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Software testing is a widely used technique to ensure the qual-
ity of software systems. Code coverage measures are commonly
used to evaluate and improve the existing test suites. Based on our
industrial and open source studies, existing state-of-the-art code
coverage tools are only used during unit and integration testing
due to issues like engineering challenges, performance overhead,
and incomplete results. To resolve these issues, in this paper we
have proposed an automated approach, called LogCoCo, to estimat-
ing code coverage measures using the readily available execution
logs. Using program analysis techniques, LogCoCo matches the
execution logs with their corresponding code paths and estimates
three different code coverage criteria: method coverage, statement
coverage, and branch coverage. Case studies on one open source
system (HBase) and five commercial systems from Baidu and sys-
tems show that: (1) the results of LogCoCo are highly accurate
(> 96% in seven out of nine experiments) under a variety of testing
activities (unit testing, integration testing, and benchmarking); and
(2) the results of LogCoCo can be used to evaluate and improve
the existing test suites. Our collaborators at Baidu are currently
considering adopting LogCoCo and use it on a daily basis.
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1 INTRODUCTION

A recent report by Tricentis shows that software failure caused
$1.7 trillion in financial losses in 2017 [48]. Therefore, software
testing, which verifies a system’s behavior under a set of inputs, is
a required process to ensure the system quality. Unfortunately, as
software testing can only show the presence of bugs but not their
absence [15], complete testing (a.k.a., revealing all the faults) is often
not feasible [3, 36]. Thus, it is important to develop high quality
test suites, which systematically examine a system’s behavior.

Code coverage measures the amount of executed source code,
when the system is running under various scenarios [18]. There are
various code coverage criteria (e.g., statement coverage, condition
coverage, and decision coverage) proposed to measure how well
the test suite exercises the system’s source code. For example, the
statement coverage measures the amount of executed statements,
whereas the condition coverage measures the amount of true/false
decisions taken from each conditional statement. Although there
are mixed results between the relationship of code coverage and
test suite effectiveness [30, 42], code coverage is still widely used
in research [53, 57, 59] and industry [1, 54, 58] to evaluate and
improve the quality of existing test suites.

There are quite a few commercial (e.g., [14, 49]) and open source
(e.g., [11, 32]) tools already available to automatically measure
the code coverage. All these tools rely on instrumentation at vari-
ous code locations (e.g., method entry/exit points and conditional
branches) either at source code [6] or at binary/bytecode levels [11,
31]. There are three main issues associated with these tools when
used in practice: (1) Engineering challenges: for real-world large-
scale distributed systems, it is not straight-forward to configure
and deploy such tools, and collect the resulting data [47, 71]. (2)
Performance overhead: the heavy instrumentation process can
introduce performance overhead and slow down the system exe-
cution [21, 29, 64]. (3) Incomplete results: due to various issues
associated with code instrumentation, the coverage results from
these tools do not agree with each other and are sometimes incom-
plete [27]. Hence, the application context of these tools are generally
very limited (e.g., during unit and integration testing). It is very
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challenging to measure the coverage for the system under test (SUT)
in a field-like environment to answer questions like evaluating the
representativeness of in-house test suites [66]. Such problem is
going to be increasingly important, as more and more systems are
adopting the rapid deployment process like DevOps [40].
Execution logs are generated by the output statements (e.g.,
Log.info(‘‘User’’ + user + ‘‘checked out’’)) that devel-
opers insert into the source code. Studies have shown that execution
logs have been actively maintained for many open source [8, 74]
and commercial software systems [19, 55] and have been used exten-
sively in practice for a variety of tasks (e.g., system monitoring [60],
problem debugging [52, 73], and business decision making [4]). In
this paper, we have proposed an approach, called LogCoCo (Log-
based Code Coverage), which automatically estimates the code
coverage criteria by analyzing the readily available execution logs.
We first leverage program analysis techniques to extract a set of
possible code paths from the SUT. Then we traverse through these
code paths to derive the list of corresponding log sequences, repre-
sented using regular expressions. We match the readily available
execution logs, either from testing or in the field, with these regular
expressions. Based on the matched results, we label the code re-
gions as Must (definitely covered), May (maybe covered, maybe not),
and Must-not (definitely not covered) and use these labels to infer
three types of code coverage criteria: method coverage, statement
coverage, and branch coverage. The contributions of this paper are:

(1) This work systematically assesses the use of the code cov-
erage tools in a practical setting. It is the first work, to the
authors’ knowledge, to automatically estimate code coverage
measures from execution logs.
Case studies on one open source and five commercial systems
(from Baidu) show that the code coverage measures inferred
by LogCoCo is highly accurate: achieving higher than 96%
accuracy in seven out of nine experiments. Using LogCoCo,
we can evaluate and improve the quality of various test
suites (unit testing, integration testing, and benchmarking)
by comparing and studying their code coverage measures.
(3) This project is done in collaboration with Baidu, a large scale
software company whose services are used by hundreds of
millions of users. Our industrial collaborators are currently
considering adopting and using LogCoCo on a daily basis.
This clearly demonstrates the usefulness and the practical
impact of our approach.

@)

Paper Organization: the rest of this paper is structured as fol-
lows. Section 2 explains issues when applying code coverage tools
in practice. Section 3 explains LogCoCo by using a running example.
Section 4 describes our experiment setup. Section 5 and 6 study two
research questions, respectively. Section 7 introduces the related
work. Section 8 discusses the threats to validity. Section 9 concludes
the paper.

2 APPLYING CODE COVERAGE TOOLS IN
PRACTICE

We interviewed a few QA engineers at Baidu regarding their expe-
rience on the use of the code coverage tools. They regularly used
code coverage tools like JaCoCo [32] and Cobertura [11]. How-
ever, they apply these tools only during the unit and integration
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testing. It turned out that there are some general issues associated
with these state-of-the-art code coverage tools, which limit their
application contexts (e.g., during performance testing and in the
field). We summarized them into the following three main issues,
which are also problematic for other companies [47, 71]: (1) Engi-
neering challenges: depending on the instrumentation techniques,
configuring and deploying these tools along with the SUT can be
tedious (e.g., involving recompilation of source code) and error-
prone (e.g., changing runtime options). (2) Performance overhead:
although these tools can provide various code coverage measures
(e.g., statement, branch, and method coverage), they introduce addi-
tional performance overhead. Such overhead can be very apparent,
when the SUT is processing hundreds or thousands of concurrent
requests. Therefore, they are not suitable to be running during non-
functional testing (e.g., performance or user acceptance testing) or
in the field (e.g., to evaluate and improve the representativeness of
the in-house test suites). (3) Incomplete results: the code coverage
results from these tools are sometimes incomplete.

In this section, we will illustrate the three issues mentioned
above through our experience in applying the state-of-the-art code
coverage tools on HBase [23] in a field-like environment.

2.1 The HBase Experiment

HBase, which is an open source distributed NoSQL database, has
been used by many companies (e.g., Facebook [50], Twitter, and
Yahoo! [24]) serving millions of users everyday. It is important
to assess its behavior under load (a.k.a., collecting code coverage
measures) and ensure the representativeness of the in-house test
suites (a.k.a., covering the behavior in the field).

YCSB [72] is a popular benchmark suite, originally developed by
Yahoo!, to evaluate the performance of various cloud-based systems
(e.g., Cassandra, Hadoop, HBase, and MongoDB). YCSB contains
six core benchmark workloads (A, B, C, D, E, and F) which are
derived by examining a wide range of workload characteristics
from real-world applications [12]. Hence, we use this benchmark
suite to simulate the field behavior of HBase.

Our HBase experiment was conducted on a three-machine-cluster
with one master node and two region server nodes. These three
machines have the same hardware specifications: Intel i7-4790 CPU,
16 GB memory, and 2 TB hard-drive. We picked HBase version 1.2.6
for this experiment, since it was the most current stable release by
the time of our study. We configured the number of operations to
be 10 million for each benchmark workload. Each benchmark test
exercised all the benchmark workloads under one of the following
three YCSB thread number configurations: 5, 10, and 15. Different
number of YCSB threads indicates different load levels: the higher
the number of threads, the higher the benchmark load.

2.2 Engineering Challenges

Since HBase is implemented in Java, we experimented with two
Java-based state-of-the-art code coverage tools: JaCoCo [32] and
Clover [10]. Both tools have been used widely in research (e.g., [27,
28, 41]) and practice (e.g., [47, 71]). These two tools use different
instrumentation approaches to collecting the code coverage mea-
sures. Clover [10] instruments the SUT and injects its monitoring
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Figure 1: The JaCoCo overhead for the HBase experiment.

probes at the source code level, while JaCoCo [31] uses the bytecode
instrumentation technique and injects its probes during runtime.

Overall, we found the configuration and the deployment pro-
cesses for both tools to be quite tedious and error-prone. For ex-
ample, to enable the code coverage measurement by JaCoCo, we
had to examine various HBase scripts to figure out the command
line options to startup HBase and its required jar files. This process
was non-trivial and required manual effort, as the command line
options could differ from systems to systems and even different
versions of the same systems. The process for Clover was even
more complicated, as we had to reconfigure the Maven build sys-
tem to produce a new set of instrumented jar files. In addition, we
could not simply copy and replace the newly instrumented jar files
into the test environment due to dependency changes. It required a
thorough cleanup of the test environment before re-deploying SUT
and running any tests. We considered such efforts to be non-trivial,
as we had to repeat this process on all three target machines. This
effort could be much higher if the experiments were done on tens or
hundreds of machines, which is considered as a normal deployment
size for HBase [65].

We decided to proceed with JaCoCo. Its instrumentation and
deployment process were less intrusive, as the behavior of HBase
needed to be assessed in a field like environment.

2.3 Performance Overhead

We ran each benchmark test twice: once with JaCoCo enabled, and
once without. We gathered the response time statistics for each
benchmark run and estimated the performance overhead intro-
duced by JaCoCo. Figure 1 shows the performance overhead for the
six different workloads (workload 4, . . ., F). Within each workload,
the figure shows the average performance overhead (in percent-
ages) as well as the confidence intervals across different YCSB
thread numbers. For example, the average performance overhead
for workload A is 16%, but can vary from 10% to 22% depending on
the number of threads.

Depending on the workload, the performance impact of JaCoCo
varies. Workload B has the highest impact (79% to 106%) with Ja-
CoCo enabled, whereas workload E has the smallest impact (4%
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to 13%). Overall, JaCoCo does have a negative impact on the SUT
with a noticeable performance overhead (> 8% on average) across
all benchmark tests. Hence, it is not feasible to deploy JaCoCo in a
field-like environment with the SUT, as it can significantly degrade
the user experience.

2.4 Incomplete Results

We sampled some of the code coverage data produced by JaCoCo
for manual verification. We found that JaCoCo did not report
the code coverage measures for some modules. JaCoCo only in-
strumented the HBase modules (a.k.a., the hbase-server mod-
ule) in which the YCSB benchmark suite directly invoked. If the
hbase-server module invokes another module (e.g., client) not
specified during the HBase startup, the client module will not be
instrumented by JaCoCo and will not have any coverage data re-
ported. For example, during our experiment, the logging statement
from the method setTableState in ZKTableStateManager. java
was outputted. Hence, setTableState should be covered. Since
setTableState calls setTableStateInZK, which calls joinZNode
in ZKUtil. java, the method joinZNode should also be covered.
However, the joinZNode method was marked as not covered by
JaCoCo. A similar problem was also reported in [27].

To resolve the three issues mentioned above, we have proposed
a new approach to automatically estimating the code coverage
measures by leveraging the readily available execution logs. Our
approach estimates the code coverage by correlating information
in the source code and the log files, once the tests are completed. It
imposes little performance overhead to the SUT, and requires no
additional setup or configuration actions from the QA engineers.

3 LOGCOCO

Program
Source Code | _Analysis
1)

Log

Log Files Analysis
2

Figure 2: An overview of LogCoCo.
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In this section, we will describe LogCoCo, which is an automated
approach to estimating code coverage measures using execution
logs. As illustrated in Figure 2, our approach consists of the fol-
lowing four phases: (1) during the program analysis phase, we
analyze the SUT’s source code and derive a list of possible code
paths and their corresponding log sequences expressed in regular
expressions (LogRE). (2) During the log analysis phase, we analyze
the execution log files and recover the log sequences based on their
execution context. (3) During the path analysis phase, we match
each log sequence with one of the derived LogRE and highlight the
corresponding code paths with three kinds of labels: May, Must, and
Must-not. (4) Based on the labels, we estimate the values for the
following three code coverage criteria: method coverage, statement
coverage, and branch coverage. In the rest of this section, we will
explain the aforementioned four phases in details with a running
example shown in Figure 3.
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Log Sequences Seq 1 Seq 2
Branch selection set [if@4:true,for@12:true,if@16: false] | [if@4:false,for@12:true,if@16: false] Final Code
LogRE (Log@3)(Log@51)(Log@14)+ (Log@3)(Log@14)+ Coverage
Code Snippets Intermediate Code Coverage
1 void computation(int a, int b) { Must Must Must
2 int a = randomInt(); Must Must Must
3 log.info("Random No: " + a); Must Must Must
4 if (a < 10) { Must Must Must
5 a = process(a); Must Must-not Must
6 } else { Must-not Must Must
7 a =a+ 1o; Must-not Must Must
8 } - - -
9 if (a%2=0) { Must Must Must
10 a ++; May May May
11 } - - -
12 for (;b < 3; b++) { Must Must Must
13 a ++; Must Must Must
14 log.info("Loop: " + a); Must Must Must
15 } - - -
16 if (a > 20) { Must Must Must
17 log.info("Check: " + a); Must-not Must-not Must-not
18 } - - -
19 } - - -
50 int process(int num) { Must Must Must
51 log.info("Process: " + (++num)); Must Must Must
52 return num; Must Must Must
53 } - - -

Figure 3: The code snippet of our running example.

3.1 Phase 1 - Program Analysis

Different sequences of log lines will be generated if the SUT exe-
cutes different scenarios. Hence, the goal of this phase is to derive
the matching pairs between the list of possible code paths and their
corresponding log sequences. This phase is further divided into
three steps:

Step 1- Deriving AST for Each Method. we derive the per method
Abstract Syntax Tree (AST) using a static analysis tool called Java
Development Tools (JDT) [17] from the Eclipse Foundation. JDT is
a very robust and accurate program analysis tool, which has been
used in many software engineering research papers (e.g., bug pre-
diction [78], logging code analysis [9], and software evolution [68]).

Consider our running example shown on the left part of Figure 3.
This step will generate two ASTs for the two methods: computation
and process. Each node in the resulting AST is marked with the
corresponding line number and the statement type. For example,
at line 3, there is a logging statement and at line 4 there is an if
statement. There are also edges connecting two nodes if one node
is the parent of the other node.

Step 2 - Deriving Call Graphs. the resulting ASTs from the previ-
ous step only contain the control flow information at the method
level. In order to derive a list of possible code paths, we need to
form call graphs by chaining the ASTs of different methods. We
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have developed a script, which automatically detects method invo-
cations in the ASTs, and links them with the corresponding method
body. In the running example, our script will connect the method
invocation of the process method at line 5 with the corresponding
method body starting at line 50.

Step 3 - Deriving Code Paths and LogRE Pairs. based on the re-
sulting call graphs, we will derive a list of possible code paths. The
number of resulting code paths depends on the number and the
type of control flow nodes (e.g., if, else, for, and while), which may
contain multiple branching choices. Consider the if statement at
line 4 in our running example: depending on the true/false values
for the conditional variable a, there can be two call paths generated:
[4, 5, 50, 51, 52]and [4, 6, 7].

We leverage the Breadth-First-Search (BFS) algorithm to traverse
through the call graphs in order to derive the list of possible code
paths and their corresponding LogREs. When visiting each control
flow node, we pick one of the decision outcomes for that node and
go to the corresponding branches. During this process, we also keep
track of the resulting LogREs. Each time when a logging statement
is visited, we add it to our resulting LogRE. If a logging statement
is inside a loop, a “+” sign will be appended to it indicating that this
logging statement could be printed more than once. For the logging
statement, which is inside a conditional branch within a loop, it

will be appended with a “?” followed by a “+”. In the end, we will
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2018-01-18 15:42:18,158 INFO
2018-01-18 15:42:18,159 INFO
2018-01-18 15:42:18,159 INFO
2018-01-18 15:42:18,162 INFO
2018-01-18 15:42:18,163 INFO
2018-01-18 15:42:18,163 INFO

[Thread-1] [Test.java:3] Random No: 2
[Thread-2] [Test.java:3] Random No: 4
[Thread-1] [Test.java:51] Process: 3
[Thread-2] [Test.java:14] Loop: 6
[Thread-1] [Test.java:14] Loop: 4
[Thread-1] [Test.java:14] Loop: 5

[ RV N N N

Figure 4: Log file snippets for our running example.

generate a branch selection set for this particular code path and
its corresponding LogRE. There can be some control flow nodes,
under which there is no logging statement node. In this case, we
cannot be certain if any code under these control flow nodes will
be executed. For scalability concerns, we do not visit the subtrees
under these control flow nodes.

In our running example, there are four control flow nodes: line 4
(if), 9 (if), 12 (for), and 16 (if). If the conditions are true for line 4
and 12, and false for line 16, the branch selection set is represented
as [if@4:true, for@12:true, if@16: false]. The value for
the if condition node at line 9 is irrelevant, as there is no logging
statement under it. We will not visit its subtree, as no changes will
be made to the resulting LogRE. The resulting code path for this
branch selection is 1,2,3,4,5,50,51,52,9,(10),12,13,14,16.
The corresponding LogRE is (Log@3) (Log@51) (Log@14)+. Line 10
in the resulting code path is shown in brackets, because there is no
logging statement under the if condition node at line 9. Thus, we
cannot tell if line 10 is executed based on the generated log lines.

3.2 Phase 2 - Log Analysis

Execution logs are generated when logging statements are exe-
cuted. However, since there can be multiple scenarios executed
concurrently, logs related to the different scenario executions may
be inter-mixed. Hence, in this phase, we will recover the related
logs into sequences by analyzing the log files. Suppose after exe-
cuting some test cases for our running example, a set of log lines,
shown in Figure 4, is generated. This phase is further divided into
the following three steps:

Step 1 - Abstracting Log Lines. each log line contains static texts,
which describe the particular logging context, and dynamic con-
tents, which reveal the SUT’s runtime states. Logs generated by
modern logging frameworks like Log4;j [45] can be configured to
contain information such as file name and line number. Hence, we
can easily map the generated log lines to the corresponding logging
statements. In our example, each log line contains the file name
Test. java and the line number. In other cases, if the file name
and the line number is not printed, we can leverage existing log
abstraction techniques (e.g., [25, 34]), which automatically recog-
nize the dynamically generated contents and map log lines into the
corresponding logging statements.

Step 2 - Grouping Related Log Lines. each log line contains some
execution contexts (e.g., thread or session or user IDs). In this
step, we group the related log lines into sequences by leveraging
these execution contexts. In our running example, we group the
related log lines by their thread IDs. There are in total two log
sequences in our running example, which correspond to Thread-1
and Thread-2.
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Step 3 - Forming Log Sequences. in this step, we replace the
grouped log line sequences into sequences of logging statements.
For example, the log line sequence of line 1, 3,5, 6 grouped under
Thread-1 becomes Log@3, Log@51, Log@14, Log@14.

3.3 Phase 3 - Path Analysis

Based on the obtained log line sequences from the previous phase,
we intend to estimate the covered code paths in this phase using a
four-step process.

Step 1- Matching Log Sequences with LogREs. we match the se-
quences of logging statements obtained in Phase 2 with the LogREs
obtained in Phase 1. The two recovered log sequences are matched
with the two LogREs, which are shown on the third row in Fig-
ure 3. The sequence of logging statement in our running example
Log@3, Log@51, Log@14, Log@14 (ak.a., Seq 1) will be matched
with LogRE (Log@3) (Log@51) (Log@14)+.

Step 2 - Labeling Statements. in the second step, based on each of
the matched LogRE, we apply three types of labels to the correspond-
ing source code based on their estimated coverage: Must, May, and
Must-Not. The lower part of Figure 3 shows the results for our work-
ing example. For Seq 1, we label lines 1,2,3,4,5,9,12,13,14,16,
50,51,52 as Must, as these lines are definitely covered if the above
log sequence is generated. Line 10 is marked as May, because we are
uncertain if the condition of the if statement at line 9 is satisfied.
Lines 6,7,17 are marked as Must-Not, because the branch choice
is true at line 4 and false at line 17. Due to the page limit, we do not
explain the source code labeling process for Seq 2.

Step 3 - Reconciling Statement-level Labels. as one line of source
code may be assigned with multiple different labels from different
log sequences, in the third step, we reconcile the labels obtained
from different log sequences and assign one final resulting label
to each line of source code. We use the following criteria for our
assignment:

e At least one Must label: since a particular line of source
code is considered as “covered”, when it has been executed at
least once. Hence, if there is at least one Must label assigned
to that line of source code, regardless of other scenarios,
it is considered as covered (a.k.a., assigning Must labels as
the final resulting label). In our running example, line 5 is
marked as Must in Seq 1 and Must-not in Seq 2. Therefore,
it will be marked as Must in the final label.

No Must labels, and at least one May label: in this particu-

lar case, we may have a specific line of source code assigned

with all May labels, or a mixture of May and Must-not labels.

As there is a possibility that this particular line of source

code can be covered by some test cases, we assigned it to be

May in the final resulting label. In our running example, line

10 is marked May.

o All Must-not labels: in this particular case, since there are
no existing test cases covering this line of source code, we
assigned it to be Must-not in the final resulting label. In our
running example, line 17 is marked Must-not in both Seq 1
and Seq 2. It will be marked as Must-not in the final label.
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Step 4 - Inferring Labels at the Method Levels. based on the line-
level labels, we assign one final label to each method using the
following criteria:

e for a particular method, if there is at least one line of source
code labeled as Must, this method will be assigned with a
Must label. In our running examples, both methods will be
labeled as Must.

o for methods without Must labeled statements, we apply the
following process:

Initial Labeling: all of the logging statements under such
methods should already be labeled as Must-not, since
none of these logging statements are executed. If there
is at least one logging statement which is not under any
control flow statement nodes in the call graph, this method
will be labeled as Must-not.

labeled methods, we search for methods that will only
be called by these methods, and assign them with the
Must-not labels. We iteratively repeat this process until
no more methods can be added to the set.

Remaining Labeling: we assign the May labels to the
remaining set of unlabeled methods.

Similarly, each branch will be assigned with one final resulting
label based on the statement-level labels. Due to space constraints,
we will not explain the process here.

Phase 4 - Code Coverage Estimation

In this phase, we estimate the method/branch/statement-level code
coverage measures using the labels obtained from the previous
phase. As logging statements are not instrumented everywhere,
there are code regions labeled as May, which indicates uncertainty
of coverage. Hence, when estimating the code coverage measures,
we provide two values: a minimum and a maximum value for the

above three coverage criteria. The minimum value of statement

. # Must label .
coverage is calculated as %]m, and the maximum value

# of Must labels+# of May labels
Total# of labels
ample, the numbers of Must, May, and Must-not statements are
15, 1, and 1, respectively. Therefore, the range of the statement

coverage is from 88% (153“ X 100%) to 94% léiﬁl X 100%).
Similarly, since the number of Must, May, and Must-not branches
is 5, 1, and 2 in our running example, the range of branch coverage
is from 62.5% (735 X 100%) to 87.5% (2+25 X 100%).
The number of Must, May, and Must-not methods are 2, 0, and

5+1+2
0. Hence, the method level coverage is 100%.

is calculated as . In our running ex-

4 CASE SETUP

To evaluate the effectiveness of our approach, we have selected five
commercial projects from Baidu and one large-scale open-source
project in our case study. Table 1 shows the general information
about these projects in terms of their project name, project de-
scriptions, and their sizes. All six projects are implemented in Java
and their domains span widely from web services, to application
platforms and NoSQL databases. The main reason why we picked
commercial projects to study is that we can easily get hold of QA
engineers for questions and feedback. The five commercial projects

Callee Labeling;: starting from the initial set of the Must-not
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(C1, C2, C3, Cy4, and Cs) were carefully selected based on consulta-
tions with Baidu’s QA engineers. We also picked one large-scale
popular open source project, HBase [23], because we can freely
discuss about the details. We focus on HBase version 1.2.6 in this
study, since it is the most recent stable release by the time of the
study. All six studied projects are actively maintained and being
used by millions or hundreds of millions of users worldwide. We
proposed the following two research questions (RQs), which will
be discussed in the next two sections:

Table 1: Information about the six studied projects.

Projet Descriptions LOC
C, Internal API library 24K
C, Platform 80K
C, Cloud service 12K
C, Video streaming service 35K
C, Distributed file system 228K

HBase Distributed NoSQL Database 453K

e RQ1: (Accuracy) How accurate is LogCoCo compared to the
state-of-the-art code coverage tools? The goal of this RQ is to
evaluate the quality of the code coverage measures derived
from LogCoCo against the state-of-the-art code coverage
tools. We intend to conduct this study using data from vari-
ous testing activities.

e RQ2: (Usefulness) Can we evaluate and improve the existing
test suites by comparing the LogCoCo results derived from
various execution contexts? The goal of this RQ is to check if
the existing test suites can be improved by comparing the
estimated coverage measures using LogCoCo from various
system execution contexts.

5 RQ1: ACCURACY

On one hand, existing state-of-the-art code coverage tools (e.g.,
Jacoco [32], Cobertura [11]) collect the code coverage measures by
excessively instrumenting the SUT either at the source code [6] or
at the binary/bytecode levels [11, 31]. The excessive instrumenta-
tion (e.g., for every method entry/exit, and for every conditional
and loop branch) ensures accurate measurements of code coverage,
but imposes problems like deployment challenges and performance
overhead (Section 2), which limit their application context. On the
other hand, LogCoCo is easy to setup and imposes little perfor-
mance overhead by analyzing the readily available execution logs.
However, the estimated code coverage measures may be inaccurate
or incomplete, as developers only selectively instrument certain
parts of the source code by adding logging statements. Hence, in this
RQ, we want to assess the quality of the estimated code coverage
measures produced by LogCoCo.

5.1 Experiment

We ran nine test suites for the six studied projects as shown in
Table 2. The nine test suites contained unit and integration tests.
Since the unit test suites were not configured to generate logs for
C,,C,, and C,, we did not include them in our study. C; and HBase
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are distributed systems, so we conducted their integration tests in
a field-like deployment setting.

Each test suite was run twice: once with the JaCoCo configured,
and once without. We used the code coverage data from JaCoCo
as our oracle and compared it against the estimated results from
LogCoCo. For all the experiments, we collected data like generated
log files and code coverage measures from JaCoCo. JaCoCo is a
widely used state-of-the-art code coverage tool, which is used in
both research [27, 28, 41] and practice [47, 71]. We picked JaCoCo
to ensure that the experiments could be done in a field-like envi-
ronment. Code coverage tools, which leverage source code-level
instrumentation techniques, require recompilation and redeploy-
ment of the SUT. Such requirements would make the SUT’s testing
behavior no longer closely resemble the field behavior. JaCoCo, a
bytecode instrumentation based code coverage tool, is less invasive
and instruments the SUT during runtime. For each test, we gathered
the JaCoCo results and the log files. Depending on the tests, the
sizes of the log files range from 8 MB to 1.1 GB.

5.2 Data Analysis

We compared the three types of code coverage measures (method,
statement, and branch coverage) derived from LogCoCo and Ja-
CoCo. Since LogCoCo marks the source code for each type of cov-
erage using the following three labels: Must, May, and Must-not,
we calculated the percentage of correctly labeled entities for three
types of labels.

For the Must labeled methods, we calculated the portion of meth-
ods which are marked as covered in the JaCoCo results. For example,
if LogCoCo marked five methods as Must among which four were
reported as covered in JaCoCo, the accuracy of the LogCoCo method-
level coverage measure would be % X 100% = 80%. Similarly, for the
Must-not labeled entities, we calculated the percentage of methods
which were marked as not covered by JaCoCo.

For the May labeled methods, we calculated the portion of meth-
ods which are reported as covered by JaCoCo. Note that this calcu-
lation is not to assess the accuracy of the May covered methods, but
to assess the actual amount of methods which are indeed covered
during testing.

When calculating the accuracy of the statement and branch level
coverage measures from LogCoCo, we only focused on code blocks
from the Must covered methods. This is because all the statement
and branch level coverage measures will be May or Must-not for
the May or Must-not labeled methods, respectively. It would not be
meaningful to evaluate these two cases again at the statement or
branch level.

The evaluation results for the three coverage measures are shown
in Table 2. If a cell is marked as “-”, it means there is no source code
assigned with the label. We will discuss the results in details below.

5.3 Discussion on Method-Level Coverage

As shown in Table 2, all methods labeled with Must are 100% ac-
curate. It means that LogCoCo can achieve 100% accuracy when
detecting covered methods. Rather than instrumenting all the meth-
ods like the existing code coverage tools do, LogCoCo uses pro-
gram analysis techniques to infer the system execution contexts.
For example, only 13% of the methods in C, have logs printed. The
remaining 87% of the Must covered methods are inferred indirectly.
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The methods labeled with Must-not are not always accurate.
Three commercial projects (C,, C,, and C,), and HBase have some
methods which are actually covered in the tests but are falsely
flagged as Must-not covered methods. Except for three cases, the
accuracy of the Must-not labeled methods are all above 90%. We
manually examined the misclassified instances and found the fol-
lowing two main reasons: (1) we have limited the size of our call
graphs to 20 levels deep or a maximum of 100, 000 paths per AST
tree due to memory constraints of our machine. Therefore, we
missed some methods, which had deeper call chains. (2) Our cur-
rent technique cannot handle recursive functions properly.

The amount of May covered methods that are actually covered
is highly dependent on the type of projects and can range from 6%
to 83%. In addition, this number seems to be irrelevant of the types
of testing conducted. In order to obtain a more accurate estimate
of the code coverage measures using LogCoCo, additional logging
statements need to be added into the SUT to reduce the amount
of May labeled methods. However, the logging locations should be
decided strategically (e.g., leveraging techniques like [16, 76]) in
order to minimize performance overhead.

5.4 Discussion on the Statement and Branch
Coverage

For statement and branch coverage, the accuracy of the Must-not
labels is 100% for all the experiments. However, the accuracy of the
Must covered labels ranges from 83% to 100% for statement coverage
and 50% to 100% for branch coverage. In seven out of the nine total
experiments, the accuracy of the Must covered statements is 97%
or higher. We manually examined the cases where the LogCoCo
results are different from JaCoCo. We summarized them as follows:

(1) limitations on static analysis (LogCoCo issue): Java supports
polymorphism. The actual type of certain objects are un-
known until they are being executed. LogCoCo infers the call
graphs statically and mistakenly flags some of the method
invocations.

(2) new programming constructs (JaCoCo issue): the lambda ex-
pression is one of the new programming language constructs
introduced in Java 8. JaCoCo mistakenly tags some state-
ments containing lambda expressions as not covered.

The accuracy of the Must covered branches is generally above
95%, except one case: during the integration testing of C,, Log-
CoCo detected two Must covered branches being executed, one of
which was falsely labeled. The rationales for the differences of the
branch coverage measures are the same as the statement coverage
measures.

The amount of May actually covered statements and branches are
generally higher than the amount of actually covered May methods.
However, similar to the method-level coverage, we cannot easily
guess the actual coverage information for a May labeled statement
or branch.

5.5 Feedback from the QA Engineers

We demonstrated LogCoCo to the QA engineers at Baidu. They
agreed that LogCoCo can be used for their daily testing activities,
due to its ease of setup, wider application context, and accurate
results. In particular, instead of treating all the source code equally,
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Table 2: Comparing the performance of LogCoCo against JaCoCo under various testing activities. The numbers above shows

the amount of overlap between LogCoCo and JaCoCo.

Proiect Type of Size of Method Coverage Statement Coverage Branch Coverage
J Testing the Logs (Must Must-not May) (Must Must-not May) (Must Must-not May)
Cy Integration 20 MB 100% 100% 16% 99% 100%  62% 100% 100%  67%
C Unit 600 MB 100% 100%  78% 100% 100%  75% 100% 100% 76%
2 Integration 550 MB 100% 100%  30% 100% 100%  90% 100% 100%  83%
C Unit 8 MB 100% 88% 15% 84% 100%  77% 100% 100% 50%
3 Integration 26 MB 100% - 33% 83% 100%  89% 50% 100%  60%
Cy Integration 29 MB 100% 99% 18% 97% 100%  49% 100% 100% 55%
Cs Integration 1.1 GB 100% 90% 6% 97% 100%  45% 96% 100%  39%
HBase Unit 527 MB 100% 83%  83% 99% 100%  83% 100% 100% 76%
Integration 193 MB 100% 89% 50% 99% 100%  71% 100% 100%  63%

they would pay particular attention to the coverage of the methods,
which have logging statements instrumented. This was because
many of the logging statements were inserted into risky methods
or methods which suffered from past field failures. Having test
cases cover these methods is considered a higher priority. LogCoCo
addressed this task nicely. In addition, they agreed that LogCoCo
can also be used to speed up problem diagnosis in the field by
automatically pin-pointing the problematic code regions. Finally,
they were also very interested in the amount of May labeled entities
(a.k.a., methods, statements, and branches), as they knew little about
the runtime behavior of these entities. They considered reducing the
amount of May labeled entities as one approach to improving their
existing logging practices and were very interested to collaborate
further with us on this topic.

Findings: The accuracy of Must and Must-not labeled entities
from LogCoCo is very high for all three types of code coverage
measures. However, one cannot easily infer whether a May labeled
entity is actually covered in a test.

Implications: To further improve the accuracy, one must reduce
the amount of May labeled entities through additional instrumen-
tation. Researchers and practitioners can look into existing works
(e.g., [16, 76]), which improve the SUT’s logging behavior with
minimal performance overhead.

6 RQ2: USEFULNESS

Existing code coverage tools are usually applied only during unit or
integration testing due to various challenges explained in Section 2.
LogCoCo, which analyzes the readily available execution logs, can
work on a much wider application context. In this RQ, we intend
to check if we can leverage the LogCoCo results from various
execution contexts to improve the existing test suites. To tackle this
problem, we further split this RQ into the following two sub-RQs:

RQ2.1: Can we improve the in-house functional

test suites by the comparison among each other?
In this sub-RQ, we will focus on unit and integration testing, as they
have different testing purposes. Unit testing examines the SUT’s

behavior with respect to the implementation of individual classes,
whereas integration testing examines whether individual units can
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work correctly when they are connected to each other. We intend
to check if one can leverage the coverage differences to improve the
existing unit or integration test suites using data from LogCoCo.

Experiment. To study this sub-RQ, we reused the data obtained
from RQ1’s experiments. In particular, we selected the data from
two commercial projects: Cy and C3, as they contain data from both
unit and integration test suites. The main reason we focused on
the commercial projects in this sub-RQ was because we can easily
get hold of the QA engineers of Baidu for feedback or surveys (e.g.,
whether they can evaluate and improve the unit or integration tests
by comparing the coverage data).

Data Analysis and Discussion. It would be impractical to study
all the coverage differences from the two types of tests due to their
large size. We randomly sampled a subset of methods, where both
types of testing covered but their statement and branch level cover-
age measures differed. We presented this dataset to QA engineers
from the two commercial projects for feedback. After manual ex-
aminations, the QA engineers agreed to add additional unit testing
cases for all the cases where unit testing did not cover. However,
adding additional integration tests is harder than adding additional
unit tests. The QA engineers rejected about 85% of the cases where
unit testing covered but integration testing missed, as they were
considered as hard or lower priority. We summarized their ratio-
nales as follows:

e Defensive Programming: defensive programming is a pro-
gramming style to guard against unexpected conditions. Al-
though it generally improves the robustness of the SUT, there
can be unnecessary code introduced to guard against errors
that would be impossible to happen. Developers insert much
error checking code into the systems. Some of these issues
are rare or impossible to happen. It is very hard to come up
with an integration test case whose input values can exercise
certain branches.

Low Risk Code: some of the modules are considered as low
risk based on the experience of the QA engineers. Since they
are already covered by the unit test suites, adding additional
integration test cases is considered as low priority.
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RQ2.2: Can we evaluate the representativeness
of in-house test suites by comparing them
against field behavior?

One of the common concerns associated with QA engineers is
whether the existing in-house test suites can properly represent
field behavior. We intend to check if one can evaluate the quality
of the existing in-house test suites by comparing them against field
coverage using data from LogCoCo.

Experiment. Due to confidentiality reasons, we cannot disclose
the details about the field behavior for the commercial projects.
Therefore, we studied the open source system, HBase, for RQ2.2.
The integration test suite from HBase is considered as a compre-
hensive test suite and is intended for “elaborate proofing of a re-
lease candidate beyond what unit tests can do” [22]. Hence, we
consider it as HBase’s in-house test suite. There are two setup ap-
proaches to running the HBase’s integration tests: a mini-cluster,
or a distributed cluster. The mini-cluster setup is usually run on
one machine and can be integrated with the Maven build process.
The distributed cluster setup needs a real HBase cluster setup and
is invoked using a separated command. In this experiment, we ran
under both setups and collected their logs.

The workloads defined in YCSB are derived by examining a wide
range of workload characteristics from real web applications [12].
We thus used the YCSB benchmark test suite to mimic the field be-
havior of HBase. However, as we discovered under default settings,
HBase did not output any logs during the benchmarking process.
We followed the instructions from [33] to change the log levels
for HBase from INFO to DEBUG on the fly (a.k.a., without server
reboot). The resulting log file size is around 270 MB when running
the YCSB benchmark tests for one hour.

Data Analysis and Discussion. Based on the LogCoCo results,
there are 12 methods which were covered by the YCSB test and
not by the integration test under the mini-cluster setup. Most of
these methods were related to the functionalities associated with
cluster setup and communications. Under the distributed cluster
setup, which is more realistic, all the covered methods in the YSCB
test were covered by the integration test.

The log verbosity level for the unit and the integration tests of
HBase in RQ1 was kept as the default INFO level. Both tests gen-
erated hundreds of megabytes of logs. However, under the default
verbosity level, the YCSB benchmarking test generated no logs ex-
cept a few lines at the beginning of the test. This is mainly because
HBase does not perform logging for their normal read, write, and
scan operations for performance concerns. The integration tests
output more INFO level logs is because: (1) many of the testing
methods are instrumented with INFO or higher level logs. Such logs
are not printed in practice; and (2) in addition to the functionalities
covered in the YCSB benchmark, integration tests also verify other
use cases, which can generate many logs. For example, one integra-
tion test case is about region replications. In this test, one of the
HBase component, ZooKeeper, which is responsible for distributed
configuration and naming service, generated many INFO level logs.

We further assessed the performance impact of turning on the
DEBUG level logs for HBase. We compared the response time un-
der the DEBUG and the INFO level logging with YCSB threads
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configured at 5, 10, and 15, respectively. The performance impact
was very small (< 1%) under all three YCSB settings (a.k.a., three
different YCSB benchmark runs). Thus, for HBase the impact of
DEBUG level logging is much smaller than JaCoCo. Furthermore,
compared to JaCoCo, which requires server restart to enable/disable
its process, the DEBUG level logging can easily be turned on/off
during runtime.

Findings: LogCoCo results can be used to evaluate and improve
the existing test suites. Multiple rationales are considered when
adding a test case besides coverage.

Implications: There are mature techniques (e.g., EvoSuite [2]
and Pex [69]) to automatically generate unit test cases with high
coverage. However, there are no such techniques for other types
of tests, which still require high manual effort to understand the
context and to decide on a case-by-case basis. Further research
is needed in this area.

The coverage information from LogCoCo highly depends on
amount of generated logs. Researchers or practitioners should
look into system monitoring techniques (e.g., sampling [62] or
adaptive instrumentation [38]), which maximize the obtained
information with minimal logging overhead.

7 RELATED WORK

In this section, we will discuss two areas of related research: (1)
code coverage, and (2) software logging.

7.1 Code Coverage

Code coverage measures the amount of source code executed while
running SUTs under various scenarios [18]. They have been used
widely in both academia and industry to assess and improve the
effectiveness of existing test suites [3, 5, 43, 46, 51, 53]. There are
quite a few open source (e.g., [11, 32]) and commercial (e.g., [14, 49])
code coverage tools available. All these tools leverage additional
code instrumentation, either at the source code level (e.g., [6, 10, 13])
or at the binary/bytecode (e.g., [11, 31, 49]) level, to automatically
collect the runtime system behavior in order to measure the code
coverage measures. In [21], Haubl et al. derived code coverage in-
formation from the profiling data recorded by an the just-in-time
(JIT) compiler. They also compared their coverage information
against JaCoCo. They showed their results are more accurate than
JaCoCo and yield smaller overhead. Haubl et als approach is dif-
ferent from ours, as they relied on data from the underlying virtual
machines, whereas we focus on the logging statements from the
SUT’s source code. Recently, Horvéath et al. [27] compared the re-
sults from various Java code coverage tools and assessed the impact
of their differences to test prioritization and test suite reduction.
In this paper, we have evaluated the state-of-the-art Java-based
code coverage tools in a field like setting and proposed a new ap-
proach, which leverages the readily available execution logs, to
automatically estimating the code coverage measures.

In addition to the traditional code coverage metrics (e.g., method,
branch, decision, and MC/DC coverage), new metrics have been
proposed to better assess the oracle quality [59], to detect untested
code regions [28], and to compose test cases with better abilities to
detect faults [67]. There are various empirical studies conducted to
examine the relationship between the test effectiveness and various
code coverage metrics. For example, Inozemtseva and Holmes [30]
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leveraged mutation testing to evaluate the fault detection effective-
ness of various code coverage measures and found that there is a
low to moderate correlation between the two. Kochhar et al. [41, 42]
performed a similar study, except they used real bugs instead. Their
study reported a statistically significant correlation (moderate to
strong) between fault detection and code coverage measures. Glig-
oric et al. [20] compared the effectiveness of various code coverage
metrics in the context of test adequacy. The work by Wang et
al. [66], which is the closest to our work, compared the coverage
between in-house test suites and field executions using invariant-
based models. Our work differs from [66] in the following two main
areas: (1) they used a record-replay tool, which instruments the
SUT to collect coverage measures. Our work estimates the coverage
measures based on the existing logs without extra instrumentation.
(2) While they mainly focused on the client and desktop-based sys-
tems, our focus is on the server-based distributed systems deployed
in a field-like environment processing large volumes of concurrent
requests. In our context, extra instrumentation would not be ideal,
as it will have a negative impact on the user experience.

7.2 Software Logging

Software logging is a cross-cutting concern that scatters across
the entire system and inter-mixes with the feature code [39]. Un-
fortunately, recent empirical studies show that there are no well-
established logging practices for commercial [19, 55] and open
source systems [8, 74]. Recently researchers have focused on pro-
viding automated logging suggestions based on learning from past
logging practices [9, 19, 37, 77] or program analysis [76]. Execution
logs are widely available inside large-scale software systems for
anomaly detection [26, 61], system monitoring [52, 60], problem
debugging [7, 44, 73, 75], test analysis [35, 63], and business deci-
sion making [4]. Our work was inspired by [75], which leveraged
logs to infer executed code paths for problem diagnosis. However,
this is the first work, to the authors’ knowledge, which uses logs to
automatically estimate code coverage measures.

The limitation is that we rely on that the study systems contain
sufficient logging. It is generally the case among server-side projects.
For client-side or other projects with limited logging, our approach
should be complementary by other code coverage tools.

8 THREATS TO VALIDITY

In this section, we will discuss the threats to validity.

8.1 Internal Validity

In this paper, we proposed an automated approach to estimating
code coverage by analyzing the readily available execution logs.
The performance of our approach highly depends on the amount of
the logging and the verbosity levels. The amount of logging is not a
major issue as existing empirical studies show that software logging
is pervasive in both open source [8, 74] and commercial [19, 55]
systems. The logging overhead due to lower verbosity levels is small
for the HBase study. For other systems, one can choose to enable
lower verbosity level for a short period of time or use advanced
logging techniques like sampling and adaptive instrumentation.
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8.2 External Validity

In this paper, we focused on the server-side systems mainly because
these systems use logs extensively for a variety of tasks. All these
systems are under active development and used by millions of
users worldwide. To ensure our approach is generic, we studied
both commercial and open source systems. Although our approach
was evaluated on Java systems, to support other programming
languages, we just need to replace the parser for another language
(e.g., Saturn [70] for C, and AST [56] for Python) in LogCoCo. The
remaining process stays the same. Our findings in the case studies
may not be generalizable to systems and tools which have no or
very few logging statements (sometimes seen in mobile applications
and client/desktop-based systems).

8.3 Construct Validity

When comparing the results between LogCoCo and the state-of-
the-art code coverage tools, we focused on JaCoCo, which collects
code coverage information via bytecode instrumentation. This is
because: (1) JaCoCo is widely used in Baidu, so we can easily collect
the code coverage for the systems and gather feedback from the
QA engineers; and (2) we intend to assess the coverage measures
in a field-like environment, in which the system is deployed in a
distributed environment and used by millions of users. Source-code-
instrumentation-based code coverage tools (e.g., [10]) are not ideal,
as they require recompilation and redeployment of the SUT.

9 CONCLUSIONS AND FUTURE WORK

Existing code coverage tools suffer from various problems, which
limit their application context. To overcome with these problems,
this paper presents a novel approach, LogCoCo, which automat-
ically estimates the code coverage measures by using the readily
available execution logs. We have evaluated LogCoCo on a variety
of testing activities conducted on open source and commercial sys-
tems. Our results show that LogCoCo yields high accuracy and can
be used to evaluate and improve existing test suites.

In the future, we plan to extend LogCoCo for other programming
languages. In particular, we are interested in applying LogCoCo to
systems implemented in multiple programming languages. Further-
more, we also intend to extend LogCoCo to support other coverage
criteria (e.g., data-flow coverage and concurrency coverage). Finally,
since the quality of the LogCoCo results highly depends on the
quality of logging, we will research into cost-effective techniques
to improve the existing logging code.
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