practices adopted by smart contract developers.

Approach Our approach involves investigating code complexity according to the four
aforementioned angles. In the following, we explain how we measured complexity:

– Size. We determine the size of a contract by counting the number of instructions. We use
the number of instructions instead of the more popular metric number of lines of code
(LoC) because the source code of some contracts published in Etherscan do not have
line breaks.31 In addition, LoC is influenced by code indentation styles. Therefore, we
compute the number of instructions as follows: numbers of semicolons (;) + number of
open curly brackets ({).

– Cyclomatic complexity. We compute it as the number of decision points in the source
code + 1, while taking into account compound conditions (McCabe 1976). We leverage
our Solidity parser to reliably detect decision points and conditions.

– Code organization. We used our parser to detect subcontracts and libraries. In the
remainder of this subsection, we use the general term code sections to refer to both
subcontracts and libraries indistinctly. We report the number of code sections that we
found for each studied contract.

– Documentation. We used our parser to detect code comments, including line comments
and block comments. We report the comment ratio of each contract, which we define as

ncom
ninst+ncom

(ncom and ninst stand for number of comments and number of instruc-
tions respectively). We count contiguous line comments (i.e., subsequent lines starting
with //) as a single comment.

To answer this research question, we quantify complexity according to the metrics above
and analyze their evolution over time. We focus on high-activity verified contracts, since
they are inherently relevant to the community using Ethereum. Analogously to RQ1, high-
activity verified contracts are defined as the set of verified contracts that receive 80% of all
transactions sent to verified contracts. As shown in Fig. 11, high-activity verified contracts

30https://www.reddit.com/r/EtherDelta/comments/6kdiyl/smart contract overview
31https://etherscan.io/address/0xe68b7aa92f5a71184bfcb42f2a5ec5711e16afe7#code

https://www.reddit.com/r/EtherDelta/comments/6kdiyl/smart_contract_overview
https://etherscan.io/address/0xe68b7aa92f5a71184bfcb42f2a5ec5711e16afe7#code
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Fig. 11 1.1% of the verified contracts received 80% of the transactions sent to verified contracts. We call
them high-activity verified contracts

account for only 1.1% of all verified contracts. In other words, a remarkably small portion
of the verified contracts receive a high number of transactions.

Results Result 10) The complexity of high-activity verified contracts is slightly higher
than that of other verified contracts. As illustrated in Fig. 12, the complexity of high-
activity verified contracts is higher than that of other verified contracts. For each complexity
metric, we performed a two-sided non-paired Mann-Whitney test with α = 0.05 and cal-
culated Cliff’s Delta (δ). Table 2 summarizes the results that we obtained. In summary, the
difference is statistically significant in all cases. The effect size is non-negligible for all
metrics but comment ratio. Therefore, we conclude that high-activity verified contracts are
more complex than the other verified contracts.

Result 11) The source code of high-activity verified contracts is small, commonly uses
at least 2 code blocks, and is extensively documented. In Fig. 13a, we show the ECDF for
the number of instructions in high-activity contracts. As indicated by the dashed lines, 80%
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Fig. 12 Complexity of high-activity verified contracts is higher than that of other verified contracts
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Table 2 Statistical results for the comparison of complexity between high-activity verified ontracts and other
verified contracts

Metric Statistically significant difference Cliff’s delta

Number of instructions Yes (p-value < 2.2e-16) Small (0.25)

Cyclomatic complexity Yes (p-value < 2.2e-16) Small (0.22)

Code blocks Yes (p-value = 1.664e-11) Small (0.18)

Comment ratio Yes (p-value = 0.00778) Negligible (0.07)

We compared distributions using a two-sided non-paired Mann-Whitney test with α = 0.05

of the contracts have at most 211 instructions. We consider 211 instructions to be a really
small number: even if a contract called 10 other contracts, the number of instructions would
still be smaller than most real world applications written in Java or C#.

In Fig. 13b, we show the ECDF for the number of code blocks in high-activity contracts.
Analysis of this figure reveals that only 10% of these contracts define a single code block.
In particular, the median of code blocks is 5. These results thus indicate that high-activity
contracts typically have high (internal) modularity.

Finally, we investigated the comment ratio of high-activity contracts. We argue that these
contracts are extensively documented. Relying on the dataset provided by Munaiah et al.
(2017), we compared the comment ratio of high-activity contracts to that of GitHub projects
written in Java, C++, and C#. For each of these 3 languages, we ordered them according
to the number of stars and selected the top 1,000 projects. In order to ensure a reliable
comparison, we recalculated the comment ratio of our solidity contracts using the same
metric and tool used by Munaiah et al. (2017). The results are shown in Fig. 14. As the
violin plots indicate, the comment ratio in high-activity contracts is higher than that of
projects written in other languages. Table 3 summarizes the results of the statistical analysis
we performed. The difference was statistically significant in all cases with small to medium
effect sizes.

We conclude this analysis by highlighting that extensive documentation does not neces-
sarily imply that the comments are of high-quality or that the code being commented is of
high-quality. Indeed, the most extensively documented contract, with a comment ratio of
42.6% (using our original metric) is The DAO. The DAO launched with US$150 million in
crowdfunding in June 2016. The contract was shortly-after hacked by exploiting a recursion
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Fig. 13 a 80% of the high-activity contracts have at most 211 source code instructions. b Only 10% of the
high-activity contracts define a single code block
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Fig. 14 The comment ratio in high-activity contracts (Solidity) is higher than that of projects written in other
languages

call vulnerability. The hacker managed to drain US$50 million worth of cryptocurrency.
The unprecedented event resulted in a large debate in the Ethereum community regarding
whether the prior transactions on Ethereum should be rewritten to revert the hacker’s oper-
ation, as it would somehow contradict Ethereum’s own immutability principle. Following
the “too big to fail” financial lemma (Sorkin 2010), the Ethereum platform ended up being
split into two at block 1,920,000: the Ethereum Classic Platform (with transactions kept as
is) and the Ethereum Platform (which reverted the hacker’s operation).

Result 12) The number of instructions and code blocks of high-activity contracts has
remained roughly stable over time. On the other hand, the comment ratio has a down-
ward trend starting from 2017-07-01. Figure 15 shows the number of instructions, number
of code blocks, and comment ratio for all contracts created every trimester (and that ended
up receiving a high number of transactions). The dashed line indicates the overall median.
Analysis of this figure reveals that the number of transactions and code blocks increased
in the trimester starting on 2017-01-01 (yyyy-mm-dd). However, these two metrics have
remained roughly stable ever since. On the other hand, the comment ratio has a clear down-
trend starting from 2017-07-01. For instance, a certain contract created on 2018-07-1632

has 486 instructions (i.e., above the overall median of number of instructions) and a com-
ment ratio of 5.6% (i.e., below the overall median of comment ratio). The reason behind
this downward trend in comment ratio is unknown and requires further investigation.

Lastly, we note that we do not analyze cyclomatic complexity since it is strongly
correlated with number of instructions (ρ = 0.71).

Implications Smart contract development entails a new programming paradigm, and thus
understanding the key characteristics of the source code is key to shaping and informing
future research and improvement efforts. We observed that the source code of high-activity
verified smart contracts exhibit particular complexity characteristics compared to other pop-
ular programming languages. With relation to the small code size of contracts, we conjecture
that it is due to many contracts being simple token managers. The rationale for the sim-
plified usage of such a new and powerful programming paradigm is an important follow

32https://etherscan.io/address/0x0777f76d195795268388789343068e4fcd286919#code

https://etherscan.io/address/0x0777f76d195795268388789343068e4fcd286919#code


Empirical Software Engineering

Table 3 Comparison of comment ratio for projects written in Java, C#, C++, and Solidity

Comparison Statistically significant difference Cliff’s Delta

Solidity vs Java Yes (p-value = 8.727e-16) Small (0.26)

Solidity vs C# Yes (p-value < 2.2e-16) Medium (0.44)

Solidity vs C++ Yes (p-value < 2.2e-16) Medium (0.34)

We use high-activity contracts to represent Solidity. We compared distributions using a two-sided non-paired
Mann-Whitney test with α = 0.05

up step to our study. With regards to high internal modularity, we wonder whether Solid-
ity developers are generally experienced programmers (e.g., good object-oriented skills).
With regards to the extensive documentation of contracts, we conjecture that this might be
an effort to promote transparency of the code behavior. However, there might be technical
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Fig. 15 Evolution of number of instructions, number of code blocks, and comment ratio for high-activity
verified contracts. The dashed lines indicate the overall median
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reasons behind it as well (e.g., extensive commenting should help code review activities and
make it easier to estimate gas consumption). Again, future studies need to uncover the ratio-
nale behind these findings. A more extensive list of open research questions is presented
in Section 5.

5 An Open Research Agenda

Our study explores three key dimensions of smart contracts: activity level (RQ1), category
(RQ2), and source code complexity (RQ3). For each RQ, we discussed the implications of
our findings. Nevertheless, we were also left with several open questions and conjectures.
Hence, in this section, we introduce an open research agenda. We hope that such an agenda
can bootstrap future work in the area and thus foster a deeper understanding of the Ethereum
platform.

(OQ01) Why are there so many zero-transaction contracts?

As an additional motivation behind this open question, we investigated the total amount
of Ether that was spent to deploy zero-transaction contracts (i.e., contract creation fee).
In Fig. 16, we show the distribution of contract creation fee. We observe that developers
managed to create 0.48% of the contracts with virtually zero Ether33 (note the small blob at
the bottom of the violin plot).

The median is 0.005246 Ether and the total is 3.564150 Ether. If we consider the
exchange rate from the day that we performed our data collection (September 15th 2019, 1
Ether = US$208.87), the median becomes US$1.10 and the total becomes US$2.5 million.
Since the Ether to USD exchange rate has fluctuated considerably over time,34 using more

33Example tx: 0x1fc8cd67cbbf6e96d64c0dca84b5cb420b0837ff74bfe2f1c9547d45a58b
aa0a
34https://etherscan.io/chart/etherprice

https://etherscan.io/chart/etherprice
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Fig. 16 Distribution of contract creation fee in Ether. The diamond indicates the median

precise exchange rates would likely show an even higher total. Hence, we conclude that a
noteworthy amount of money was spent to deploy zero-transaction contracts. Our follow-up
questions are listed below.

(a) What is the practical relevance of zero-activity contracts?
(b) How many are toy contracts, simple tutorial contracts, and incorrect contracts? Are

there rare-cases/corner-case contracts?
(c) What kind of information do they store and/or process?
(d) Are they storing information that is valuable to a particular customer or groups of

customers who might start interacting with such contracts in the future?
(e) How many contracts represent simple data stores? By searching for contracts that had

0 transactions, 1 subcontract, and 0 libraries (i.e., a heuristic), we manually spot a
few examples of data-store contracts. In one contract,35 the constructor hardcodes the
balance of several user addresses. In another contract,36 the constructor hardcodes data
related to life settlement.

(f) Should future designs for Blockchains provide special support for deprecating con-
tracts?

We conjecture that many zero-transaction contracts exist simply due to developers trying
out Ethereum and deploying toy or test contracts (i.e., because of the hype). In Fig. 5, we
show the relationship between the number of received transactions and the contract’s age.
A remarkable number of contracts of ages between 200-300 days ended up never receiving
transactions (note the dark red hexbins). These ages encompass the period of November
19th 2017 to February 27th 2018. As depicted in Fig. 17, such a period maps precisely to
when the hype around Ethereum exploded (which, in turn, encompasses the period in which
CryptoKitties exploded).

35Contract address: 0xc244d24a3293150709913ce8377dc2854a3ec4a1
36Contract address: 0xac9efefb9de2d2aa0e1bcaada95480fe29f23c42
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Fig. 17 The number of transactions processed by Ethereum per day. The red dashed lines delimit the period
of November 19th 2017 to February 27th 2018.

(OQ02) Why are there so many low-activity contracts?

As an additional motivation behind this open question, we investigated trends in contract
creation. In Fig. 18, we show that the number of contracts created has grown considerably
since 2017-02-01 (despite remarkable fluctuation). Yet, as Fig. 19 also indicates, the rate
at which developers deploy contracts that end up receiving less than 10 transactions has
remained roughly stable over time. The dashed line indicates the overall median, which is
92.3%. In particular, at least 77.6% of the contracts deployed every month received less than
10 transactions.

Our follow-up questions are listed below.

(a) What is the practical relevance of low-activity contracts (1 to 10 received transac-
tions)?

(b) Are they toy contracts or simple tutorial contracts? Are they pre-release testing
contracts? Are they examples of rare-case/corner-case contracts?

(c) How much Ether do they hold? How much Ether did they move? What is the market
capitalization of the tokens/coins that they hold/move?
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Fig. 19 The creation of contracts that ended up receiving less than 10 transactions has been roughly stable
over time. The red dashed line indicates the median (61.3)

(d) Should designs for future blockchains provide special treatment for such low-
transaction contracts?

(e) Can knowledge about contract usage intensity help optimize blockchains?
(f) Should contracts be tagged by their developers about their expected usage intensity?

We conducted a preliminary study to understand the practical relevance of low-activity
contracts. More specifically, we focused on the financial perspective and analyzed how
much Ether was sent to low-activity contracts. Using data from Google BigQuery, we find
that 95% of the low-activity contracts received at most 17.84766 Ether (95th percentile).
As we noted before, the Ether to USD exchange rate has fluctuated considerably over time.
If we take the maximum exchange rate that was ever recorded (1 Ether = US$1,359.48),
we obtain US$24,263.54. This result thus indicates that the vast majority of low-activity
contracts have not received much Ether. However, if we (i) sort the low-activity contracts
per amount of received Ether, (ii) take the top five,37 and (iii) perform the same cur-
rency conversion, we obtain the following amounts (hundreds of millions): US$441.8M,
US$373.9M, US$255.6M, US$169.2M, and US$141.6M. If we take the exchange rate of
the day that we performed our data collection (September 15th 2019, 1 Ether = US$208.87),
the numbers remain high (tens of millions): US$67.9M, US$57.4M, US$39.3M,
US$26.0M, and US$21.8M. Hence, there seems to be very few low-activity contracts that
received a noteworthy amount of money. More studies are necessary in order to better
understand the financial relevance of low-activity contracts. For instance, contracts might

37The addresses of these top-5 contracts are:

0xcea2b9186ece677f9b8ff38dc8ff792e9a9e7f8a (325,000 ETH),

0x69c6dcc8f83b196605fa1076897af0e7e2b6b044 (275,010 ETH),

0xeca56d04546affcec0b3ce61971136f497866a3b (188,000 ETH),

0x4b25b370aa62d408bc2c87598289b59d1140545f (124,424 ETH),

0xeb2227d932aa85a0855613f870bb1b7fdc4b8af6 (104,145.1 ETH)
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have not received Ether, but they might hold tokens (coins) that have a significant market
capitalization.

(OQ03) What architectural changes could Ethereum undergo in order to account for
such an imbalanced workload and thus ensure a fair usage of the platform?
How can such changes be implemented and validated?

(a) What are the implications of such an imbalanced workload on the ability of the
blockchain to cope with denial of service attacks?

(OQ04) While verified contracts are key players in terms of activity level, why are so
few contracts being verified?

(a) Is the low proportion of verified contracts due to technical (the verification process is
cumbersome and time consuming) or non-technical (e.g., developers do not wish to
share their code widely or developers do not see value in performing such verifications)
challenges?

(b) Has the rate of contract verifications increased over time?

(OQ05) Why do high-activity contracts capture a very limited number of use
cases?

(a) Is it due to technical limitations about the programming model of smart contracts, their
inflexible nature (i.e., code cannot be changed), or simply due to the slow adoption of
such a programming model by other domains?

(b) What are the complexities with developing, testing and maintaining smart contracts?
CryptoKitties team mentioned scalability problems and difficulties to fix bugs. Do
other development teams share the same view?

(c) We employed a heuristic to detect contracts that are token managers. We also linked
contracts to DApps (using State of the DApps). What other approaches can be used to
determine a finer-grain categorization of a smart contract? More generally, what data
sources could be mined and what approaches could be employed in order to discover
contextual information about a smart contract (e.g., GitHub repository, development
team information, project information)?

(OQ06) Why is the complexity of high-activity verified contracts (slightly) higher
than that of other verified contracts?

(a) Do high-activity verified contracts provide more functionality than other verified
contracts (e.g. larger API)?

(b) Do high-activity verified contracts implement gas-optimized functions (hence the
larger complexity)?

(OQ07) Why is the source code of high-activity verified contracts generally
small?

(a) What is the rationale for the simplified usage of such a new and powerful programming
paradigm? Is there a simple explanation or is it a combination of factors? Is it due to
many contracts being simple token managers (i.e., lack of heterogeneity)?

(b) Are smart contracts small because they work together to implement more complex
functionality? What is the typical size of ÐApps?

(c) How similar to each other is the source code of high-activity contracts (e.g., clone
detection)? Is code cloning the reason behind the stability of size metrics (i.e., number
of instructions, code blocks) over time?
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(OQ08) Why is the source code of high-activity verified contracts highly modular
(internally)?

(a) Is there a simple explanation or is it a combination of factors? Is it to ease development
and maintenance of new versions? Is it to foster behavior transparency? Is it to ease
gas usage estimation (Section 2.3)?

(b) Are Solidity developers more experienced (e.g., good object-oriented design skills)?

(OQ09) Why is the source code of high-activity verified contract extensively docu-
mented?

(a) Is there a simple explanation or is it a combination of factors? Is it an effort towards
promoting transparency of the code behavior?

(b) What is the extent to which such documentation helps code review activities or
promote code reuse?

(c) Why has the comment ratio went down recently? Is it because code is becoming more
adherent to standards (e.g., ERC20) and thus requires less explanation?

(OQ10) What are the software engineering practices employed by the developers of
smart contracts (especially high-activity contracts)?

(a) Do developers employ known best practices to develop smart contracts (e.g., those
defined by ConsenSys’ experts?38)

(b) Do developers reuse reliable building blocks to develop smart contracts (e.g., those
provided by the DappSys39 and OpenZeppelin40 projects)?

6 RelatedWork

Exploratory Analyses of Smart Contracts Bartoletti and Pompianu (2017) downloaded
and manually analyzed the source code of 811 verified smart contracts available on the
Etherscan website as of January 1st, 2017. They focused on two aspects: (i) categories and
(ii) design patterns. As a result of their manual analysis, the authors classified contracts
into the following categories: financial, notary, game, wallet, library, and unclassified. They
observed that 82% of the transactions in Ethereum are processed by contracts in the finan-
cial category, which corroborates our findings from RQ2. In terms of design patterns, the
authors identified the following instances: token, authorization, oracle, randomness, poll,
time constraint, termination, math, fork check, and none. Similarly to object-oriented design
patterns, the aforementioned patterns are not mutually exclusive. The paper includes a dis-
cussion on which categories use which patterns the most (and vice-versa). In our paper, in
addition to performing a manual analysis of the source code, we also relied on the categories
and tags informed by the developers themselves when registering their ÐApps on State of
the ÐApps. Nevertheless, we acknowledge that there is still a vast field of research in terms
of understanding how contracts are built (e.g., discovering which subcontracts and libraries
tend to be reused across contracts).

Tonelli et al. (2018) downloaded the source code of the 12,000 verified smart contracts
that were available on Etherscan at the time the paper was written. The authors focused

38https://consensys.github.io/smart-contract-best-practices
39https://github.com/dapphub/dappsys
40https://openzeppelin.com/contracts

https://consensys.github.io/smart-contract-best-practices
https://github.com/dapphub/dappsys
https://openzeppelin.com/contracts
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on calculating and analyzing several source code metrics, including: lines of code (LoC),
blank lines, comment lines, number of static calls to events, number of modifiers, number
of functions, number of payable functions, cyclomatic complexity, number of mappings to
addresses, size of the contract’s ABI vector, and size of the contract’s bytecode. For each of
these metrics, the authors calculated descriptive statistics (e.g., mean, median, sd) and tried
to fit the metrics to standard statistical distributions (Power Law and Log-Normal). Their
main conclusion is that only LoC is well-fitted by a Power Law. In particular, they men-
tion that for most variables, all values are generally into a range of few standard deviations
from the mean (although this is expected for most statistical distributions). According to the
authors, the source code of smart contracts have different characteristics compared to that
of other programming languages. In our study, we focused on the complexity aspect of the
source code and we observed that the number of instructions, number of code sections (sub-
contracts and libraries), and the comment per instruction ratio are different from what one
would expect for languages such as Java, C#, and C++. Therefore, our results corroborate
the claims of Tonelli et al. (2018), in the sense that the source code of smart contracts have
specific complexity characteristics.

Security of Smart Contracts Since blockchains applications typically operated on curren-
cies of some form, there is a large concern in the communities of both researchers and
practitioners around the security aspect of smart contracts. Such a concern became even
more relevant after the incident with “The DAO”. Luu et al. (2016) wrote a symbolic execu-
tion tool called OYENTE41 to find potential security bugs. According to the authors, the tool
flagged 45.6% of the contracts in Ethereum as potentially vulnerable. Kalra et al. (2018) also
leverage symbolic execution to verify the correctness and fairness of smart contracts. Cor-
rectness is defined as adherence to safe programming practices, while fairness is adherence
to agreed upon higher-level business logical (i.e., does the contract do what the author says
it does?) The fairness evaluation is the main novelty compared to previous work. Accord-
ing to the authors, 94.6% of the smart contracts are vulnerable to one or more correctness
issues. The authors claim that ZEUS has zero false negatives and a low false positive rate.
Chen et al. (2018) focus on discovering Ponzi schemes on Ethereum using a machine learn-
ing classifier built with features from user accounts and op codes from the smart contract
bytecode. A Ponzi scheme is a classic type of fraud, similar to the pyramid scheme. Authors
claim to have found more than 400 Ponzi schemes running on Ethereum. Bartoletti et al.
(2017) have also written a paper on the same topic. The infestation of Ponzi schemes in
Ethereum was also discussed in a Financial Times article (Kaminska 2017). Finally, most
recently, researchers have started to build static analysis to detect bugs in smart contracts
(Tikhomirov et al. 2018; Grishchenko et al. 2018). In industry, auditing companies for smart
contracts have emerged, promising to ensure that newly written smart contracts are as free
of bugs as possible. Some of these companies include the Solified Team42 and Securify.43

Others Zheng et al. (2018) propose high-level and low-level performance metrics for differ-
ent blockchain systems (including Ethereum), including a real-time monitoring framework.
The authors claim that the monitoring framework has much lower overhead and offers richer
performance information compared with previous approaches. Fröwis and Böhme (2017)

41https://github.com/melonproject/oyente
42https://www.youtube.com/channel/UCpEUyenjL908MFMCO-J yhw
43https://securify.ch

https://github.com/melonproject/oyente
https://www.youtube.com/channel/UCpEUyenjL908MFMCO-J_yhw
https://securify.ch
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investigate the immutability of the control flow of smart contracts by means of static analy-
sis. According to the authors, not only code immutability is necessary for trustlessness, but
also control flow immutability (i.e., call relationships between contracts should not change
on runtime). To find immutability violations, the authors extract call relationships between
smart contracts and search for contract addresses that are provided as input parameters or
that are read from state variables. The authors conclude that two out of five smart contracts
require trust in at least one third party.

7 Threats to Validity

Construct Validity In this paper, we generally focused our analysis on contracts with high
activity. The way we defined the threshold choice potentially excludes some relevant con-
tracts (e.g., those that almost reached the minimum number of received transactions to be
included in our dataset). Still, we believe that our inclusion criterion reflects a large portion
of contracts that are inherently relevant to the Ethereum platform user base and software
engineering researchers.

Our identification of ÐApps rely solely on State of the ÐApps. Not all existing ÐApps
might be registered in such a website. Also, the developer of a ÐApp might choose not to
inform the addresses of the used contracts. Given these constraints, we were able to auto-
matically retrieve domain-related information for only a subset of the studied contracts.
Similarly, our classification of ÐApp categories come straight from the State of the ÐApps
website. In particular, this website has a predefined list of categories from which the devel-
oper has to select when submitting their ÐApp to the website. Therefore, our classification
of ÐApps is directly influenced by the categories made available by State of the ÐApps.

We use a regular expression to spot smart contracts that primarily manage tokens. While
we believe that our expression is conservative and thus precise, it might still miss contracts
that solely manage tokens (i.e., it may have a low recall). In this sense, our quantification
of token contracts likely serves as a lower bound. Additional work is required in order to
better classify token contracts.

Our analysis of code complexity relies on the source code that is published as a result of
the verification process employed by Etherscan (as described in Section 2.4). We acknowl-
edge that investigating code complexity directly on the bytecode or on decompiled code are
complementary approaches that could be investigated as part of future work. We refrained
from operating directly on bytecode because it does not contain code comments (which we
analyze as part of RQ3). In addition to suffering from the same limitation, decompilation
takes time and tool support is still a research topic (Grech et al. 2019). Therefore, we choose
to operate directly on the source code of verified contracts. Nevertheless, we acknowledge
that the source code that we collected is susceptible to any bugs that the verification process
from Etherscan might have.

The notion of code complexity is frequently associated with how pieces of code are
connected to each other (code dependencies). Our Solidity parser currently does not detect
cross-contract calling relationships (independently of whether the contracts reside in the
same address or not). Enhancing our parser and investigating how coupled smart contracts
are is part of our future work.

External Validity The population of smart contracts studied in this paper includes all Solid-
ity contracts deployed in Ethereum. The only exception are contracts created via internal
transactions, which are not present in our dataset. In addition, the characteristics of smart
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contracts deployed in other blockchain platforms (e.g., EOS) are potentially different from
those that we studied. Therefore, we acknowledge that additional replication studies are
required in order to further generalize our results. We emphasize, nevertheless, that the goal
of this paper is not to build a theory that applies to all smart contracts of all blockchain plat-
forms, but rather to make developers and researchers aware of key characteristics of smart
contracts that are frequently used in Ethereum.

8 Conclusion

The growing number of smart contracts being deployed in the Ethereum blockchain plat-
form has attracted the attention of media outlets, industries, and researchers. Nonetheless,
prior research has focused on particular aspects of smart contracts, such as their security,
while rarely putting findings in a bigger context (e.g., how frequently a smart contract is
being used).

In this paper, we take a more holistic view towards smart contracts in an attempt to
characterize them. We focus on three key characteristics of these contracts, namely: activ-
ity level (Section 4.1), category (Section 4.2), and code complexity (Section 4.3). Relying
on cross-linked data collected from Google BigData, Etherscan, State of the ÐApps, and
CoinMarketCap, we conclude that:

– Activity level is concentrated on a very small subset of the contracts and almost three
quarters of them are verified.

– Despite the hype around blockchain-powered applications, the main application of
smart contracts is still constrained to token management (e.g., ICOs, Crowdsales, etc).

– The source code of high-activity verified contracts is small, commonly includes at least
2 libraries/subcontracts, and is extensively documented.

We believe that by (i) providing empirically sound evidence from cross-linked data
regarding the usage of smart contracts, (ii) elucidating key properties of smart contracts cur-
rently deployed in Ethereum, and (iii) defining an open research agenda, we foster a deeper
understanding of the Ethereum platform and support future research in the area of smart
contracts.
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Appendix: The Top-10Most Active Contracts on Ethereum

The top two contracts are part of decentralized currency exchange ÐApps. The webpage
of IDEX is shown in Fig. 20. On the left-hand side, we can see the list of cryptocurrencies
that are supported by IDEX. On the right-hand side, it shows the price chart and volume of
exchanges for the cryptocurrency that we selected (AURA). Right below the price chart, we
can see options for buying and selling aura (using Ether). We highlight that both etherdelta 2
and IDEX 1 contracts do not define a token of their own (check column “Own Token”).
Instead, they operate on cryptocurrency tokens created by other contracts.

The third contract was an ICO for the EOS token. It was a crowdfunding initiative for the
EOSIO project, whose goal is to build a new blockchain platform that can process millions
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Fig. 20 A screenshot of the IDEX currency exchange ÐApp

of transactions per second. As of August 2018, the EOS token is one of the most valuable
cryptocurrencies with a market capitalization of US$5 billion.44 The EOSIO blockchain
has been released as open source software and stable versions are already available. A con-
venient quickstart guide providing a Docker image is available at the EOSIO Developer
portal.45

The fourth contract is part of a game ÐApp called CryptoKitties. This contract deals
with core aspects of the game and has a higher number of lines of code compared to the
others in our list. CryptoKitties is considered the first game to achieve widespread suc-
cess on the Ethereum platform. As described in their website, “CryptoKitties is a game
centered around breedable, collectible, and oh-so-adorable creatures we call CryptoKitties!
Each cat is one-of-a-kind and 100% owned by you; it cannot be replicated, taken away, or
destroyed”. The game is clearly in the realm of digital collectibles, allowing people to buy,
sell, and trade CryptoKitties (similarly to traditional collectibles like trading cards). While
the vast majority of cryptokitties sell for less than US$100, a few rare kitties sell for far
more money (Galea 2017). For instance, one of the rarest kitties is the very first one cre-
ated by the developers. The token representing this kitty was sold on December 2nd 2017
for US$113,082.15.46 Figure 21 shows kitties for sale and Fig. 22 shows the profile of the
second kitty (id #1044853).

44https://coinmarketcap.com/currencies/eos
45https://developers.eos.io/eosio-nodeos/docs/docker-quickstart
46The genesis cat is displayed at https://www.cryptokitties.co/kitty/1. The purchase transaction can be seen
at https://etherscan.io/tx/0xf365be10a326b894cc13ddd3edf55a2db6ec517e1af83741df61fb9b09b37118.

https://coinmarketcap.com/currencies/eos
https://developers.eos.io/eosio-nodeos/docs/docker-quickstart
https://www.cryptokitties.co/kitty/1
https://etherscan.io/tx/0xf365be10a326b894cc13ddd3edf55a2db6ec517e1af83741df61fb9b09b37118
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Fig. 21 The CryptoKitties game. The image shows rare Generation 0 kitties (i.e., those created by the devel-
opers of the game) for sale. Below each kitty is its unique identifier. After a kitty breeds with another kitty, it
will be temporarily unable to breed again. The “Fast” tag below these kitties indicates that this recovery time
is short for them (1 minute)

The fifth contract is called TronToken. It defines and manages the Tronix (TRX) token.
This token is the cryptocurrency that was sold in the ICO to bootstrap the Tron project,
which advertises itself as “one of the largest blockchain-based operating systems in the
world”. The project raised US$70 million in the ICO (all tokens were sold). Ultimately,
TRON is a domain-specific blockchain platform. Tron aims to be a content distribution
platform for the digital entertainment industry, in which creators have the power to freely
publish, store, and own their content, interacting directly with consumers. The selling
point of Tron is making entertainment content easier to sell and cheaper to consume by
removing the man-in-the-middle. The Tron project is already operational and people use
the token contract to operate on the tokens (e.g., transfer tokens between accounts). The
Tron blockchain can be explored by means of the TronScan website,47 which operates
analogously to the Etherscan.io website (Ethereum blockchain explorer).

The sixth contract is not verified, so its name is not available. However, searching for its
address on Etherscan revealed that such a contract is part of the Poloniex Exchange ÐApp.

The seventh and eighth contracts are part of the Bittrex ÐApp, which is yet another
cryptocurrency exchange. Interestingly, the Controller contract is used internally by the
Bittrex company, as it manages the creation of wallets and other managerial tasks.

The ninth contract is an attempt to have a Bitcoin-like token in Ethereum. The key differ-
ence compared to regular Ethereum tokens is that it is mintable. Instead of issuing a supply
of coins via an ICO or similar mechanism, the contract offers a mine() function that deliv-
ers 1 BTCM per call. And that’s the only way to generate coins. The contract allows only 50
calls to mine() per 10 minutes (across the whole Ethereum platform, not per client). The

47https://tronscan.org

https://tronscan.org
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Fig. 22 The profile of the kitty with ID 1044853 (check Fig. 21). At the top of the page, we can see the kitty’s
name and its owner. The owner defines the start and end prices (similarly to an auction). Bio is a simple
biography of the kitty. Catttributes are the attributes of the kitty, which indicate its rarity and also influence
the profile of its children once it breads with another kitty

maximum supply allowed by the contract is capped at 21,000,000 BTCM (same as Bitcoin).
This supply is projected to be achieved (minted) in 132 years.

Finally, the last contract OMGToken is the token contract for the OMG token, which
was sold in an ICO to crowdfund the OmiseGO ÐApp. OmigoGo is yet another cryptocur-
rency exchange. The advisors of OmiseGo include Vitalin Buterin and Gavin Wood, who
are the co-founders of Ethereum. The OmiseGo (OMG) token was the first Ethereum cryp-
tocurrency to surpass a market capitalization of US$1 billion (later on, other coins achieved
similar status) (Russell 2017).
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