
Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09691-z

Assessing and optimizing the performance impact
of the just-in-time configuration parameters - a case
study on PyPy

Yangguang Li1 ·ZhenMing (Jack) Jiang1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Many modern programming languages (e.g., Python, Java, and JavaScript) support just-in-
time (JIT) compilation to speed up the execution of a software system. During runtime, the
JIT compiler translates the frequently executed part of the system into efficient machine
code, which can be executed much faster compared to the default interpreted mode. There
are many JIT configuration parameters, which vary based on the programming languages
and types of the jitting strategies (method vs. tracing-based). Although there are many exist-
ing works trying to improve various aspects of the jitting process, there are very few works
which study the performance impact of the JIT configuration settings. In this paper, we
performed an empirical study on the performance impact of the JIT configuration settings
of PyPy. PyPy is a popular implementation of the Python programming language. Due to
PyPy’s efficient JIT compiler, running Python programs under PyPy is usually much faster
than other alternative implementations of Python (e.g., cPython, Jython, and IronPython).
To motivate the need for tuning PyPy’s JIT configuration settings, we first performed an
exploratory study on two microbenchmark suites. Our findings show that systems executed
under PyPy’s default JIT configuration setting may not yield the best performance. Opti-
mal JIT configuration settings vary from systems to systems. Larger portions of the code
being jitted do not necessarily lead to better performance. To cope with these findings, we
developed an automated approach, ESM-MOGA, to tuning the JIT configuration settings.
ESM-MOGA, which stands for effect-size measure-based multi-objective genetic algo-
rithm, automatically explores the PyPy’s JIT configuration settings for optimal solutions.
Case studies on three open source systems show that systems running under the resulting
configuration settings significantly out-perform (5% - 60% improvement in average peak
performance) the default configuration settings.

Keywords Just-in-time compilation · Performance optimization · Software configuration ·
Performance testing · Performance analysis

Communicated by: Sven Apel

� Yangguang Li
yangguang@cse.yorku.ca

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09691-z&domain=pdf
http://orcid.org/0000-0002-2915-9360
mailto: yangguang@cse.yorku.ca

Empirical Software Engineering

1 Introduction

Software performance is one of the crucial factors related to the success and the sus-
tainability of large scale software systems, which serve hundreds or even millions of
customers’ requests every day. Failure to provide satisfactory performance would result
in customers’ abandonment and loss of revenue. For example, Amazon reported that one
second delay in loading their webpages could result in $1.6 billion loss in their sales rev-
enue annually (Eaton 2017). BBC has also recently found that 10% of the users will leave
their website even if there is merely one additional second of performance delay (Clark
2017). Various strategies (e.g., asynchronous requests (Insights 2017), data compres-
sion (Grigorik 2017), just-in-time (JIT) compilation (Oracle Java 8 Advanced JIT Compiler
Options 2017), load balancing (What is Load Balancing? 2017), and result caching (Can-
dan et al. 2001)) have been developed to further enhance the performance of these
systems.

In general, there are three types of system executions depending on the programming
languages: (1) executing natively on top of the operating systems (e.g., C and C++), (2)
executing the source code by the interpreters (e.g., Python, PHP, and JavaScript), and (3)
executing compiled intermediate artifacts on the virtual machines (e.g., Java and C#). Com-
pared to the native execution mode, systems executed under the interpreted mode (a.k.a.,
by interpreters or virtual machines) are generally slower due to their additional layers. To
cope with this challenge, the JIT compilation is introduced so that frequently executed code
snippets are compiled into binaries, which can be executed natively.

Existing works on the JIT compilation focus on the jitting strategies (e.g.,
method (Cramer et al. 1997) vs. trace-level based code jitting (Bolz et al. 2009)), speed-
ing up the process of the JIT compilations (Jantz and Kulkarni 2013; Gal et al. 2009; Lion
et al. 2016), optimizing the performance of the underlying virtual machines (Wimmer and
Brunthaler 2013; Würthinger et al. 2017, 2013), and detecting JIT unfriendly code (Gong
et al. 2015). Unfortunately, there are very few existing studies which investigate the impact
of the JIT configurations on the system performance. Software configuration is one of the
main sources of software errors (Xu et al. 2016). The configuration settings of a software
system can significantly impact its performance. Most of the existing configuration tun-
ing and debugging studies are focused on the configurations of the studied systems (Duan
et al. 2009; Yilmaz et al. 2007; Sopitkamol and Menascé 2005; Jamshidi et al. 2017a). For
tuning the configuration settings of interpreters or virtual machines, the focus is mainly
on optimizing the performance of the garbage collectors (Singer et al. 2007; Lengauer and
Mössenböck 2014; Brecht et al. 2006), except the work by Hoste et al. (2010). In Hoste
et al. (2010), Hoste et al. provided an automated approach to tuning the JIT compiler for
Java, which is a method-based JIT. Hence, in this paper, we seek to investigate the impact of
the tracing-based JIT configurations on the system performance by using PyPy as our case
study subject.

Python is nowadays one of the most popular programming languages (Gewirtz 2017).
Python has been used extensively to develop real-world business systems, including many
large scale and mission-critical systems inside companies like Facebook (Komorn 2016),
Google (What is python used for at Google? 2017), and PayPal (Hashemi 2014). Among
various implementations of the Python programming language (e.g., CPython, IronPython,
Jython, and PyPy), PyPy is generally the fastest (PyPy speed center 2017) mainly due to
PyPy’s efficient tracing-based JIT compiler (Bolz et al. 2009). Hence, in this paper, we focus
on assessing and optimizing the performance impact of PyPy’s JIT configuration settings.
The contributions of this paper are:

Empirical Software Engineering

1. This is the first empirical study on assessing and optimizing the impact of the tracing-
based JIT configuration settings on system performance.

2. Our experiments are carried out on both the synthetic benchmarks as well as real sys-
tems. The empirical findings in this paper can be useful for both software engineering
and programming language researchers as well as practitioners.

3. Compared to Hoste et al. (2010) which also used a search-based approach to automat-
ically tuning the JIT configuration settings, many of the details (e.g., the initial setup,
the configuration settings, and the evaluation details) are not clear. It is not easy to reap-
ply the approach to other Java-based systems or other JIT compilers. In this paper, we
have detailed our search-based configuration tuning approach, (ESM-MOGA) to ease
replication.

4. To enable replication and further research on this topic, we have provided a Replica-
tion package (2018) which includes the implementation for our configuration tuning
framework, PyPyJITTuner, as well as the experimental data.

1.1 Paper Organization

The rest of the paper is organized as follows: Section 2 provides some background
information regarding the JIT compilation process and explains PyPy’s JIT configuration
parameters. Section 3 presents an exploratory study on the performance impact of PyPy’s
JIT configuration settings on two microbenchmark suites. Section 4 describes our automated
approach to tuning PyPy’s JIT configuration settings. Section 5 demonstrates the effective-
ness of our automated approach by applying it to three open source systems. Section 6
provides some discussions based on the results of the case study and presents some future
work. Section 7 presents the threats to validity and Section 8 explains the related research
works. Section 9 concludes this paper and presents some future work.

2 Background

In this section, we will first give an overview of the JIT compilation process in Section 2.1.
Then we will explain PyPy’s JIT configuration setting in Section 2.2.

2.1 An Overview of the JIT Compilation Process

JIT compilers are introduced for systems executed by interpreters (e.g., Python, PHP, and
Ruby) or virtual machines (e.g., Java and C#) to further speed up the system performance
during runtime. By default, there are no JIT compilations upon the initial system startup
and these systems are executed under the interpreted mode by their interpreters or virtual
machines. Hence, their performance is usually slower than natively executed systems (e.g.,
systems programmed in C or C++), whose binaries are executed directly on top of the oper-
ating systems. To cope with this limitation, the JIT compiler is introduced so that, during
runtime, various parts of the systems are converted into machine executable code (a.k.a.,
code jitting). However, the code jitting process is usually slow, as it takes time to load and
compile the corresponding code snippets. Hence, only the commonly used (a.k.a., “hot”)
code snippets are usually jitted (Bolz et al. 2009; Oaks 2014). For such systems, there is
usually a warmup period after the initial system startup before these systems reach the peak
performance (Barrett et al. 2017). During the warmup period, the frequently executed code
will be profiled to locate the “hot” spots and various code snippets are being jitted (Lion

Empirical Software Engineering

et al. 2016). In general, there are two approaches for code jitting depending on their
granularity:

– Method-based JIT Compiling: if one method has been used many times (a.k.a., “hot
method”), the method-based JIT will compile this entire method into the binary exe-
cutable format. Hotspot (Oracle’s implementation of the Java Virtual Machine) and
Chakra (Microsoft’s JavaScript engine) use the method-based JIT Compiling.

– Trace-based JIT Compiling is more fine-grained, in which only the commonly exe-
cuted code path (a.k.a., “hot path”) inside a method is compiled into the binary
executable format. PyPy and TracingMonkey (Mozilla’s JavaScript engine) use the
trace-based JIT Compiling.

For the method-based JIT compiler, there will be a threshold value (e.g., 1500 as the
default value for the configuration parameter -XX:CompileThreshold in Oracle’s HotSpot
JVM), which defines the number of invocations for a particular method before this method
is considered to be hot. As soon as a method has been called 1500 times, the whole method
will be compiled into the binary executable format.

For the trace-based JIT compiler, the process is a bit more complicated. We will use
the sample code snippet shown in Fig. 1 to explain. There can be various configuration
parameters which define a particular code path to be hot. For example, in PyPy, there is a
configuration parameter, called threshold, which defines the number of times a loop has to
be run before it can be considered hot. During the system execution, the PyPy JIT compiler
counts the number of iterations for each loop and all code paths in the loop will be potential
candidates for code jitting. For example, the code lines marked with star (*) in Fig. 1 are the
resulting jitted lines, if the method test is executed in PyPy under the default configuration
setting. After the loop reaches 1039 (the default value for threshold) iterations, the JIT
compiler starts to trace the code path in the next iteration. And the code path which contains
the if branch, and the second elif branch will be recorded and compiled into efficient
machine code. The first elif and the else branches are not jitted, as they are not in the code
path of the traced iteration.

Fig. 1 A sample PyPy code snippet with the jitted code marked as “(*)”

Empirical Software Engineering

2.2 PyPy’s JIT Configuration

The types and the values of the JIT configuration parameters vary depending on the
programming languages and the compilers. For example, there are more configuration
parameters for PyPy’s JIT compiler than Java’s JIT compiler. Even within the same
programming language, different language implementations may use different configura-
tion parameters. For example, in Java, the configuration parameter which indicates the
threshold value for the number of invocations for a method before code jitting is called -
XX:CompileThreshold in Oracle’s HotSpot JVM (Oracle Java 8 Advanced JIT Compiler
Options 2017), and -Xjit:count for IBM’s JVM (IBM Java 8 JIT and AOT command-line
options 2017). In this paper, we have selected PyPy’s JIT configuration parameters as our
case study subject, due to the popularity of the Python programming language (Gewirtz
2017) and the fast execution under PyPy with its efficient JIT compiler (Bolz et al. 2009;
PyPy speed center 2017). The list of JIT configuration parameters can be obtained through
running the pypy --jit help command. For PyPy version 5.7.1, which is the PyPy
version used in this paper, there are 19 of them.

3 Exploratory Study

To motivate the importance of this work, we have conducted an exploratory study on the
performance impact of PyPy’s JIT configuration settings. We seek to answer the following
three research questions:

– RQ1:How different is the system performance before and after its code has been jitted?
When the system initially starts up, all of its code is executed under the interpreted

mode. The code jitting process will not start, until certain regions of code have been
repeatedly executed many times. In this RQ, we want to quantify the performance
differences between the warmup and the warmed up phases.

– RQ2: What is the performance impact by varying JIT configurations?
The system after the warmup phase would achieve its peak performance. But would

the peak performance be different among different JIT configurations settings (e.g., the
default config, random configurations, or disabling JIT)? In this RQ, we seek to find
the performance impact of different JIT configurations.

– RQ3: Do systems containing more jitted lines yield better performance?
Different JIT configuration settings would result in different amount of source code

been jitted. Intuitively, a higher portion of the jitted code could lead to more code being
executed natively, and hence result in better performance. However, the code jitting pro-
cess is very resource heavy, which involves profiling system executions and compiling
the hot code path into the binary executable format. In addition, the systems may need
to constantly switch between the two running modes (the interpreted vs. the native exe-
cution mode). The goal of this RQ is to examine whether there is any relation between
the portions of the jitted code and the system performance.

The remaining three subsections in this section will address the above three research
questions. For each research question, we will first explain the experimentation process.
Then we will describe the data analysis techniques, present the result findings, and discuss
their implications.

Empirical Software Engineering

3.1 (RQ1) How Different is the System Performance Before and After its Code has
been Jitted?

During the benchmarking and the performance testing processes, it is considered as a com-
mon practice to wait for a period of time (a.k.a., the warmup phase) for the system to
stabilize (Bondi 2007; Java Microbenchmark Harness (JMH) 2017), before starting the
actual benchmarks or the performance tests. During the warmup phase, various regions of
the code are getting jitted and the system caches are slowly being filled up. Hence, the
performance of the warmup phase is generally considered as suboptimal and is discarded
during the subsequent performance analysis. In this RQ, we want to quantitatively compare
the system performance during and after the warmup phase.

3.1.1 Experiment

To tackle this research question, we selected the following two microbenchmark suites,
which assess the performance of different software systems:

– The PyPy benchmark suite is run daily on PyPy’s nightly builds and is mainly used to
compare the performance of various Python implementations (PyPy vs. cPython). The
benchmark suite consists of about 60 small Python programs, which perform various
computation tasks like the n-queens solver, HTML table building, etc. For each run of
the benchmark, the same benchmark programs will be run under PyPy and cPython (the
default Python implementation). The performance results are uploaded and visualized
in the PyPy’s Speed Center (PyPy speed center 2017). In this exploratory study, we
randomly selected seven benchmark programs as shown in Table 1 for experimentation.
We further instrumented these benchmark programs to gather additional performance
information (e.g., individual request response time).

– The TechEmpower Web Framework Benchmark suite1 (TechEmpower Web Frame-
work Benchmarks 2017), whose main objective is to evaluate among various web
frameworks, consists of more complicated web application-related tasks like JSON
serializations, database accesses, and server-side template compositions. Different from
the PyPy benchmark suite, whose programs are usually short-lived and computation
intensive, the TechEmpower benchmark suite executes on long running web application
servers built with various frameworks. For example, the benchmark includes Java-based
web frameworks (e.g., Jetty), as well as Python-based web frameworks (e.g., Tornado
and Flask). In this paper, we only focus on the Django web application frameworks.

We ran the two microbenchmark suites under the default PyPy configuration setting. To
avoid measurement bias and errors (Georges et al. 2007), for the PyPy benchmark, in which
the studied programs are short-lived and computational intensive, we repeated the bench-
mark for 30 times. For the TechEmpower benchmark, which examines the performance of
processing web requests for long-running servers, we set the duration for each benchmark
task to be two hours. During the benchmarking process, resource utilizations (e.g., CPU,
memory, and disk) for the servers were monitored and recorded using pidstat (Performance
monitoring tools for Linux 2015). We also added additional instrumentation using the JIT
logging function from PyPy’s jitlog module to record the JIT logs to the disk. The recorded
JIT logs can be further parsed with VMProf (vmprof - a statistical program profiler 2017)

1To ease explanation, we will call this the TechEmpower benchmark in the rest of this paper.

Empirical Software Engineering

Table 1 PyPy benchmark programs description

Program Description

ai Test the performance of simple AI solvers.

bm mako Benchmark for test the performance of Mako templates engine.

chaos Test the performance of the Chaos benchmark. Create chaosgame like

fractals.

django This will have Django generate a 100x100 table as many times as

you specify.

rietveld This will have Django render templates from Rietveld with canned

data as many times as you specify.

html5lib Test the performance of the html5lib parser.

pidigits Test the pidigit calculation performance.

to obtain the exact lines of code that were jitted. However, the recorded JIT logs do not
have timestamps to mark when a code snippet is jitted. To estimate the exact timing when
individual code snippets are jitted, we decided to periodically take snapshots of the JIT log
files. We took snapshots of the JIT log files after each iteration of the PyPy benchmark
and every minute for the TechEmpower benchmark. These snapshots would help us gain
insights on the time and the location of the jitted code regions. Finally, we also archived the
benchmarking logs, so that we can extract the response time for each individual request.

3.1.2 Data Analysis

We parsed the JIT logs using VMProf to obtain the regions of the jitted code during each
snapshot period. We also processed the benchmarking logs to extract the response time for
each iteration of the PyPy benchmark and the response time for individual requests in the
TechEmpower benchmark.

To understand the performance of the systems during and after the warmup phase, we
need to determine the duration of the warmup phase. For the PyPy benchmark, we kept track
of the amount of the jitted code during each iteration. We considered the warmup phase to
be completed, when the amount of the jitted code remains stable during the remaining of
the benchmarking run. Figure 2 shows the result for the html5lib program from the PyPy
benchmark. The topper subgraph of Fig. 2 shows the how the response time evolve over
different number of iterations. Since each program within the PyPy benchmark is repeat-
edly executed 30 times, we aggregated the response time for that iteration across the 30
runs using boxplots. For example, the first boxplot contains all the response time values for
the first iteration during the 30 runs. The bottom subgraph of Fig. 2 shows the evolution of
number of jitted lines across different iterations. The red dotted lines in both subgraphs indi-
cates the iteration when the number of the jitted lines becomes stable. Hence, we considered
the first 11 iterations as the warmup phase (“jitting”) and the remaining iterations (a.k.a.,
the 12th to the 50th iterations) as the warmed up phase (“jitted”). The response time is the
highest during the initial iteration, and gets slowly improved when the amount of the jitted
code increases. After the 11th iteration, the response time stabilizes. For the TechEmpower
benchmark, we used a similar approach as the PyPy benchmark and divided response time
into the warmup phase and the warmed up phase based on the time when the number of
jitted lines gets stabilized.

Empirical Software Engineering

Fig. 2 Number of jitted lines and response time over 50 iterations for the html5lib program from the PyPy
benchmark suite

We applied statistical techniques to rigorously compare and quantify the differences
between the response time distributions from the two phases. Statistical test like the
Wilcoxon Rank Sum (WRS) test would give us a rigorous measurement if the distributions
of the performance data from these two phases are different. However, in some cases, even
if the distributions are different, the differences between the two distributions can be small.
For example, if the response time for one request is long (e.g., more than five minutes)
and the differences of the response time between the two experiments are very small (e.g.,
one millisecond), such performance differences would not be useful for our study, as it will
not be noticed by the end-users. Hence, we also need to quantify the strength of the differ-
ences between the two distributions, called the effect size (Kampenes et al. 2007). In this
paper, we used Cliff’s Delta (CD) as our effect size measures. Both CD and WRS are non-
parametric techniques. Hence, they do not hold any assumptions regarding the distributions
of the data. We consider two datasets as statistically different, when the p-value from the
WRS test is lower than 0.05. The strength of the differences and the corresponding range of
CD values (Romano et al. 2006) are shown below:

effect size =

⎧
⎪⎪⎨

⎪⎪⎩

trivial if |CD| < 0.147
small if 0.147 ≤ |CD| < 0.33
medium if 0.33 ≤ |CD| < 0.474
large if 0.474 ≤ |CD|

We used the following criteria to judge if the response time from the warmed up phase
(denoted as B) is getting better (>), worse (<), or relatively the same (∼) as the warmup
phase (denoted as A):

difference =
⎧
⎨

⎩

A > B if CD ≤ −0.33 and p − value < 0.05
A ∼ B if |CD| < 0.33 or p − value ≥ 0.05
A < B if CD ≥ 0.33 and p − value < 0.05

The p-values shown above are calculated from the WRS test. In other words, B improves
over A (B > A) when the WRS test and the CD value satisfy the following three conditions:
(1) the two distributions are statistically significantly different (p-value < 0.05), and (2)
the differences between the two distributions have medium or large effect sizes, and (3)

Empirical Software Engineering

CD value is positive, indicating B is smaller than A. The conditions for B degrades from A
(B < A) is similar, except the CD value is negative, indicating B is bigger than A. If A and
B are relatively the same (B ∼ A), when there is no statistical difference between the two
distributions (a.k.a., p-value ≥ 0.05) or the effect size between A and B is small or trivial.

We extracted the performance data from the warmup and the warmed up phases based on
the time when the number of jitted lines stabilizes for all the runs of the two microbench-
mark suites. We compared the response time between the two phases for each run. Table 2
shows the results.

Table 2 shows almost all the programs/scenarios (except one) for both microbenchmark
suites exhibit better performance during the warmed up phase. However, in the PyPy bench-
mark suite, the ai program is not showing significant performance improvement. This is
because at the end of the the first iteration while running the ai program, the majority of
the code jitting process has already been completed. Only a few lines from the test library,
which does test setup, got jitted during the benchmarking process (at the 34th iteration).
These additional jitted lines have no impact on the actual performance of the benchmark
program. Thus, the performance differences between the two phases are very small.

Findings: For most of the studied programs/scenarios, the performance in the warmed

up phase is statistically much better than the warmup phase. This clearly highlights the

huge performance gain contributed by the JIT compilations.

Implications: Only performance data from the warmed up phase can be representative of

the performance of systems due to the big difference in performance between the warmup

and the warmed up phase. Thus, performance analysts should be careful when conducting

the analysis and focus on the data after the warmup phase. In addition, the warmup phase

for each system should be as short as possible, due to its inferior performance. Existing

techniques for speeding up the jitting processes (Jantz and Kulkarni 2013; Gal et al. 2009;

Lion et al. 2016) can be very useful in this aspect.

3.2 (RQ2) What is the Performance Impact by Varying JIT Configurations?

In RQ1, we have found that the system performance significantly improves after the warmup
phase. Hence, the data during the warmup phase is normally discarded during the perfor-
mance analysis phase for a benchmark or a performance test. In this RQ we only focus on the
system performance after the warmup phase. We study the performance impact of various
JIT configuration settings. In particular, we would like to (1) verify whether the system con-
figured with the default configuration setting would yield the optimal performance amongst
other configuration settings, and (2) measure the performance impact of the jitting process
(a.k.a., comparing the performance against completely disabling the jitting process).

Table 2 Comparing the response time between the warmup phase (A) and the warmed up phase (B)

Performance # of scenarios in the # of scenarios in the

Difference PyPy benchmarks TechEmpower benchmarks

B < A 0 0

B ∼ A 1 0

B > A 6 6

Total # of scenarios 7 6

Empirical Software Engineering

3.2.1 Experiment

Similar to RQ1, we still used the same two microbenchmark suites as our experimental
subjects. However, instead of keeping the default JIT configuration setting, we varied the
values for the following six JIT configuration parameters: decay, function threshold, thresh-
old, loop longevity, trace eagerness, trace limit. Table 3 shows the detailed information
about these six configuration parameters. We picked these six parameters because we think
they are tunable and can have an impact on where and when certain regions of the source
code will be jitted. Other parameters like enable ops, inlining, and off need to be kept as
default to enable the jitting process; whereas other parameters: vec, vec all, vec cost are
not included in our study, as they are not relevant to the selected microbenchmark suites.
Since there can be many possible combinations of these parameter settings, due to time
constraints, we decided to run the two microbenchmark suites under the following eleven
configuration settings from three different groups:

1. Group 1 (Varying Default Configurations) consists of five configuration settings (1
4X,

1
2X, X, 2X, and 4X) by mutating the default configuration setting. X refers to the
default configuration setting. 2X means doubling the default configuration values,
whereas 1

2X means cutting the default configuration values by half and rounding to
the nearest integer values. As shown in Table 4, the default PyPy JIT configuration
setting, X, is: (1039, 1619, 40, 6000, 200, 1000), which corresponds to the configu-
ration parameters (threshold, function threshold, decay, trace limit, trace eagerness,
loop loogevity). Hence, the 2X setting would be: (2078, 3238, 80, 12000, 400, 2000)

and the 1
2X setting would be: (519, 809, 20, 3000, 100, 500). To avoid PyPy command

line parsing errors, when the value of parameter trace limit exceeds the upper bound,
we just set it to be two times of the default value (12000).

2. Group 2 (Randomly Generated Configurations) consists of five randomly generated
configuration settings (R1 , R2 , R3 , R4 , and R5). For each parameter in the configuration
setting, we randomly generated an integer value within the defined boundary. As we
can see from Table 4, the randomly generated JIT configurations in Group 2 are very
different from the JIT configurations from Group 1.

Table 3 List of relevant PyPy’s JIT configuration parameters and their information

Parameter Range Default Descriptions

decay [0, 1000] 40 Amount to regularly decay counters by

function threshold (0,∞) 1619 Number of times a function must run for

it to become traced from start

loop longevity (0,∞) 1000 A parameter controlling how long loops will

be kept before being freed

threshold (0,∞) 1039 Number of times a loop has to run for it to

become hot

trace eagerness (0,∞) 200 Number of times a guard has to fail before we

start compiling a bridge

trace limit [0, 16385] 6000 Number of recorded operations before

we abort tracing with ABORT TOO LONG

Empirical Software Engineering

Table 4 The JIT configurations chosen for performance evaluation

Group Config threshold function threshold decay trace limit trace eagerness loop longevity

Default X 1039 1619 40 6000 200 1000

Group1 1
4 X 260 405 10 1500 50 250
1
2 X 520 810 20 3000 100 500

X 1039 1619 40 6000 200 1000

2X 2078 3238 80 12000 400 2000

4X 4156 6476 160 12000 800 4000

Group2 R1 64 101 120 375 200 2000

R2 519 809 5 375 200 2000

R3 519 101 20 1500 200 4000

R4 3117 1619 2 1500 25 2000

R5 259 4857 120 375 200 2000

Group 3 JIT Off − − − − − −

3. Group 3 (JIT Off) consists of only one configuration setting, which sets the parameter
off to be true. This setting will completely disable the jitting process.

Similar to RQ1, to avoid the measurement errors and noise, we repeatedly executed each
PyPy benchmark program for 30 times, and ran each TechEmpower benchmark scenario
for two hours. We also collected the same kind of performance data (a.k.a., the resource
utilization metrics, the JIT logs, and the benchmarking logs) for further analysis.

3.2.2 Data Analysis

For each experiment, we first parsed the JIT log snapshots. Based on the time when the
number of jitted lines stabilizes, we divided the benchmark runs into the warmup and
the warmed up phase. We extracted response time from the warmed up phase for fur-
ther analysis. We used the same statistical analysis techniques as in RQ1 to compare the
response time among all the runs. For each program inside the PyPy benchmark suite,
we compared the performance between each pair of the JIT configuration settings and
identify the best performing configuration setting. Similarly, we also located the best per-
forming JIT configuration settings for each scenario inside the TechEmpower benchmark
suite. Table 5 shows the results. There are ties when ranking the top performing con-
figuration settings across different programs/scenarios. We noted with a “*” besides a
configuration setting if it shares the first place with other configuration settings in any
programs/scenarios.

As shown in Table 5, Only 3 out of the 7 programs from the PyPy benchmark suite,
where the default configuration setting yields the best performance. Furthermore, there are
many configuration settings which perform best for some PyPy benchmarks (e.g. R4 , R5) or
share the top performance with other configurations (e.g. 1

4X, 4X). For the TechEmpower
benchmark suite, all of the scenarios perform the best (with one scenario tied with 2X and
1
2X) under the default configuration setting.

To quantify the performance impact of the jitting process, we also compared the per-
formance of different JIT configuration settings against the JIT off setting. For each JIT
enabled configuration setting, we measured the number of programs/scenarios that perform

Empirical Software Engineering

Table 5 Number of best performing programs/scenarios under each JIT configuration setting

Settings # of best performing programs/scenarios

PyPy Benchmark TechEmpoer Benchmark

1
4 X 1* 0
1
2 X 0 1*

X 3* 6*

2X 2* 1*

4X 1* 0

R1 0 0

R2 0 0

R3 2* 0

R4 1 0

R5 1 0

JIT off 0 0

worse (<), similar (∼), or better (>) than the JIT off setting. Table 6 shows the result. The
number of programs/scenarios whose performance under jit enabled configurations is worse
or no different than jit off is marked as bold.

From Table 6, we can see that, among the PyPy benchmark suite, all the JIT enabled
configuration settings perform better than the JIT off setting, except R1 in which the per-
formance of two PyPy benchmark programs is even worse than completely disabling the
jitting process (a.k.a., JIT off)! Similarly, in the TechEmpower benchmark suite, R1 is still
the odd one, as none of its scenarios is better than the JIT off setting. In addition, only three
of the TechEmpower scenarios under R5 are better than the JIT off setting.

Table 6 Comparing the jitting performance against the configuration under JIT off

Configs PyPy Benchmark TechEmpower Benchmark

< ∼ > < ∼ >

1
4 X 0 0 7 0 0 6
1
2 X 0 0 7 0 0 6

X 0 0 7 0 0 6

2X 0 0 7 0 0 6

4X 0 0 7 0 0 6

R1 2 0 5 5 1 0

R2 0 0 7 0 0 6

R3 0 0 7 0 0 6

R4 0 0 7 0 0 6

R5 0 0 7 2 1 3

The number of programs/scenarios whose performance under jitted configuration is worse or no different
than JIT off setting is highlighted in bold

Empirical Software Engineering

3.3 (RQ3) Do Systems Containingmore Jitted Lines Yield Better Performance?

In RQ2, we have found that the default JIT configuration setting does not necessarily result
in the optimal performance. Different JIT configuration settings would result in differ-
ent portions of the code been jitted. However, does more jitted code always lead to better
performance? In this RQ, we want to study the relationship between these two aspects.

3.3.1 Experiment

We used the same data from RQ2 and did not run any additional experiment for this RQ.

3.3.2 Data Analysis

We first selected the configuration setting that has the best performance for each pro-
gram/scenario based on the results of RQ2. Then we also selected the configuration settings
with the highest number of jitted lines. If there are two different configuration settings cor-
responding to the above two criteria, we further performed the WRS test and calculated the
CD value between the performance data under those configuration settings.

Table 7 shows the effect size between the best performing and the most jitted config-
uration settings for each program/scenario. Since there can be ties in either category, we
compared all pairs of configuration settings from the best performing category to the cate-
gory of the largest portion of jitted code. We label T rue at the third column, if there is at
least one common configuration setting in both categories for one program/scenario. In 71%
(5

7) of the programs in the PyPy benchmark suite and all the scenarios in the TechEmpower
benchmark suite, the best performing configuration setting is different from the one that
has the highest number of the jitted lines. When comparing the performance differences,
we compared all the pairs of these configuration settings from the two categories. In the
end, twelve of the programs/scenarios have a medium to large effect size differences. In
other words, the results show that more jitted lines do not necessarily lead to better per-
formance. For the PyPy benchmark ‘html5lib’, we marked the effect sizes as ‘-’, since
the best performing configuration settings and the highest amount of the jitted code con-
figuration settings are exactly the same. Hence, we do not calculate the effect sizes for
this case.

Empirical Software Engineering

Table 7 Comparison between the configuration settings yielded the best performance and the configuration
settings resulted in the most jitted code

PyPy Benchmark TechEmpower Benchmark

Programs Effect Size Same Scenarios Effect Size Same

ai large False db large False

bm mako trivial,medium False fortune large False

chaos large False json large False

django large False plaintext large False

html5lib − True query large False

pidigits large True update large False

rietveld large False

4 Automatically Tuning the JIT Configuration Parameters

In the previous section, we have found that PyPy’s JIT configuration settings do have a
significant impact on the system performance. Furthermore, there is no straightforward way
to recommend a performance-efficient JIT configuration setting, since such setting can be
application-dependent and a higher portion of the jitted code does not necessarily result in
better performance. Hence, in this section, we will propose our automated approach, ESM-
MOGA (Effect Size Measurement-based Multi-Objective Genetic Algorithm), to tuning the
JIT configuration parameters for one system.

Figure 3 provides an overview of our tool which we called the PyPyJITTuner. It lever-
ages a search-based technique called Multi-Objective Genetic Algorithm (MOGA) (Deb
et al. 2000) and a statical measure called effect size, for the exploration of the JIT config-
uration space. Genetic Algorithm (GA) is a search-based method inspired by evolutionary
biology, in which a population of solutions is evolved during each generation. The solutions
from the next generation should be generally better than the previous generations evaluated
based on some objective functions. MOGA is a type of GA, in which multiple objectives
are being considered. We chose MOGA, as there can be multiple objectives associated with
a system’s performance (e.g., optimizing the response time for multiple scenarios). One
machine, which is deployed with the tailored-version of the MOGA, acts as the configura-
tion advisor. When new solutions have been created, this machine continuously sends the

Fig. 3 Overall process of PyPyJITTuner

Empirical Software Engineering

JIT configuration settings (solutions) to the test scheduler machine, which will deploy and
configure the system under study (SUS). Once the test scheduler machine receives these
settings, it will reset the test environment (a.k.a., clean up the database, and remove the test-
ing data from the previous run), and start up the SUS under the suggested JIT configuration
setting. The same performance test (a.k.a., the same workload) will be executed. Once the
test is completed, the performance data will be collected and sent to the configuration advi-
sor machine for further analysis. The configuration advisor machine will evaluate the newly
received performance data against the data from other configuration settings and leverage
the MOGA methods to select the best solutions and generate the next generation. If the solu-
tions in the next generation are good enough, the MOGA will stop the evolution and output
one or multiple “optimal” configuration settings. Otherwise, the MOGA will continue with
another round of iteration. The newly generated JIT configuration settings will be sent to
the test scheduler machine for another round of testing.

The rest of this section is organized as follows: Section 4.1 explains the general idea
behind the ESM-MOGA approach. Section 4.2 presents our performance testing framework,
and Section 4.3 describes briefly our implementation.

4.1 TailoringMOGA for JIT Configuration Tuning

GA is a search-based method inspired by evolutionary biology. GA encodes the candidate
solutions into a set of values, called “chromosomes”. Inside the chromosomes, the set of
values, which are to be optimized are called the “genes”. GA starts off with a population of
the initial solutions and keeps iterating until any of the termination criteria is met. During
each iteration, GA improves the population via crossover (combining existing solutions to
produce new solutions), mutation (randomly changing some values in the solutions), and
selection (picking the best candidate solutions). The termination criteria can either be the
optimization conditions (e.g., the resulting solutions are better than a predefined threshold)
or the maximum number of iterations. The MOGA, which is a type of GA, evaluates multi-
ple objectives simultaneously. In general, as illustrated in Fig. 4, the MOGA consists of six
phases: the problem formulation phase, the initialization phase, the tournament phase, the
evolution phase, the selection phase, and the stopping phase. The process of going through
the tournament, the evolution, and the selection phase can be repeated multiple times, with
each iteration called one generation. At the end of each generation, a new population will
be produced. This process will be repeated until any termination criteria described in the
stopping phase is met.

Fig. 4 The workflow for our tailored version of the MOGA method

Empirical Software Engineering

In this subsection, we will explain the ESM-MOGA approach by using a running exam-
ple. For illustration purposes, we assume the SUS in our running example is a simple
e-commerce system, which consists of only three scenarios: login, browse, and purchase.

4.1.1 Phase 0 - Problem Formulation

We formulated our problem of automated tuning of JIT configuration settings into a
multi-objective optimization problem. Our objective is to find one or more optimal JIT con-
figuration settings that yield the best performance in all the scenarios in the system. Below
we define our solution encoding and objectives:

– Solution Encoding: The ESM-MOGA requires us to encode its solution into binary
strings. As shown in Section 2.2, all the studied JIT configuration parameters are inte-
gers and have a large range (a.k.a., many possible values). Hence, we decided to select
eight representative values from the input domain of each configuration parameter: (4X,
3X, 2X, X, 1

2X, 1
4X, 1

8X, 1
16X), where X refers to the default value for that configu-

ration parameter. We chose the above eight levels, as these eight values cover a wide
range of the input domain and each configuration parameter value can be easily encoded
into a binary string of length three. In this way, the smallest configuration value (1

16X),
the default configuration value (X), and the largest configuration value (4X) for each
parameter are encoded as 111, 011, and 000, respectively. We set the largest configu-
ration values to be 4X, as Section 3 shows that large JIT configuration settings usually
do not yield good performance. We set the smallest configuration values to be 1

16X, as
Section 3 shows very small configuration settings could result in a high number of jit-
ted code, but worse performance. To ease explanation, in our running example, there
are only two configuration parameters. Hence, the default configuration setting can be
encoded as a binary string: 011011.

– Objectives: For a real world system, there can be more than one aspect associated with
the performance of the system. Examples of optimizing performance aspects can be
optimizing the resource utilizations (e.g., CPU, memory, and disk) or the responsive-
ness of different scenarios in a system. Some of these concerns can be conflicting with
each other. In our approach, we focus on optimizing the response time for different
scenarios in a system. Each objective refers to a list of response time for each scenario
during the warmed up phase, measured through performance testing. In our running
example, the objectives are to optimize the response time for the above three scenarios
in the e-commerce system.

4.1.2 Phase 1 - Initialization

During the initialization phase, the ESM-MOGA defines an initial population (P) consisting
of n solutions. In our approach, P consists of the default configuration setting, and n − 1
randomly generated configuration settings. The ESM-MOGA will intentionally included
the default configuration setting in the initial population, as we want to ensure the default
configuration setting is evaluated among its alternatives and the final “optimal” setting(s)
will be at least as good or better than the readily available default configuration setting.
Once the initialization process is completed, the ESM-MOGA enters the iterative process of
going through the tournament, the evolution, and the selection phase to refine and improve
its population until any termination criteria is met.

Empirical Software Engineering

To ease explanation, we set n = 4 in our running example and compose the initial
population (P) with the following solutions:

P =

⎧
⎪⎪⎨

⎪⎪⎩

C1 : 011011,

C2 : 001010,

C3 : 000101,

C4 : 101110

Once the initial population is generated, the solutions in the initial population will be
sent to the test scheduler machine in Section 4.2. Multiple performance tests with the same
workload will be conducted under each given configuration setting. The response time of the
three scenarios under warmed up phase will be collected as performance data and assigned
as the objectives for each solution.

4.1.3 Phase 2 - Tournament

During the tournament phase, the ESM-MOGA will first randomly select two solutions
from a pool which contains all solutions of the current population. Then, a pairwise com-
parison is done to recognize the better solution from the two. The better solution will be
used as one of the parents for the next phase. These evaluated solutions will not be put back
to the pool for efficient concerns. The process will be repeated until all solutions in the pool
have been evaluated pairwisely. In our approach, the pairwise comparison is done using a
pre-defined dominant comparison function and the dominating configuration setting (a.k.a.,
the better solution) will be selected. In this dominant comparison function, the configura-
tion setting A dominates the configuration setting B, if the response time distributions under
the two configuration settings satisfy the following two criteria:

1. The response time for all the scenarios under A are statistically no worse than
under B: The response time under configuration A for one scenario is statistically no
worse than under B, if (1) the response time distributions for that scenario under the
two settings are not statistically significantly different under the WKS test, or (2) they
are statistically significantly different under the WKS test, but there is only a trivial to
small effect size calculated by the CD. This relation has to be held for all the scenarios
when comparing the two settings.

2. There is at least one scenario whose response time under A is statistically better
than under B: The response time under configuration A for one scenario is statistically
better than B, if the response time distributions for that scenario under the two settings
are statistically significantly different under the WKS test and there is a medium to
large effect size calculated by the CD.

In other words, one configuration setting (A) only dominates the other one (B), if (1) the
performance of all the scenarios under A is at least as good as B, and (2) there will be at
least one scenario under A whose performance is better than B.

The dominance comparison among all the pairs of the configuration settings are shown in
Table 8. Each row in Table 8 corresponds to the comparison results of one configuration set-
ting pair. For example, the second row shows the comparison results between configuration
setting C1 and C3 . The response time for the login scenario is statistically better under C1

than C3 . The performance of the other two scenarios are statistically not different between
the two settings. Hence, the configuration setting C1 dominates C3 . Assume, from the pool

Empirical Software Engineering

Table 8 Dominance relations among the four configuration settings in our running example

Config Pairs Login Browse Purchase Dominance

(C1 , C2) Better Worse Better ≈
(C1 , C3) Better Equal Equal �
(C1 , C4) Better Better Equal �
(C2 , C3) Better Equal Equal �
(C2 , C4) Better Better Equal �
(C3 , C4) Equal Worse Worse ≺

“�” means the the left configuration setting dominates the right configuration setting, “≺” means the right
configuration setting dominates, and “≈” means there is no dominance relation

that contains all solutions of population (P), we selected (C1 and C3), (C2 and C4) for pair-
wise comparison. The two configuration settings, C1 and C2 , will be selected as parents for
the next phase.

4.1.4 Phase 3 - Evolution

During the evolution phase, the parents from the Tournament phase will undergo the
following two actions to produce new solutions:

– Crossover: Two solutions from the Parents are randomly selected as parents. A new
solution will be created by randomly selecting some bits from one solution and the
remaining bits from another solution. In our running example, C1 and C2 will be
selected as parents. A new solution C5 (011010) can be created by inheriting the first
three bits from C1 and the remaining bits from C2 .

– Mutation: Some of the newly produced solutions will be mutated by randomly flipping
some bits (a.k.a., turning 0s into 1s and 1s into 0s). For our running example, after
flipping the first and the last bits of C5 , it becomes 111011.

Similar as the Initialization phase, a performance test with the same workload but a new
configuration setting (C5) will be conducted. Once completed, the performance data will
be sent back as objectives for the new configuration setting. The overall population (Q) at
the end of this phase will consist of the new solutions produced after the crossover and the
mutation operations as well as existing solutions from P.

4.1.5 Phase 4 - Selection

In this phase, the “best” n solutions in Q will be selected with NSGA-II selection (Deb et al.
2000) (Evaluation tools in Python (DEAP) 2017). It will first use the non-dominated sorting
algorithm to sort the solutions into different levels (L0 , L1 , ...). Solutions that were domi-
nated by the smallest number of solutions will be assigned to the top level (L0). Solutions
in L0 are the “best” solutions in this iteration, followed by the solutions in L1 , and then L2 ,
and so on. The solutions within the same levels (e.g., L0) are not dominant over each other.
For example, if configurations settings A and B are both within L0 , it means that A and B
are not dominant over each other. In other words, some scenarios are better performed under
A and whereas some other scenarios are better performed under B. When selecting the top n

solutions, we will first start picking solutions from the top level (L0), followed by solutions

Empirical Software Engineering

from L1 , and so on. If there are more solutions in a level than we needed (a.k.a., exceeding
the total n solutions), we will rank solutions within that level with crowding distance sorting
and select the top ranked solutions in that level.

Suppose for our running example, after sorting the solutions in Q using the non-
dominated sorting algorithm, they are divided into the following levels:

Q =

⎧
⎪⎪⎨

⎪⎪⎩

L0 : C5 ,

L1 : C1 , C2 ,

L2 : C4

L3 : C3

Since at the end of the selection phase, only n solutions will be kept. Hence, our resulting
population (R) will be C1 , C2 , C4 , C5 .

4.1.6 Phase 5 - Stopping

During this phase, the resulting population Q formed during this generation will be evalu-
ated to decide whether its solutions are good enough comparing to the previous generation.
The main idea is to decide whether any progress has been made during this generation. In
other words, we want to check whether there are any better solutions produced during this
generation. We used the Mutual Dominance Rate (MDR) (Martı́ et al. 2009) to measure
the improvements made between the current population B and the population A from the
previous generation:

MDR(B, A) = dom(B,A)
‖B‖ − dom(A,B)

‖A‖ ,
where dom(A,B) is defined as the number of solutions in population A that are dom-

inated by at least one solutions in B. Hence, for our running example, dom(P,R) would
be 4, since all four solutions in P are dominated by at least one solutions in R. dom(R, P)

would be 1, since only C4 in R is dominated by the solutions in P. Hence, MDR(R, P) =
1
4 − 4

4 = − 3
4 . The closer the MDR value gets to −1, the larger the improvement has been

made in the current generation. If MDR is close to 0, it means little progress has been made
to the population. The iteration should be stopped if the improvement between two genera-
tions is insignificant (a.k.a., |MDR| is smaller than some threshold values), or it has been
running for too long (e.g., over 100 iterations).

When the termination criterion is met, we will output the top configuration settings for
the current generation with the NSGA-II selection. Since there is only one solution (C5) at
L0 for our running example, C5 will be the optimal configuration setting outputted.

4.2 Our Performance Testing Framework

For any newly generated solutions, we need to measure their performance using a perfor-
mance test. Each solution, which is sent to the test scheduler machine inside the Testing
Framework, will first be parsed into the corresponding JIT configuration setting. The test
scheduler machine will then start the system with the new configuration setting and mea-
sure the system performance under a predefined workload. At the end of each performance
test, performance data during the warmed up phase will be collected and sent to the config-
uration advisor machine, so that they can be used as objectives to evaluate among solutions
in the ESM-MOGA.

For our running example, a total of five performance tests with the same workload but
different JIT configuration settings, which correspond to the four initial solutions in P and
the new solution in Q, will be run. Once each test is completed, the test scheduler shuts

Empirical Software Engineering

down the SUS, collects the performance data (response time for the individual scenarios, the
resource utilization metrics, and JIT logs) and sends the data to the configuration advisor
machine.

4.3 Implementation

We implemented the ESM-MOGA using the NSGA-II algorithm (Deb et al. 2000), which
is a fast and efficient multi-objective genetic algorithm, from the DEAP framework
(Distributed Evolutionary Algorithms in Python) (Distributed Evolutionary Algorithms in
Python (DEAP) 2017). The framework contains the relevant library functions for NSGA-II,
like assigning crowding distance, non-dominated sorting algorithm, and NSGA-II selec-
tion. We had to implement the dominance function, and input encoding ourselves to fit into
NSGA-II algorithm. We re-implemented the non-dominate sorting and NSGA-II selection
functions so that they can use our dominance function to compare among solutions.

We also implemented the automated performance testing framework, which leverages
JMeter (Apache JMeter 2015) as the load generator. The performance testing framework can
startup, initialize, execute, and stop a performance test under one particular configuration
setting.

5 Case Study

In this section, we evaluated the performance of our automated approach to tuning the JIT
configuration parameters on three Python-based open source systems: Saleor (Saleor - An
e-commerce storefront for Python and Django 2017), Wagtail (Wagtail CMS: Django Con-
tent Management System 2017), and Quokka (Quokka CMS (Content Management System)
- Python 2017). As shown in Table 9, these three systems vary from system sizes, appli-
cation domains, and technology stacks. All three systems can be deployed on top of the
Tornado WSGI server which uses Gunicorn for worker process management. And they all
require a database to be functional. Saleor is an e-commerce system, built using the Django
framework, and uses Postgres as its database. Wagtail shares the same technology stack as
Saleor (a.k.a., Django and Postgres), but is from a different application domain: the Con-
tent Management System (CMS). Although Quokka is also a CMS, it is built with the Flask
framework and uses MongoDB as its database.

The rest of this section is organized as follows. Section 5.1 describes the case study setup.
Section 5.2 explains the case study results.

5.1 Case Study Setup

We deployed the above three systems on the same physical machines, which have the fol-
lowing hardware configurations: Intel i7-4790 CPU, 16 GB memory, and 2 TB hard-drive.

Table 9 An overview of the three Python-based systems under study

Name Version LOC Application Domain Technology Stack

Saleor 2017.07.0 48482 E-commerce Gunicorn,Tornado,Postgres,Django

Wagtail 1.12.1 85006 Content Management Gunicorn,Tornado,Postgres,Django

Quokka 0.2.1 34468 Content Management Gunicorn,Tornado,MongoDB,Flask

Empirical Software Engineering

JMeter was deployed on another physical machine with the following hardware configura-
tion: Intel(R) Core(TM)2 Duo CPU, 4 GB memory, 160 GB hard-drive. And all machines
have Ubuntu 14.04 deployed. The reason for the separate deployment of JMeter and the
SUSs is to ensure no overhead caused by the load generator to the SUSs (Jiang and Has-
san 2015). The version of the PyPy that we used for evaluation is 5.7.1 which corresponds
to Python version 2.7.13. Similar to the exploratory study, we focused on the same six JIT
configuration parameters. Hence, each solution (a.k.a., configuration setting) requires 18
bits to be encoded into our tailored MOGA method. For example, the default configuration
setting would be encoded as 011011011011011011. As for the rest of the MOGA configu-
rations, we set the initial population (P) size as 40, and the mutation rate as 0.10 based on
some small trials. We also configured our termination criteria to be either |MDR| ≤ 0.1
holds for two consecutive generations or the MOGA has iterated for 10 generations.

Table 10 shows the workload that we have set for the three systems. The workload tries
to simulate how real users use the systems in the field. The overall workload intensity (10
requests/sec) is the same for all three systems and the workload mix for each system is
shown below.

– For the e-commerce system, Saleor, the workload tries to mimic the purchasing work-
flow from a real customer. Hence, we divided this scenario into 12 actions, which
correspond to 12 different webpage operations. The overall workload intensity (10
request/sec) corresponds to 10 different users performing the above 12 actions at the
same time. Hence, all the actions in this workload are assigned with the same ratio in
the workload mix.

Table 10 Workload description for the three systems

System Workload Mix Workload Intensity

Saleor load index page 10 req/sec

load login page

login request

view category

view product

add product to cart

view cart

check out cart

select shipping method

select shipping address

payment

payment confirm

Wagtail add blog(1)

add event(1)

edit blog(2)

view blog page(3)

view event page(3)

Quokka add blog(1)

edit blog(2)

view blog(7)

Empirical Software Engineering

– For the content management system, Wagtail, the workload tries to mimic users read-
ing, posting, and editing blogs or events. Since, in the majority of the time, users will
be viewing the blogs or events, we assigned a higher ratio for these two actions. The
scenarios of adding a new blog or a new event happen the least frequently. Hence, they
are assigned with the smallest weight in the workload mix.

– Quokka’s workload is similar to Wagtail’s, as they are in the same application domain.
Since Quokka only supports reading/editing/adding blogs, we adjusted the workload
mix accordingly.

As Section 3 indicates, only the performance data from the warmed up phase is repre-
sentative of the actual system performance. Hence, in the case study, we want to make sure
the system has been running long enough (a.k.a., finished the warmup up phase). To prop-
erly decide the test duration, we first did a test run with the default configuration setting,
in which the predefined workload was executed for three hours. We leveraged a similar
technique as Alghmadi et al. (2016) to test when the system’s performance behavior gets
repetitive, so that we can identify the duration of the warmup phase. We divided the col-
lected performance data into intervals of every 20 minutes. Then we performed statistical
analyses with the WRS test and CD values on the response time between two adjacent time
intervals. We considered the system to be fully warmed up when the response time from
the two adjacent time intervals show insignificant difference for all scenarios (a.k.a., not
statistically different by the WRS test or CD values show trivial to small effect sizes).

We performed the above process in all three case study systems. We found that all three
systems finish the warmup phase in the first 40 minutes before their performance behaviors
start to be repetitive. Hence, for consistency concerns, we set the test duration to be 50
minutes for each test and only used the data from the last 10 minutes (a.k.a., the data from
the warmed up phase) for further analysis in the ESM-MOGA method.

5.2 Case Study Results

For all the three systems, we applied our ESM-MOGA method with the aforementioned
setup. Table 11 shows the runtime statistics for the ESM-MOGA method after running on
the three systems. The search algorithm all terminates under termination criteria |MDR| ≤
0.1. For Saleor, it takes 36 hours and evaluated 100 solutions, 67 hours and 199 solutions
for Wagtail, and 35 hours and 96 configuration settings for Quokka. For all three systems,
the ESM-MOGA method found optimal solutions when it terminated.

For each system, we used the NSGA-II selection to select the top three configuration
settings. We compared the response time and the resource utilization between the optimal
configuration settings and the default configuration setting. Figure 5 visually compares the
response time distributions between the default and the top three optimal configuration set-
tings for Wagtail. Due to space limitations, it only contains the performance comparisons of

Table 11 Statistics after running the MOGA approach on the three case study systems

System # of # of Duration

Generations Configurations Evaluated (hour)

Saleor 3 100 36

Wagtail 7 199 67

Quokka 3 96 35

Empirical Software Engineering

Fig. 5 Visualizing the response time distributions of different scenarios under different configuration settings
for Wagtail

the three blog-related scenarios inside Wagtail. Each sub-figure corresponds to one scenario.
Within each sub-figure, the four violin plots correspond to the response time distributions
of that scenario under the default and the three optimal configuration settings. Among all
the sub-figures, the response time under the default configuration setting is significantly
much higher than the optimal configuration settings. A similar trend also holds for the two
event-related scenarios in Wagtail.

To quantify the differences between the optimal and the default configuration settings,
we performed the WRS test and CD test between the response time distributions under
each configuration pair. We used the same criteria as in Section 3.1 to judge whether one
response time distribution is better, or same, or worse than the other one. Table 12 shows the
results. Each row corresponds to one optimal configuration setting for one particular system.
There are no orderings among the top three optimal configurations (O

A
, O

B
, and O

C
). The

second to the fourth columns contain the number of scenarios which show better, equal, or
worse difference when comparing this configuration setting against the default. For Saleor
and Wagtail, all the scenarios performed better under the suggested optimal configuration
settings. For Quokka, at least one scenarios performed better under the suggested optimal
configuration settings, while the remaining scenarios performed no worse than the default
configuration setting. The fifth and the sixth columns show the minimum and maximum
percentage of differences when comparing the average response time under the suggested
configuration setting with the average response time under the default for all scenarios. The
percentage improvement in terms of the average response time can vary between 5% to
60%.

Since each system consists of a web server and a database, we further compared the CPU
and the memory utilizations between the optimal and the default configuration settings. Last
four columns in Table 12 shows the comparison results for the resource utilizations. The
CPU usage for both components drops. The decrease in CPU is more significant in the web
server, with the average improvement ranges between 12% to 33.7%. However, the memory
usage for the web server dramatically increases (12.7% to 202.5%) across all the optimal
configuration settings. We suspect this may be due to the storage of the complied jitted code.
For a more detailed discussion, please refer to Section 6.4.

6 Discussions

In this section, we discussed the findings based on the case study results and their
implications.

Empirical Software Engineering

Ta
bl
e
12

C
om

pa
ri

ng
th

e
pe

rf
or

m
an

ce
be

tw
ee

n
th

e
op

tim
al

co
nf

ig
ur

at
io

n
se

tti
ng

s
an

d
th

e
de

fa
ul

t
co

nf
ig

ur
at

io
n

se
tti

ng
fo

r
th

e
th

re
e

sy
st

em
s.

T
he

op
tim

al
co

nf
ig

ur
at

io
ns

ar
e

la
be

lle
d

as
O

A
,O

B
,a

nd
O

C
.W

S
st

an
ds

fo
r

th
e

w
eb

se
rv

er
,a

nd
D

B
st

an
ds

fo
r

th
e

da
ta

ba
se

.“
-”

m
ea

ns
th

e
E

SM
-M

O
G

A
su

gg
es

te
d

op
tim

al
co

nf
ig

ur
at

io
n

se
tti

ng
ou

tp
er

fo
rm

s
th

e
de

fa
ul

ts
et

tin
g

an
d

“+
”

m
ea

ns
ot

he
rw

is
e

Sy
st

em
To

p
C

om
pa

ri
ng

sc
en

ar
io

s
A

ve
ra

ge
di

ff
er

en
ce

s
(%

)
A

ve
ra

ge
re

so
ur

ce
us

ag
e

di
ff

er
en

ce
(%

)

C
on

fi
gu

ra
tio

ns
be

tte
r

eq
ua

l
w

or
se

m
in

m
ax

W
S

C
PU

W
S

M
em

or
y

D
B

C
PU

D
B

M
em

or
y

Sa
le

or
O

A
12

0
0

−2
7.

11
-5

6.
17

−3
3.

71
+2

4.
80

−3
.6

1
−0

.2
4

O
B

12
0

0
−2

7.
32

-5
8.

93
−2

5.
68

+3
1.

97
−7

.5
9

+1
.1

8

O
C

12
0

0
−9

.6
6

-6
0.

28
−3

2.
38

+1
2.

74
−7

.3
0

+0
.8

4

W
ag

ta
il

O
A

5
0

0
−3

3.
47

-4
5.

10
−2

3.
86

+1
58

.7
1

−5
.9

6
+1

.5
5

O
B

5
0

0
−2

9.
59

-4
4.

93
−1

8.
81

+2
02

.5
3

−2
.9

0
−2

.0
4

O
C

5
0

0
−3

5.
93

-4
4.

28
−2

5.
18

+1
57

.9
4

−3
.4

6
−3

.3
4

Q
uo

kk
a

O
A

2
1

0
−9

.3
9

-3
4.

95
−1

5.
39

+5
9.

34
−1

3.
80

−5
.5

68
8

O
B

3
0

0
−1

3.
45

-2
2.

71
−1

6.
51

+6
1.

08
−2

1.
89

+0
.9

42

O
C

1
2

0
−4

.9
8

-2
5.

44
−1

1.
94

+6
2.

03
−1

9.
05

+2
.2

1

Empirical Software Engineering

Table 13 Top three optimal configuration settings for the three studied system

System Config. decay function threshold loop longevity threshold trace eagerness trace limit

Saleor O
A

10 101 2000 129 25 12000

O
B

2 1619 250 1039 12 12000

O
C

2 1619 1000 3117 100 12000

Wagtail O
A

10 101 1000 1039 12 12000

O
B

2 404 250 259 12 12000

O
C

2 101 4000 4156 50 12000

Quokka O
A

80 404 500 519 12 12000

O
B

2 3238 2000 4156 12 6000

O
C

2 202 4000 4156 25 3000

Default − 40 1619 1000 1039 200 6000

6.1 Optimal Configurations across Different Systems

As we can see from the previous section (Section 5), the optimal configuration settings
obtained using ESM-MOGA significantly out-performed the default configuration. In this
subsection, we would like to compare the optimal configuration settings against the default
configuration setting in order to see if we can derive some rules or provide some guidance
for PyPy users when tuning the JIT configuration settings for their systems.

For each of the studied systems above, we obtain its top three optimal configuration
settings, whose values are shown in Table 13. We also included the default configuration
setting in the table to ease comparison.

One common pattern as we can see from Table 13 is that trace eagerness is signifi-
cantly smaller in all the optimal configuration settings when comparing to the default ones.
trace eagerness refers to the eagerness to compile a non-jitted branch within a loop. A sys-
tem can go through various branches within a loop. A smaller trace eagerness is preferred,
so that the branch(es) corresponds to frequently executed scenarios will be jitted faster.
There is no pattern found in the other five configuration parameters, as they can be either
bigger or smaller than the default values among the nine optimal configuration settings.

We are also interested in understanding the correlation of JIT configuration parameters
to the system performance. We collected all the evaluated configuration settings and the
corresponding response time for different scenarios. We summed up the average response
time for all scenarios as the overall response time under a JIT configuration setting. Then
we calculated the Spearman’s rank correlation between each configuration parameter and
the overall response time. Spearman is a non-parametric correlation metric measuring the
strength of the relation between the two variables. The scale of the Spearman’s ρ correlation
coefficient is indicated below (Hopkins 2016):

ρ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

trivial if 0 ≤ ρ < 0.1
small if 0.1 ≤ ρ < 0.3
moderate if 0.3 ≤ ρ < 0.5
large if 0.5 ≤ ρ < 0.7
very large if 0.7 ≤ ρ < 0.9
near perfect if 0.9 ≤ ρ ≤ 1.0

Empirical Software Engineering

Table 14 shows the result of the correlation between each configuration parameter and
the overall system performance. We highlight the cell in bold if the correlation measure is
“large” or “very large”. Each system has at least one configuration parameter which has
a “large” or “very large” correlation measure. However, highly correlated configuration
parameters vary among the three systems, except trace limit. A large trace limit enables
the system to compile large frequently executed loops, which can subsequently improve the
system performance. Meanwhile, the three JIT configuration parameters function threshold,
loop longevity and threshold have very low correlations (small or trival) with the overall
system performance.

Findings: The configuration parameter trace eagerness should be generally set lower

than the default values in order to obtain better performance. trace limit is highly cor-

related with the overall system performance, whereas function threshold, threshold and

loop longevity have no or weak correlations.
Implications: There are some general guidance in terms of tuning the PyPy JIT con-

figuration settings on web frameworks. However, the optimal configuration settings are

still highly system dependent. In this paper, we only evaluated the impact of PyPy JIT

configuration settings on benchmark programs or web applications. However, Python

is also popular in data statistic analysis and machine learning (e.g. scipy, tensorflow),

which could be time consuming to train a model. One of the interesting future research

area would be to derive rules or general guidance to improve the performance of var-

ious machine learning or statistic analysis packages by tuning their JIT configuration

parameters.

6.2 Top Configurations Across Different Workloads

In the previous study, we compared the optimal JIT configuration settings and it’s perfor-
mance cross different applications under the same level of workload. In this subsection,
we want to compare the optimal JIT configuration settings under different workloads. We
selected Wagtail as our experiment subject.

In addition to the default Wagtail workload (10 req/sec), we generated two other work-
loads for comparison: 15 req/sec and 5 req/sec, while keeping the workload mixes. For each

Table 14 Spearman correlation between configuration and response time

System Correlation decay function threshold loop longevity threshold trace eagerness trace limit

Saleor corr. coeff. −0.5120 −0.1338 0.0291 0.1869 −0.2961 0.6293

p − value 6.057e-08 0.1864 0.7748 0.0638 0.0029 3.028e-12

scale large small trivial small small large

Wagtail corr. coeff. −0.3719 −0.2750 0.1506 0.1392 −0.5446 0.5790

p − value 6.346e-08 8.452e-05 0.0336 0.0498 2.2e-16 2.2e-16

scale moderate small small small large large

Quokka corr. coeff. −0.0403 −0.1932 0.1157 0.0568 0.0506 0.8024

p − value 0.7554 0.1323 0.3703 0.6608 0.6956 4.476e-15

scale trivial small small trivial trivial very large

The large and very large correlation measures are shown in bold

Empirical Software Engineering

of newly generated workload, we ran PyPyJITTuner to derive the optimal JIT configuration
settings. For 15 req/sec workload, the framework iterated for 5 generations before termi-
nation. And it takes 4 generations for the PyPyJITTuner to be terminated under 5 req/sec
workload. The resulting configuration settings yield significant performance gain (20% -
50%) when compared to the default configuration setting.

Table 15 shows the actual performance for the top three configuration settings under
each workload. It shows the average response time for each scenario in milliseconds, as
well as various resource usage metrics like CPU and memory usage for the web server
and the database, respectively. In addition, it also shows the number of jitted lines under
each configuration setting. Although the workloads are different, all the nine top optimal
configuration settings share similar performance in terms of response time for each scenario.
The number of jitted lines are similar across different workloads. As workload increases, the
CPU and memory consumption for both the web server and the database increases. Hence,
in this case, the workload intensity is the main reason behind the increase of memory and
CPU consumption of the two server components.

Table 16 shows the top three optimal JIT configuration settings under different work-
loads. The optimal JIT configuration settings under different workloads share very similar
properties (e.g., large trace limit and small decay and trace eagerness values).

Findings: Varying the workload intensity would not impact the optimized JIT perfor-

mances. And different workloads would result in different optimal configuration values.

However, there are some common properties (e.g., large trace limit and small decay and
trace eagerness values) shared across them.

Implications: Researchers could further improve the efficiency of the ESM-MOGA by

developing machine learning algorithms to proactively eliminate some of the perfor-

mance deficient configuration settings from each generation.

6.3 Code Jitting vs. Performance

In Section 3.3, we have shown that more jitted lines do not necessarily lead to better perfor-
mance. Furthermore, the performance under some of the JIT configuration settings are even
worse than turning the JIT completely off! In this subsection, we would like to perform a
more in-depth study to find out the reasons.

In Fig. 6, we plotted the number of jitted lines with respect to system performance across
all the runs we did for the Saleor system. And the red dotted line shows the overall average
response time under the JIT off configuration setting. As the number of jitted lines increases,
the average response time for the system gradually decreases. As we can see from the figure,
there are a few JIT configuration settings which are even worse than turning the JIT off! We
conducted further analysis to understand the reason why some jitted code would even lead
to worse performance.

We focused on comparing the code structure under two configuration settings: configu-
ration A, which is a configuration with JIT enabled. As shown in Fig. 6, the performance of
configuration A is worse than turning JIT off. For brevity, we call the JIT off configuration
as configuration B.

We first applied cProfile (The Python Profilers 2018) to gather the high-level perfor-
mance numbers for Saleor. cProfile is a profiling tool for Python-based systems. It can
provide information like the execution time, the number of execution for each of the exe-
cuted functions. We enabled cProfile and ran the Saleor under the default workload twice:

Empirical Software Engineering

Ta
bl
e
15

C
om

pa
ri

ng
th

e
pe

rf
or

m
an

ce
am

on
g

th
e

op
tim

al
co

nf
ig

ur
at

io
n

se
tti

ng
s

un
de

r
di

ff
er

en
tw

or
kl

oa
ds

fo
r

W
ag

ta
il

E
xp

er
im

en
ts

W
or

kl
oa

d
5

re
q/

se
c

10
re

q/
se

c
15

re
q/

se
c

To
p

co
nf

ig
s

(O
A

O
B

O
C

)
(O

A
O

B
O

C
)

(O
A

O
B

O
C

)

ad
d

bl
og

13
16

.0
0

12
86

.0
0

12
37

.0
0

12
76

.0
0

12
75

.0
0

11
91

.0
0

13
79

.0
0

14
28

.0
0

13
66

.0
0

R
es

po
ns

e
tim

e
ad

d
ev

en
t

11
04

.0
0

10
73

.0
0

10
90

.0
0

10
33

.0
0

11
90

.0
0

11
33

.0
0

13
26

.0
0

14
09

.0
0

13
75

.0
0

pe
r

sc
en

ar
io

ed
it

bl
og

10
77

.0
0

10
68

.0
0

92
0.

00
10

25
.0

0
10

85
.0

0
98

7.
40

10
80

.0
0

11
43

.0
0

11
00

.0
0

(m
se

c)
vi

ew
bl

og
10

2.
50

10
4.

60
11

1.
00

10
1.

30
10

9.
00

10
4.

90
11

9.
00

11
5.

40
11

7.
10

vi
ew

ev
en

t
89

.5
5

94
.8

1
95

.0
3

89
.9

8
89

.0
6

90
.1

0
98

.1
0

10
1.

0
98

.1
7

R
es

ou
rc

e
us

ag
e

W
S

C
PU

(%
)

27
.8

9
25

.6
2

23
.8

2
46

.1
6

48
.0

4
44

.2
7

61
.6

3
62

.1
9

63
.2

7

W
S

M
em

or
y

(M
B

)
25

32
.0

0
22

29
.0

0
18

48
.0

0
33

37
.0

0
37

70
.0

0
32

14
.0

0
29

98
.0

0
31

23
.0

0
29

44
.0

0

D
B

C
PU

(%
)

0.
21

0.
22

0.
21

0.
41

0.
40

0.
40

0.
61

0.
59

0.
59

D
B

M
em

or
y

(M
B

)
87

.4
9

87
.8

5
86

.9
6

90
.5

8
93

.9
0

95
.0

9
97

.8
4

97
.9

0
95

.2
0

JI
T

#
of

jit
te

d
lin

es
12

98
7

99
93

87
80

11
04

5
13

06
5

12
29

8
11

00
2

11
45

1
11

40
2

Empirical Software Engineering

Table 16 Top three optimal configuration settings for Wagtail under different workloads

Workload decay function threshold loop longevity threshold trace eagerness trace limit

5 req/sec 2 404 250 129 12 12000

40 101 250 519 12 12000

20 404 500 1039 25 12000

10 req/sec 10 101 1000 1039 12 12000

2 404 250 259 12 12000

2 101 4000 4156 50 12000

15 req/sec 2 1619 125 3117 25 12000

2 1619 62 2078 25 12000

10 101 62 2078 25 12000

Default 1039 1619 40 6000 200 1000

one run under configuration A, and the other run under configuration B. After the profiling,
we extracted the total execution time and the frequency of the executions for each function.
Although the cProfile can provide us with function level profiling, it cannot provide infor-
mation on which lines are executed during runtime. Hence, we implemented a simple tracer
based on Python’s tracing library (Tracing a Program As It Runs 2018). Since both runs
executed exactly the same workload, the lines of the executed source code should be the
same. Hence, we only ran our tracer once. Finally, we parsed the jitted logs we collected for
configuration A in order to know the exact lines of source code that were jitted.

Based on the cProfiling results, we calculated the average execution time for each func-
tion and computed their differences between the two configuration settings. We sorted the
differences in decreasing order and selected top 30 functions whose performance is worse
in configuration A for manual examination.

Fig. 6 Number of jitted lines and overall average response time among all evaluated JIT configuration
settings in Saleor. The red dotted line shows the overall average response time with JIT turned off

Empirical Software Engineering

We found that the main reason behind the worse performance is configuration A is due
to the overhead of time switching between the two execution modes (interpreted vs. native
execution). When a function is executed each time, PyPy will be running under the default
interpreted mode. When a code region is marked as jitted, PyPy will switch from the inter-
preted mode to the native execution mode and executed the compiled binary code. After the
binary code is executed, PyPy will have to switch back to interpreted mode to execute the
rest of the function. Executing the compiled binary code is much faster than running the
same code under the interpreted mode. However, the switching between the two executing
mode takes time. Figure 7 shows two such examples. The different text styles are defined
as follows:

– grey: not executed;
– bold: executed but not jitted;
– bold & highlighted: jitted under configuration A.

As we can see from the Fig. 7, only a single line is jitted in both functions. Both lines
are related to Python list comprehension, which internally execute a for loop. In both cases,
PyPy has to switch the execution mode twice: starting from the interpreted mode to the
native execution mode and back. The time saved under the native execution mode is much
smaller than the time takes for switching between the two modes, which causes the perfor-
mance degradation in configuration A (enabling JIT) when comparing against configuration
B (JIT off).

Such jitting behavior can be explained using the configuration settings. The configuration
A is shown in Table 17. For reference, we also included the default configuration values in
the table. The ‘trace limit’ in configuration A is set to be a very small value, which would
only allow a small region of code to traced and jitted. The smaller the jitted code region is,
the less the performance gain code jitting can bring. In this case, the overhead of frequently
switching between the two modes out-weights the gain from code jitting.

Findings: Enabling code jitting does not necessarily lead to good performance. Some JIT

configuration settings can perform worse than the disabling the JIT completely. This is

mainly due to the overhead of switching between the interpreted and the native execution

mode.

Implications: Programming language researchers may look into adaptive JIT compila-

tion techniques, which can disable inefficient code jitting behavior during runtime.

6.4 JIT vs. Memory Usage

The case studies have shown that by using our automated approach, we are able to locate
JIT configuration settings whose performance significantly outperform the default config-
uration setting. The CPU for all the components are better or no worse in the optimal
configuration settings than the default. This is mainly because the CPU can process the same
amount of work much more efficiently when more code is compiled into efficient machine
code. However, the memory usage for the Tornado web servers are much worse. The mem-
ory usage for the worker processes for Wagtail even tripled in the optimal configuration
settings. Hence, we want to investigate whether there is any relation between the amount of
code jitted and the amount of memory used in the worker processes.

For all the performance tests in each case study, we processed the JIT logs to obtain the
amount of the jitted source code and extract the memory usage at the end of the test. Then

Empirical Software Engineering

Fig. 7 Two code snippets showing the executed code and the jitted code under the two configuration set-
tings: A vs. B. Configuration A is a jit-enabed configuration shown in Fig. 6. It has worse performance than
configuration B, which is JIT off. The colour scheme is defined as follows: grey coloured code is for not
executed code; bolded black coloured code is for executed but not jitted code; and highlighted bold coloured
code is for jitted code under configuration A

we calculated the Spearman’s rank correlation between the lines of the jitted code and the
amount of memory usage.

As shown in Table 18, there is a very large correlation between the memory usage of the
web server processes and the amount of the jitted code. In other words, the larger the amount
of the jitted code, the higher the memory usage for the worker processes. As more code is

Empirical Software Engineering

Table 17 Configuration A and the default configuration

JIT Configuration Parameter A Default

decay 5 40

function threshold 404 1619

loop longevity 1000 1000

threshold 4156 1039

trace eagerness 100 200

trace limit 374 6000

jitted, a larger amount of compiled machine code is generated. The generated machine code
will be kept in the memory during the system execution.

Findings: The improvement in response time using the JIT compilation process is at the

cost of higher memory usage.

Implications: More jitted code can generally lead to more responsive system. How-

ever, the number of jitted lines should be kept in a moderate range as: (1) more jitted

code means higher memory usage, and (2) the configuration settings with the highest

amount of jitted lines will not guarantee the best performance. One of the interesting

future research work would be incorporating memory usage as one of the objectives in

the ESM-MOGA while searching for the optimal configuration settings.

6.5 Termination Criteria

The above case studies show that among the three studied systems, all top three config-
uration settings significantly outperform the default configuration setting. We set (T0 :)
|MDR| ≤ 0.1 in the hope that there is a higher chance to obtain the optimal configuration
settings, as solutions in the previous generation are good enough so that little optimization
can be made during the last generation before termination. However, such conditions may
be too strict and cost too much time (≥ 35 hours as shown in Table 11). Many systems nowa-
days need to be updated more frequently (e.g., daily or even a few times a day) under the
continuous integration/continuous delivery processes. Hence, during the case studies, we
also examined the following two termination conditions: (1) (T1 :) |MDR| ≤ 0.25, and (2)
(T2 :) |MDR| ≤ 0.50, in the hope that the search process terminates earlier (a.k.a., saving
the time for searching), while we are still able to locate the optimal solutions.

Table 19 shows the runtime statistics for ESM-MOGA under three different termination
criteria: T0 , T1 , and T2 . All termination criteria stopped at the same number of generations
for Saleor and Quokka. However, for Wagtail, the less strict termination criteria T1 and

Table 18 Spearman correlation between number of jitted line and memory usage for each system

System correlation p − value scale

Saleor 0.8244878 2.2e-16 very large

Wagtail 0.882144 2.2e-16 very large

Quokka 0.8549971 2.2e-16 very large

Empirical Software Engineering

Table 19 Runtime statistics for ESM-MOGA under different termination criteria

Saleor Wagtail Quokka

Stoppage Criteria T0 T1 T2 T0 T1 T2 T0 T1 T2

of Generation 3 3 3 7 3 3 3 3 3

Evaluated Configurations 100 100 100 199 97 97 96 96 96

Duration (hours) 36 36 36 67 34 34 35 35 35

T2 are met after the third generation. Hence, we also extracted the top three configuration
settings for Wagtail at the end of the third generation for further comparison.

We performed a pairwise comparison using the dominant comparison function between
the top three configuration settings under termination criteria T1 and T2 (a.k.a., stopped after
the third generation) and the top three configuration settings under termination criterion T0

(a.k.a., stopped after the seventh generation). The results show that two out of the three
top configuration settings under T0 dominate all top three configuration settings under T1

and T2 . The other remaining top three configuration settings under T0 show no dominance
when comparing against one of the top configuration settings under T1 and T2 . The system
performance under the top three configuration settings under T1 and T2 also shows large
improvement for all scenarios when comparing against the default setting.

Findings: We have evaluated the ESM-MOGA under three different termination criteria:

(1) 0.50, (2) 0.25, and (3) 0.10. The ESM-MOGA can

terminate successfully (a.k.a., finding the optimal solutions) under all three criteria for

the three case study systems. And the less strict termination criteria
1
and

2
can obtain

some configuration settings which are as good as some top configuration settings under

termination criterion
0
.

Implications: There are various configuration parameters within ESM-MOGA. It

requires further research to systemically tune ESM-MOGA configuration parameters in

order to achieve the best performance (finding the optimal solutions within the shortest

amount of time). Furthermore, it would be beneficial to compare ESM-MOGA against

other hyper-parameter tuning techniques (e.g., Google Viser (Golovin et al. 2017)).

7 Threats to Validity

In this section, we will discuss the threats to validity.

7.1 Construct Validity

To avoid measurement errors and noise, we repeated each experiment 30 times (Georges
et al. 2007).

We leveraged techniques from Alghmadi et al. (2016) to determine the duration of per-
formance tests, when the performance behavior becomes repetitive. We have found that after
40 minutes under the default configuration settings for the three systems, the performance
behavior becomes repetitive. For consistency concerns, we took additional 10 minutes of
the performance data for our performance tests for the warmed up period. We assumed the

Empirical Software Engineering

warmup period would be similar under other configuration settings. To verify this threshold,
we randomly sampled five performance test from all performance testing runs in each case
study. For each sampled test, we divided the performance data into intervals of ten minutes
and compared the performance behavior among the adjacent intervals. Our analyses con-
firmed that the performance behavior also became repetitive after 40 minutes under these
five sampled configuration settings.

Since the JIT logs do not contain timestamps, the only way to monitor the jitting progress
for PyPy is to periodically take snapshots of the existing JIT logs. However, regularly taking
snapshots of the JIT logs would bring huge performance overhead for a server-based system.
Hence, to minimize the measurement impact, we did not take snapshots in the middle of the
performance tests in our case study in Section 5. Instead, we estimated the jitting progress by
judging whether the system performance behavior stabilizes (a.k.a., becoming repetitive).

Our approach, ESM-MOGA, is a tailed version of the Multi-Objective Genetic Algo-
rithm, which uses effect size measures to compare the results of different test runs. MOGA
is an efficient search-based technique, which automatically explores the solution space. It
has been used widely in various software engineering research areas (e.g., test case gen-
eration (Abdessalem et al. 2018; Fraser and Arcuri 2011; Shamshiri et al. 2015), software
architecture (Henard et al. 2015), and bug prediction (Canfora et al. 2013)) and is shown
to be highly effective. Although our case study results show that the configurations derived
from the ESM-MOGA approach yield much better performance than the default config-
uration, the ESM-MOGA might not be the most efficient approach to locate the optimal
JIT configuration setting(s). Furthermore, the search time that it takes to find the opti-
mal solutions using ESM-MOGA varies depending on the systems and their associated
workload. One of the future areas of research is to evaluate the effectiveness of various
hyper-configuration tuning techniques in the context of tuning JIT configuration parameters.

7.2 Internal Validity

We kept all the other factors (e.g., the versions of the systems, the deployment infrastruc-
ture, and the workload) the same, while varying the JIT configuration settings for each
performance tests.

In this paper, we assumed the systems which undergo the JIT tuning process, can handle
the exercised workload. In other words, the systems are not in a bottleneck state when
we tune their JIT configurations. We feel this is a valid assumption, as the top priority
for bottlenecked systems would be performance diagnosis and migration actions instead of
tuning their JIT configuration settings.

We used the WRS test and the values from CD to implement our dominance functions in
the ESM-MOGA. WRS is a statistical test which compares the distributions of two datasets.
CD is an effect size measure, which indicates the strength of the difference between two
datasets. Both the WRS test and the CD are non-parametric tests, which do not hold any
assumptions regarding the underlying distributions of the data. The two techniques have
been used together in previous works (Gao et al. 2016; Gao and Jiang 2017) to evaluate the
system performance between two alternatives.

7.3 External Validity

In this paper, we have conducted a case study on the performance impact of the JIT configu-
ration settings from PyPy. The experimented PyPy version is PyPy 5.7.1, which corresponds

Empirical Software Engineering

to Python version 2.7.13. The empirical findings in the exploratory studies may not be gen-
eralizable to other Python versions (e.g, Python 3), other Python implementations (e.g.,
Jython), or other programming languages (e.g., Java or C#).

Our case study results have shown that the optimal JIT configuration settings vary from
systems to systems. Our search-based configuration tuning framework can be used to auto-
matically search for configuration settings, which are much better than the default. Our
automated tuning technique can also be used to tune the JIT performance of other program-
ming languages, whose parameters are integer types. We plan to extend our approach in
the future to accommodate other types of configuration parameters (e.g., string, float and
boolean types).

As each experiment requires starting the Python-based applications with a different set
of configuration parameters, it is not yet practical to apply ESM-MOGA techniques into the
continuous integration and continuous delivery process. One of the future areas of research
is to look into techniques like transfer learning (Jamshidi et al. 2017b) to infer the optimal
configurations for the newer releases of the same systems or even configuration parameters
other systems.

8 RelatedWork

In this paper, we discuss two areas of research works which are related to this paper: (1)
JIT compiler; and (2) techniques used to assess and optimize the configuration settings of a
software system.

8.1 JIT Compiler

JIT is introduced as a technique to improve the system behavior during runtime by compil-
ing the frequently executed (a.k.a., “hot”) code snippets into binaries (Bolz et al. 2009; Oaks
2014). Currently, there are two general approaches on recognizing and compiling hot code:
(1) the method-based jitting approach (Cramer et al. 1997), which compiles the whole hot
method; and (2) the trace-based jitting approach (Bolz et al. 2009), which only compiles the
frequently executed code path(s) within one method. Both techniques have their pros and
cons and are adopted by different programming languages. The code jitting process takes a
while to recognize and compile the hot code snippets (Barrett et al. 2017). Hence, various
techniques have been proposed to speed up the JIT compilations (Jantz and Kulkarni 2013;
Gal et al. 2009; Lion et al. 2016). Since only portions of the source code are jitted, during
runtime, depending on the actual execution path(es), the system may switch between the
native mode (a.k.a., executing the compiled binaries) and the interpreter mode. Gong et al.
(2015) developed a technique to detect performance anti-patterns that prohibit the system
to execute certain portions of the code natively. Our paper differs from the above works,
as it focuses on the configuration settings of the JIT compiler. The closest work was done
by Hoste et al. (2010), which proposed a search-based technique to automatically tune the
Java compiler. Although the two programming languages differ in their jitting techniques
(method-based JIT for Java and tracing-based JIT for PyPy), both Hoste et al. (2010) and
this paper reported the need to automatically tune JIT configurations, as the optimal JIT
configurations are system and workload dependent. Hoste et al. (2010) even found that the
JIT configuration tuning is hardware dependent. In this paper, we further studied the char-
acteristics of the PyPy jitting behavior and tried to derive general patterns/guidelines on
tuning the JIT configurations. For example, we have found a high correlation between the

Empirical Software Engineering

amount of jitted code and memory utilization. Generally, the configuration parameter decay
should be set with a small value and a large value in the trace limit.

8.2 Understanding and Tuning the Configuration Settings

Software configuration settings play an important role in the performance of a software
system. However, there can be many configuration parameters, each of which has various
possible settings. Hence, the overall configuration space for one system can be huge. In
this subsection, we will discuss the related works in the area of assessing and optimizing
the configuration settings for one system. We have divided the existing techniques into the
following three categories:

– Understanding the Performance Impact of Various Configuration Parameters
Through Experimentation: Not all configuration parameters can impact the sys-
tem performance. Hence, researchers have devised a set of experiments with various
combinations of the configuration settings to assess the impact of the configuration
parameters (Brecht et al. 2006; Sopitkamol and Menascé 2005). Various experi-
mental design techniques (e.g., screening design (Yilmaz et al. 2007), and covering
array Hoskins et al. 2005) have been applied to assess the performance impact of
various configuration parameters. These techniques require a much smaller set of exper-
iments than exhaustively enumerating all the possible combinations of the configuration
settings, while still able to identify the high performance impacting configuration
parameters.

– Modeling System Performance Under Different Configuration Settings: Instead of
isolating the impact of various configuration parameters, another approach to assess the
performance impact of configuration settings is through performance modeling. Sieg-
mund et al. (2012) predicted the system performance by detecting performance-relevant
feature interactions. In their later work (Siegmund et al. 2015), Siegmund et al. lever-
aged machine learning and sampling heuristics to build performance models, which can
describe the performance influences among different configuration options and their
interactions, from a small set of experiments. Libič et al. (2014) used queuing theory to
model the performance of the JVM garbage collectors (GCs). Singer et al. (2007) built
machine learning models using the data from the existing configurations of the GCs.
Recently, Jamshidi et al. (2017a) proposed to use the transfer learning technique to
model and infer the system performance under different configuration settings.

– Automated Tuning of the Configuration Settings: There are two general approaches
to automatically tuning the configuration settings of a software system: (1) through
reduction of the possible candidates of optimal configurations (e.g., based on the sim-
ilarities among configuration settings (Osogami and Kato 2007) or through iterative
experimentations Thonangi et al. 2008); (2) through the use of the search-based algo-
rithms (e.g., hill-climbing (Xi et al. 2004; Wang et al. 2012), ParamILS (Lengauer and
Mössenböck 2014), or multi-objective genetic algorithms Hoste et al. 2010; Singh et al.
2016).

In this paper, we assessed the performance impact of PyPy’s JIT configuration set-
tings through experimentation. Furthermore, we have provided some insights into why
certain code regions are jitted or not jitted. For locating the optimal JIT configuration set-
tings for each system, we adopted the multi-objective genetic algorithms. It can be an
interesting future work to compare the effectiveness and efficiency in terms of tuning the
JIT configuration parameters among the various approaches described above.

Empirical Software Engineering

9 Conclusion and FutureWork

The JIT compilation is introduced to improve the runtime performance of software systems.
During the system execution, various regions of the systems are compiled into the binary
executable format, so that they can be executed more efficiently. In this paper, we have
performed an empirical study on the performance impact of PyPy’s JIT configuration set-
tings. In particular, we have compared the performance differences between the default and
some other configuration settings. We have shown that systems running under the default
configuration setting does not necessarily yield the best performance. In addition, we have
shown that there is no strong connection between the JIT coverage and the system perfor-
mance and the optimal JIT configuration settings are system dependent. To cope with such
findings, we have developed a search-based approach, called ESM-MOGA, which automat-
ically tunes the JIT configuration settings for a given system. Case studies have shown that
systems running under the resulting configuration settings are significantly faster than the
default configuration setting.

In the future, we plan to further expand the ESM-MOGA to accommodate more objec-
tives (e.g., memory and network efficiency) during its search process. We also would like
to apply the ESM-MOGA on other Python-based applications or frameworks (e.g., machine
learning based frameworks like TensorFlow). In addition, we plan to explore the use of data
mining or experimental design techniques to further reduce the number of performance tests
conducted during the search process. Finally, we would like to evaluate the effectiveness of
various hyper-parameter tuning techniques in the context of tuning JIT configurations.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Abdessalem RB, Panichella A, Nejati S, Briand LC, Stifter T (2018) Testing autonomous cars for feature
interaction failures using many-objective search. In: Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering (ASE)

Alghmadi HM, Syer MD, Shang W, Hassan AE (2016) An automated approach for recommending when to
stop performance tests. In: 2016 IEEE international conference on software maintenance and evolution
(ICSME), pp 279–289

Apache JMeter (2015) http://jmeter.apache.org/, visited 2015-10-23
Barrett E, Bolz-Tereick CF, Killick R, Mount S, Tratt L (2017) Virtual machine warmup blows hot and cold.

In: Proceedings of the ACM Programming Language 1(OOPSLA), pp 52:1–52:27. https://doi.org/10.
1145/3133876

Bolz CF, Cuni A, Fijalkowski M, Rigo A (2009) Tracing the meta-level: Pypy’s tracing jit compiler. In:
Proceedings of the 4th workshop on the implementation, compilation, optimization of object-oriented
languages and programming systems (ICOOOLPS), pp 18–25

Bondi AB (2007) Automating the analysis of load test results to assess the scalability and stability of a
component. In: Proceedings of the 2007 computer measurement group conference (CMG), pp 133–146

Brecht T, Arjomandi E, Li C, Pham H (2006) Controlling garbage collection and heap growth to
reduce the execution time of java applications. ACM Trans Program Lang Syst 28(5):908–941.
https://doi.org/10.1145/1152649.1152652

Candan KS, Li WS, Luo Q, Hsiung WP, Agrawal D (2001) Enabling dynamic content caching for database-
driven web sites. In: Proceedings of the 2001 ACM SIGMOD international conference on management
of data (SIGMOD), pp 532–543

Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project
defect prediction. In: Proceedings of the 2013 IEEE 6th international conference on software testing,
verification and validation (ICST)

http://jmeter.apache.org/
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1145/1152649.1152652

Empirical Software Engineering

Clark M (2017) How the BBC builds websites that scale. http://www.creativebloq.com/features/
how-the-bbc-builds-websites-that-scale. Last accessed 10/06/2017

Cramer T, Friedman R, Miller T, Seberger D, Wilson R, Wolczko M (1997) Compiling java just in time.
IEEE Micro 17(3):36–43

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from
nature. Springer, pp 849–858

Distributed Evolutionary Algorithms in Python (DEAP) (2017) https://github.com/DEAP/deap. Last
accessed 10/06/2017

Duan S, Thummala V, Babu S (2009) Tuning Database Configuration Parameters with iTuned. Proceedings
of the VLDB Endowment 2(1):1246–1257. https://doi.org/10.14778/1687627.1687767

Eaton K (2017) How One Second Could Cost Amazon $1.6 Billion In Sales. https://www.fastcompany.com/
1825005/how-one-second-could-cost-amazon-16-billion-sales. Last accessed 10/06/2017

Evaluation tools in Python (DEAP) (2017) http://deap.readthedocs.io/en/master/api/tools.html?
highlight=dominance. Last accessed 10/06/2017

Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th european conference on foundations of
software engineering (ESEC/FSE)

Gal A, Eich B, Shaver M, Anderson D, Mandelin D, Haghighat MR, Kaplan B, Hoare G, Zbarsky B, Oren-
dorff J, Ruderman J, Smith EW, Reitmaier R, Bebenita M, Chang M, Franz M (2009) Trace-based
just-in-time type specialization for dynamic languages. In: Proceedings of the 30th ACM SIGPLAN
conference on programming language design and implementation (PLDI), pp 465–478

Gao R, Jiang ZMJ (2017) An exploratory study on assessing the impact of environment variations on the
results of load tests. In: Proceedings of the 14th international conference on mining software repositories
(MSR)

Gao R, Jiang ZMJ, Barna C, Litoiu M (2016) A framework to evaluate the effectiveness of different load
testing analysis techniques. In: 2016 IEEE international conference on software testing, verification and
validation (ICST)

Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous java performance evaluation. In: Proceed-
ings of the 22nd international conference on object-oriented programming, systems, languages and
applications (OOPSLA)

Gewirtz D (2017) Which programming languages are most popular (and what does that even mean)?
http://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-
mean/. Last accessed 10/06/2017

Golovin D, Solnik B, Moitra S, Kochanski G, Karro J, Sculley D (2017) Google vizier: a service for black-
box optimization. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining (KDD)

Gong L, Pradel M, Sen K (2015) Jitprof: Pinpointing jit-unfriendly javascript code. In: Proceedings of the
2015 10th joint meeting on foundations of software engineering (ESEC/FSE), pp 357–368

Grigorik I (2017) Optimizing Encoding and Transfer Size of Text-Based Assets. https://developers.google.
com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer.
Last accessed 10/06/2017

Hashemi M (2014) 10 Myths of Enterprise Python. https://www.paypal-engineering.com/2014/12/10/
10-myths-of-enterprise-python/. Last accessed 10/06/2017

Henard C, Papadakis M, Harman M, Traon YL (2015) Combining multi-objective search and constraint
solving for configuring large software product lines. In: Proceedings of the 37th international conference
on software engineering (ICSE)

Hopkins WG (2016) A new view of statistics. [Online accessed 2017-10-14] http://www.sportsci.org/
resource/stats/index.html

Hoskins DS, Colbourn CJ, Montgomery DC (2005) Software performance testing using covering arrays:
Efficient screening designs with categorical factors. In: Proceedings of the 5th international workshop
on software and performance (WOSP)

Hoste K, Georges A, Eeckhout L (2010) Automated just-in-time compiler tuning. In: Proceedings of the 8th
annual IEEE/ACM international symposium on code generation and optimization (CGO), pp 62–72

IBM Java 8 JIT and AOT command-line options (2017) https://www.ibm.com/support/knowledgecenter/
SSYKE2 8.0.0/com.ibm.java.aix.80.doc/diag/appendixes/cmdline/commands jit.html. Last accessed
10/06/2017

Insights GP (2017) Remove Render-Blocking JavaScript. https://developers.google.com/speed/docs/insights/
BlockingJS. Last accessed 10/06/2017

http://www.creativebloq.com/features/how-the-bbc-builds-websites-that-scale
http://www.creativebloq.com/features/how-the-bbc-builds-websites-that-scale
https://github.com/DEAP/deap
https://doi.org/10.14778/1687627.1687767
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://deap.readthedocs.io/en/master/api/tools.html?highlight=dominance
http://deap.readthedocs.io/en/master/api/tools.html?highlight=dominance
http://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-mean/
http://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-mean/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-encoding-and-transfer
https://www.paypal-engineering.com/2014/12/10/10-myths-of-enterprise-python/
https://www.paypal-engineering.com/2014/12/10/10-myths-of-enterprise-python/
http://www.sportsci.org/resource/stats/index.html
http://www.sportsci.org/resource/stats/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/appendixes/cmdline/commands_jit.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/appendixes/cmdline/commands_jit.html
https://developers.google.com/speed/docs/insights/BlockingJS
https://developers.google.com/speed/docs/insights/BlockingJS

Empirical Software Engineering

Jamshidi P, Siegmund N, Velez M, Kästner C, Patel A, Agarwal Y (2017) Transfer learning for perfor-
mance modeling of configurable systems: an exploratory analysis. In: Proceedings of the international
conference on automated software engineering (ASE)

Jamshidi P, Siegmund N, Velez M, Kästner C, Patel A, Agarwal Y (2017) Transfer learning for performance
modeling of configurable systems: an exploratory analysis. In: Proceedings of the 32nd IEEE/ACM
international conference on automated software engineering (ASE)

Jantz MR, Kulkarni PA (2013) Exploring single and multilevel jit compilation policy for modern machines
1. ACM Trans Archit Code Optim (TACO) 10(4):22:1–22:29

Java Microbenchmark Harness (JMH) (2017) http://openjdk.java.net/projects/code-tools/jmh/. Last accessed
10/06/2017

Jiang ZM, Hassan AE (2015) A survey on load testing of large-scale software systems. IEEE Trans Softw
Eng 41:1-1. https://doi.org/10.1109/TSE.2015.2445340

Kampenes VB, Dybå T, Hannay JE, Sjøberg DIK (2007) Systematic review: A systematic review of effect
size in software engineering experiments. Inf Softw Technol 49(11-12):1073–1086

Komorn R (2016) Python in production engineering. https://code.facebook.com/posts/1040181199381023/
python-in-production-engineering/. Last accessed 10/06/2017

Lengauer P, Mössenböck H (2014) The taming of the Shrew: increasing performance by automatic parameter
tuning for java garbage collectors. In: Proceedings of the 5th ACM/SPEC international conference on
performance engineering (ICPE), pp 111–122

Libič P, Bulej L, Horky V, Tůma P (2014) On the limits of modeling generational garbage collector per-
formance. In: Proceedings of the 5th ACM/SPEC international conference on performance engineering
(ICPE)

Lion D, Chiu A, Sun H, Zhuang X, Grcevski N, Yuan D (2016) Don’t get caught in the cold, warm-up your
jvm: Understand and eliminate jvm warm-up overhead in data-parallel systems. In: Proceedings of the
12th USENIX conference on operating systems design and implementation (OSDI), pp 383–400

Martı́ L, Garcı́a J, Berlanga A, Molina JM (2009) An approach to stopping criteria for multi-objective opti-
mization evolutionary algorithms: The mgbm criterion. In: IEEE congress on evolutionary computation,
2009. CEC’09. IEEE, pp 1263–1270

Oaks S (2014) Java performance: the definitive guide, 1st. O’Reilly Media, Inc, Sebastopol
Osogami T, Kato S (2007) Optimizing system configurations quickly by guessing at the performance. In:

Proceedings of the 2007 ACM SIGMETRICS international conference on measurement and modeling
of computer systems (SIGMETRICS)

Oracle Java 8 Advanced JIT Compiler Options (2017) https://docs.oracle.com/javase/8/docs/technotes/tools/
windows/java.html#BABDDFII. Last accessed 10/06/2017

Performance monitoring tools for Linux (2015) https://github.com/sysstat/sysstat, visited 2015-10-23
PyPy speed center (2017) http://speed.pypy.org/. Last accessed 10/04/2017
Quokka CMS (Content Management System) - Python FlaskandMongoDB (2017) http://quokkaproject.org/.

Last accessed 10/06/2017
Replication package (2018) https://github.com/seasun525/PyPyJITTuner
Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: Should

we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?
In: Annual meeting of the Florida Association of Institutional Research

Saleor - An e-commerce storefront for Python and Django (2017) http://getsaleor.com/. Last accessed
10/06/2017

Shamshiri S, Rojas JM, Fraser G, McMinn P (2015) Random or genetic algorithm search for object-
oriented test suite generation? In: Proceedings of the 2015 annual conference on genetic and evolutionary
computation (GECCO)

Siegmund N, Grebhahn A, Apel S, Kästner C (2015) Performance-influence models for highly config-
urable systems. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering,
ESEC/FSE 2015. ACM

Siegmund N, Kolesnikov SS, Kästner C, Apel S, Batory D, Rosenmüller M, Saake G (2012) Predicting
Performance via Automated Feature-interaction Detection. In: Proceedings of the 34th international
conference on software engineering (ICSE)

Singer J, Brown G, Watson I, Cavazos J (2007) Intelligent selection of application-specific garbage collectors.
In: Proceedings of the 6th International Symposium on Memory Management, ISMM ’07

Singh R, Bezemer CP, Shang W, Hassan AE (2016) Optimizing the performance-related configurations of
object-relational mapping frameworks using a multi-objective genetic algorithm. In: Proceedings of the
7th ACM/SPEC on international conference on performance engineering (ICPE), pp 309–320

http://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1109/TSE.2015.2445340
https://code.facebook.com/posts/1040181199381023/python-in-production-engineering/
https://code.facebook.com/posts/1040181199381023/python-in-production-engineering/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html#BABDDFII
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html#BABDDFII
https://github.com/sysstat/sysstat
http://speed.pypy.org/
http://quokkaproject.org/
https://github.com/seasun525/PyPyJITTuner
http://getsaleor.com/

Empirical Software Engineering

Sopitkamol M, Menascé DA (2005) A method for evaluating the impact of software configuration parameters
on e-commerce sites. In: Proceedings of the 5th international workshop on software and performance
(WOSP), pp 53–64

TechEmpower Web Framework Benchmarks (2017) https://www.techempower.com/benchmarks/. Last
accessed 10/04/2017

The Python Profilers (2018) https://docs.python.org/2/library/profile.html. Last accessed 10/28/2018
Thonangi R, Thummala V, Babu S (2008) finding good configurations in High-Dimensional spaces: doing

more with less. In: 2008 IEEE international symposium on modeling, analysis and simulation of
computers and telecommunication systems

Tracing a Program As It Runs (2018) https://pymotw.com/2/sys/tracing.html. Last accessed 10/28/2018
vmprof - a statistical program profiler (2017) http://vmprof.com/. Last accessed 10/06/2017
Wang K, Lin X, Tang W (2012) Predator - An experience guided configuration optimizer for Hadoop

MapReduce. In: 4Th IEEE international conference on cloud computing technology and science
proceedings

Wagtail CMS: Django Content Management System (2017) https://wagtail.io/. Last accessed 10/06/2017
What is Load Balancing? (2017) https://www.nginx.com/resources/glossary/load-balancing/. Last accessed

10/06/2017
What is python used for at Google? (2017) https://www.quora.com/What-is-python-used-for-at-Google.

Last accessed 10/06/2017
Wimmer C, Brunthaler S (2013) Zippy on truffle: a fast and simple implementation of python. In: Proceed-

ings of the 2013 companion publication for conference on systems, programming, & applications:
software for humanity (SPLASH)

Würthinger T, Wimmer C, Humer C, Wöß A, Stadler L, Seaton C, Duboscq G, Simon D, Grimmer M (2017)
Practical partial evaluation for high-performance dynamic language runtimes. In: Proceedings of the
38th ACM SIGPLAN conference on programming language design and implementation, PLDI 2017.
ACM, New York, pp 662–676. https://doi.org/10.1145/3062341.3062381

Würthinger T, Wimmer C, Wöß A, Stadler L, Duboscq G, Humer C, Richards G, Simon D, Wolczko M
(2013) One vm to rule them all. In: Proceedings of the 2013 ACM international symposium on new
ideas, new paradigms, and reflections on programming & software (Onward!)

Xi B, Liu Z, Raghavachari M, Xia CH, Zhang L (2004) A smart hill-climbing algorithm for application server
configuration. In: Proceedings of the 13th international conference on world wide web (WWW). ACM,
New York, pp 287–296. https://doi.org/10.1145/988672.988711

Xu T, Jin X, Huang P, Zhou Y, Lu S, Jin L, Pasupathy S (2016) Early detection of configuration errors to
reduce failure damage. In: Proceedings of the 12th USENIX conference on operating systems design
and implementation (OSDI)

Yilmaz C, Porter A, Krishna AS, Memon AM, Schmidt DC, Gokhale AS, Natarajan B (2007) Reliable effects
screening: a distributed continuous quality assurance process for monitoring performance degradation in
evolving software systems. IEEE Trans Softw Eng (TSE) 33(2):124–141. https://doi.org/10.1109/TSE.
2007.20

Yangguang Li is a graduate student at the Department of Electrical Engineering and Computer Science,
York University in Toronto, ON, Canada. He received his Bachelor of Engineering degree from the School of
Computer Science and Technology at Beijing University of Posts and Telecommunications in Beijing, China.
His research interests are software performance engineering, mining software repositories, and debugging
and monitoring of distributed systems.

https://www.techempower.com/benchmarks/
https://docs.python.org/2/library/profile.html
https://pymotw.com/2/sys/tracing.html
http://vmprof.com/
https://wagtail.io/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.quora.com/What-is-python-used-for-at-Google
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/988672.988711
https://doi.org/10.1109/TSE.2007.20
https://doi.org/10.1109/TSE.2007.20

Empirical Software Engineering

ZhenMing (Jack) Jiang is an associate professor at the Department of Electrical Engineering and Computer
Science, York University in Toronto, Canada. His research interests lie within software engineering and
computer systems, with special interests in software performance engineering, software analytics, source
code analysis, software architectural recovery, software visualizations, and debugging and monitoring of
distributed systems. Some of his research results are already adopted and used in practice on a daily basis. He
is the cofounder of the annually held International Workshop on Load Testing and Benchmarking of Software
Systems (LTB). He received several Best Paper Awards including ICST 2016, ICSE 2015 (SEIP track), ICSE
2013, and WCRE 2011. He received the BMath and MMath degrees in computer science from the University
of Waterloo, and the PhD degree from the School of Computing at the Queen’s University.

Affiliations

Yangguang Li1 ·ZhenMing (Jack) Jiang1

Zhen Ming (Jack) Jiang
zmjiang@cse.yorku.ca

1 Software Construction, AnaLytics and Evaluation (SCALE) lab, York University, Toronto, ON, Canada

http://orcid.org/0000-0002-2915-9360
mailto: zmjiang@cse.yorku.ca

	Assessing and optimizing the performance impact of the just-in-time configuration parameters - a case study on PyPy
	Abstract
	Introduction
	Paper Organization

	Background
	An Overview of the JIT Compilation Process
	PyPy's JIT Configuration

	Exploratory Study
	(RQ1) How Different is the System Performance Before and After its Code has been Jitted?
	Experiment
	Data Analysis

	(RQ2) What is the Performance Impact by Varying JIT Configurations?
	Experiment
	Data Analysis

	(RQ3) Do Systems Containing more Jitted Lines Yield Better Performance?
	Experiment
	Data Analysis

	Automatically Tuning the JIT Configuration Parameters
	Tailoring MOGA for JIT Configuration Tuning
	Phase 0 - Problem Formulation
	Phase 1 - Initialization
	Phase 2 - Tournament
	Phase 3 - Evolution
	Phase 4 - Selection
	Phase 5 - Stopping

	Our Performance Testing Framework
	Implementation

	Case Study
	Case Study Setup
	Case Study Results

	Discussions
	Optimal Configurations across Different Systems
	Top Configurations Across Different Workloads
	Code Jitting vs. Performance
	JIT vs. Memory Usage
	Termination Criteria

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	JIT Compiler
	Understanding and Tuning the Configuration Settings

	Conclusion and Future Work
	References
	Affiliations

