
https://doi.org/10.1007/s10664-020-09852-5

Code cloning in smart contracts: a case study
on verified contracts from the Ethereum blockchain
platform

Masanari Kondo1 ·GustavoA. Oliva2 ·ZhenMing (Jack) Jiang3 ·AhmedE. Hassan2 ·
OsamuMizuno1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Ethereum is a blockchain platform that hosts and executes smart contracts. Smart con-
tracts have been used to implement cryptocurrencies and crowdfunding initiatives (ICOs).
A major concern in Ethereum is the security of smart contracts. Different from traditional
software development, smart contracts are immutable once deployed. Hence, vulnerabilities
and bugs in smart contracts can lead to catastrophic financial loses. In order to avoid taking
the risk of writing buggy code, smart contract developers are encouraged to reuse pieces
of code from reputable sources (e.g., OpenZeppelin). In this paper, we study code cloning
in Ethereum. Our goal is to quantify the amount of clones in Ethereum (RQ1), understand
key characteristics of clone clusters (RQ2), and determine whether smart contracts contain
pieces of code that are identical to those published by OpenZeppelin (RQ3). We applied
Deckard, a tree-based clone detector, to all Ethereum contracts for which the source code
was available. We observe that developers frequently clone contracts. In particular, 79.2%
of the studied contracts are clones and we note an upward trend in the number of cloned
contracts per quarter. With regards to the characteristics of clone clusters, we observe that:
(i) 9 out of the top-10 largest clone clusters are token managers, (ii) most of the activity of
a cluster tends to be concentrated on a few contracts, and (iii) contracts in a cluster to be
created by several authors. Finally, we note that the studied contracts have different ratios
of code blocks that are identical to those provided by the OpenZeppelin project. Due to the
immutability of smart contracts, as well as the impossibility of reverting transactions once
they are deemed final, we conclude that the aforementioned findings yield implications to
the security, development, and usage of smart contracts.

Keywords Smart contracts · Code cloning · Ethereum · Blockchain

Communicated by: Miryung Kim

� Masanari Kondo
m-kondo@se.is.kit.ac.jp

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:4617–4675

Published online: 9 September 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09852-5&domain=pdf
http://orcid.org/0000-0002-6317-7001
mailto: m-kondo@se.is.kit.ac.jp

1 Introduction

Ethereum is a blockchain platform (Wood 2017). A blockchain platform is a distributed,
chronological database of transactions that is shared and maintained across nodes that par-
ticipate in a peer-to-peer network (Swan 2015). The decentralized nature of a blockchain
enables transactions to be processed without the need of a trusted third-party, such as a bank
or a credit card company. Due to its unique properties, blockchain has attracted the atten-
tion of media outlets such as The Economist (Economist 2018) and The New York Times
(Popper 2017). Industry-leading companies such as Facebook are also starting to develop
their own blockchain platforms.1

At the heart of the Ethereum platform are smart contracts (Szabo 1994), which can be
seen as general-purpose computer programs. Hence, Ethereum is often referred to as a pro-
grammable blockchain platform. The source code of a smart contract is typically written
in Solidity, whose syntax resembles that of Java. The source code is organized in terms of
subcontracts (similar to classes), libraries (similar to utility classes), and interfaces (iden-
tical to Java’s interfaces). For convenience purposes, we indistinctly refer to subcontracts,
libraries, and interfaces as code blocks.

A major concern in the Ethereum Platform is the security of smart contracts. The reason
is twofold. First, different from traditional software development, the source code of smart
contracts is immutable. Even if developers identify that their deployed smart contract has a
security issue, they cannot simply apply a fix to the code. Second, prior research shows that
the vast majority of smart contracts manage financial operations, in the sense that they oper-
ate on tokens that have a certain market capitalization. Therefore, the exploitation of bugs in
a smart contract could result in large amounts of tokens (e.g., cryptocurrency) being stolen.
In fact, such an unfortunate scenario has already occurred. A blockchain-based application
known as “The DAO” launched with 150 million USD in crowdfunding in June 2016. Its
smart contract was shortly-after hacked by exploiting a recursion call vulnerability. The
attacker managed to drain 50 million USD worth of cryptocurrency.

More generally, since developers cannot change the source code of a smart contract after
its deployment, we expect that developers will often reuse (and potentially clone) code from
reputable sources instead of writing code from scratch and taking the risk of introducing
bugs. OpenZeppelin is a prominent example of a project devoted to creating secure libraries
and template contracts to be reused by smart contract developers.

The goal of this paper is to quantify the amount of clones in Ethereum, understand key
characteristics of these clone clusters (categories, activity level, and authorship), and deter-
mine whether code blocks developed by smart contract libraries (e.g, the OpenZeppelin
project) are used in the studied contracts. We highlight that our study does not entail design-
ing a new clone detector for smart contracts. Instead, we leverage an existing, robust tool
(Deckard) that operates at the source code level in order to detect clones. More specifically,
we investigate the following research questions.

RQ1) How frequently are verified contracts cloned? We downloaded the source code
of all verified contracts from Etherscan. A verified contract is a contract for which the
source code is made available on Etherscan (the primary dashboard website for Ethereum).
Subsequently, we applied Deckard, a tree-based clone detector. We observed that:

Developers frequently clone contracts, as only 20.8% of the studied contracts are not
a clone of any other contract. The percentage of clones among newly created contracts

1https://libra.org

Empirical Software Engineering (2020) 25:4617–46754618

https://libra.org

continues to increase over time. In the last quarter of the studied period (2018.Q2), almost
3/4 of all created contracts were clones. Finally, 43.3% of the studied contracts are type-2
clones (Bellon et al. 2007), suggesting that developers rely on templates to develop smart
contracts.

RQ2) What are the characteristics of clusters of similar verified contracts? We ana-
lyzed the clone clusters generated by Deckard. Our goal was to derive factual insights
regarding how these clusters are created and their characteristics. We observed that:

9 out of the top-10 largest clone clusters are token managers, most of the activity of a
cluster tends to be concentrated on a few contracts, and contracts in a cluster to be created
by several authors.

RQ3) How frequently code blocks of verified contracts are identical to those from
OpenZeppelin? Given the reputation and goal of OpenZeppelin, we downloaded all Open-
Zeppelin releases, extracted their code blocks, and determined if code blocks from verified
contracts are identical to code blocks from OpenZeppelin. We observed that:

The studied contracts have different ratios of code blocks that are identical to those
provided by the OpenZeppelin project. The ERC20 OpenZeppelin category is the most fre-
quently reused category, which contains code blocks to support the implementation of token
contracts that comply with the ERC20 standard.

The main take-away of this study is that code cloning is a common practice in Ethereum.
Due to the architectural characteristics of Ethereum (e.g., immutability of smart contracts
and the impossibility to revert transactions), the prevalence of code clones yield practical
implications to the security, development, and usage of smart contracts. The data produced
as part of this study is made available online in the form of a supplementary material
package.2

This remainder of this paper is organized as follows. In Section 2, we briefly define key
concepts surrounding blockchains and smart contracts. Since not all reader might be familiar
with the intricacies of Ethereum, we provide a more in-depth background in Appendix A.
In Section 3, we explain the data collection procedures that we applied to obtain the source
code and the associated metadata of smart contracts. In Section 4, we present a preliminary
study to motivate this paper. In Section 5, we describe how we choose a clone detector and
set up its parameters. In Section 6, we present the motivation, approach, and results for each
of the research questions that we address in this paper. In Section 7, we discuss the practical
implications of our findings. In Section 8, we contextualize our research in the code cloning
domain, as well as present different perspectives from which prior research has studied
smart contracts. In Section 9, we discuss the threats to the validity of our study. Finally in
Section 10, we state our conclusions.

2 Background

In this section, we summarize the concepts that are key to this study. Since not all readers
might be familiar with the intricacies of Ethereum, we included an Appendix A that provides
a more thoroughly explanation of these concepts.

2https://github.com/SAILResearch/suppmaterial-18-masanari-smart contract cloning

Empirical Software Engineering (2020) 25:4617–4675 4619

https://github.com/SAILResearch/suppmaterial-18-masanari-smart_contract_cloning

2.1 Ethereum

Blockchain A blockchain is a distributed, chronological database of transactions that is
shared and maintained across nodes that participate in a peer-to-peer network.

Ethereum As opposed to Bitcoin, Ethereum is a blockchain platform that supports smart
contracts. More specifically, Ethereum both hosts and executes smart contracts. Because of
these attributes, Ethereum is often referred to as a programmable blockchain.

Smart Contract A smart contract is a general-purpose computer program. In Ethereum,
smart contracts are typically written in the Solidity programming language. Solidity is
object-oriented and its syntax resembles that of Java. The source code of a Solidity smart
contract is organized in terms of subcontracts, interfaces, and libraries. We indistinctly refer
to these three constructs as code blocks.

Verified Smart Contract Ethereum only stores the bytecode of smart contracts (i.e., the
source code is not available). A verified smart contract is a smart contract that has a flattened
version of its source code published on Etherscan (a popular Ethereum explorer website).
We refer to this flattened version of the source code as the code file of a verified contract.

EthereumAccounts Ethereum has two types of accounts: user accounts and smart contract
accounts. Both types of accounts have a unique ID. User accounts can deploy smart con-
tracts. The deployer is commonly referred to as the creator (or author) of the contract. The
deployment of a contract is analogous to an object instantiation (as in object-oriented pro-
gramming): an instance (object) is created out of the smart contract (class) and stored in
the blockchain. Once deployed, the code of a smart contract cannot be changed or replaced.
User accounts can also execute deployed smart contracts by sending transactions to invoke
functions defined in these contracts.

Cryptocurrency, Tokens, and Coins A cryptocurrency is digital and represents money. A
cryptocurrency is native to its own blockchain. In the case of Ethereum, the cryptocurrency
is called Ether and is abbreviated as ETH. Ether can be transferred between user accounts.
Tokens are created on top of existing blockchains. Tokens are used to represent digital assets
that are tradeable. Every token has a name and an acronym (popularly known as a symbol)
and any smart contract can define a new token. It is common for tokens to represent money.
Therefore, in practice, coins and tokens are frequently used interchangeably.

Token Contract A token contract is a smart contract that defines a token and keeps track
of its balance.

2.2 Code Cloning

Clones are pieces of code that are either identical or “very similar”. In order to differentiate
between the different shades of cloning, Bellon et al. (2007) proposed a simple code cloning
classification:

Type-1 Clone Identical code fragments except for variations in whitespace, layout and
comments.

Empirical Software Engineering (2020) 25:4617–46754620

1: Discover list of
verified contracts

4: Obtain
metadata of

verified contracts

2: Obtain code
files

3: Parse
code files

RQ2: Characteristics
of Clone Clusters

RQ1: Cloning
Frequency

RQ3: Cloning from
OpenZeppelin

Solidity
Parser

List of
Verified

Contracts

Code
Files

Parsed
Code Files

Metadata of
Verified Contracts

5: Download
OpenZeppelin

releases

6: Extract code
files from each

release

7: Parse
OpenZeppelin

code files

OpenZeppelin
Code Files

101 Preliminary Study
on Cloning

Etherscan

OpenZeppelin

Solidity
Parser

OpenZeppelin
Parsed Code Files

Fig. 1 An overview of our data collection process. Dashed lines indicate a connection to a data source

Type-2 Clone Syntactically identical fragments except for variations in identifiers, literals,
whitespace, layout and comments.

Type-3 Clone Copied fragments with further modifications such as changed, added or
removed statements, in addition to variations in identifiers, literals, whitespace, layout and
comments.

We study type-1 and type-2 clones as part of RQ1 (Section 6.1). Since the detection of
type-3 clones is still an active research area (Sajnani et al. 2016), its detection is out of the
scope of our study.

3 Data Collection

All the data that are used in this study were collected from the Etherscan website3 and
the OpenZeppelin repository.4 Etherscan is the primary dashboard for Ethereum. Etherscan
operates by having several nodes in the Ethereum blockchain network, which capture the
state of the network (e.g., transactions being sent and blocks being created). The gathered
data is then published on the website, allowing people to explore Ethereum though a web
browser. Etherscan also offers a REST API, however it does not cover all published data
in the website. OpenZeppelin is one of the most popular repositories of building blocks
for developing secure smart contracts. We discuss the relevance of OpenZeppelin in more
details as part of RQ3 (Section 6.3).

In the following, we describe the specific pieces of data that we collected in order to
answer our research questions. An overview of our data collection process is shown in Fig. 1.

1: Discover list of verified contracts. The list of verified contracts available on Etherscan
represents the starting point of our data collection process. Such a list is not recoverable

3https://etherscan.io
4https://github.com/OpenZeppelin/openzeppelin-solidity

Empirical Software Engineering (2020) 25:4617–4675 4621

https://etherscan.io
https://github.com/OpenZeppelin/openzeppelin-solidity

Table 1 Studied OpenZeppelin releases

Version Number of Release Date LoC

Code Files (Latest Commit)

v1-0-0 36 2016-11-24 1,112

v1-1-0 37 2017-07-02 2,327

v1-2-0 38 2017-07-18 2,341

v1-3-0 40 2017-09-21 2,273

v1-4-0 42 2017-11-23 2,199

v1-5-0 66 2017-12-22 2,488

v1-6-0 76 2018-01-23 3,144

v1-7-0 90 2018-02-20 3,722

v1-8-0 100 2018-03-23 4,218

v1-9-0 106 2018-04-26 4,560

v1-10-0 106 2018-06-05 4,976

v1-11-0 112 2018-07-13 5,090

v1-12-0 115 2018-08-10 5,182

via the API. However, it is available on the Etherscan website in the form of a paginated
table.5 Therefore, we recorded all entries of this table. At the time of our data collection,
there were 33,073 verified contracts on Etherscan.

2: Obtain code files. At the time of our data collection, there was no method available
in the API to download the Solidity code files. Therefore, we obtained the code files
directly from the web interface. These code files are used as input to our preliminary
study.

3: Parse code files. To extract the abstract syntax tree (AST) of code files, we used the
Solidity parser made available by Federico Bond6. The parsed code files were used
as input to RQ1 (to support the detection of type-2 clones) and RQ3 (to enable the
identification of code blocks within a code file).

4: Obtain metadata of verified contracts. Since cryptocurrencies play a key role in
Ethereum, we wanted to differentiate between token code and non-token contracts
(Section A.4.1). Therefore, we went through the Etherscan webpage of each verified
contract, searching for the “Token Tracker” field. This field shows the name and symbol
of the token that is associated with a contract. The field is absent when the contract does
not define or manage a token. We also retrieved the number of received transactions
and the creator of each contract. These metadata support the investigations conducted
in RQ2.

5: Download OpenZepplin releases. In order to determine the identical piece of codes
between the contracts, libraries and interfaces (code blocks) from Ethereum and
those from OpenZeppelin, we downloaded all OpenZeppelin releases available in the
project’s GitHub repository (Table 1).

6: Extract code files from each release. Each published OpenZeppelin release consists of
a zip file that contains a set of code files. Therefore, in this step we simply decompress
the zip files.

5https://etherscan.io/contractsVerified
6https://github.com/federicobond/solidity-parser-antlr

Empirical Software Engineering (2020) 25:4617–46754622

https://etherscan.io/contractsVerified
https://github.com/federicobond/solidity-parser-antlr

4 Preliminary Study

Motivation While manually browsing through the source code of verified contracts on
Etherscan, we noticed that they generally seemed to be very similar to one another. Such a
subjective observation motivates this preliminary study. Our goal is to objectively quantify
how similar verified contracts are to one another.

Approach We evaluate similarity in terms of pair-wise textual similarity. As a result of
our data collection (Section 3), we obtained the code file of each of the 33,073 verified
contracts. Due to the large amount of code files, we refrained from using common edit
distance algorithms (e.g., Levenshtein distance, Longest Common Subsequence, Hamming
distance, and Jaro–Winkler distance) because of their complexity, which is O(m × n) for a
pair of strings with lengths m and n. Instead, we rely on Q-Grams (Ukkonen 1992), which
can be computed in O(m+n) time. A Q-Gram is a subsequence of q consecutive characters
of a string. The Q-Gram profile of a string is a vector with the counts of all q-grams in that
string.

Consider the example shown below, which depicts the Q-Gram profiles of strings x =
abcab and y = cdabg for q = 2. For instance, the Q-Gram profile of x is the vector
〈xi, xi+1, ..., xn〉 = 〈2, 1, 1, 0, 0, 0〉, where n is the number of distinct Q-Grams found over
all strings being compared. From this representation, several vector-based distance measures
can be calculated. We employ the Q-Gram distance algorithm, which is given by the sum
over the absolute differences |xi − yi |. For our running example, the Q-Gram distance is
|2 − 1| + |1 − 0| + |1 − 0| + |0 − 1| + |0 − 1| + |0 − 1| = 6.

From the Q-Gram distance, we finally compute the Q-Gram similarity. Q-Gram similar-
ity is computed by dividing the Q-Gram distance by the maximum possible distance and
then subtracting the result from 1. This calculation results in a score between 0 and 1, with
1 corresponding to complete similarity and 0 to complete dissimilarity. In the discussed
example, the maximum possible difference is 8, since the length of the Q-gram profiles is
4 and we have two strings (4 ∗ 2). Therefore, the Q-Gram similarity between the strings x

and y is 1 − (6/8) = 1 − (3/4) = 0.25 = 25%.

ab bc ca cd da bg
x = “abcab” 2 1 1 0 0 0
y = “cdabg” 1 0 0 1 1 1

We compute the Q-Gram similarity for all pairs of code files. We pick q = 4, which
has been shown to be adequate for code completion tasks (Roos 2015) and in the analysis

Empirical Software Engineering (2020) 25:4617–4675 4623

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

[0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 100]
Pair−wise similarity score

Pe
rc

en
ta

ge
 o

f C
on

tra
ct

 F
ile

 P
ai

rs
 (%

)

Fig. 2 Histogram showing the percentage of contract pairs that are similar at a certain Q-Gram similarity
interval

of textual repetition in source code (Hindle et al. 2012). We say that two contracts are very
similar if the Q-Gram similarity of their code files is higher than or equal to 90%. In terms
of implementation, we use the stringsim function from the stringdist R package.

Result 81.9% of the verified contracts are very similar to at least one other verified con-
tract. Figure 2 depicts the similarity between all contract pairs. Only 0.92% of all contract
pairs have a Q-Gram similarity of at least 90%.

However, one should note that the number of contract pairs is remarkably large
(544,483,500). If we focus on contracts individually in lieu of pairs, we observe that 81.9%
of the contracts are very similar to at least one other contract (Fig. 3). Moreover, 50.2% of
the verified contracts are very similar to at least 8 other contracts. Interestingly, the long tail
of the curve indicates that some specific verified contracts are very similar to a notewor-
thy number of other contracts. For instance, 15.4% of the contracts are very similar to more

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 24002561

Number of similar contract files per contract file

E
C
D
F
 o
f
th
e
 n
u
m
b
e
r
 o
f
s
im
il
a
r

 c
o
n
tr
a
c
t
fi
le
s
 p
e
r
 c
o
n
tr
a
c
t
fi
le
 (
%
)

Fig. 3 The Empirical Cumulative Distribution (ECDF) for the number of similar contracts

Empirical Software Engineering (2020) 25:4617–46754624

Fig. 4 Deckard’s architecture Jiang et al. (2007a)

than 1,000 other contracts. The extreme case reveals a contract that is very similar to 2,561
other contracts.

In summary, the vast majority of verified contracts share high textual similarity with at
least one other verified contract. This finding drives the remainder of this paper.

5 Experimental Setup

In the preliminary study (Section 4), we observed that the vast majority of verified contracts
are very similar to at least one other contract. Such a result encouraged us to further study
code cloning in Ethereum with a proper clone detector. In this section, we describe the clone
detector that we selected and how we set up its parameters.

5.1 Selection of a Clone Detector

Since the focus of this study is not to develop our own detector nor benchmark existing
detectors, we favoured the selection of a mature, scalable, and Solidity-compatible clone
detector that would be ready-to-use out of the box. We selected Deckard Jiang et al. 2007a,
b), which is a fast, tree-based clone detector. Support for Solidity was added on v2.0,
released on May 25th, 2018.7

The architecture of Deckard is shown in Fig. 4. (Jiang et al. 2007a) describe it as follows:
(1) A parser is automatically generated from a formal syntax grammar; (2) The parser
translates sources files into parse trees; (3) The parse trees are processed to produce a set
of vectors of fixed-dimension, capturing the syntactic information of parse trees; (4) The
vectors are clustered w.r.t. their Euclidean distances; and (5) Additional postprocessing
heuristics are used to generate clone reports.

Deckard takes as input a list of smart contracts (Solidity files) and outputs a list of clone
clusters. Each clone cluster contains a group of contracts that are clones of each other. Each
contract resides in a single

5.2 Clone Detection Parameters

Deckard has three parameters, namely: min tokens, stride, and similarity. The
min tokens is a minimum token count intended to suppress characteristic vectors for
small subtrees. In other words, it helps to avoid reporting too small clones that are often
uninteresting. The stride parameter determines how far a sliding window moves in each

7https://github.com/skyhover/Deckard

Empirical Software Engineering (2020) 25:4617–4675 4625

https://github.com/skyhover/Deckard

step during vector generation. According to the authors, larger strides reduce the amount
of overlapping among tree fragments and may thus reduce the number of spurious clones.
Finally, similarity is the threshold for tree similarity. Tree similarity is determined as
a function of tree editing distance, which is the minimal sequence of edit operations (either
relabel a node, insert a node, or delete a node) required to transform one parse tree into
another.

In their study, Jiang et al. (2007a) evaluate Deckard using several parameter values:
min tokens = {30,50}, stride = {2,4,8,16,Inf.}, and similarity = {0.90, 0.95, 0.99,
0.999, 0.9999, 1.0}. In a manual inspection of the results obtained by running Deckard on
JDK 1.4.2 with min tokens = 50, stride = 4, and similarity = 1.0, the authors
observed that 93% of the clones reported by Deckard were actual clones. We employ the
notation c = <50,4,1.0> to succinctly refer to this parameter configuration.

5.3 Sensitivity Analysis

Given the aforementioned result on JDK, we decided to use parameter configuration
c = <50,4,1.0> as a starting point for our sensitivity analysis. Our goal is to find a parame-
ter configuration that is suitable for our study of code clones on Ethereum. Given the results
that we obtained in our preliminary study, we focus on the detection of clones among code
files (in lieu of code fragments or subcontracts).

Deckard detects clones between code fragments. Since min tokens=50 and
stride=4 were presumably large enough for the detection of cloned code fragments,
we also choose these values for the detection of cloned Solidity code files. Therefore, we
focus our sensitivity analysis on the similarity threshold. As described by Jiang et al.
(2007a), the similarity score needs to be very high in order to achieve good precision for
small cloned fragments. However, since we are focusing on code files, it might be possi-
ble that lower similarity thresholds need to be employed. Therefore, we start with a list of
known clone pairs (from practical experience) and set the similarity threshold to 1.0. We
then evaluate how many of the known clone pairs Deckard is able to detect and repeat the
process using a lower similarity threshold until a good balance is achieved. Table 2
depicts the clone pairs that we use for our sensitivity analysis.

The results of our sensitivity analysis are summarized in Table 3. Using similarity
= 1.00, we only detected 3/10 clone pairs. We reduced the similarity threshold in 0.05
decrements and the number of detected clone pairs increased. When we used similarity
= 0.75, we were able to identify 8/10 clone pairs. From that point, we could only find an
additional clone pair by bringing the similarity threshold all the way down to 0.40. We
thus concluded that a reasonable similarity threshold lied in the [0.75, 0.80] interval. Hence,
starting from 0.80, we reduced the similarity in 0.01 decrements. With similarity
= 0.79, we were able to detect 8/10 clone pairs. This was our final similarity threshold
choice.

Empirical Software Engineering (2020) 25:4617–46754626

Ta
bl
e
2

K
no

w
n

cl
on

e
pa

ir
s

em
pl

oy
ed

to
su

pp
or

tt
he

ch
oi

ce
of

a
su

ita
bl

e
si

m
ila

ri
ty

th
re

sh
ol

d
fo

r
D

ec
ka

rd

C
lo

ne

Pa
ir

C
on

tr
ac

t1
C

on
tr

ac
t2

1
0x

61
3d

0e
9b

91
af

3d
00

57
fe

37
61

94
58

0d
d0

04
8e

91
d4

0x
00

16
e7

1c
7c

ed
04

b5
1a

1f
d8

bb
5c

36
d9

e0
ce

e9
e1

bb

2
0x

00
b9

03
44

25
e3

57
bf

61
b4

ab
eb

22
29

9e
c4

a6
2c

72
5b

0x
00

1b
6e

5c
73

22
89

93
55

eb
65

48
6e

8c
bb

7d
bb

f1
91

27

3
0x

04
5c

60
df

00
aa

2b
7f

f1
75

3e
e8

1b
57

bf
e5

e2
90

e7
32

0x
06

6b
20

63
d4

bd
8c

ad
e1

77
c5

5d
e6

59
88

4c
40

bf
2b

8f

4
0x

40
e9

a1
0f

ec
d0

35
03

05
d5

e9
19

e3
96

32
48

fd
6f

84
5d

0x
00

35
16

57
2f

21
2d

ec
78

5c
3b

cc
97

e6
f3

54
85

1e
eb

47

5
0x

00
35

74
3c

08
76

8a
d6

55
8b

49
d7

51
e0

21
57

62
05

77
54

0x
00

8f
81

cb
d9

7a
3f

59
29

1a
a0

fe
d4

5a
42

49
1f

10
cf

d2

6
0x

23
22

1f
e2

8d
ad

f7
88

c7
c5

9d
03

67
ba

fe
f3

b1
60

73
44

0x
00

44
60

22
9a

42
54

27
72

f2
1e

e8
2b

87
72

cc
6f

2a
50

2b

7
0x

00
7b

74
9f

d9
c2

84
55

f0
3a

57
c0

05
f4

24
96

93
55

0e
51

0x
01

5a
8a

01
63

ad
54

c8
60

12
ff

57
d3

55
8b

62
71

a2
d2

bd

8
0x

00
cf

36
85

3a
a4

02
4f

b5
bf

5c
c3

77
df

d8
58

44
b4

11
a0

0x
00

67
40

45
bb

7c
17

f0
aa

1c
de

34
78

0d
6c

51
af

54
87

28

9
0x

00
eb

84
e7

ca
4a

d6
db

be
f2

40
05

6b
c9

04
00

30
29

a4
cd

0x
1b

5d
56

bf
e7

49
e4

92
ae

22
6c

f9
aa

23
c1

42
6f

82
8b

7b

10
0x

09
f5

5c
2d

11
6a

58
33

d4
1b

a9
20

82
16

d1
1a

7c
db

a4
b3

0x
01

60
ab

3f
af

14
6f

34
6b

2c
ea

49
a7

04
9d

78
6a

a1
aa

fb

Empirical Software Engineering (2020) 25:4617–4675 4627

Table 3 Sensitivity analysis: determining a suitable similarity threshold

6 Empirical Study on Code Cloning

In this section, we show our three research questions, the approach that we employed in
order to answer them, and our findings. In RQ1, we analyze the prevalence of clones
(Section 6.1). In RQ2, we describe key characteristics of clone clusters (Section 6.2),
namely: category, activity, and authorship. Finally, in RQ3, we determine whether the
studied contracts have subcontracts that are clones of the contracts provided by the
OpenZeppelin project (Section 6.3).

6.1 RQ1: How Frequently are Verified Contracts Cloned?

Motivation In the preliminary study, we observed that the vast majority of verified con-
tracts are very similar to at least one other contract. In this research question, we use a robust
clone detector in order to find clones among code files in Ethereum.

The key motivation behind detecting clones in Ethereum is that deployed smart con-
tracts are immutable. As opposed to traditional software development, developers cannot
change the code if a bug is discovered. Moreover, smart contracts frequently hold a bal-
ance in cryptocurrency (Ether) and tokens (which have a market value). Hence, the security
of smart contracts is a key concern in the Ethereum domain. Now let us assume that there
exists a group of 100 contracts with identical source code. If a hacker manages to discover
an exploitable vulnerability in the source code, then 100 contracts are instantly at risk. Dis-
covering the prevalence of cloning and the size of clone clusters will provide insights into
this matter.

Approach In this RQ, we analyze the output of Deckard. We first report the clone ratio, i.e.,
the percentage of contracts that are flagged as a clone of some other contract. Subsequently,

Empirical Software Engineering (2020) 25:4617–46754628

A B C D E

A B

F

C D

B C DA

EA E

F

Fig. 5 Summary of our clone detection approach

we sort clusters in descending order of size and plot the percentage of clusters against the
cumulative percentage of contracts. Next, we perform a historical analysis to identify trends.
More specifically, we check how many clones have been created in each quarter of the
analysis period.

Following this overview, we leverage the clone classification of Bellon et al. (2007)
(Section 2) and detect type-1 and type-2 clones. These two types of clones are detected by
post-processing the output of Deckard. Figure 5 summarizes our approach. In the following,
we describe the steps in detail.

1. Detection of Clone Clusters by Deckard. We detect clone clusters using the approach
described in Section 5. The detection of type-1 and type-2 clones is then performed for
each clone cluster. In Fig. 5, we use Clone Cluster 1 as an example.

2. Detection of Type-1 Clone Clusters. We strip whitespaces, tabulations (tabs), and com-
ments from the code file of each verified contract. After this preprocessing stage, we
compare code files in a pair-wise fashion. If two code files are identical, then they are
put in the same type-1 cluster. Type-1 Cluster 1 and Type-1 Cluster 2 represent clusters
of type-1 contracts.

3. Summary of Type-1 Contracts. To identify type-1 contracts, we simply take the union
of all type-1 clusters. In the example shown in Fig. 5, contracts A, B, C, and D are
classified as type-1 contracts.

4. Detection of Type-2 Clones. We compute the abstract syntax tree (AST) of the code file
of each contract and then search for identical ASTs. The only allowed exception is leaf
nodes, which represent identifiers, literals, and other terminal constructs (e.g., compiler
version, function modifiers). If two code files have identical ASTs, then they are added
to the same cluster. In order to extract the ASTs, we used the Solidity parser that was
developed by Federico Bond. Such parser works on top of a robust ANTLR4 grammar
for Solidity, which was also developed by Bond.8 Interestingly, Deckard relies on this

8https://github.com/solidityj/solidity-antlr4

Empirical Software Engineering (2020) 25:4617–4675 4629

https://github.com/solidityj/solidity-antlr4

Listing 1 Excerpt of the ANTLR4 grammar for Solidity used in this study. The complete grammar can be
found at https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

same grammar to detect clones. For illustrative purposes, Listing 1 depicts an excerpt
of the grammar.

Finally, we prune type-2 clusters to ensure that every two contracts in a cluster are
different (i.e., not a type-1 pair). The rationale is to avoid inflating type-2 clusters due
to the existence of type-1 pairs. Assume E is a type-2 clone of A. Since A and B are
identical, E is also a type-2 of B. However, due the aforementioned pruning, we only
add A to the cluster (Fig. 5).

5. Summary of Type-2 Clones. Type-2 contracts are detected by taking the union of Type-
2 clusters and then removing those contracts that had already been classified as type-1.
In the example shown in Fig. 5, only E is classified as a type-2 contract (since A had
already been classified as a type-1 contract).

6. Detection of Deckard Clone Contracts. All contracts not classified as type-1, nor type-2,
are classified as Deckard clones.

After detecting type-1 and type-2 contracts, we conduct exploratory analyses. In partic-
ular, we compare the length of the code file of type-1 clones to that of other contracts and
also investigate the kinds of AST nodes that are frequently modified in type-2 clone pairs
(i.e., every two contracts inside a type-2 cluster). To conclude the section, we comment on
the most frequently cloned contract per cloning type.

We note that, when convenient, we perform statistical tests and compute the Cliff’s Delta
(δ) effect size score. The effect size score helps us to understand the practical significance
of the difference between two distributions. We assess Cliff’s Delta using the following

Empirical Software Engineering (2020) 25:4617–46754630

https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
���
���
���
���
���
����
����
����
����
����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
������
������
������
�����
������
������
�����
������
������
������
�������
������
������
������
�������
�����
�������
�������
�������
��������
�������
��������
�������
��������
�������
�������
��������
���������
���������
��������
�������
���������
��������
��������
���������
��������
�������
����������
����������
����������
����������
����������
���������

��������
����������
����������
����������
����������
����������
����������

�����������
�������������

������������
������������

�������������
������������

������������
�������������

������������
������������

�������������
������������

������������
�������������

������������
������������

�������������
������������

�������������
�������������

������������
������������

�������������
������������

���������������
��������������������

��������������������
��������������������

��������������������
��������������������

��������������������
��������������������

�������������������
��������������������

��������������������
�������������������

��������������������
��������������������

��������������������
��������������������

��������������������
��������������������

��������������������
��������������������

��������������������
�������������������

��������������������
��������������������

�������������������
��������������������

��������������������
���������������������

��������������������
�������������������

��������������������
��������������������

�������������������
��������������������

��������������������
��������������������

��������������������
��������������������

��������������������
�������������������

��������������������
��������������������

��

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage of clusters (%)

C
u
m
u
la
ti
v
e
 p
e
r
c
e
n
ta
g
e
 o
f
c
o
n
tr
a
c
ts
 (
%
)

Fig. 6 Relationship between the proportions of clusters and contracts. A small portion of the clusters (20%)
encompass the majority of the contracts (68%)

thresholds (Romano et al. 2006): negligible for |δ| ≤ 0.147, small for 0.147 < |δ| ≤ 0.33,
medium for 0.33 < |δ| ≤ 0.474, and large otherwise.

Findings. Observation 1) 79.2% of the verified contracts are clones. In other words,
only 20.8% of the verified contracts are not a clone of any other verified contract.

Observation 2) There is a large number of clone clusters. Nevertheless, a small por-
tion of clusters encompasses the vast majority of contracts. Applying Deckard resulted
in 10,786 clusters. Figure 6 illustrates the relationship between the proportions of clusters
and contracts. The shape of the curve indicates that a small portion of clusters encompass
the majority of the contracts. Just as a reference, 20% of the clusters encompass approxi-
mately 68% of the contracts. In other words, there are a few remarkably large clusters of
very similar contracts.

Observation 3) The percentage of clones among newly created contracts continues to
increase over time. Figure 7 shows the percentage of clones among newly created contracts
for every quarter. As indicated by the purple bar, the total percentage of clones continues
to increase over time. In particular, almost 75% of the contracts created in the last quarter
(2018.2) are clones of preexisting contracts.

Observation 4) Of all studied contracts, 16.7% are type-1 clones. Type-1 clones have
lengthier code files compared to other contracts. One might expect developers to only
entirely clone smaller contracts with a few functions. However, our data shows the oppo-
site scenario. As depicted in Fig. 8, the code files of type-1 clones have a higher number of
instructions (semicolons plus open curly brackets) and code blocks (subcontracts, libraries,
and interfaces) compared to the code files of other contracts. A two-sided non-paired
Mann-Whitney test indicates that the difference is statistically significant at α = 0.05
for both variables (p-value < 2.2e-16 in the two cases). We observe that the effect sizes

Empirical Software Engineering (2020) 25:4617–4675 4631

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

2015.3 2015.4 2016.1 2016.2 2016.3 2016.4 2017.1 2017.2 2017.3 2017.4 2018.1 2018.2
Quarter

Pr
op

or
tio

n
of

 c
lo

ne
s

am
on

g
ne

w
ly

cr
ea

te
d

co
nt

ra
ct

s
(%

)

Fig. 7 Evolution of the percentage of cloned contracts among newly created contracts for every quarter

are δ = 0.333 (medium) for the number of instructions and δ = 0.297 (small, though
non-negligible) for the number of code blocks.

Observation 5) Of all studied contracts, 43.3% are type-2 clones. Type-2 clone pairs
commonly have almost identical code files. The few differences tend to be in literals, con-
tract definitions, and function definitions. Type-2 clones are the most frequently occurring
type of code clone in our dataset (16.7% are type-1 clones and 19.2% are other Deckard-
identified clones). In order to better understand how developers perform type-2 cloning, we
count the number of modified leaf nodes per type-2 clone pair and calculate the proportion
over all leaf nodes. As indicated in Fig. 9, the proportion of changed leaf nodes is very small

Number of Instructions

Number of Code Blocks
(Subcontracts, Libraries, and Interfaces)

1 10 100 1000 4923
Value (log10 scale)

Other contracts Type−1 clones

Fig. 8 Contracts classified as type-1 clones have a higher number of code instructions and code blocks
compared to all other studied contracts (clones and non-clones). The x-axis indicates the value for each metric
(i.e., number of code blocks and number of instructions). The y-axis indicates the metric

Empirical Software Engineering (2020) 25:4617–46754632

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

��

�

�

�

�

� �� �

�

�

�

�

�

�

�

�

�
��

�

�

�

�

� �
� �

�� ��
�

�

��

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

���

�� � �� �

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

���

�

�

��� �
�

�

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

� ��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� ��

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

� � �

�

�

�� �

�

�

�

�

�

� �� �� �

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

� �

�

�

��

�

�

�

�

�

�

�

�

���

��

�

�

��

�

�

�

�

�

�

���� �

�

�

�

�

�

� �

�

�

�

� �� �

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

���

�

�

�

�

���

�

�

�

�

�

�

�

�

���

�

�

��

�

�

�

�

�

���
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

��

�

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

� ��
� �

�

�

���

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

��

�

�

�

��

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

�
�

��

�

�

�� �
� �

�

�

�

�

�

�

�

�

� �

�

�

�

��

���

�

�

�

�

�

�

�

���

�

�

�

�

� � ��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

���

��

�
�

�

�

�

�

�

�

�

�

� ��

�

�

�

�
�

�

�

��

�

�

��

�

�

��

�

�

�

� �

�

�

�

�

�

�

�

�

�

��
�

�

�

����

�

�

�

�

� � � ��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
� �

��
�

�� �

��

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

��

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

��

�

��

� �

� ��

�

�

�

�

�

�

�

�� � �� � ���

��

�

��

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

� �

��

�

��

��

�

�
����

�

�

�

�

��

�

� ��

�

� �

�

�

�

�

�

����

�

�
�

�
�

�

���
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��
�

�

�

�

�

�

�

�

�

�
�� �

�

�
�

�
�

��

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�� �

�

�

�

�

�

�

�

�

�

���

�

�

�

�
�

�

�
�

�

��

�

��� ���

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

� �

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

��

�

�

���

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

��

�

�

�

�

��

� � �

�

�
�

�

�

�

� �

�

�

�� � �

�

�

� �

�

�

�

�

�

�

�

�

�

�

� ���

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

��

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� ���

�

�

�

� � �� ��

�

��

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

� �

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

� �

�

�� �

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����

�

�

��

�

��

�

��
�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

���

��

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

���

�

�

�

�

�

�

��

�

�

� �

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
��

� �

��

��

�

�

�

�

�

�

��

�

�

�

�
�

�

� �

�

�

�

��

�

��

��

�

�

�

��

��

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

� � �

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��� �

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

��

�

�

�

�
�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

���

�

�

�

�

��

�

�
�

�

�

�

����

�

��

�

�

�

�

��� �

�

�

�

�

�

�

��

�

�

� �

�

�

�

�

�

�

�
� �

�

�

�

��

�

�

�

�

��

�

�

�

�

�

��� �

�

�

�

� ��

�

�

��

�

�

�

�� �

�

�

��

�

�

�

�

�

�

�

� � �� �

�

�
�

�

�

�

��

�� �

�

�

�

�

� �

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

� �

�

��

�

�

�

�

�

�

��

��

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

���

�

�
�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

� �

�

��

�
�

�

�

�

�

�
� ���

�

�

�

�

��

���

�

�

��

�

�

�

�
�

�

�

�

�

��

�

� �

�

��

�

��� �

�

���

�

�

�

�

�

��
��

�

�

�

�

���

�

�

�

�

�

�

�

� ��
�

�

����� �
�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�
��

�

� �

�

�

�

�

�

�

��

�

� �

�

�

�

�

�

�
�

�

�

�

��

�

�
�

�

��

�

�

�
�

�
�

�
� �

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�� ��
��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35
Proportion of changed leaf nodes per type−2 clone pair

EC
D

F
of

 th
e

pr
op

or
tio

n
of

 c
ha

ng
ed

 le

af
 n

od
es

 p
er

 ty
pe

−2
 c

lo
ne

 p
ai

r (
%

)

Fig. 9 ECDF of the proportion of changed leaf nodes per type-2 clone pair

for the vast majority of type-2 clone pairs. More specifically, this proportion is at most 5%
for 99.7% of the type-2 clone pairs. In absolute terms, the number of changed leaf nodes is
at most 10 for 98.3% of the type-2 clone pairs.

We also investigate the kinds of leaf nodes that are modified in type-2 clone pairs.
Figure 10 depicts the proportions of each kind over all occurrences of leaf node
modifications. NumberLiteral, StringLiteral, FunctionDefinition, and
ContractDefinition account together for 95.1% of all leaf node modifications. With
the exception of PragmaDirective, all other AST nodes represent (individually) less
than 1% of all leaf node modifications.

Figure 11 shows an example of a type-2 clone pair in which leaf nodes of
kinds NumberLiteral, StringLiteral, FunctionDefinition, and
ContractDefinition were modified. The two contracts are token contracts

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

NumberLiteral StringLiteral FunctionDefinition ContractDefinition PragmaDirective Others
AST node

Pe
rc

en
ta

ge
 o

f t
he

 A
ST

no

de
 m

od
ifi

ca
tio

ns
 (%

)

Fig. 10 Histogram showing the proportions of modifications per type of AST leaf node

Empirical Software Engineering (2020) 25:4617–4675 4633

[Contract file: 852e6ede618e3569d0d171a59deb6b363b124841]
@@ 102, 122@@

contract ProtoTrailToken is ERC20Interface, Owned, SafeMath {

string public symbol;

string public name;

uint8 public decimals;

uint public _totalSupply;

mapping(address => uint) balances;

mapping(address => mapping(address => uint)) allowed;

function ProtoTrailToken() public {

symbol = “TRAIL”;
name = “ProtoTrail Token”;
decimals = 18;

_totalSupply = 300000000000000000000000000;

balances[0x83e72ACd379DF52511113b351922f41BF443360B] = _totalSupply;

…
}

ContractDefinition

FunctionDefinition

StringLiteral

NumberLiteral

[Contract file: 14435dec5d6f2f6255b1ccba75d3125c0543255e]
@@ 88, 108@@

contract SmzdmToken is ERC20Interface, Owned, SafeMath {

string public symbol;

string public name; uint8

public decimals; uint

public _totalSupply;

mapping(address => uint) balances;

mapping(address => mapping(address => uint)) allowed;

function SmzdmToken() public {

symbol = “SMZDM”;
name = “SMZDM Token”;
decimals = 8;

_totalSupply = 2100000000000000;

balances[0x05a7d45097dB1B84510f63A1689863094CECf0D2] = _totalSupply;

…
}

ContractDefinition

FunctionDefinition

StringLiteral

NumberLiteral

Fig. 11 An example of a type-2 clone pair that has the NumberLiteral, StringLiteral,
FunctionDefinition, and ContractDefinition nodes with different values. The strings in red
highlight nodes of the same type, but with different values. The strings in purple indicate the start and end
lines of the shown code chunks. We removed blank lines for aesthetic reasons

(Section A.4.1). The changed NumberLiterals correspond to the coin supply
(totalSupply), the coin decimals (decimals), and account addresses (balances
map). The coin supply indicates the maximum supply of a coin. The decimals indicate
the minimum unit of a coin. For example, if decimals is 3, then the minimum coin unit
is 0.001. The account addresses point to either a user account or a smart contract account
(Section A.2). In the example (Fig. 11), the balance of a certain hardcoded account (likely
the contract creator account) is being updated with all the available coin supply. The
changed StringLiteral correspond to the coin’s name (name) and the coin’s symbol
(symbol). The changed FunctionDefinition corresponds to the function’s name
(in this case, the constructor). Finally, the changed ContractDefinition correspond
to the subcontract’s name.

6.1.1 Observations on the Contracts with the Highest Number of Clone Siblings

In this section, we investigate the contract with the highest number of clone siblings per
cloning-type category. After detecting the contract with the highest number of clone siblings
per cloning-type category, we manually analyze its code file in order to understand the key
features that it implements. Our goal is to gain some insight into the contracts that are most
frequently cloned by smart contract developers.

On the Contract with the Highest Number of type-1 Clone Siblings Since type-1 cloning
is transitive (if contract C1 is identical to C2 and C2 is identical to C3, then C1 is identi-
cal to C3), it suffices to describe any contract in the largest group of type-1 clones. Our
analysis revealed that the largest group of type-1 clones contains 169 mutually identical
contracts. To serve as a reference, the address of one of the contracts in this group is
0x831979b878dd27f703a19fd1dcaddc2d0b425ac8. Its code file is surprisingly
complex, with 480 instructions (5.45 times higher than the median for code files outside
this group) and 13 code blocks (3.25 times higher than the median for code files outside this
group). The UML diagram (drawn by us) shown in Fig. 12 depicts the code blocks of this
contract, as well as their interrelationships.

The main goal of this contract is to implement flexible crowdsales with mintable tokens
(Section A.4.2).

Empirical Software Engineering (2020) 25:4617–46754634

Flexible Crowdsale Implementation

Contract DecoratorsMintable Token Extension
ERC Token Implementation

SafeMath

- safeMul(uint a, uint b): uint
- safeDiv(uint a, uint b): uint
...

ERC20Basic

+ totalSupply: uint256
...

+ balanceOf(address who): uint256
+ transfer(address to, uint256 value): bool
...

Ownable

+ owner: address

+ <<onlyOwner>> transferOwnership(address newOwner)
...

SafeMathLibExt

times(uint a, uint b): uint
divides(uint a, uint b): uint
...

Haltable

+ halted: boolean

+ <<onlyOwner>> halt()
+ <<onlyOwner, onlyInEmergency>> unhalt()
...

PricingStrategy

//Defines the crowdsale pricing strategy

+ tier: address

+ isPresalePurchase(address purchaser): bool
+ updateRate(uint newOneTokenInWei)
+ calculatePrice(uint value, uint weiRaised, uint tokensSold
address msgSender, uint decimals) : uint tokenAmount
...

FinalizeAgent

 //Defines what happens at the end of a successful crowdsale.

 For instance:

 - Allocate tokens for founders, bounties, and community

 - Make tokens transferable

+ reservedTokensAreDistributed: address

+ distributeReservedTokens(uint reservedTokensDistributionBatch)
+ finalizeCrowdsale()
...

ERC20

+ allowance(address owner, address spender): uint256
+ transferFrom(address from, address to, uint256 value): bool
+ approve(address spender, uint256 value): bool
...

FractionalERC20Ext

+ decimals: uint
+ minCap: uint

token

finalizeAgent

pricingStrategy

CrowdsaleExt

 //Abstract base contract for token sales that handles:
 - Start and end dates
 - Accepting investments
 - Minimum funding goal and refund
 - Various statistics during the crowdfund
 - Different pricing strategies
 - Different investment policies

+ name: boolean
+ minimumFundingGoal: uint
+ startsAt: uint
+ endsAt: uint
+ tokensSold: uint
+ weiRaised: uint
+ investorCount: uint
+ finalized: bool
+ investedAmountOf: map<address,uint256>
+ state: enum{preparing,prefunding,funding,success,failure,finalized}
...

+ buy()
+ getState(): State
+ <<onlyOwner>> distributeReservedTokens(uint reservedTokensDistributionBatch)
+ <<onlyOwner>> setStartsAt(uint time)
+ <<onlyOwner>> setEndsAt(uint time)
+ <<onlyOwner>> setPricingStrategy(PricingStrategy addr)
+ <<onlyOwnwer>> setFinalizeAgent(FinalizeAgent addr)
...

StandardToken

- safeMul(uint a, uint b): uint
- safeDiv(uint a, uint b): uint
...

MintableTokenExt

+ mintingFinished: bool

+ <<onlyOwner>> setMintAgent(address addr, bool state)
+ <<onlyMintAgent>> mint(address received, uint amount)

MintedTokenCappedCrowdsaleExt

 //ICO crowdsale contract that is capped by

 amount of tokens. Tokens are dynamically created

 during the crowdsale

+ maximumSellableTokens: uint

+ isCrowdsaleFull: bool
+ <<onlyOwner> setMaximumSellableTokens(uint tokens)
+ <<onlyOwner>> updateRate(uint newOneTokenInWei)

Fig. 12 Class diagram for the code file of the contract deployed at address 0x831979b878dd27f703a19
fd1dcaddc2d0b425ac8. We use colored boxes to group code blocks into cohesive units

The code blocks in the ERC Token Implementation group (blue shaded box) define an
abstract implementation of a token that follows the ERC20 standard (Section A.4.1). The
SafeMath subcontract implements simple mathematical operations in a robust way by
accounting for overflows, underflows, and division by zero.

The code blocks in the Flexible Crowdsale Implementation are the core pieces
of this contract. The CrowdsaleExt subcontract implements a flexible crowdsale
by supporting several features, including funding goals, refunds, and statistics for the
crowdfunding. We emphasize that this subcontract defines several function modifiers
(guards) that put preemptive restrictions on the execution of functions. For instance,
the <<onlyOwner>> modifier guarantees that only the contract owner can exe-
cute the function (e.g., the finalize() function). Interestingly, this subcontract also
defines two run-time extension points (hotspots), namely: PricingStrategy and
FinalizeAgent. The PricingStrategy defines the pricing strategy, which may
include presales, different tiers, etc. The FinalizeAgent defines what should hap-
pen once the crowdsale is completed. Anyone who deploys this contract can invoke the
setPricingStrategy(addr) and the setFinalizeAgent(addr) to define the
concrete implementations that should be used during runtime. However, the Crowdsale-
Ext is still an abstract contract, meaning that it has functions without implementation. The
MintedTokenCappedCrowdsaleExt subcontract provides an implementation for the

Empirical Software Engineering (2020) 25:4617–4675 4635

CrowdsaleExt, which uses mintable tokens and defines a maximum number of sellable
tokens. In particular, the MintableTokenExt implements a mintable token by extend-
ing the StandardToken subcontract. Curiously, the MintableTokenExt subcontract
uses a different Math library compared to the StandardToken.

The two math libraries have overlapping functionalities (e.g., safeMul(uint a,
uint b) from SafeMath and times(uint a, uint b)). In the code file, there is a
comment that says “Temporarily have SafeMath here until all contracts have been migrated
to SafeMathLib version from OpenZeppelin”, suggesting that MintableTokenExt and
StandardToken were developed in different points in time or by different development
teams. The code comment also indicates the preference for an OpenZeppelin version of the
library (OpenZeppelin is studied in the RQ3 of this paper).

Finally, the subcontracts in the Contract Decorators (green shaded box) define exten-
sions for base contracts. We use the term decorator as an allusion to the Decorator
object-oriented design pattern (Gamma et al. 1995). The MintableTokenExt extends
the Ownable subcontract, thus becoming decorated with the owning concept. The
CrowdsaleExt, in turn, extends the Haltable subcontract, thus becoming decorated
with the Haltable concept. Hence, the CrowdsaleExt can be halted and unhalted (by
the owner of the crowdsale).

On the Contract with the Highest Number of type-2 Clone Siblings Similarly to type-
1 cloning, type-2 cloning is also transitive. Hence, it suffices to describe any con-
tract in the largest group of type-2 clones. Our analysis revealed that the largest
group of type-2 clones contains 1,565 contracts (4.7% of all verified contracts stud-
ied in this paper). To serve as a reference, we pick the oldest contract in this group:
0x1a645debd700890f1bc93626078d89e260bd09ce. Differently from the con-
tract that was discussed in the previous section (Section 6.1.1), this contract is very simple:
it is a vanilla implementation of a token contract. The UML diagram (drawn by us) shown
in Fig. 13 illustrates the structure of this token contract. Although declared as a subcontract,
the Token code block has empty bodied functions, thus fulfilling the role of an interface
(as in object-oriented programming). For illustrative purposes, we show the constructor of

<<subcontract>>

Token

+ totalSupply: uint256 supply
+ balanceOf(address _owner): uint256 balance
+ transfer(address _to, uint256 _value): bool success
+ transferFrom(address _from, address _to, uint256 _value: bool success
+ approve(address _spender, uint256 _value): bool success
+ allowance(address _owner, address _spender): uint256 remaining

<<subcontract>>

StandardToken

balances: mapping(address, uint256)
allowed: mapping(address,mapping(address,uint256)
+ totalSupply: uint256

+ transfer(address _to, uint256 _value): bool success
+ transferFrom(address _from, address _to, uint256 _value): bool success
+ balanceOf(address _owner): uint256 balance
+ approve(address _spender, uint256 _value): bool success
+ allowance(address _owner, address _spender): uint256 remaining

<<subcontract>>

TheMostPrivateCoinEver

+ name: string
+ decimals: uint8
+ symbol: string
+ version: string

+ approveAndCall(address _spender, uint256 _value, bytes _extraData): bool: success

Fig. 13 Class diagram for the code file of the verified contract deployed at address 0x1a645debd700890
f1bc93626078d89e260bd09ce

Empirical Software Engineering (2020) 25:4617–46754636

the TheMostPrivateCoinEver contract (Listing 2). From the comments in the code,
it is clear that the developer was filling out a template contract.

Listing 2 TheMostPrivateCoinEver subcontract, which implements the StandardToken
subcontract

Empirical Software Engineering (2020) 25:4617–4675 4637

6.2 RQ2: What are the Characteristics of Clusters of Similar Verified Contracts?

In the previous RQ, we determined the prevalence of cloning in Ethereum. We observed that
79.2% of the studied contracts are clones. Hence, given that developers frequently clone
contracts, we now investigate clone clusters more closely. These clusters are the same that
we investigated in RQ1, i.e., those produced by Deckard.

We study the following aspects: (i) categories of contracts in large clusters
(Section 6.2.1), (ii) activity of contracts within clusters (Section 6.2.2), and (iii) author-
ship of contracts within clusters (Section 6.2.3). The aforementioned analyses will provide
empirical evidence regarding how cloning is performed in Ethereum.

6.2.1 On the Categories of Contracts in Large Clone Clusters

Motivation Determining the category of contracts in large clusters should provide insights
into the categories of contracts that are more frequently cloned and thus of inherent interest
to the smart contract development community.

Approach We sort clusters according to their size and select the top-10 largest clusters.
These top-10 largest clusters account for 19.9% of all the studied contracts. Next, we select
a representative contract for each of the top-10 clusters, which we define as the contract
with the highest number of transactions in the cluster. Based on a manual investigation of
the representative contract, we derive a category for the cluster. Given the relevance of token
contracts in Ethereum (Section A.4.1), we also determine the percentage of token contracts
in each of the top-10 clusters.

Findings. Observation 6) 9 out of the top-10 largest clusters are token managers. As
indicated in Table 4, 9 out of the top-10 largest clusters are token managers. A token
manager is a token contract that focuses primarily on managing a certain token.

Analysis of the structure of the 9 token managers via UML diagrams reveal that they
implement very similar functionality in slightly different ways (e.g., with different degrees
of encapsulation). In the Appendix B.1, we show a UML diagram of the representative
contract of each of the top-10 largest clusters.

Observation 7) 1 of the top-10 largest clusters is a Token Locker. The key subcontract
from the representative contract of this cluster is called lockEtherPay. In Listing 3, we
show the key functions of the lockEtherPay subcontract. The lock() function checks a few
requirement conditions then locks the payment of tokens for 52 weeks. The lockover()
function checks if the lock period is over. Finally, the release() function checks a few
requirement conditions, including if the lock period is over, then releases the tokens to the
beneficiary. Having a cluster of token lockers suggest that a contract was created to lock the
payment of each beneficiary of a certain ICO (or multiple ICOs).

6.2.2 On the Activity of Contracts Within Clone Clusters

Motivation The number of received transactions is an indicator of the activity of a contract.
We thus investigate this indicator to determine the activeness of the contracts within a given

Empirical Software Engineering (2020) 25:4617–46754638

Ta
bl
e
4

A
su

m
m

ar
y

of
th

e
to

p-
10

la
rg

es
tc

lu
st

er
s

C
lu

st
er

R
ep

re
se

nt
at

iv
e

C
on

tr
ac

t
C

lu
st

er
Si

ze
%

of
To

ke
n

C
lu

st
er

A
dd

re
ss

#T
x.

C
on

tr
ac

ts
C

at
eg

or
y

1
0x

46
72

ba
d5

27
10

74
71

cb
50

67
a8

87
f4

65
6d

58
5a

8a
31

15
6,

95
6

21
3

98
.6

%
To

ke
n

M
an

ag
er

2
0x

89
12

35
8d

97
7e

12
3b

51
ec

ad
1f

fa
0c

c4
a7

e3
2f

f7
74

20
,6

38
21

7
97

.2
%

To
ke

n
M

an
ag

er

3
0x

30
39

2c
25

2d
a0

7b
69

19
49

72
e9

f7
70

b6
dd

5d
eb

7a
f8

1,
17

9
63

0
99

.2
%

To
ke

n
M

an
ag

er

4
0x

a7
d7

60
97

66
d7

fc
fa

f3
8e

da
12

34
54

bf
94

b1
c1

ab
f0

3
1,

09
7

0.
0%

To
ke

n
L

oc
ke

r

5
0x

90
64

c9
1e

51
d7

02
1a

85
ad

96
81

7e
14

32
ab

f6
62

44
70

67
,6

11
48

6
97

.5
%

To
ke

n
M

an
ag

er

6
0x

47
a8

92
bf

73
36

a1
20

ee
69

b2
db

6a
cb

55
2a

ca
d5

f4
6d

10
0

32
0

97
.2

%
To

ke
n

M
an

ag
er

7
0x

1d
8e

5d
cf

36
58

64
fc

da
8a

b3
9d

1f
60

d6
6e

e2
b8

27
70

7,
16

3
61

0
95

.1
%

To
ke

n
M

an
ag

er

8
0x

9a
64

2d
6b

33
68

dd
c6

62
ca

24
4b

ad
f3

2c
da

71
60

05
bc

30
8,

16
2

1,
93

3
97

.9
%

To
ke

n
M

an
ag

er

9
0x

2e
b8

6e
8f

c5
20

e0
f6

bb
5d

9a
f0

8f
92

4f
e7

05
58

ab
89

13
3,

97
9

37
8

99
.5

%
To

ke
n

M
an

ag
er

10
0x

0a
2e

aa
11

01
bf

ec
38

44
d9

f7
9d

d4
e5

b2
f2

d5
b1

fd
4d

3,
26

4
68

2
97

.1
%

To
ke

n
M

an
ag

er

Empirical Software Engineering (2020) 25:4617–4675 4639

Listing 3 Main functions of the lockEtherPay subcontract. Contract address: 0x0035743c08768ad6558
b49d751e0215762057754

cluster. In particular, we want to determine whether most contracts within a cluster have a
similar number of received transactions or whether there is a high degree of variability.

Approach We use the Gini coefficient to evaluate inequality in the number of transactions
per contract in each cluster. The Gini coefficient measures the inequality (i.e., variabil-
ity) among values of a frequency distribution (Ceriani and Verme 2012). The coefficient
is typically used to evaluate inequality of income or wealth of a nation’s residents. A Gini
coefficient of 0% indicates perfect equality, where all values are the same (e.g., a popula-
tion where everyone has the same income). A Gini coefficient of 100% indicates maximal
inequality among values (e.g., a large population in which only one person has all the
income and others have none). We compute Gini coefficient of all clusters that contain at
least 10 contracts (as it is difficult to judge inequality in clusters that are too small).

Findings. Observation 8) Most of the activity of a cluster tends to be concentrated on
a few contracts. Figure 14 depicts the distribution of the Gini coefficient for the number
of received transactions per contract in each cluster. As the figure indicates, the inequality
index is generally high for most clusters. In other words, very few contracts within a cluster
tend to concentrate most of the activity in that cluster.

Observation 9) In 50% of the cases, the top-active contract of a cluster was created before
74.7% of the other contracts in the same cluster. We ordered the contracts in each cluster
according to their creation date. Next, we recorded the creation date rank of the top-active
contract of each cluster. Figure 15 shows the distribution of the creation date rank of the
top-active contract of each cluster. Analysis of the figure reveals that, in 50% of the cases,
the top-active contracts of a cluster was created before 74.7% of the other contracts in that
cluster.

Empirical Software Engineering (2020) 25:4617–46754640

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Gini Coefficient for the number of transactions per contract in each cluster (%)

Fig. 14 Distribution of the Gini Coefficient for the number of received transactions per contract in each
cluster (Q1 = 80.3%, median = 91.2%)

6.2.3 On the Authorship of Contracts Within Clone Clusters

Motivation The Ethereum blockchain keeps track of the creator of each smart contract
(Section A.3.2). We thus investigate the relationship between authorship and cloning. In
particular, we want to discover if there are clusters with a single author (e.g., a developer
deploying updated versions of the same contract over time).

Approach We use the Normalized Shannon Entropy (Shannon and Weaver 1963) to study
variability in the authorship of contracts inside a cluster. The Normalized Shannon entropy
is formulated as follows:

η(X) = −
n∑

i=1

p(xi) logb(p(xi))

logb(n)
, (1)

In our case, X is a cluster, n is the number of contracts in the cluster X, b is the base of the
logarithm (we use b = 2), xi is the author of contract i, p(xi) is the percentage of contracts
that were developed by author xi in the cluster X. η(X) is the Normalized Shannon Entropy
value for the cluster X, which ranges from zero (one developer) to one (n developers).

As explained by Hassan (2009), for a distribution X where all elements have the same
probability of occurrence, i.e., p(xi) = 1

n
, ∀i ∈ 1, ..., n, we achieve maximum entropy.

On the other hand, for a distribution X where an element j has a probability of occurrence
p(xj) = 1 and ∀i �= j : p(xi) = 0, we achieve minimal entropy.

0 25 50 75 100
Creation date rank of the top−active contract of a cluster

Fig. 15 Distribution of the creation date rank of the top-active contract of each cluster (median = 25.3, Q3 =
58.3)

Empirical Software Engineering (2020) 25:4617–4675 4641

Fig. 16 An example of the
quadrant plot. The red dashed
lines indicate the median values

x-axis

y-
ax

is

Q2
LOW X
HIGH Y

Q1
HIGH X
HIGH Y

Q4
HIGH X
LOW Y

Q3
LOW X
LOW Y

We compute the Normalized Shannon Entropy in all the clusters that contain at least 10
contracts (as it is difficult to judge variability in clusters that are too small). Afterwards,
we use a quadrant plot to investigate the relationship between entropy and cluster size. A
quadrant plot is simply a scatter plot that divides the cartesian plane in four quadrants by
splitting each axis into two parts via some summarizing statistic (typically the median).
Fig. 16 shows a schematic of a quadrant plot. The rationale is that observations lying on a
(sub)set of the quadrants exhibit particular characteristics that are meaningful to the study
at hands. In our case, we want to determine if there are large clusters (high cluster size)
created by few developers (low authorship entropy).

Findings. Observation 10) Contracts in a cluster tend to be created by several authors.
Figure 17 depicts the distribution of the authorship entropy per cluster. The entropy is gener-
ally high, with a median of 81.7% (equivalent to a cluster with 12 contracts, where 4 authors
created 2 contracts and 4 authors created 1 contract). Therefore, we conclude that contracts
in a cluster tend to be created by several authors.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Authorship Entropy (%)

Fig. 17 Distribution of Authorship Entropy (Normalized Shannon Entropy) per clone cluster

Empirical Software Engineering (2020) 25:4617–46754642

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

10 20 100 1000
Cluster size (log10 scale)

Au
th

or
sh

ip
 E

nt
ro

py
 (%

)

1
2
3
4
5
6

count

Fig. 18 The quadrant plot of cluster size v.s. authorship entropy. Each hexagon indicates a group of one or
more clusters at the same (x,y) position

Observation 11) There are clusters having many contracts that were created by just a
few authors. Figure 18 shows the quadrant plot that contrasts cluster size with authorship
entropy. As the figure indicates, there are cases in which the entropy is low but the cluster
size is high (fourth quadrant). In the following, we discuss two unusual clusters from the
fourth quadrant.

At the bottom-right portion of the fourth quadrant (Fig. 18), there is an outlier cluster
with over 1,000 contracts. Closer inspection reveals that such contracts were created by only
five authors. As it turns out, this cluster is the same one that we discussed as part of the top-
10 largest clusters analysis: it is the Token Locker cluster (Section 6.2.1). As we discussed
before, the authors of these contracts apparently created one contract for each beneficiary of
an ICO (or multiple ICOs) and temporarily locked the tokens of each beneficiary. The vast
majority of contracts in this cluster (92.9%) are type-2 clones of each other, as the author
only changed the beneficiary and the token reward value in each type-2 clone.

We also highlight another cluster in the fourth quadrant, which has zero entropy (i.e.,
only a single author) and a cluster size of 31. The contracts in this cluster all appear to be
scams (Table 5). The author created ICOs that included tokens with the same name as hot
tokens being sold at that time. In addition, as shown in Table 5, all contracts in this cluster
were created on Christmas (or very close to it, depending on the timezone). The intent was
probably to quickly steal cryptocurrency from inexperienced users by pointing them to these
probable-fake ICOs.

For instance, the real ICO of the EthLend Token was a success and sold all tokens,
accumulating 17.9M USD worth of cryptocurrency (its probable-fake version is listed with
ID 30 in Table 5). Figure 19 shows the top portion of the code file of the probable-fake
EthLend ICO contract. The header of the code file contains links to the real EthLend website
and white paper.

We also observe that the author sent transactions himself to the contracts, possibly to
give more credibility to the probable-fake ICOs and entice others to use them. An example
is depicted in Fig. 20.

Empirical Software Engineering (2020) 25:4617–4675 4643

Ta
bl
e
5

C
lu

st
er

of
cl

on
e

co
nt

ra
ct

s
cr

ea
te

d
by

th
e

si
ng

le
au

th
or

0
x
0
0
a
7
c
a
0
0
4
7
1
d
6
2
d
e
c
e
1
b
5
2
a
b
4
0
9
b
8
3
0
7
8
3
6
0
7
2
c
3

.T
he

lis
te

d
co

nt
ra

ct
s

al
la

pp
ea

r
to

be
sc

am
IC

O
s,

si
nc

e
th

ey
re

us
e

th
e

na
m

e
of

fa
m

ou
s

to
ke

ns
th

at
w

er
e

be
in

g
so

ld
at

th
e

tim
e

ID
C

on
tr

ac
tA

dd
re

ss
#T

x.
To

ke
n

C
re

at
io

n
D

at
e

In
fo

ab
ou

t

(y
yy

y-
m

m
-d

d)
R

ea
lT

ok
en

1
0x

20
66

a2
e0

cd
7f

19
58

9f
58

2e
2f

c9
af

96
69

cc
9e

02
f1

6
Se

th
er

(S
E

T
H

)
20

17
-1

2-
25

01
:1

6:
50

ht
tp

s:
//i

co
be

nc
h.

co
m

/ic
o/

se
th

er

2
0x

ef
e1

4c
de

67
52

b3
46

93
e3

68
db

a3
20

f4
f1

89
7d

05
56

7
G

IF
T

O
(G

IF
T

O
)

20
17

-1
2-

25
01

:3
8:

02
ht

tp
s:

//i
co

dr
op

s.
co

m
/g

if
to

3
0x

35
32

30
86

2a
e8

ab
6c

a5
dd

e5
92

65
4a

cd
6c

de
c1

c1
b2

6
B

ee
to

ke
n

(B
E

E
)

20
17

-1
2-

25
01

:4
3:

56
ht

tp
s:

//i
co

dr
op

s.
co

m
/th

e-
be

e-
to

ke
n

4
0x

e5
0b

0c
ef

eb
80

bd
d9

e3
d0

35
17

97
69

09
76

5c
96

e9
62

6
C

oi
nv

es
t(

C
O

IN
)

20
17

-1
2-

25
01

:4
3:

56
ht

tp
s:

//i
co

dr
op

s.
co

m
/c

oi
nv

es
t

5
0x

82
8b

e8
ea

7b
bb

e2
46

21
6e

70
17

b3
50

57
f6

4c
f6

44
9a

5
M

od
ul

T
ra

de
(M

T
R

c)
20

17
-1

2-
25

01
:5

0:
43

ht
tp

s:
//i

co
be

nc
h.

co
m

/ic
o/

m
od

ul
tr

ad
e

6
0x

0f
77

1a
a1

8c
50

03
ab

a1
b0

fe
ee

08
2a

0d
d6

ac
d2

99
56

7
Ji

br
el

N
et

w
or

kT
ok

en
(J

N
T

)
20

17
-1

2-
25

01
:5

2:
46

ht
tp

s:
//i

co
dr

op
s.

co
m

/ji
br

el
-n

et
w

or
k

7
0x

30
1a

05
01

c0
8e

34
7b

06
2b

3c
92

8f
d4

d0
15

5f
36

78
55

7
W

eP
ow

er
(W

PR
)

20
17

-1
2-

25
01

:5
2:

46
ht

tp
s:

//i
co

dr
op

s.
co

m
/w

ep
ow

er

8
0x

94
32

f9
1b

fc
23

35
b0

48
5a

a4
96

7d
0a

cf
f3

e3
4a

e1
34

10
M

ed
To

ke
n

(M
E

D
)

20
17

-1
2-

25
01

:5
4:

27
ht

tp
s:

//i
co

dr
op

s.
co

m
/m

ed
ic

al
ch

ai
n

9
0x

42
b0

36
89

fb
aa

96
35

ed
bc

10
ad

1f
dc

7e
a5

fe
ef

bb
70

8
B

itD
eg

re
e

(B
D

G
)

20
17

-1
2-

25
01

:5
5:

36
ht

tp
s:

//i
co

dr
op

s.
co

m
/b

itd
eg

re
e

10
0x

82
bb

5d
cd

77
68

65
87

63
3b

a6
74

4b
d7

06
ea

09
83

3f
bf

9
D

M
ar

ke
tT

ok
en

(D
M

T
)

20
17

-1
2-

25
01

:5
7:

28
ht

tp
s:

//i
co

dr
op

s.
co

m
/d

m
ar

ke
t

11
0x

d4
fa

c8
4b

74
7a

ba
53

fd
86

a9
95

1d
20

e7
33

0d
aa

34
14

13
Po

w
er

le
dg

er
To

ke
n

(P
ow

r)
20

17
-1

2-
25

02
:0

2:
53

ht
tp

s:
//i

co
dr

op
s.

co
m

/p
ow

er
le

dg
er

12
0x

1a
51

f1
6b

4d
38

5a
06

c5
42

d3
68

64
12

ab
65

17
b5

51
5d

7
D

om
R

ai
de

r
(D

R
T

)
20

17
-1

2-
25

02
:1

5:
30

ht
tp

s:
//i

co
dr

op
s.

co
m

/d
om

ra
id

er

13
0x

51
48

9a
32

8c
9b

df
cb

67
cc

e7
7c

0d
87

be
54

b5
f8

d1
72

7
U

T
R

U
ST

To
ke

n
(U

T
K

)
20

17
-1

2-
25

02
:4

5:
07

ht
tp

s:
//i

co
dr

op
s.

co
m

/u
tr

us
t

14
0x

69
c9

e3
4a

64
b6

ba
1e

39
fb

15
ff

ae
fd

c7
e7

55
24

f6
00

7
G

im
li

To
ke

n
(G

IM
)

20
17

-1
2-

25
02

:4
9:

52
ht

tp
s:

//i
co

dr
op

s.
co

m
/g

im
li

15
0x

1c
f6

94
9f

4b
66

10
18

b3
19

5f
3f

f9
8e

ff
e1

2f
58

72
63

8
A

tla
nt

To
ke

n
(A

T
L

)
20

17
-1

2-
25

02
:5

2:
00

ht
tp

s:
//i

co
dr

op
s.

co
m

/a
tla

nt

16
0x

b0
9b

d0
cd

a4
c4

25
4a

ce
bc

13
0c

a1
79

15
b9

35
19

07
9c

12
SI

R
IN

(S
R

N
)

20
17

-1
2-

25
02

:5
2:

11
ht

tp
s:

//i
co

dr
op

s.
co

m
/s

ir
in

-l
ab

s

17
0x

ab
ca

ea
6f

40
99

b1
ed

62
16

9d
39

c2
6f

80
8f

94
8c

86
d6

5
D

ec
en

tr
al

an
d

M
an

a
(M

A
N

A
)

20
17

-1
2-

25
02

:5
3:

02
ht

tp
s:

//i
co

dr
op

s.
co

m
/d

ec
en

tr
al

an
d

18
0x

9d
0a

10
8f

bb
9b

31
1e

99
76

bc
07

1d
44

69
12

36
59

56
2f

10
L

en
do

it
(L

D
I)

20
17

-1
2-

25
02

:5
3:

06
ht

tp
s:

//i
co

dr
op

s.
co

m
/le

nd
oi

t

19
0x

38
e3

08
c4

ac
50

fd
6c

31
c5

f5
3d

7b
25

f2
51

16
d8

0a
3a

6
Sc

ri
ni

um
(S

C
R

)
20

17
-1

2-
25

02
:5

5:
26

ht
tp

s:
//i

co
be

nc
h.

co
m

/ic
o/

sc
ri

ni
um

20
0x

81
8e

bd
ad

12
d3

de
ce

fa
be

6c
cb

16
f3

3c
9b

bf
e1

b3
0a

5
N

A
G

A
C

oi
n

(N
G

C
)

20
17

-1
2-

25
02

:5
6:

21
ht

tp
s:

//i
co

dr
op

s.
co

m
/n

ag
a

Empirical Software Engineering (2020) 25:4617–46754644

https://icobench.com/ico/sether
https://icodrops.com/gifto
https://icodrops.com/the-bee-token
https://icodrops.com/coinvest
https://icobench.com/ico/modultrade
https://icodrops.com/jibrel-network
https://icodrops.com/wepower
https://icodrops.com/medicalchain
https://icodrops.com/bitdegree
https://icodrops.com/dmarket
https://icodrops.com/powerledger
https://icodrops.com/domraider
https://icodrops.com/utrust
https://icodrops.com/gimli
https://icodrops.com/atlant
https://icodrops.com/sirin-labs
https://icodrops.com/decentraland
https://icodrops.com/lendoit
https://icobench.com/ico/scrinium
https://icodrops.com/naga

Ta
bl
e
5

(c
on

tin
ue

d)

ID
C

on
tr

ac
tA

dd
re

ss
#T

x.
To

ke
n

C
re

at
io

n
D

at
e

In
fo

ab
ou

t

(y
yy

y-
m

m
-d

d)
R

ea
lT

ok
en

21
0x

2b
f3

6e
41

4c
52

a9
fd

81
e2

1a
0a

b5
74

2d
ce

75
03

89
d3

8
B

an
kE

x
To

ke
n

(B
K

X
)

20
17

-1
2-

25
03

:0
4:

06
ht

tp
s:

//i
co

dr
op

s.
co

m
/b

an
ke

x

22
0x

84
46

56
3e

75
cd

78
21

b5
bf

21
99

c2
69

76
ef

c5
ca

c8
03

14
C

O
V

E
ST

IN
G

(C
O

V
)

20
17

-1
2-

25
03

:3
6:

25
ht

tp
s:

//i
co

dr
op

s.
co

m
/c

ov
es

tin
g

23
0x

88
9a

32
26

3d
23

78
72

b4
f7

98
5e

ad
9c

29
eb

fe
8b

46
4d

13
C

av
ia

r
To

ke
n

(C
A

V
)

20
17

-1
2-

25
03

:3
6:

38
ht

tp
s:

//i
co

be
nc

h.
co

m
/ic

o/
ca

vi
ar

24
0x

50
37

7c
33

14
58

1a
63

9f
00

bd
5b

a4
23

67
a6

b6
5b

ce
d7

14
D

re
am

Te
am

To
ke

n
(D

T
T

)
20

17
-1

2-
25

03
:3

9:
23

ht
tp

s:
//i

co
dr

op
s.

co
m

/d
re

am
-t

ea
m

25
0x

11
83

8e
ce

89
43

9c
4f

02
24

bc
7b

9f
76

e0
77

21
d9

9f
9e

13
M

iC
ar

s
To

ke
n

(M
C

R
)

20
17

-1
2-

25
03

:4
2:

50
ht

tp
s:

//i
co

be
nc

h.
co

m
/ic

o/
m

ic
ar

s

26
0x

92
89

89
d4

d0
d7

1d
aa

f8
68

19
ca

69
df

62
0e

ba
aa

d4
07

14
M

aj
at

o
To

ke
n

(M
JT

)
20

17
-1

2-
25

03
:4

8:
00

ht
tp

s:
//i

co
be

nc
h.

co
m

/ic
o/

m
aj

at
o-

pr
oj

ec
t

27
0x

6f
df

ce
60

99
87

25
f4

cf
b4

cc
57

50
5a

3a
bd

bb
6d

06
46

17
Se

lf
K

ey
To

ke
n

(K
E

Y
)

20
17

-1
2-

25
04

:0
1:

33
ht

tp
s:

//i
co

dr
op

s.
co

m
/s

el
fk

ey

28
0x

15
5e

7e
9a

b1
93

aa
37

c8
7d

22
f6

60
02

e3
db

64
c9

e0
ce

15
Pr

op
s

To
ke

n
(P

R
O

PS
)

20
17

-1
2-

25
04

:1
3:

15
ht

tp
s:

//i
co

dr
op

s.
co

m
/p

ro
ps

29
0x

fd
a2

e0
43

7f
97

4c
93

12
ca

67
40

c0
71

81
17

8f
64

5f
a9

14
Q

L
in

k
To

ke
n

(Q
L

C
)

20
17

-1
2-

25
04

:1
3:

27
ht

tp
s:

//i
co

dr
op

s.
co

m
/q

lin
k

30
0x

6b
31

a8
98

f7
e7

11
b3

23
a6

21
2e

ac
4a

e2
50

e0
d6

62
4f

13
E

th
L

en
d

To
ke

n
(L

E
N

D
)

20
17

-1
2-

25
04

:2
7:

49
ht

tp
s:

//i
co

dr
op

s.
co

m
/e

th
le

nd

31
0x

29
20

e0
b7

d8
6a

b7
6a

a0
9b

cd
df

fe
de

f0
81

fa
af

6e
2c

9
B

lo
om

To
ke

n
(B

LT
)

20
17

-1
2-

25
04

:3
3:

21
ht

tp
s:

//i
co

dr
op

s.
co

m
/b

lo
om

Empirical Software Engineering (2020) 25:4617–4675 4645

https://icodrops.com/bankex
https://icodrops.com/covesting
https://icobench.com/ico/caviar
https://icodrops.com/dream-team
https://icobench.com/ico/micars
https://icobench.com/ico/majato-project
https://icodrops.com/selfkey
https://icodrops.com/props
https://icodrops.com/qlink
https://icodrops.com/ethlend
https://icodrops.com/bloom

Fig. 19 The header of the code file of the fake contract contains links to the real EthLend website and
white paper. Image extracted from Etherscan (https://etherscan.io/address/0x6b31a898f7e711b323a6212eac
4ae250e0d6624f#code)

6.3 RQ3: How Frequently Code Blocks of Verified Contracts are Identical
to Those fromOpenZeppelin?

Motivation OpenZeppelin is one of the most popular packages for developing secure smart
contracts. OpenZeppelin contains a collection of code blocks (subcontracts, libraries, and

Empirical Software Engineering (2020) 25:4617–46754646

https://etherscan.io/address/0x6b31a898f7e711b323a6212eac4ae250e0d6624f#code
https://etherscan.io/address/0x6b31a898f7e711b323a6212eac4ae250e0d6624f#code

Fig. 20 Author of the probable-fake Sether contract sent 6 transactions himself to the contract (check “From” field).
Image extracted from Etherscan (https://etherscan.io/address/0x6b31a898f7e711b323a6212eac4ae250
e0d6624f)

interfaces) that can be used as building blocks to develop blockchain-based applications.
For instance, it includes implementations of the ERC20 standard, mathematical libraries
(e.g., SafeMath), contract lifecycle management contracts (e.g., Pausable contract), and
even cryptography utilities.

As of February 25th 2019, the project has 1,518 commits, 163 contributors, and 6,791
stars in its GitHub repository. The development team behind OpenZeppelin aims to produce
high-quality code to be reused by smart contract developers. The team claims to adhere to
the following development principles: in-depth security, simple and modular code, clarity-
driven naming conventions, comprehensive unit testing, pre-and-post-condition sanity
checks, code consistency, and regular audits.

Ultimately, code blocks from OpenZeppelin can be interpreted as “certified” pieces of
code that are developed by a community that strives for security and performance. As such,
these code blocks are meant to be reused without modification. In this vein, we study the
code blocks of verified contracts that are identical to those from OpenZeppelin.

Approach Code files of verified contracts typically contain several code blocks. In turn,
each OpenZeppelin code file contains a single code block. Therefore, we first extract the
code blocks from the code file of each verified contract. Next, we determine the identical
blocks to those from OpenZeppelin. In the following we describe the approach in more
details:

1) Extracting code blocks from the code file of verified contracts. We used the Solidity
parser created by Federico Bond (Section 3) to extract the code blocks from the code
files of verified contracts. Given a code file, the parser outputs the beginning and ending
position of each code block in the file. The parser successfully extracted the code blocks
from 32,465 (98.16%) of the code files. In the remaining cases, an error was thrown by
the parser. A total of 165,005 code blocks were found.

2) Extracting code blocks from OpenZeppelin. As shown in Table 1, we downloaded 13
OpenZeppelin releases (since new releases include new code blocks). Each OpenZep-
pelin release contains a set of code files and each code file contains exactly one code
block. Therefore, the extraction of code blocks from OpenZeppelin is trivial.

3) Determining the identical code blocks between the code blocks from the code file of
verified contracts and the code blocks from OpenZeppelin. For each code block from
the code file of a verified contract, we determine the code block from OpenZeppelin
that it is identical.

Empirical Software Engineering (2020) 25:4617–4675 4647

https://etherscan.io/address/0x6b31a898f7e711b323a6212eac4ae250e0d6624f
https://etherscan.io/address/0x6b31a898f7e711b323a6212eac4ae250e0d6624f

4) Determining the category of an OpenZeppelin code block. As part of this RQ, we
want to determine which categories of OpenZeppelin code blocks have the higher
number of identical code blocks. We determine the category of an OpenZeppelin
code block according to its path in the repository. For instance, we say that the
math/SafeMath.sol code file belongs to the math category. If a code file lies in
the root directory, its category is unknown (UNK).

Newer versions of OpenZeppelin have more descriptive file paths compared to
older versions. For example, the path of the FinalizableCrowdsale.sol code
block in version 1.1.0 is crowdsale/FinalizableCrowdsale.sol. In turn, the
path of this same code block in version 1.12.0 is crowdsale/distribution/
FinalizableCrowdsale.sol (i.e., more descriptive). Hence, to obtain more descrip-
tive categories for code files, we override the category of code files from older OpenZep-
pelin releases with the category from newer OpenZeppelin releases. The algorithm that we
conceived is described in Listing 4. For instance, assume that a certain code block c from a
verified contract is identical to the crowdsale/FinalizableCrowdsale.sol code
block that was released in version 1.1.0. After running our algorithm, we can then say that
c is actually identical to a crowdsale/distribution code block (instead of a crowdsale code
block).

Finally, we highlight that our approach does not aim to establish clone genealogies (e.g.,
determine whether the developer of a certain verified contract wrote a code block by copying
it from OpenZeppelin). For the goal of this study, it suffices to simply detect all pairs of the
form 〈Ce,Co〉, where Ce is a code block from a verified contract on Etherscan, Co is a code
block from OpenZeppelin, and Ce and Co are identical.

Findings. Observation 12) 36.3% of the verified contracts have at least one code block
in their code file that is identical to an OpenZeppelin code block. In Fig. 21, we show
the percentage of verified contracts that have a certain percentage of code blocks that are
identical to OpenZeppelin code blocks. As indicated by the green bar from the (10,0) per-
centage range, 36.3% of the verified contracts have at least one code block that is identical
to an OpenZeppelin code block. In addition, the green bar from the (60,50] percentage range
indicates that 50% of the code blocks from 18.0% of the verified contracts are identical to
OpenZeppelin code blocks.

Listing 4 Algorithm for overriding categories of code files from older releases of OpenZeppelin with
categories of code files from newer releases of OpenZeppelin

Empirical Software Engineering (2020) 25:4617–46754648

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
10

0

(1
00

,9
0]

(9
0,

80
]

(8
0,

70
]

(7
0,

60
]

(6
0,

50
]

(5
0,

40
]

(4
0,

30
]

(3
0,

20
]

(2
0,

10
]

(1
0,

0)

0

Percentage of code blocks that are identical to OpenZeppelin code blocks (%)

Percentage of Contract Files in Ethereum Cumulative

Fig. 21 Bar chart showing the percentage of verified contracts that have a certain percentage of code blocks
that are identical to OpenZeppelin code blocks

Observation 13) 26.3% of all 165,005 code blocks extracted from verified contracts are
identical to OpenZeppelin code blocks. Most part of these code blocks belong to the ERC20
OpenZeppelin category. Figure 22 shows the percentage of identical code blocks per Open-
Zeppelin category. Most code blocks belong to the ERC20 category, which comprises code

0

5

10

15

20

25

30

35

40

45

50

ERC20 math ownership lifecycle others
OpenZeppelin Category

Percentage of identical code blocks over all code blocks from verified contracts Cumulative

Fig. 22 Percentage of identical code blocks per OpenZeppelin category

Empirical Software Engineering (2020) 25:4617–4675 4649

blocks that relate to the ERC20 standard (Section A.4.1). More specifically, 15.4% of all
165,005 code blocks extracted from verified contracts are identical to ERC20 code blocks.
The second most identical category is math, which includes utility code blocks that support
mathematical operations. The third most identical category is ownership, which contains
code blocks that work as decorators for existing contracts, given them the ability to be
owned by a certain Ethereum account. The forth most identical category is lifecycle, which
includes code blocks that enable the pausing and unpausing contract. The others category
serves as a bundle that groups all other categories, namely: validation, crowdsale, distri-
bution, ERC721, UNK, ERC827, utils, emission, rbac, payment, token, access, price, and
mocks. As the green bars indicate, 26.3% of all 165,005 code blocks extracted from verified
contracts are identical to OpenZeppelin code blocks.

Observation 14) SafeMath.sol, ERC20.sol and ERC20Basic.sol are the most frequently
reused code blocks from OpenZeppelin. Figure 23 is analogous to Fig. 22, but shows code
blocks instead of categories. The first most frequently reused code block is SafeMath.
sol, which belongs to the math category. This code block contains functions that perform
mathematical operations efficiently and without incurring into under/overflow. The second
and third most frequently reused code blocks are ERC20.sol and ERC20Basic.sol,
which belongs to the ERC20 category. These code blocks support the implementation of
ERC20 token contracts. The fourth most frequently reused code block is Ownable.sol,
which adds an owner to a contract and provide basic authorization control functions. The
fifth and sixth most frequently reused code blocks are earlier code blocks that also sup-
ported the implementation of ERC token contracts. The seventh most frequently reused
code block is Pausable.sol, which enables contracts to implement an emergency stop
mechanism via a pause() function. Finally, the eighth most frequently reused code
block is MintableToken.sol, which offers an implementation of a mintable token
(Section A.4.2).

SafeMath.sol

ERC20.sol

ERC20Basic.sol

Ownable.sol

StandardToken.sol

BasicToken.sol

Pausable.sol

MintableToken.sol

others

0 5 10 15 20 25 30 35 40 45 50

O
pe

nZ
ep

pe
lin

 C
od

e
Bl

oc
k

Percentage of identical code blocks over all code blocks from verified contracts Cumulative

Fig. 23 Percentage of identical code blocks per OpenZeppelin code block

Empirical Software Engineering (2020) 25:4617–46754650

7 Discussion

7.1 Implications

7.1.1 Implications to the Security of Smart Contracts

Implication 1) The impact of exploiting a smart contract vulnerability in Ethereum is
large. Observation 2 indicates that there are large clone clusters in Ethereum (20% of the
contracts encompass approximately 68% of the contracts.). In particular, Observation 6 indi-
cates that 9 out of the top-10 largest clusters are token contracts, meaning that these contracts
hold tokens that have an associated market capitalization (in addition to any Ether balance
that the contracts might hold). Therefore, if a hacker manages to discover and exploit a vul-
nerability in one of the contracts belonging to these large clusters, it is possible that the
hacker would be able to exploit many of the cloned versions of the vulnerable contract. Such
a threat is aggravated by three reasons:

– 16.7% of the studied contracts are type-1 contracts (Observation 4). In other words,
an exploit that works for any of these contracts will also likely work for at least one
more contract. In addition, type-1 contracts have lengthier code files, thus are more
susceptible to vulnerabilities. The contract with the highest number of type-1 siblings
is particularly complex (Section 6.1.1).

– 43.3% of the studied contracts are type-2 contracts (Observation 5). We also note that
type-2 clone pairs are remarkably similar. Hence, similarly to the type-1 case, we con-
jecture that the chances of being able to exploit the same vulnerability in multiple
contracts is high.

– Observation 3 indicates there is an upward trend in the amount of clones being created
every quarter.

We reiterate that the code of smart contracts cannot be changed once they are deployed
in Ethereum, so the vulnerability cannot be fixed by a code change. Moreover, due to the

Empirical Software Engineering (2020) 25:4617–4675 4651

immutability of a blockchain, previous blocks cannot be altered after they are deemed final
(which takes approximately 3 minutes after the block is added to the blockchain). Hence,
as opposed to a traditional database system in which transactions can be somewhat easily
reverted, a transaction inside a final block is also final. In other words, a hacker’s actions
can only be reverted by means of a non-planned hard fork, which is a radical procedure. In
simple terms, a hard fork means creating another version of the blockchain, where all nodes
in the network are required to upgrade to the latest version of the protocol software in order
to make previously valid blocks invalid (or vice-versa). For instance, the famous “DAO”
incident described in the Introduction (Section 1) resulted in a hard fork and raised concerns
in the community regarding the credibility of the whole Ethereum platform.

Implication 2) The absence of OpenZeppelin code blocks in 64% of the studied contracts
poses questions about the vulnerability of such contracts. As we discussed above, due to
the amount of clones, the impact of exploiting a smart contract vulnerability in Ethereum is
large. A natural question that derives from such a conclusion is: how vulnerable are smart
contracts? As we describe in the motivation of RQ3, OpenZeppelin is a project devoted
to the creation of secure and reusable code blocks for smart contracts. Hence, we assume
that smart contracts that reuse code blocks from OpenZeppelin are less prone to having
vulnerabilities (or at least well-known, high-risk vulnerabilities).

In RQ3, Observation 12 indicates that approximately 36% of the studied contracts have
at least one code block in their code that is identical to an OpenZeppelin code block. In par-
ticular, for 18% of the studied contracts, at least 50% of their code blocks are identical to
those provided by OpenZeppelin. Notably, Observations 13 and 14 indicate that these code
blocks frequently relate to the implementation of the ERC20 standard (ERC20.sol and
ERC20Basic.sol) and mathematical operations (SafeMath.sol). Therefore, devel-
opers seem to prioritize the use of secure code for basic token management operations, as
well as mathematical operations.

An orthogonal analysis perspective indicates, however, that approximately 64% of the
studied contracts do not have any code block in common with those from OpenZeppelin.
Further research is required to determine whether the code blocks of these contracts are
actually safe (e.g., through a combination of code analyzers ((di Angelo and Salzer 2019))
and auditing) and/or reuse code blocks from other reputable sources (e.g., because they
tackle an application domain that is not covered by OpenZeppelin).

7.1.2 Implications to the Development of Smart Contracts

Implication 3) Cloning is a common practice in Ethereum. Yet, cloning a contract
does not imply it will achieve the same popularity. In Observation 1, we note that only
20.8% of the verified contracts are not a clone of any verified contract. Hence, cloning
is a common practice. Given the prevalence of cloning, in RQ2 we studied the charac-
teristics of clone clusters. Observation 8 indicates that most of the activity of a cluster
tends to be concentrated on very few contracts (Fig. 14). In other words, each clus-
ter seems to have only a small group of contracts that attract attention. In addition,
Observation 9 indicates that in 50% of the cases, the top-active contract of a cluster
was created early on (before 3/4 of the other contracts in the same cluster). Finally,
Observation 10 notes that contracts in a cluster tend to be created by several authors.
We thus conclude that developers clone highly-active contracts, yet these clones rarely
achieve the same activity level. This result is relevant from a practical perspective,
since contracts with high-activity have historically enticed other developers to clone

Empirical Software Engineering (2020) 25:4617–46754652

them. For instance, the booming success of the Ethereum-powered game CryptoKitties9

(a game in which players collect and breed digital cats) in the late 2017 led to the devel-
opment of a plethora of Chinese clone versions, such as CryptoDogs(Horwitz and Huang
2018) and CryptoAlpaca(Skvorc 2018). However, neither of these clones ever achieved the
same popularity of CryptoKitties.

Implication 4) Development of a significant portion of the studied contracts is template-
driven. Developers should instead rely on configurable contracts. We note from Observa-
tion 5 that 43.3% of the studied contracts are type-2 clones. In other words, many contracts
only differ in terms of identifiers and literals. Therefore, the development of a significant
portion of verified contracts in Ethereum is template-driven. Indeed, projects such Con-
senSys Tokens10 provide minimalist token implementation templates to be reused by smart
contract developers. Upon manual inspection, we noticed that the largest type-2 cluster that
we identified (Section 6.1.1) actually builds on a template11 provided by the ConsenSys
Tokens project.

Code cloning via templating is a questionable practice, since developers need to manually
change the source code (e.g., variable values regarding token name and supply) every time
a new concrete implementation needs to be deployed. Instead, developers should opt for
configurable contracts. Instead of hardcoding values in the code, configurable contracts
allow variables be set up at contract deployment time (e.g., via the contract constructor) or at
runtime (e.g., through set functions). Such an approach allows values to be type-checked and
requires zero code changes for new variations of the original contract. All code blocks from
the OpenZeppelin are designed with this philosophy (configuration over manual change).

Finally, given the prevalence of type-2 cloning, the development team behind Solidity
could consider adding template functionalities to the language (similarly to C++ templates).

Implication 5) Providers of reusable code blocks should explicitly indicate provenance in
the source code. It is difficult for end-users to determine whether the code file of a verified
contract is of good quality just by glancing through it. In particular, as our results indi-
cate, the code files of verified contracts have varying ratios of OpenZeppelin code blocks
(Fig. 21). Hence, projects such as OpenZeppelin should consider adding provenance infor-
mation directly in the source code. For instance, a code comment header could be added
to their code blocks, which would include an explicit mention to the OpenZeppelin project
and the corresponding version of the code block. A suggestion is shown below:

/**

* @origin This subcontract was developed by the OpenZeppelin

team.

* Location: contracts/token/ERC20/ERC20.sol. Version: v1-12-0

*/

Since the code file is a flattened version of the original source code (Section A.3.3), we
would also encourage OpenZeppelin to include delimiters at the beginning and end of their

9https://www.cryptokitties.co
10https://github.com/ConsenSys/Tokens
11https://github.com/ConsenSys/Tokens/blob/master/contracts/eip20/EIP20.sol

Empirical Software Engineering (2020) 25:4617–4675 4653

https://www.cryptokitties.co
https://github.com/ConsenSys/Tokens
https://github.com/ConsenSys/Tokens/blob/master/contracts/eip20/EIP20.sol

code blocks. With these two measures in place (header and delimiters), end-users would
know exactly which code blocks of a verified contract were reused from OpenZeppelin and
their corresponding versions.

We have suggested this change to the OpenZeppelin team by opening an issue in their
GitHub repository. Currently, the opened issue is under discussion.12,13

Implication 6) Despite the prevalence of clones, Ethereum does not offer any mecha-
nisms for developers to easily track contract upgrades. Assume a developer D1 deployed
a contract C. Assume as well that a developer D2 cloned C and deployed it. Now, consider
that a severe bug is found on C and a new version with the fix is made available by D1. Let
us call the new contract version Cf ix . As of today, there is no mechanism to alert D2 (and
the user base of C) that (i) a severe bug has been found on C and that (ii) a new version with
a fix exists (i.e., Cf ix). At the simplest level, solving the problem would involve tracking
contract creation dates, cloning, and new releases of clones. Currently, popular Ethereum
dashboards such as Etherscan are only able to inform whether a given contract has clones. A
solution at a more sophisticated and general level would likely need to tackle the following
requirements: (i) contracts should be versioned (e.g., OpenZeppelin has recently decided to
adopt the SemVer semantic versioning scheme14,15), (ii) such versioning needs to be tracked
by a central package manager (e.g., similarly to Maven16 or npm17), and (iii) the package
manager is able to inform whether a new version of a contract is available and its changelog.
Non-official package managers for Ethereum are currently under development.18

7.2 Avenues for Future Research

– In this study, we only detected type-1 and type-2 clones. Despite the inherent challenge,
detecting type-3 clones would provider a richer view of cloning and code reuse practices
for Ethereum.

– In this study, we used Deckard to detect code clones, which operates at the source
code level. The code cloning research community has developed several other detec-
tors that operate at the source code level, such as iClones (Göde and Koschke 2009),
NiCad (Cordy and Roy 2011), CCFinderX (Kamiya et al. 2002), and SourcererCC (Saj-
nani et al. 2016). Recently, clone detectors that operate at the bytecode level have
also been proposed (Liu et al. 2019). Comparing the results yielded by all these tools
should provide insights into the advantages and drawbacks of each one (e.g., in terms
of accuracy and processing time).

– Observation 4 notes that 16.7% of the contracts that we studied are type-1 clones (i.e.,
they are identical to some other contract) and they have lengthier code files compared
to other contracts. We find it rather surprising that big pieces of code are being reused
as is, without the need for modifications. We conjecture that such contracts tend to be

12https://github.com/OpenZeppelin/openzeppelin-contracts/issues/1716
13https://github.com/OpenZeppelin/openzeppelin-contracts/issues/2006
14https://semver.org
15https://docs.openzeppelin.com/contracts/2.x/api-stability
16https://maven.apache.org
17https://www.npmjs.com
18http://ethpm.com

Empirical Software Engineering (2020) 25:4617–46754654

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/1716
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/2006
https://semver.org
https://docs.openzeppelin.com/contracts/2.x/api-stability
https://maven.apache.org
https://www.npmjs.com
http://ethpm.com

configurable contracts (Implication 4). Indeed, in Section 6.1.1, we noted that the type-
1 contract with the highest number of siblings is a runtime configurable contract. Such
a conjecture requires further and deeper investigation.

– Code cloning literature indicates that cloning can be either beneficial or harmful. For
example, cloning a complex contract from a reputable source (e.g., OpenZeppelin) is
likely beneficial compared to writing it from scratch. Future work is required in order
to categorize smart contract cloning practices and uncover their impact.

– We observed that cloning is extremely prevalent in Ethereum. A qualitative study
involving smart contract developers (e.g., a survey, an observational study, or a
sequence of interviews) would provide additional insights into whether cloning in
Ethereum is incidental or intentional.

– Other programmable blockchains such as EOS19 and POA20 are starting to become
more popular. Cloning practices in these other blockchain platforms remain unknown
and should be examined in follow up studies.

8 RelatedWork

Code Cloning. There is a vast literature in Software Engineering around the code cloning
theme (Roy and Cordy 2007; Koschke 2008; Sheneamer and Kalita 2016). The conflicting
views on the harmfulness of code clones (e.g., compare (Kim et al. 2005; Kapser and God-
frey 2008; Bettenburg et al. 2012) with (Kamiya et al. 2002; Bellon et al. 2007; Juergens
et al. 2009)) indicate that conclusions depend on the context in which the software system
is developed and the perspective taken in the research study (e.g., developer vs end-user).

There are only a few studies regarding code clones in Ethereum. The most similar study
to ours is the work of Gao et al. (2019), who also identify code clones from the source
code of smart contracts. The authors developed their own detection tool called SmartEmbed,
which relies on code embeddings (Bojanowski et al. 2017) and similarity checking tech-
niques. The goal of their tool is to quantify clones in Ethereum and identify clone-related
bugs. They investigated 22k contracts and determined that the clone ratio is close to 90%
(measured at the line level). In our study, we found a clone ratio close to 80%. Moreover, we
analyzed clone prevalence in more detail by observing clone types, trends, and contextual
information about clones (e.g., what do they do, who creates them, how active they are). The
scale of our study is 48% larger: we investigated a total of 33,073 smart contracts. Gao et al.
(2019) state that their tool can detected 194 clone-related bugs with a precision of 96%.

Still in the domain of Ethereum, Liu et al. (2018, 2019) proposed a clone detector
that operates at the bytecode level. Given that Ethereum stores the bytecode of every
deployed smart contract, such an approach has the potential to detect clones among any
set of currently deployed smart contracts on Ethereum. However, detecting clones at the
bytecode level is inherently more challenging compared to detecting them at the source
code level. For instance, a different bytecode can be produced for the same source code
depending on the version of the used compiler and the selected optimization parameters
of that compiler. To circumvent these problems, the authors introduce the notion of smart
contract birthmarks. According to the authors, a birthmark is a semantic-preserving and
computable representation for smart contract bytecode. This birthmark relies primarily on

19https://eos.io
20https://poa.network/

Empirical Software Engineering (2020) 25:4617–4675 4655

https://eos.io
https://poa.network/

symbolic execution traces and maintains syntactic properties of the code (e.g., number of
instructions). Clone detection is then performed by comparing the birthmarks of two con-
tracts. The authors report precision scores in the range of 54% to 93%. As opposed to
Liu et al. (2018, 2019), our goal is not to develop a new clone detector for smart contracts.
Instead, we employ a mature clone detector that operates at the source code level (Deckard)
and focus on a deeper understanding of the detected clones.

Ethereum can be seen as a repository of software applications (smart contracts). There-
fore, it makes sense to compare the cloning ratios that we obtained with those found in
cross-project cloning studies. In the context of GitHub, Lopes et al. (2017) discovered that
70% of the code on GitHub consists of clones of previously created files. This ratio is in a
similar range as the one obtained by us (79.2%), though much lower than the reported ratio
by Gao et al. (2019) of 90%. Lopes et al. (2017) highlights that researchers should be aware
of the actual lack of project diversity in GitHub (especially for the JavaScript language). We
issue a similar warning. Despite the hype around blockchain technology and its supposedly
wide range of use cases, what we actually see is a similar lack of diversity.

Lastly, we note that very high cloning rates have also been found in other studies. For
instance, Mockus (2007) analyzed a vastly heterogenous sample of open-source projects
and observed that approximately 50% of the files were used in more than one project (type-
1 clones). Comparatively, of all contracts that we studied, 16.7% were classified as type-1
clones. The key difference compared to our context, however, is that smart contracts can-
not be modified once deployed. Hence, while bugs can be fixed in traditional software
development through patches, such bugs cannot be fixed via code changes in Ethereum.

Immutability of Smart Contracts Code cloning in Ethereum is intrinsically related to
the immutability property of smart contracts. Fröwis and Böhme (2017) investigated the
immutability of the control flow of smart contracts by means of static analysis. According
to the authors, not only code immutability is necessary for trustlessness, but also control
flow immutability (i.e., call relationships between contracts should not change on runtime).
To find immutability violations, the authors extracted call relationships between smart con-
tracts and searched for contract addresses that are provided as input parameters or that are
read from state variables. The authors concluded that two out of five smart contracts require
trust in at least one third party.

Security of Smart Contracts Since blockchains applications typically operate on cryp-
tocurrencies, there is a large concern in the communities of both researchers and practi-
tioners around the security aspect of smart contracts. Such a concern became even more
relevant after the incident with “The DAO” and the consequent Ethereum hard-fork. Luu
et al. (2016) wrote a symbolic execution tool called OYENTE21 to find potential security
bugs. According to the authors, the tool flagged 45.6% of the contracts in Ethereum as
potentially vulnerable. Kalra et al. (2018) also leverage symbolic execution to verify the
correctness and fairness of smart contracts. Correctness is defined as adherence to safe pro-
gramming practices, while fairness is adherence to agreed upon higher-level business logical
(i.e., does the contract do what the author says it does?) The fairness evaluation is the main
novelty compared to prior work. According to the authors, 94.6% of the smart contracts are

21https://github.com/melonproject/oyente

Empirical Software Engineering (2020) 25:4617–46754656

https://github.com/melonproject/oyente

vulnerable to one or more correctness issues. The authors claim that ZEUS has zero false
negatives and a low false positive rate.

Chen et al. (2018) focus on discovering Ponzi schemes on Ethereum using a machine
learning classifier built with features from user accounts and op codes from the smart
contract bytecode. A Ponzi scheme is a classic type of fraud, similar to the pyramid scheme.
Authors claim to have found more than 400 Ponzi schemes running on Ethereum. Bartoletti
et al. (2017) have also written a paper on the same topic. The infestation of Ponzi schemes
in Ethereum was also discussed in a Financial Times article (Kaminska 2017). We searched
for the word pyramid in the code file of the studied contracts and we were able to spot a
clone cluster of self-admitted pyramid schemes.22

Finally, most recently, researchers have started to build static analysis to detect bugs in
smart contracts (Tikhomirov et al. 2018; Grishchenko et al. 2018). In industry, auditing
companies for smart contracts have emerged, promising to ensure that newly written smart
contracts are as free of bugs as possible. Some of these companies include the Solidified
Team23 and Securify.24

Others Zheng et al. (2018) propose high-level and low-level performance metrics for dif-
ferent blockchain systems (e.g., Ethereum), including a real-time monitoring framework.
The authors claim that the monitoring framework has much lower overhead and offers richer
performance information compared to prior approaches.

9 Threats to Validity and Limitations

Construct Validity We detect clones using Deckard. Instead of arbitrarily defining config-
uration parameters, we performed a careful sensitivity analysis (Section 5). Our sensitivity
analysis relied on 10 known clones (control group). Choosing a different control group
would possibly lead to the selection of a different similarity threshold, which would
in turn influence the set of clone clusters detected by the tool. Using other parameter
configurations, as well as other clone detectors, is a future work endeavor.

With regards to the definition of clone types, we relied on the taxonomy of Bellon et al.
(2007). For type-2 clones in particular, we relied on the notion of parameterized clones,
which was proposed in the seminal paper by Baker (1992) and reused by studies in the field
(Bettenburg et al. 2012; Kamiya et al. 2002; Wahler et al. 2004). In fact, some studies embed
the parameterization notion in the type-2 clone definition (Roy et al. 2009).

In the authorship analysis described as part of RQ2 (Section 6.2.3), we determine the
author of a smart contract by observing the blockchain address that created it. However, we
cannot guarantee that each address corresponds to a different developer, since a developer
could use multiple accounts (Section A.2). We believe, nevertheless, that this scenario is not
the norm. Furthermore, in the authorship analysis, we manually investigated extreme cases

22A pyramid scheme contract: https://etherscan.io/address/0x09f55c2d116a5833d41ba9208216d11a7cdba4
b3#code
23https://www.youtube.com/channel/UCpEUyenjL908MFMCO-J yhw
24https://securify.ch

Empirical Software Engineering (2020) 25:4617–4675 4657

https://etherscan.io/address/0x09f55c2d116a5833d41ba9208216d11a7cdba4b3#code
https://etherscan.io/address/0x09f55c2d116a5833d41ba9208216d11a7cdba4b3#code
https://www.youtube.com/channel/UCpEUyenjL908MFMCO-J_yhw
https://securify.ch

where a cluster had several contracts developed by few developers. Such an analysis is not
biased in case developers use multiple accounts.

External Validity More generally, several approaches and implementations have been pro-
posed to detect code clones (Roy and Cordy 2007; Koschke 2008; Sheneamer and Kalita
2016). Our paper uses Deckard and consists of a first step towards a deeper understanding
of code clones in blockchain-based platforms.

The population investigated in this study consisted of all verified smart contracts avail-
able on Etherscan at the time of data collection. Therefore, our results may not generalize to
all smart contracts in Ethereum. However, the goal of this paper is not to build a theory that
applies to all contracts, but rather to make developers and researchers aware that cloning
is the modus-operandi of developing smart contracts. Nevertheless, additional replication
studies are required in order to generalize our results to non-verified contracts as well as
smart contracts deployed in other blockchain platforms, such as EOS and POA.

Limitations Solidity is a new programming language compared to others like C#, C++,
and Java. Therefore, the availability of robust parsers is more constrained. Our study relies
on a Solidity parser that is still under development and therefore subject to bugs. However,
we could not find any problem in the produced ASTs. As part of this study, we contributed
to the parser’s development by opening issues in its GitHub repository and discussing them
with the developers.

10 Conclusion

The growing number of smart contracts being deployed in the Ethereum blockchain plat-
form has attracted the attention of media outlets, industries, and researchers. In this paper,
we investigated code cloning in verified contracts from Ethereum. We focused on three key
aspects, namely: defining the prevalence of cloned code and categorizing the types of clones
(Section 6.1), understanding the characteristics of clone clusters (Section 6.2), and deter-
mining whether smart contracts contain code blocks (subcontracts, libraries, and interfaces)
that are identical to those published by the OpenZeppelin project (Section 6.3). To the best
of our knowledge, this is the first study to investigate code cloning at the source code level
in Ethereum.

We observed that developers frequently clone contracts. In particular, only 20.8% of the
studied contracts are not a clone of any other contract. Also, 43.3% of the studied contracts
are type-2 clones, suggesting that developers rely on templates to develop smart contracts.
With regards to the characteristics, we observe that: (i) 9 out of the top-10 largest clone
clusters are token managers, (ii) most of the activity of a cluster tends to be concentrated on
a few contracts, and (iii) contracts in a cluster to be created by several authors. Finally, we
note that the studied contracts have different ratios of code blocks that are identical to those
provided by the OpenZeppelin project.

The main take-away message from this paper is that cloning is a common practice in
Ethereum. Due to the immutability of smart contracts, as well as the impossibility of revert-
ing transactions once they are deemed final, the noteworthy prevalence of clones yields
direct implications to the security, development, and usage of smart contracts. More gen-
erally, despite the hype around blockchain technology, researchers should be aware that

Empirical Software Engineering (2020) 25:4617–46754658

there is little diversity among verified smart contracts. Finally, by providing a supplemen-
tary material package with the data produced as part of this study, we encourage other
researchers to build upon our work and gain a deeper understanding of cloning in Ethereum.

Acknowledgments This research has been supported by the Natural Sciences and Engineering Research
Council (NSERC), as well as JSPS KAKENHI Japan (Grant Numbers: JP16K12415 and JP19J23477). This
study leveraged the computational resources provided by the Microsoft Azure for Research program.

Appendix A: Background

In this section, we describe concepts that are key to our study. Sections A.1 defines
blockchain. Section A.2 describes Ethereum accounts. Section A.3 introduces smart
contracts, including how one deploys, verifies, and executes smart contracts. Finally,
Section A.4 defines token, token contracts, and mintable token contracts.

A.1: Blockchain

A blockchain is a distributed, chronological database of transactions that is shared and main-
tained across nodes that participate in a peer-to-peer network. Ethereum and Bitcoin are two
of the most popular blockchain platforms. As of January 2020, the Ethereum platform holds
a remarkable market capitalization of 15.67 billion USD.25

Transactions are at the heart of blockchains. The name blockchain comes from the man-
ner in which transactions are stored. More specifically, transactions are packaged into blocks
that are linked to one another as a chain. Adding a new transaction to a blockchain requires
confirmation from several nodes of the network, which all abide to a certain consensus pro-
tocol. Such a protocol is designed to be costly (e.g., in terms of computing power or time)
in order to ensure that tampering with the data is infeasible. The Ethereum platform uses
the computationally costly Proof-of-Work (PoW) consensus protocol (Jakobsson and Juels
1999), which requires nodes to solve a hard mathematical puzzle. The PoW consensus pro-
tocol ensures that there is no better strategy to find the solution to the mathematical puzzle
than enumerating the possibilities (i.e., brute force). On the other hand, verification of a
solution is trivial and cheap. Ultimately, the PoW consensus protocol ensures that a trust-
worthy third-party (e.g., a bank) is not needed in order to validate transactions, enabling
entities who do not know or trust each other to build a dependable transaction ledger.

Once a block is appended to the blockchain, its contents cannot be altered without chang-
ing every other block that came after it. In practice, a transaction is deemed final and
irreversible after six block confirmations (i.e., after six new blocks have been added to
blockchain). More generally, due to the PoW consensus protocol, it is impossible to change
the contents of old blocks without owning more than 50% of the computing power that runs
Ethereum.

25Market capitalization is the multiplication of a company’s shares by its current stock price. In the virtual
coin world, a company’s share corresponds to the total value of its coin supply. As of January 07th 2020,
Ethereum has a total ether supply of 109,174,249, with a market price of 143.55 USD per ether, yielding a
market capitalization of 15.67 billion dollars.

Empirical Software Engineering (2020) 25:4617–4675 4659

A.2: Ethereum Accounts

The Ethereum platform supports two types of accounts: user accounts and smart contract
accounts. A user account is very simple in structure. A user account has an address (40-digit
hexadecimal ID), a transaction count, and the ETH balance (ETH is the official Ethereum
cryptocurrency). A contract account, in turn, holds the bytecode of a smart contract in addi-
tion to the previously mentioned fields. By means of a transaction, a user account can
transfer ETH to another account, deploy a smart contract (Section A.3.2), or execute a
function of a smart contract (Section A.3.4).

A.3: Smart Contracts

The key difference between Ethereum and Bitcoin is that the former supports smart con-
tracts. The term smart contract was coined by Szabo (1994). According to him, “a smart
contract is a computerized transaction protocol that executes the terms of a contract.” More
recently, with the advent of Ethereum and other sophisticated blockchain platforms, the
concept of smart contracts has become much broader, representing any general-purpose
computation. For instance, smart contracts have been used to implement crowdfunding
campaigns (e.g., by selling tokens to the public, similarly to an IPO26), RPG games (e.g.,
MyCryptoHeroes27), and (crypto)currency trading platforms (e.g., IDEX28). Blockchain
platforms that support smart contracts are known as programmable blockchains.

A.3.1: Source Code

The source code of a smart contract is written in the Solidity language, whose syntax is
similar to that of Java. An illustrative example is shown in Fig. 24. In order to enable the
separation of concerns (Dijkstra 1982), the Solidity language provides three key constructs:
subcontracts, libraries, and interfaces. When convenient, we indistinctly refer to them as
code blocks.

Subcontracts Subcontracts are similar to classes (as in object-oriented programming). As
such, subcontracts typically implement a certain concept (lines 27-51 and 53-65 from the
example). Similarly to Java, a subcontract is deemed as abstract when at least one of
their functions lacks an implementation. Abstract subcontracts cannot be instantiated, since
they are meant to be used as base subcontracts. If a subcontract A inherits from a base
subcontract B, then we say that A is a child of B (and that B is a parent of A).

Interfaces The concept of interfaces comes straight from object-oriented programming.
Interfaces are thus similar to abstract subcontracts, but they cannot have any implemented
functions (lines 20-25 from the example). In Solidity, subcontracts realize an interface by
inheriting from it (line 27 from the example).

26https://en.wikipedia.org/wiki/Initial public offering
27https://www.mycryptoheroes.net
28https://idex.market

Empirical Software Engineering (2020) 25:4617–46754660

https://en.wikipedia.org/wiki/Initial_public_offering
https://www.mycryptoheroes.net
https://idex.market

Fig. 24 An example of a smart contract written in Solidity

Libraries A library is an isolated piece of code that is meant to be stateless. Libraries often
provide a set of utility methods that are mindful of corner-cases or that optimize process-
ing time. For instance, a developer might implement a library that performs mathematical
operations without overflows exceptions (lines 4-18 from the example).

Empirical Software Engineering (2020) 25:4617–4675 4661

A.3.2: Deployment

In Ethereum, a user account can deploy smart contracts. The deployment of a smart contract
is done by means of a transaction29 that is sent to the blockchain. Such a transaction is
commonly referred to as the contract creation transaction. Upon the successful execution
of this transaction, the contract is deployed in the blockchain and receives an address. This
transaction also records the address of the user account that deployed the contract. This user
account is often referred to as the creator (author) of the contract.

A.3.3: Verification

When a user account deploys a smart contract to the Ethereum platform, only the byte-
code is stored in the blockchain. Therefore, it is up to the developer to publish the source
code of the smart contract. The Etherscan website, which is the primary Ethereum dash-
board website, provides a code transparency mechanism known as contract verification.
This mechanism offers developers the possibility of publishing the source code of a smart
contract on Etherscan, so it becomes available to anyone that is interested in the Ethereum
platform. The code verification mechanism works as follows: (i) the developer uploads a
flattened30 version of the source code (i.e., a single file containing all the source code) and
indicates a particular version of the Solidity compiler, (ii) Etherscan compiles the code using
the developer-indicated compiler version, (iii) Etherscan checks if the generated bytecode
matches the bytecode that is stored in the blockchain. If there is a perfect match, then the
smart contract is deemed as verified and the flattened version of the source code becomes
publicly available on Etherscan. We refer to this flattened version of the source code that is
published on Etherscan as the code file of a verified contract. A list of verified contracts can
be found at https://etherscan.io/contractsVerified.

A.3.4: Execution

In Ethereum, a user account can not only deploy but also execute contracts. A user account
executes a smart contract by sending transactions to it. These transactions carry data that
specify which function should be executed, as well as data regarding the input parameters
of this function. Figure 25 shows an example of a transaction in which the transac-
tion issuer (a user account) transferred tokens to another user account by executing the
transfer(address to, uint256 value) function of a smart contract.

A:4: Cryptocurrency, Tokens, and Coins

A cryptocurrency is a virtual artifact which represents money. A cryptocurrency is native
to its own blockchain. In the case of Ethereum, the cryptocurrency is called Ether and is
abbreviated as ETH. Ether can be transferred between user accounts. Ether (ETH) is not
much different than traditional currencies like USD Dollars (USD) and Euros (EUR). The

29Example of a transaction that created a smart contract: https://etherscan.io/tx/0xebcbe706f9959c8b98a72b
cd42fed545d3cf60fe3fa801186d5fef2249dac91a
30There are tools to help developers flatten Solidity code. An example is truffle-flattener, available
at https://www.npmjs.com/package/truffle-flattener.

Empirical Software Engineering (2020) 25:4617–46754662

https://etherscan.io/contractsVerified
https://etherscan.io/tx/0xebcbe706f9959c8b98a72bcd42fed545d3cf60fe3fa801186d5fef2249dac91a
https://etherscan.io/tx/0xebcbe706f9959c8b98a72bcd42fed545d3cf60fe3fa801186d5fef2249dac91a
https://www.npmjs.com/package/truffle-flattener

Fig. 25 An example of a smart contract transaction. Image extracted from Etherscan (https://etherscan.io/tx/
0xfe742a94a36e348451c7ad99cc74715f3d052b4874242f5f1d52f9cf46c9024f)

only practical difference is that we have metal coins and pieces of paper to represent dollars
and euros in the physical world. Instead, cryptocurrencies are purely virtual.

Tokens are created on top of existing blockchains. Tokens are used to represent digital
assets that are tradeable (and usually fungible), including everything from commodities to
voting rights. Every token has a name and an acronym (popularly known as a symbol) and
any smart contract can define a new token. It is common for tokens to represent money.
Therefore, in practice, (crypto)coins and tokens are frequently used interchangeably. For
instance, a crowdfunding initiative that is implemented as a distribution of tokens is more
commonly referred to as an ICO (Initial *Coin* Offering) instead of an ITO (Initial *Token*
Offering). There are several physical and virtual currency exchanges (e.g., IDEX31) around
the world that buy and sell (crypto)coins, as well as exchange one (crypto)coin for another.

A.4.1: Token Contract

A token contract is a special kind of smart contract that defines a token and keeps track of its
balance across user accounts. Ethereum has two main technical standards for the implemen-
tation of tokens, known as the ERC20 and ERC721. The standardization allows contracts
to operate on different tokens seamlessly, thus fostering interoperability between smart
contracts. From an implementation perspective, ERC20 and ERC721 are object-oriented
interfaces defining several functions, such as totalSupply(), balanceOf(address
who), and transfer(address to, uint256 value) (check IERC20 in Fig. 24).

31https://idex.market

Empirical Software Engineering (2020) 25:4617–4675 4663

https://etherscan.io/tx/0xfe742a94a36e348451c7ad99cc74715f3d052b4874242f5f1d52f9cf46c9024f
https://etherscan.io/tx/0xfe742a94a36e348451c7ad99cc74715f3d052b4874242f5f1d52f9cf46c9024f
https://idex.market

A.4.2: Mintable Token andMintable Token Contact

A mintable token is a special kind of token that has a non-fixed total supply. Most
mintable token contracts are ERC20 token contracts with an added mint() function,
which increases the total token supply upon invocation. Optionally, a burn() function is
also included to decrease the total supply. Bitcoin (BTC), the official cryptocurrency of
the homonymous blockchain plaform, is a mintable token. In particular, 12.5 newly cre-
ated BTCs are given as a reward to those who put the next block on the Bitcoin blockchain
platform. Ether (ETH) is not mintable.

Appendix B: Additional Resources

B.1: Top-10 Largest Clusters: UML Diagram of Each Representative Contract

<<Library>>

SafeMath

Internal:

add()

sub()

mul()

div()

<<Abstract>>

ERC20Interface

Public:

<<abstract>> totalSupply()

<<abstract>> balanceOf()

<<abstract>> allowance()

<<abstract>> transfer()

<<abstract>> approve()

<<abstract>> transferFrom()

<<event>> Transfer()

<<event>> Approval()

<<Abstract>>

ApproveAndCallFallBack

Public:

<<abstract>> receiveApproval()

Owned

Public:

owner: address

newOwner: address

Public:

<<event>> OwnershipTransferred()

<<modifier>> onlyOwner()

constructor()

transferOwnership()

acceptOwnership()

DropToken

Public:

symbol: string

name: string

decimals: uint8

_totalSupply: uint

balances: mapping(address=>uint)

allowed: mapping(address=>mapping(address=>uint))

Public:

<<fallback>> ()

constructor()

totalSupply()

balanceOf()

transfer()

approve()

transferFrom()

allowance()

approveAndCall()

transferAnyERC20Token()

Fig. 26 Representative contract of clone cluster 1. This contract is deployed at the address
0x4672bAD527107471cB5067a887f4656D585a8A31

Empirical Software Engineering (2020) 25:4617–46754664

owned

Public:

owner: address

Public:

<<modifier>> onlyOwner()

constructor()

transferOwnership()

<<Interface>>

tokenRecipient

Public:

receiveApproval()

TokenERC20

Public:

name: string

symbol: string

decimals: uint8

totalSupply: uint256

balanceOf: mapping(address=>uint256)

allowance: mapping(address=>mapping(address=>uint256))

Internal:

_transfer()

Public:

<<event>> Transfer()

<<event>> Burn()

constructor()

transfer()

transferFrom()

approve()

approveAndCall()

burn()

burnFrom()

MyAdvancedToken

Public:

sellPrice: uint256

buyPrice: uint256

frozenAccount: mapping(address=>bool)

Internal:

_transfer()

Public:

<<payable>> buy()

<<event>> FrozenFunds()

constructor()

mintToken()

freezeAccount()

setPrices()

sell()

Fig. 27 Representative contract of clone cluster 2. This contract is deployed at the address
0x8912358d977e123b51ecad1ffa0cc4a7e32ff774

Empirical Software Engineering (2020) 25:4617–4675 4665

<<Library>>

SafeMath

Internal:

add()

sub()

mul()

div()

<<Abstract>>

ERC20Interface

Public:

<<abstract>> totalSupply()

<<abstract>> balanceOf()

<<abstract>> allowance()

<<abstract>> transfer()

<<abstract>> approve()

<<abstract>> transferFrom()

<<event>> Transfer()

<<event>> Approval()

<<Abstract>>

ApproveAndCallFallBack

Public:

<<abstract>> receiveApproval()

Owned

Public:

owner: address

newOwner: address

Public:

<<event>> OwnershipTransferred()

<<modifier>> onlyOwner()

constructor()

transferOwnership()

acceptOwnership()

DADXChainERC20

Public:

symbol: string

name: string

decimals: uint8

_totalSupply: uint

balances: mapping(address=>uint)

allowed: mapping(address=>mapping(address=>uint))

Public:

constructor()

totalSupply()

balanceOf()

transfer()

approve()

transferFrom()

allowance()

approveAndCall()

Fig. 28 Representative contract of clone cluster 3. This contract is deployed at the address
0x30392c252da07b69194972e9f770b6dd5deb7af8

Empirical Software Engineering (2020) 25:4617–46754666

<<Library>>

SafeMath

Internal:

mul()

div()

sub()

add()

<<Abstract>>

token

Public:

<<abstract>> balanceOf()

<<abstract>> transfer()

Ownable

Public:

owner: address

Public:

<<event>> OwnershipTransferred()

<<modifier>> onlyOwner()

constructor()

transferOwnership()

lockEtherPay

Public:

token_reward: token

beneficiary: address

isLocked: bool

isReleased: bool

start_time: uint256

end_time: uint256

fifty_two_weeks: uint256

Public:

<<event>> TokenReleased()

constructor()

tokenBalance()

lock()

lockOver()

release()

Fig. 29 Representative contract of clone cluster 4. This contract is deployed at the address
0xa7d7609766d7fcfaf38eda123454bf94b1c1abf0

Fig. 30 Representative contract
of clone cluster 5. This contract
is deployed at the address
0x9064c91e51d7021a85ad96817e1432abf6624470

<<Interface>>

tokenRecipient

Public:

receiveApproval()

TokenERC20

Public:

name: string

symbol: string

decimals: uint256

totalSupply: uint256

balanceOf: mapping(address=>uint256)

allowance: mapping(address=>mapping(address=>uint256))

Internal:

_transfer()

Public:

<<event>> Transfer()

<<event>> Burn()

constructor()

transfer()

transferFrom()

approve()

approveAndCall()

burn()

burnFrom()

Empirical Software Engineering (2020) 25:4617–4675 4667

Fig. 31 Representative contract
of clone cluster 6. This contract
is deployed at the address
0x47a892bf7336a120ee69
b2db6acb552acad5f46d

RedPillCoin

Public:

standard: string

name: string

symbol: string

decimals: uint8

initialSupply: uint256

balanceOf: mapping(address=>uint256)

allowance: mapping(address=>mapping(address=>uint256))

Public:

<<fallback>> ()

constructor()

transfer()

Fig. 32 Representative contract
of clone cluster 7. This contract
is deployed at the address
0x1d8e5dcf365864fcda8ab39
d1f60d66ee2b82770

Token

Public:

<<event>> Transfer()

<<event>> Approval()

totalSupply()

balanceOf()

transfer()

transferFrom()

approve()

allowance()

StandardToken

Public:

balances: mapping(address=>uint256)

allowed: mapping(address=>mapping(address=>uint256))

totalSupply: uint256

Public:

transfer()

transferFrom()

balanceOf()

approve()

allowance()

NeyrosNetwork

Public:

name: string

decimals: uint8

symbol: string

version: string

unitsOneEthCanBuy: uint256

totalEthInWei: uint256

fundsWallet: address

Public:

<<fallback>> ()

constructor()

approveAndCall()

Empirical Software Engineering (2020) 25:4617–46754668

<<Abstract>>

Token

Public:

totalSupply: uint256

Public:

<<abstract>> balanceOf()

<<abstract>> transfer()

<<abstract>> transferFrom()

<<abstract>> approve()

<<abstract>> allowance()

<<event>> Transfer()

<<event>> Approval()

StandardToken

Public:

balances: mapping(address=>uint256)

allowed: mapping(address=>mapping(address=>uint256))

Public:

transfer()

transferFrom()

balanceOf()

approve()

allowance()

HumanStandardToken

Public:

name: string

decimals: uint8

symbol: string

version: string

Public:

<<fallback>> ()

constructor()

approveAndCall()

Fig. 33 Representative contract of clone cluster 8. This contract is deployed at the address
0x9a642d6b3368ddc662ca244badf32cda716005bc

Empirical Software Engineering (2020) 25:4617–4675 4669

Fig. 34 Representative contract
of clone cluster 9. This contract
is deployed at the address
0x2eb86e8fc520e0f6bb5d9af08f924fe70558ab89

<<Interface>>

tokenRecipient

Public:

receiveApproval()

TokenERC20

Public:

name: string

symbol: string

decimals: uint8

totalSupply: uint256

balanceOf: mapping(address=>uint256)

allowance: mapping(address=>mapping(address=>uint256))

Internal:

_transfer()

Public:

<<event>> Transfer()

<<event>> Burn()

constructor()

transfer()

transferFrom()

approve()

approveAndCall()

burn()

burnFrom()

SafeMath

Public:

safeAdd()

safeSub()

safeMul()

safeDiv()

<<Abstract>>

ERC20Interface

Public:

<<abstract>> totalSupply()

<<abstract>> balanceOf()

<<abstract>> allowance()

<<abstract>> transfer()

<<abstract>> approve()

<<abstract>> transferFrom()

<<event>> Transfer()

<<event>> Approval()

<<Abstract>>

ApproveAndCallFallBack

Public:

<<abstract>> receiveApproval()

Owned

Public:

owner: address

newOwner: address

Public:

<<event>> OwnershipTransferred()

<<modifier>> onlyOwner()

constructor()

transferOwnership()

acceptOwnership()

CharityToken

Public:

symbol: string

name: string

decimals: uint8

_totalSupply: uint

balances: mapping(address=>uint)

allowed: mapping(address=>mapping(address=>uint))

Public:

<<fallback>> ()

constructor()

totalSupply()

balanceOf()

transfer()

approve()

transferFrom()

allowance()

approveAndCall()

transferAnyERC20Token()

Fig. 35 Representative contract of clone cluster 10. This contract is deployed at the address
0x0a2eaa1101bfec3844d9f79dd4e5b2f2d5b1fd4d

Empirical Software Engineering (2020) 25:4617–46754670

References

Baker BS (1992) A program for identifying duplicated code Computer Science and Statistics: Proceedings
of the 24th Symposium on the Interface, vol 24, pp 49–57

Bartoletti M, Carta S, Cimoli T, Saia R (2017) Dissecting ponzi schemes on Ethereum: identification,
analysis, and impact, vol abs/1703.03779. arXiv:1703.03779

Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and evaluation of clone detection
tools. IEEE Trans. Softw. Eng. 33(9):577–591. https://doi.org/10.1109/TSE.2007.70725

Bettenburg N, Shang W, Ibrahim WM, Adams B, Zou Y, Hassan AE (2012) An empirical study on
inconsistent changes to code clones at the release level. Sci. Comput. Program. 77(6):760–776.
https://doi.org/10.1016/j.scico.2010.11.010

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics 5:135–146

Ceriani L, Verme P (2012) The origins of the gini index: extracts from variabilità e mutabilità (1912) by
corrado gini. J Econ Inequal 10(3):421–443. https://doi.org/10.1007/s10888-011-9188-x

Chen W, Zheng Z, Cui J, Ngai E, Zheng P, Zhou Y (2018) Detecting ponzi schemes on Ethereum: Towards
healthier blockchain technology. In: Proceedings of the 2018 World Wide Web Conference WWW
’18. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, pp 1409–1418, https://doi.org/10.1145/3178876.3186046

Cordy JR, Roy CK (2011) The nicad clone detector. In: Proceedings of the 2011 IEEE 19th Interna-
tional Conference on Program Comprehension, IEEE Computer Society ICPC, USA, pp 219–220,
https://doi.org/10.1109/ICPC.2011.26

di Angelo M, Salzer G (2019) A survey of tools for analyzing Ethereum smart contracts. In: 2019 IEEE
International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp 69–78

Dijkstra EW (1982) On the role of scientific thought. Springer, New York, NY, pp 60–66.
https://doi.org/10.1007/978-1-4612-5695-3 12

Economist T (2018) Blockchain technology may offer a way to re-decentralise the internet, The Economist
Group Limited. [Online; accessed 10-August-2018]

Fröwis M, Böhme R (2017) In code we trust? In: Data Privacy Management, Cryptocurrencies and
Blockchain Technology Garcia-Alfaro, J Navarro-Arribas, G Hartenstein, H Herrera-Joancomartı́, J.
Springer International Publishing, Cham, pp 357–372

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements of reusable object-oriented
software. Addison-Wesley Reading, Boston, MA, USA

Gao Z, Jayasundara V, Jiang L, Xia X, Lo D, Grundy J (2019) Smartembed: A tool for clone and bug
detection in smart contracts through structural code embedding. In: Proceedings of the 35th International
Conference on Software Maintenance and Evolution. ICSME ’19

Göde N, Koschke R (2009) Incremental clone detection. In: Proceedings of the 2009 European Conference
on Software Maintenance and Reengineering. CSMR’09. IEEE Computer Society, USA, pp 219–228,
https://doi.org/10.1109/CSMR.2009.20

Grishchenko I, Maffei M, Schneidewind C (2018) Foundations and tools for the static analysis of Ethereum
smart contracts. In: Computer Aided Verification Chockler, H Weissenbacher, G Springer International
Publishing Cham, pp 51–78

Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st Inter-
national Conference on Software Engineering. ICSE ’09. IEEE Computer Society, Washington, DC,
USA, pp 78–88, https://doi.org/10.1109/ICSE.2009.5070510

Hindle A, Barr ET, Su Z, Gabel M, Devanbu P (2012) On the naturalness of software. In: Proceedings of the
34th International Conference on Software Engineering. ICSE ’12. IEEE Press, Piscataway, NJ, USA,
pp 837–847, http://dl.acm.org/citation.cfm?id=2337223.2337322

Horwitz J, Huang Z (2018) “CryptoKitties” clones are already popping up in China. [Online; accessed 02-
December-2019]

Jakobsson M, Juels A (1999) Proofs of work and bread pudding protocols Proceedings of the IFIP TC6/TC11
Joint Working Conference on Secure Information Networks: Communications and Multimedia Security.
CMS ’99. Kluwer, B.V., Deventer, The Netherlands, The Netherlands, pp 258–272. http://dl.acm.org/
citation.cfm?id=647800.757199

Jiang L, Misherghi G, Su Z, Glondu S (2007a) Deckard: Scalable and accurate tree-based detection of code
clones. In: Proceedings of the 29th International Conference on Software Engineering. ICSE ’07. IEEE
Computer Society, Washington, DC, USA, pp 96–105, https://doi.org/10.1109/ICSE.2007.30

Jiang L, Su Z, Chiu E (2007b) Context-based detection of clone-related bugs. In: Proceedings of the the 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium

Empirical Software Engineering (2020) 25:4617–4675 4671

http://arxiv.org/abs/1703.03779
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1016/j.scico.2010.11.010
https://doi.org/10.1007/s10888-011-9188-x
https://doi.org/10.1145/3178876.3186046
https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1109/CSMR.2009.20
https://doi.org/10.1109/ICSE.2009.5070510
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=647800.757199
http://dl.acm.org/citation.cfm?id=647800.757199
https://doi.org/10.1109/ICSE.2007.30

on The Foundations of Software Engineering. ESEC-FSE ’07. ACM, New York, NY, USA, pp 55–64,
https://doi.org/10.1145/1287624.1287634

Juergens E, Deissenboeck F, Hummel B, Wagner S (2009) Do code clones matter? In: Proceedings of the
31st International Conference on Software Engineering. ICSE ’09. IEEE Computer Society, Washington,
DC, USA, pp 485–495, https://doi.org/10.1109/ICSE.2009.5070547

Kalra S, Goel S, Dhawan M, Sharma S (2018) ZEUS: analyzing safety of smart contracts. In: 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. NDSS ’18. The Internet Society

Kaminska I (2017) It’s not just a Ponzi, it’s a ‘smart’ Ponzi. [Online; accessed 26-August-2018]
Kamiya T, Kusumoto S, Inoue K (2002) Ccfinder: A multilinguistic token-based code clone

detection system for large scale source code. IEEE Trans. Softw. Eng. 28(7):654–670.
https://doi.org/10.1109/TSE.2002.1019480

Kapser CJ, Godfrey MW (2008) “cloning considered harmful” considered harmful: patterns of cloning in
software. Empir Softw Eng 13(6):645. https://doi.org/10.1007/s10664-008-9076-6

Kim M, Sazawal V, Notkin D, Murphy G (2005) An empirical study of code clone genealogies. In: Proceed-
ings of the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ESEC/FSE-13. ACM, New York,
NY, USA, pp 187–196, https://doi.org/10.1145/1081706.1081737

Koschke RMens T, Demeyer S (eds) (2008) Identifying and removing software clones, 1st edn. Springer
Liu H, Yang Z, Jiang Y, Zhao W, Sun J (2019) Enabling clone detection for Ethereum via smart contract

birthmarks. In: Proceedings of the 27th International Conference on Program Comprehension. ICPC ’19.
IEEE Press, Piscataway, NJ, USA, pp 105–115, https://doi.org/10.1109/ICPC.2019.00024

Liu H, Yang Z, Liu C, Jiang Y, Zhao W, Sun J (2018) Eclone: Detect semantic clones in Ethereum via
symbolic transaction sketch. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.
ACM, New York, NY, USA, pp 900–903, https://doi.org/10.1145/3236024.3264596

Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) Déjàvu:
A map of code duplicates on github. Proc. ACM Program. Lang. 1(OOPSLA):84:1–84:28.
https://doi.org/10.1145/3133908

Luu L, Chu D-H, Olickel H, Saxena P, Hobor A (2016) Making smart contracts smarter. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS ’16. ACM, New
York, NY, USA, pp 254–269, https://doi.org/10.1145/2976749.2978309

Mockus A (2007) Large-scale code reuse in open source software. In: Proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and Development. FLOSS ’07. IEEE Computer
Society, Washington, DC, USA, pp 7–, https://doi.org/10.1109/FLOSS.2007.10

Popper N (2017) Understanding Ethereum, Bitcoin’s Virtual Cousin, The New York Times. [Online; accessed
10-August-2018]

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: Should
we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?
In: Annual meeting of the Florida Association of Institutional Research, pp 1–3

Roos P (2015) Fast and precise statistical code completion. In: Proceedings of the 37th International Confer-
ence on Software Engineering - Volume 2. ICSE ’15. IEEE Press, Piscataway, NJ, USA, pp 757–759.
http://dl.acm.org/citation.cfm?id=2819009.2819158

Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program. 74(7):470–495. https://doi.org/10.1016/j.scico.
2009.02.007

Roy CK, Cordy JR (2007) A survey on software clone detection research Technical Report, School of
Computing - Queen’s University

Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016) Sourcerercc: Scaling code clone detec-
tion to big-code. In: Proceedings of the 38th International Conference on Software Engineer-
ing. ICSE ’16. Association for Computing Machinery, New York, NY, USA, pp 1157–1168,
https://doi.org/10.1145/2884781.2884877

Shannon CE, Weaver W (1963) A mathematical theory of communication. University of Illinois Press,
Champaign, IL, USA

Sheneamer A, Kalita J (2016) A survey of software clone detection techniques. International Journal of
Computer Applications 137(10):1–21. Published by Foundation of Computer Science (FCS), NY, USA

Skvorc B (2018) 15 Alternatives to CryptoKitties You Had No Idea Existed. [Online; accessed 02-December-
2019]

Swan M (2015) Blockchain: Blueprint for a new economy 1 O’Reilly Media, Inc.
Szabo N (1994) Smart Contracts. [Online; accessed 26-August-2018]

Empirical Software Engineering (2020) 25:4617–46754672

https://doi.org/10.1145/1287624.1287634
https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1109/ICPC.2019.00024
https://doi.org/10.1145/3236024.3264596
https://doi.org/10.1145/3133908
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/FLOSS.2007.10
http://dl.acm.org/citation.cfm?id=2819009.2819158
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1145/2884781.2884877

Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alexandrov Y (2018)
Smartcheck: Static analysis of Ethereum smart contracts. In: Proceedings of the 1st International Work-
shop on Emerging Trends in Software Engineering for Blockchain. WETSEB ’18. ACM, New York, NY,
USA, pp 9–16, https://doi.org/10.1145/3194113.3194115

Ukkonen E (1992) Approximate string-matching with q-grams and maximal matches. Theor Comput Sci
92(1):191–211. http://www.sciencedirect.com/science/article/pii/0304397592901434

Wahler V, Seipel D, Gudenberg JW, Fischer G (2004) Clone detection in source code by frequent
itemset techniques. In: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE
International Workshop. SCAM ’04. IEEE Computer Society, Washington, DC, USA, pp 128–135,
https://doi.org/10.1109/SCAM.2004.5

Wood G (2017) Ethereum: A Secure Decentralised Generalised Transaction Ledger - EIP-150 Revision.
[Online; accessed 10-August-2018]

Zheng P, Zheng Z, Luo X, Chen X, Liu X (2018) A detailed and real-time performance monitoring
framework for blockchain systems. In: Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering in Practice. ICSE-SEIP ’18. ACM, New York, NY, USA,
pp 134–143, https://doi.org/10.1145/3183519.3183546

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Masanari Kondo is currently a Ph.D. student in the Software Engi-
neering Laboratory (SEL) at the Kyoto Institute of Technology,
Kyoto, Japan. He was also a visiting researcher in the Software Anal-
ysis & Intelligence Lab (SAIL) at Queen’s University, Kingston,
Canada. He is a Young Scientist of Japan Society for the Promo-
tion of Science (JSPS) Research Fellowships (DC1). His research
interests include supporting software developers by providing tools
and methods for software quality assurance activities based on soft-
ware repository mining, machine learning, and statistical analysis
techniques. He received his BSc and MSc degrees in Information
Science from the Kyoto Institute of Technology (2017 and 2019).
More about Masanari can be read on his website: https://se.is.kit.ac.
jp/∼m-kondo/.

GustavoA. Oliva is a Research Fellow at the School of Computing of
Queen’s University in Canada under the supervision of professor Dr.
Ahmed E. Hassan. Gustavo leads the blockchain research team at the
Software Analysis and Intelligence Lab (SAIL). In his research, Gus-
tavo leverages his expertise on software architecture, social network
analysis, and machine learning to analyze blockchain with Software
Engineering lens. Gustavo received his MSc and PhD degrees from
the University of São Paulo (USP) in Brazil under the supervision
of professor Dr. Marco Aurélio Gerosa. More information at: http://
www.gaoliva.com.

Empirical Software Engineering (2020) 25:4617–4675 4673

https://doi.org/10.1145/3194113.3194115
http://www.sciencedirect.com/science/article/pii/0304397592901434
https://doi.org/10.1109/SCAM.2004.5
https://doi.org/10.1145/3183519.3183546
https://se.is.kit.ac.jp/~m-kondo/
https://se.is.kit.ac.jp/~m-kondo/
http://www.gaoliva.com
http://www.gaoliva.com

Dr. Zhen Ming (Jack) Jiang is an associate professor at the Depart-
ment of Electrical Engineering and Computer Science, York Univer-
sity in Toronto, Canada. His research interests lie within software
engineering and computer systems, with special interests in software
performance engineering, software analytics, source code analysis,
software architectural recovery, software visualizations, and debug-
ging and monitoring of distributed systems. Some of his research
results are already adopted and used in practice on a daily basis. He is
the cofounder of the annually held International Workshop on Load
Testing and Benchmarking of Software Systems (LTB). He received
several Best Paper Awards including ICST 2016, ICSE 2015 (SEIP
track), ICSE 2013, and WCRE 2011. He received the BMath and
MMath degrees in computer science from the University of Waterloo,
and the PhD degree from the School of Computing at the Queen’s
University. More information at: http://www.cse.yorku.ca/∼zmjiang.

Ahmed E. Hassan is an IEEE Fellow, an ACM SIGSOFT Influen-
tial Educator, an NSERC Steacie Fellow, the Canada Research Chair
(CRC) in Software Analytics, and the NSERC/BlackBerry Software
Engineering Chair at the School of Computing at Queen’s University,
Canada. His research interests include mining software repositories,
empirical software engineering, load testing, and log mining. He
received a PhD in Computer Science from the University of Water-
loo. He spearheaded the creation of the Mining Software Repositories
(MSR) conference and its research community. He also serves/d on
the editorial boards of IEEE Transactions on Software Engineering,
Springer Journal of Empirical Software Engineering, and PeerJ Com-
puter Science. Contact ahmed@cs.queensu.ca. More information at:
http://sail.cs.queensu.ca/.

Osamu Mizuno received M.E. and Ph.D. degrees from Osaka Uni-
versity in 1998 and 2001, respectively. Currently, he is a Professor at
the Faculty of Information and Human Sciences, Kyoto Institute of
Technology. His current research interests include software repository
mining, fault-prone module prediction, software process improve-
ment, and risk evaluation and prediction of software development. He
is a member of IEEE.

Empirical Software Engineering (2020) 25:4617–46754674

http://www.cse.yorku.ca/~zmjiang
http://sail.cs.queensu.ca/

Affiliations

Masanari Kondo1 ·GustavoA. Oliva2 ·ZhenMing (Jack) Jiang3 ·AhmedE. Hassan2 ·
OsamuMizuno1

Gustavo A. Oliva
gustavo@cs.queensu.ca

Zhen Ming (Jack) Jiang
zmjiang@cse.yorku.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

Osamu Mizuno
o-mizuno@kit.ac.jp

1 Software Engineering Laboratory, Department of Information Science, Kyoto Institute
of Technology, Kyoto, Japan

2 Software Analysis and Intelligence Lab (SAIL), School of Computing, Queen’s University, Kingston,
Canada

3 Department of Electrical Engineering & Computer Science, York University, Toronto, Canada

Empirical Software Engineering (2020) 25:4617–4675 4675

http://orcid.org/0000-0002-6317-7001
mailto: gustavo@cs.queensu.ca
mailto: zmjiang@cse.yorku.ca
mailto: ahmed@cs.queensu.ca
mailto: o-mizuno@kit.ac.jp

	Code Cloning in Smart Contracts Development
	Abstract
	Introduction
	Background
	Ethereum
	Blockchain
	Ethereum
	Smart Contract
	Verified Smart Contract
	Ethereum Accounts
	Cryptocurrency, Tokens, and Coins
	Token Contract

	Code Cloning
	Type-1 Clone
	Type-2 Clone
	Type-3 Clone

	Data Collection
	Preliminary Study
	Approach
	Result

	Experimental Setup
	Selection of a Clone Detector
	Clone Detection Parameters
	Sensitivity Analysis

	Empirical Study on Code Cloning
	RQ1: How Frequently are Verified Contracts Cloned?
	Motivation
	Approach
	Findings. Observation 1)
	Observation 2)
	Observation 3)
	Observation 4)
	Observation 5)

	Observations on the Contracts with the Highest Number of Clone Siblings
	On the Contract with the Highest Number of type-1 Clone Siblings
	On the Contract with the Highest Number of type-2 Clone Siblings

	RQ2: What are the Characteristics of Clusters of Similar Verified Contracts?
	On the Categories of Contracts in Large Clone Clusters
	Motivation
	Approach
	Findings. Observation 6)
	Observation 7)

	On the Activity of Contracts Within Clone Clusters
	Motivation
	Approach
	Findings. Observation 8)
	Observation 9)

	On the Authorship of Contracts Within Clone Clusters
	Motivation
	Approach
	Findings. Observation 10)
	Observation 11)

	RQ3: How Frequently Code Blocks of Verified Contracts are Identical to Those from OpenZeppelin?
	Motivation
	Approach
	Findings. Observation 12)
	Observation 13)
	Observation 14)

	Discussion
	Implications
	Implications to the Security of Smart Contracts
	Implication 1)
	Implication 2)

	Implications to the Development of Smart Contracts
	Implication 3)
	Implication 4)
	Implication 5)
	Implication 6)

	Avenues for Future Research

	Related Work
	Code Cloning.
	Immutability of Smart Contracts
	Security of Smart Contracts
	Others

	Threats to Validity and Limitations
	Construct Validity
	External Validity
	Limitations

	Conclusion
	Appendix: A: Background
	A.1: Blockchain
	A.2: Ethereum Accounts
	A.3: Smart Contracts
	A.3.1: Source Code
	Subcontracts
	Interfaces
	Libraries

	A.3.2: Deployment
	A.3.3: Verification
	A.3.4: Execution
	A:4: Cryptocurrency, Tokens, and Coins
	A.4.1: Token Contract
	A.4.2: Mintable Token and Mintable Token Contact
	Appendix: B: Additional Resources
	B.1: Top-10 Largest Clusters: UML Diagram of Each Representative Contract
	References
	Affiliations

