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Abstract

Coupling and cohesion between subsystems are com-
monly studied metrics when analyzing the architecture of
software systems. It is usually desirable for subsystems to
have high cohesion within the subsystem and to have low
coupling to other subsystems. High cohesion implies cohe-
sive concerns and low coupling implies localized changes.

We extend the ideas of coupling and cohesion to code
cloning. A code clone is a segment of code that has been
created through duplication of another piece of code. Previ-
ous research has shown that in some instances code cloning
is desirable, whereas in other cases it is not. We believe
that it is justifiable to have code cloning within subsystems
(high cohesion), whereas it is not justifiable and likely not
desirable to have it across subsystems (high coupling). We
present an approach, which consists of a framework that
generates and filters cloning data and a visualization tech-
nique which graphically highlights clone cohesion and cou-
pling between architectural subsystems. Our approach can
be used by developers to locate undesirable cloning in their
software system. We demonstrate our approach through a
case study on the SCSI drivers in the Linux kernel.

1 Introduction

A code clone is a segment of code that has been created
through duplication of another piece of code. As much as
10−15% of the source code of large systems is cloned [15].

Cloning is usually considered undesirable for software
maintenance. Many approaches advocate removing clones
and preventing their introduction by constantly monitoring
the source code during its evolution [17]. Code cloning
leads to bloated code bases that are difficult to change since
modifications (in particular bug fixes) to one piece of code
may require propagating the same changes to other clones
of the just modified code. Code cloning also increases the
cognitive effort needed by developers to understand a large
software system, since developers have to examine multiple
clone instances in order to tell the difference among them.

On the other hand, code cloning may be desirable and is
sometimes unavoidable. For example, cloning speeds up the
development in the short-term. For implementing functions
or modules that accomplish similar tasks, cloning serves as
a good “mental template” to start with. Moreover copying
a critical piece of code and changing it is preferred rather
than refactoring to make it more general for reuse. Keep-
ing the critical piece of code unchanged will avoid the in-
troduction of bugs in critical system functionality [10]. In
some instances, cloning is actually preferred rather than ab-
straction for performance considerations [4]. Research has
as well shown that cloning cannot be avoided because of the
difficulty in abstracting due to programming language limi-
tations [3]. There is also “accidental cloning”, which is not
caused by direct copy-and-paste but by using the same set
of APIs to implement similar protocols [2].

The terms cohesion and coupling are commonly used in
studying the design or architecture of a software system.
Both terms measure the structure of dependencies within
each subsystem and between subsystems (a subsystem con-
tains files or other subsystems). Both terms usually mea-
sure static and dynamic code dependencies. Coupling is
concerned with dependencies among subsystems; while co-
hesion refers to the dependencies within the subsystem. It is
commonly desirable for a software system to have low cou-
pling and high cohesion. For example, a subsystem with a
large number of functions that are dependant on each other
(high cohesion) is more desirable over a subsystem where
functions depend on functions in other subsystems (high
coupling). This intuition forms the basis of many modern
software clustering techniques [18].

Highly cohesive subsystems are desirable since they im-
ply that subsystems represent related concerns with a large
amount of reuse and similarity between their functionality.
Low coupling is also desirable since it implies that they are
relatively easy to modify and evolve. Developers changing
software systems with low coupling can have their changes
focused to a limited number of subsystems instead of need-
ing to propagate their changes to many subsystems.

If we extend the concepts of coupling and cohesion to
code cloning, then we believe that it is justifiable to have
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Figure 1. Clone example from Linux.

some cloning within a subsystem (clone cohesion); whereas
it is not desirable to have cloning across subsystems (clone
coupling). Cloning within a subsystem is justifiable since
it is likely due to the similarity between functions and files
within a subsystem. Large amount of cloning across sub-
systems is not justifiable since it is expected that subsys-
tems represent different concerns that are not similar and
therefore should not share a large amount of code cloning.
This intuition is the same as coupling for code dependen-
cies, where it is not desirable to have coupling between dif-
ferent subsystems. In summary, low code coupling and high
code cohesion are desirable, and low clone coupling and
high clone cohesion are justifiable.

We use the term justifiable for clone coupling and cohe-
sion since as we mentioned earlier that may be good reasons
to clone code and there are no definitive research results
that rule out the shortcomings or advocate the benefits of
clones [16]. Determining whether a clone is desired or not
should be done on a project by project basis by system ex-
perts. In this paper, we present an approach to assist system
experts to study cloning in their software system. The ap-
proach presents a visualization that a system expert use to
gain an overview of the amount of clone cohesion and cou-
pling in their software system. Using the same visualiza-
tion, the system expert can investigate specific code clones
to determine if they are justifiable or not. If they are not jus-
tifiable, then the system expert can schedule their removal
as part of future code refactoring activities. The visualiza-
tion as well permits the system expert to perform “What-
if” analysis to determine the impact of removing particular
clones and to determine the amount of effort needed to re-
move clones between subsystems in large software systems.

1.1 Paper Organization

The paper is organized as follows. Section 2 gives
an example of code cloning, discusses related work, and
highlights limitations of current code cloning visualization
work. Section 3 presents our clone extraction framework
and discusses the used data schema in our framework. We

as well present our visualizations and showcase their main
benefits and features. Section 4 demonstrates our visualiza-
tions using a case study from the Linux Kernel (in partic-
ular its SCSI drivers). Section 5 concludes our paper and
outlines future work.

2 Code Cloning

Code clones are identical or near identical fragments of
source code. A clone is a segment of code that has been cre-
ated through duplication of another piece of code. Clones
share similar code structures. However, since the size and
the degree of similarities among code segments vary, code
cloning is a fairly objective concept. It depends on the
context whether it is a code clone or not. Figure 1 shows
an example of code cloning from the Linux Kernel. The
source code is taken from the code responsible for support-
ing the different network cards in the Linux Kernel version
2.6.16.13. Areas highlighted in grey are clones. Areas high-
lighted in red are clones variation points.

There are three general techniques to detect clones:
Simple Text Comparison:Simple text comparison tech-

niques try to locate exact matches of code segments. The
Exact Match Clone Detection algorithm described in [9] is
an example of such a technique. The algorithm normal-
izes the code by removing comments and suppressing white
spaces. It then finds all matched lines for each line. The al-
gorithm uses a pattern matching algorithm to generate a list
of maximal number of consecutive lines of cloned code for
each code segment. Finally, cloning results are generated by
filtering out smaller code segments. For the example shown
in Figure 1, a simple text comparison technique would not
recognize the variation points (in red). Instead of identify-
ing a single large clone code segment, the algorithm would
identify several smaller code segments as clones.

Lexical Analysis:Lexical analysis techniques tokenize
the code, concatenate tokens into token sequences. Then
they create abstract token strings to mark identifers and
code constructs. The abstract token strings are used to lo-
cate maximal substring matches. An example of a tool that
uses such a technique is the CCFinder tool [14]. The exam-
ple shown in Figure 1 was identified by CCFinder.

AST Analysis:Abstract Syntax Tree (AST) Analysis
techniques parse the code and create an abstract syntax tree.
The techniques then compare AST subtrees. Clones are de-
tected if two subtrees are identical to each other. An exam-
ple of such a technique is presented in [4]. The example
shown in Figure 1 would be identified by such techinques.

When reporting clones, clone detection tools use two
terms: clone pairs and clone classes. A clone pair is a
pair of code segments which are identical or similar to each
other. A clone pair is both commutative and transitive.
Commutative property means that “A clones B” implies “B
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clones A”. Transitive property shows that if we have clone
pairs < A, B > and < B, C >, then we have clone pair
< A, C >. A clone class is the maximum set of code seg-
ments in which any two of the code segments forms a clone
pair. In this example, < A, B, C > are part of the same
clone class.

Referring back to Figure 1, we can see that the probe
methods from three different files are almost identical to
each other. Right below the source code from left to right,
we have marked the source code as A, B, and C, respec-
tively. In this example, a clone detection tool would report
3 clone pairs: < A, B >, < A, C > and < B, C >, and one
clone class, which consists of code segments < A, B, C >.

2.1 Related Work on Visualizing Clones

Name Source Entity Clone Relation
Scatter Plot [11, 19, 21] Code Segments Clone Pair
Metric Graph [21] Code Segments Clone Class
File Similarity Graph [21] File
Hass Diagram [12] File Clone Class
Hyper-linked Web [13] File Clone Class
Link Editing [20] Code Segment Clone Class
Dependency Graphs [15] Subsystem Clone Pair
Duplication Web [19] File Clone Pair
Duplication Aggregation
Tree Map [19]

Subsystem Clone Class

System Model View [19] File, Subsystem Clone Pair
Clone Class Family Enu-
meration [19]

File Clone Class

Our Approach Subsystem Super Clone

Table 1. Summary of Clone Visualization

For large software systems, clone detection tools usually
report a large number (thousands) of clone pairs and clone
classes. In order to help software maintainers in examining
the output of clone detection tools, several clone visualiza-
tion approaches have be proposed in literature. We break
down previous research along two dimensions:

1. Visualized Source Entities: Are clones shown at the code
segment level, lifted to the file level, or lifted to the subsys-
tem level? Higher abstractions (such as subsystems) permit
the study of large software systems since they reduce the
amount of clutter shown in the generated visualization.

2. Visualized Clone Relations: Are clones shown as clone
pairs, grouped as clone classes, or grouped as super clones?
By grouping clones between common files or subsystems,
then practitioners can easily recognize troublesome (large
amounts of) cloning between two source entities instead of
being overwhelmed by many smaller clone pairs.

Table 1 summarizes current clone visualization research
along these two aforementioned dimensions. The table as

well compares our presented visualizations to prior work.
Our visualizations show clones at the subsystem level, this
permits us to scale to handle large software systems. In con-
trast to previous work, we visualize clones at the clone class
or super clone instead of visualizing clones at the clone pair
level. We believe that visualizing clones at the clone pair
level would increase the complexity of the visualization.

Figure 2. Comparing Both Approaches.

Figure 2 compares two different approaches (visualiz-
ing files using clone pairs and clone classes). The square
nodes are files, whereas the circle nodes are clone classes
Edges indicating cloning relationship. Both views display
the same data. The left-hand-side view groups clones into
clone classes, whereas the right-hand-side view shows clone
pairs. The right-hand-side view contains a large number
of cross-cutting edges than the left-hand-side view. These
edges make the visualization much harder to view in partic-
ular for large software systems. Moreover, the use of clone
pairs in the visualization causes the loss of other relevant
information. For example, it is not clear that the cloning re-
lationship AB 1 is only between files A and B (clone class
2) or if it is among files A, B, C and D (clone class 1). Both
these problems are exaggerated for large software systems.

To further reduce the clutter for large software systems,
we propose the creation of super clones which aggregate
multiple clone classes between the same source entities into
one large super clone. These super clones help highlight and
summarize to developers the magnitude of cloning between
two source code entities.

3 Our Approach

The main motivation for our visualization is to assist
practitioners in coping with the large amount of results dis-
played by clone detection tools. The main purpose of the
generated visualization is to highlight to developers cloning
within each subsystem and across subsystems. Developers
can then easily investigate whether the cloning is justifiable
or not. For example, if a developer examining our visualiza-
tion notices that there is a large amount of cloning between
the memory manager and the network drivers in Linux, then
they may be alarmed since there is no clear justifiable rea-
son for such cloning to occur. On the other hand if our visu-
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alization highlighted that two similar driver families using
the same hardware chipset have a large amount of common
code then the developer may consider such cloning justifi-
able. The developer may later consult other senior develop-
ers if such cloning is desirable. In short, our produced visu-
alization simply highlights what we consider to be trouble-
some clones and we permit developers to study them closely
instead of displaying all clones between all code segments
in large software systems. We now detail the main two com-
ponents of our approach: a clone recovery framework and a
clone visualization.

3.1 Clone Recovery Framework
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Figure 3. Our Clone Extraction Framework

In order to visualize clones we must first recover them by
running a clone detection tool. The results of the clone de-
tection tool is then post-processed in order to remove incor-
rect cloning relations. We produce our visualizations using
the filtered information and domain knowledge (gathered by
a system expert or through reading system documentation).

Figure 3 gives an overview of our framework. In or-
der to communicate between the different tools and steps
in our framework we used a set of data schemas. Each
step in our framework expects data in the appropriate
schema. The schemas are shown in Figure 4. The
schemas are at varying level of detail: Clone-Class-Code-
Segment Level, Clone-Class-Subsystem Level, and Super-
Clone-Subsystem Level. The steps in our framework lift
the cloning data from Clone-Class-Code-Segment Level
schema, to Clone-Class-Subsystem Level schema; and
then merge clone classes to get Super-Clone-Subsystem
Level cloning relation. We present below the different steps
in our framework

3.1.1 Clone Detection

To generate cloning data, we use the CCFinder tool [14]
which is reported to have a high recall rate compared to
other tools [6].

Source

Code File

Code

Segment

Clone

Class

Clone-Class-Code-Segment Level

Clone

Pair

Consists Of
Clone

Class

Clone-Class-Subsystem Level Super-Clone-Subsystem Level

               (A)                 (B)                 (C)

Lifted Merged

Consists Of

Consists Of

Contains

Consists Of

Consists Of Consists Of

Contains
Subsystem Subsystem Subsystem

Super

Clone

Super

Clone

Super

Clone

Figure 4. Schemas Used in Our Framework.

In order to reduce the reporting of rather small triv-
ial clones, CCFinder must be configured with a minimum
clone size. We chose 30 tokens as the minimum clone
size, since previous studies [16, 15] show that the output of
CCFinder is of reasonable accuracy at this token level. We
also turn off the option to locate clones within the same file,
since we are more interested in detecting similarities across
source code files and subsystems at the architecture level.
Different options can be configured and other clone detec-
tion tools by users of our framework if needed. The use of
schemas to communicate between the different steps in our
framework reduces our dependance on the data format of
the different tools, since the output of a tool is converted to
our schema and the rest of the steps can easily use the data.

3.1.2 Non-Functional Clone Filtering

Through a manual analysis of the CCFinder output, we no-
ticed that CCFinder occasionally produces incorrect cloning
relations. For example, it treats blocks of code that con-
tain variable declarations and function prototypes as clones.
For example, the following function prototype declarations
taken from linux − 2.6.16.13/drivers/scsi/aha152x.c
and linux− 2.6.16.13/drivers/scsi/esp.c are considered
as clones by CCFinder:

l i n u x −2 .6 .16 .13 / d r i v e r s / s c s i / aha152x . c :

s t a t i c vo id d a t a i i n i t ( s t r u c t S c s i H o s t ∗s h p n t ) ;
s t a t i c vo id d a t a i r u n ( s t r u c t S c s i H o s t ∗s h p n t ) ;
s t a t i c vo id d a t a i e n d ( s t r u c t S c s i H o s t ∗s h p n t ) ;
s t a t i c vo id d a t a o i n i t ( s t r u c t S c s i H o s t ∗s h p n t ) ;
s t a t i c vo id d a t a o r u n ( s t r u c t S c s i H o s t ∗s h p n t ) ;

l i n u x −2 .6 .16 .13 / d r i v e r s / s c s i / e sp . c :

s t a t i c i n t e s p d o p h a s e d e t e r m i n e ( s t r u c t esp ∗esp ) ;
s t a t i c i n t e s p d o d a t a f i n a l e ( s t r u c t esp ∗esp ) ;
s t a t i c i n t e s p s e l e c t c o m p l e t e ( s t r u c t esp ∗esp ) ;
s t a t i c i n t e s p d o s t a t u s ( s t r u c t esp ∗esp ) ;
s t a t i c i n t e s p d o m s g i n ( s t r u c t esp ∗esp ) ;

We filter out all these non-functional clones in order to
reduce the clutter in our visualization and improve the ac-
curacy of our reported results. The filtering is done using
a Perl script. The script invokes a source code tagging
tool, called ctags [8] then parses the file to determine the
beginning and ending line of all defined code entities such
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as functions, variables, macros, and prototypes. The script
then filters out all identified CCFinder clone pairs which re-
side outside a function boundary.

The sub-diagram (A) in Figure 4 shows the Clone-Class-
Code-Segment Level schema after the clone detection and
filtering steps. The data contains four types of entities:
source code segments, files, clone pairs and clone classes. A
file contains one or more source code segments; each clone
pair consists of two code segments; and each clone classes
consists of at least one clone pair.

3.1.3 Clone Relation Lifting

At this stage, each clone class contains cloning relations
among code segments from different files. We need two
lifting operations here. First, we lift information to the file
level (i.e. we lift our cloning data from Clone-Class-Code-
Segment level to Clone-Class-File level). For example, if
clone class A contains lines 110 − 130 in file1.c, lines
210 − 230 in file2.c and lines 10 − 30 in file3.c, then
the lifting will results in clone class A containing 20 lines
of cloned code, which reside over files file1.c, file2.c, and
file3.c.

Since we plan to visualize relations between subsys-
tems, we need to lift our cloning data to the Super-Clone-
Subsystem level. Several clone classes might cross cut the
same subsystems or some of them might only contain clones
within the same subsystem.

To perform the lifting a file-subsystem mapping is
needed. Ideally, such a mapping would be provided by a
system expert. However, if we don’t have an expert, as sug-
gested in [5], we have to either consult the documentation
and group files based on directory structure, naming con-
ventions or manually examine the source code. Continuing
the above example, if file1.c is in subsystem S1, file2.c in
subsystem S2, and file3.c in subsystem S3; then the lifting
result will be clone class A which contains 20 duplicated
lines and consists of subsystems S1, S2 and S3.

The sub-diagram (B) in Figure 4 shows the Clone-Class-
Subsystem Level schema after the lifting step. The data
at this level contains two types of entities: clone classes
and subsystems. Each clone classes consists of at least one
subsystem.

3.1.4 Clone Classes Merging

In this final step, we aggregate the clone classes which cross
cut the same subsystem(s) to simplify the cloning relation-
ship. For example, clone classes 128 and 233 both cross
cut subsystem S1, S2 and S3. Therefore, we merge these
two clone classes into one super clone node. Super clone
nodes are named after the names of the subsystems which
they cross-cut. If they cross multiple subsystems, then each

subsystem is separated by a “#” sign. In the above exam-
ple, the super clone is named as S1#S2#S3 to indicate
that they all cross cut subsystems S1, S2 and S3. We found
that this naming convention helps easily identify the degree
of cloning in a super clone in our visualization instead of
having users follow a large number of edges.

The diagram (C) in Figure 4 shows the Super-Clone-
Subsystem schema. We have two types of entities here: Su-
per Clone Classes and subsystems: each Super Clone Class
consists of one or more subsystems.

3.2 Clone Visualization

The main goal of our visualization is to highlight cloning
within each subsystem (cohesion) and across subsystems
(coupling). To help direct practitioners to the most trouble-
some spots, we define “cloning hotspots” that are brightly
colored large nodes which grab the attention of the viewer.

A secondary goal of our visualization is to show how dif-
ferent subsystems are interrelated according to cloning. Our
cloning visualization shows close together subsystems that
have a large amount of common code due to cloning, and
shows far apart subsystems that have little cloning between
each other.

Node Name Width Height
Subsystem
(box)

Number of Lines
Cloned Within the
Subsystems

Number of Clone Classes
Involved Within the Sub-
systems

Super Clone
(diamond)

Number of Lines
Cloned With Its Asso-
ciated Subsystems

Number of Clone Classes
Involved With Its Associ-
ated Subsystems

Table 2. Dimensions of Nodes

Our visualization consists of a graph with nodes and
edges. There are two types of nodes in our graphs: rectan-
gle nodes (subsystems) and diamond nodes (super clones).
An edge between a rectangle and a diamond represents a
cloning relationship.

We now explain the semantics of our visualization by
showing how we satisfy our aforementioned goals.

3.3 Goal 1: Cohesion, Coupling and Hot
Spots

To highlight cohesion and coupling, we define the di-
mensions of the nodes representing them according to Ta-
ble 2. Using these dimensions then large boxes imply that
there is a large amount of cloning within a subsystem (high
cohesion) and large diamonds indicate that there is a large
amount of cloning across subsystems (high coupling).

In addition to varying the sizes of the nodes to highlight
the amount of cloning, we vary the color of the nodes. In
particular, we vary the color of the diamond nodes since we
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Figure 5. Heat Coloring.

believe that cross subsystem coupling (i.e. high coupling) is
troublesome and should be investigated. We consider large
diamonds as “cloning hotspots”. We “heat color” super
clones using a quartile based coloring technique. The color
of a diamond is based on the total number of lines cloned
across subsystems in that super clone node. We choose the
total lines of cloned code rather than the total number of
cross family clones since we feel that total lines of cloned
code is a better indicator of how much effort will be required
to examine and refactor a particular super clone node. The
“Heat Coloring” works by calculating the median and the
quartiles (the lower quartile is the 25th percentile and the
upper quartile is the 75th percentile), the value range of the
studied metric is divided into four quarters, which are as-
sociated with four different colors respectively. In our case
studies, we have chosen red, yellow, light-green, and light-
grey as shown in Figure 5.

3.4 Goal 2: Overall System Cloning View

In order to demonstrate the interrelations between dif-
ferent subsystems according to cloning, we apply a force-
based graph layout in our visualization to arrange the rela-
tive position of subsystems. Weights have been added to the
edges to represent the number of cloned lines from the sub-
systems to the super clone nodes. Subsystems which have
more duplications with each other will be placed closer to
the super clone classes; conversely, subsystems which have
less cross-family cloning will be pushed further away from
the super clone nodes. Overall, subsystems which have a
large amount of code cloning with other subsystems will be
placed closer to these subsystems than other subsystems.

Figure 6. An Example of Our Visualization.

3.5 A Simple Visualization Example

Figure 6 shows an example visualized using our tech-
nique. It consists of three subsystems: A, B, and C;
and four super clone nodes: A#B#C, A#B, B#C, and
A#C. As indicated by the color: A#C has the biggest
cross-family cloning, subsystems A and C are pulled to-
wards that super clone. The second largest super clone
node is A#B, followed by A#B#C, and finally B#C.
Since B#C is the smallest clones, subsystems B and C are
pushed away from that super clone node. Subsystem A is
taller and wider, since it contains more internal cloning than
other subsystems. All super clone nodes are colored using
the heat based coloring techniques.

4 Case Study

To demonstrate our framework, we present a study of
cloning in the code responsible for SCSI drivers in the Linux
kernel. SCSI stands for “Small Computer System Inter-
face”. We believe studying SCSI drivers is a good case
study to demonstrate clone cohesion and coupling.

Device drivers are programs for interacting with hard-
ware devices. Studies show that writing device drivers is
error-prone and is considered as a major source of errors in
operating systems [7]. Around 30% of the source code files
in the Linux Kernel are devoted for implementing various
device drivers. Due to the similarity between hardware de-
vices in the same family (i.e. from the same vendor or that
use the same hardware chipset), developers are more likely
to clone code between drivers in the same family in order to
speed up development and reduce the likelihood of errors.
Therefore, we believe that it is justifiable and probably de-
sirable to have cloning within a driver family. However, it is
not justifiable nor desirable to have cloning across different
driver families; since such cloning might negatively affect
the evolution of Linux. Developers have to be aware of such
cross family cloning and may need to propagate changes
across driver families. Such change propagation are likely
to introduce errors over time as developer forget such unex-
pected dependencies.

4.1 Results of Our Clone Extraction
Framework

All code in the SCSI related directories in Linux consists
of 858, 727 tokens, 476, 612 lines, and 381 files. CCFinder
(with 30 tokens as the minimum clone size) reported that
this code has 54, 195 clone pairs and 2, 034 clone classes.
After filtering the non-function clones, we have 305 clone
classes left. We have 119 clone classes which cross cut
two or more subsystems. We have obtained 33 super clone
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nodes after the merging process, about 67% of them cross
cut two or three subsystems.

4.2 Subsystem Mapping

An important input needed for our framework is the sub-
system mapping. Ideally, a system expert would provide
such a mapping. Since we did not have access to a sys-
tem expert, we created a subsystem mapping by reading
documentation, analyzing source code and examining files.
The subsystem mapping groups files belonging to the same
driver family (similar vendor or similar driver chip) in the
same subsystem. We explain below how we created our
mapping.

There are 425 files that are in the directories that im-
plement the SCSI drivers in the Linux Kernel version
2.6.16.13. Nevertheless, many of these files do not imple-
ment drivers instead they are testing or libraries files. For
our study we decided to only focus on files that implement
specific SCSI drivers. To uncover such files, we started
by parsing the Makefiles responsible for building the SCSI
drivers in the Linux Kernel. We show below an excerpt of a
Makefile for SCSI.

obj−$ ( CONFIG SCSI SATA PROMISE ) += l i b a t a . o s a t a p r o m i s e . o
obj−$ ( CONFIG SCSI SATA QSTOR ) += l i b a t a . o s a t a q s t o r . o
obj−$ ( CONFIG SCSI SATA SIL ) += l i b a t a . o s a t a s i l . o
obj−$ ( CONFIG SCSI SATA SIL24 ) += l i b a t a . o s a t a s i l 2 4 . o
. . .
obj−$ ( CONFIG SCSI IN2000 ) += in2000 . o

In the above example, libata.o corresponds to a library;
and files like sata promise.o and sata sil.o refer to driver
files sata promise.c and sata sil.c, respectively. In addi-
tion, sata promise.c and sata sil.c are part of the same
family (i.e subsystem). In order to automate the subsystem
mapping process, we followed these steps:

– Object files (e.g. libata.o) which appear multiple times are
considered as library files and are not considered as driver
files. For our analysis all files related to such a library file
are considered to be in the same family (i.e. subsystem).

– Object files (e.g sata promise.o and sata sil.o) which ap-
pear once in a Makefile are considered as driver files.

– If an object file (e.g sata promise.c) appears on the same
line as a library file (e.g. libata.o), then the object file is
considered as part of the subsystem called libata.

– If an object file (e.g. in2000.o) appears alone on line with-
out a library file, then we have to manually examine the
file’s comment and reading additional system documenta-
tion to determine if it is a driver or not and which subsys-
tem it should be mapped to. For example, when we manu-
ally examine the in2000.c we find that it is a device driver
for the Always IN2000 ISA SCSI card. In grouping such
files (ie. files with no libraries), we had two options either
to group them according to the vendor or according to their
chipset. Each group criteria would result with a different

system decomposition, a system expert may decide one cri-
teria over the other. For our study we decided to group such
files by chipset in order to be consistent with the grouping
created by the Makefile. The grouping obtained from the
Makefile, in the previous steps, is based on the chipset.

This process has helped us identify 109 drivers and we
created 17 driver subsystems (i.e. families). Our automatic
Makefile clustering has helped us cluster 56 drivers. The
remaining drivers are clustered manually.

Super Clones:
  1. ULTRASTOR#EATA
  2. ULTRASTOR#EATA#RAID
  3. ADAPTEC#NCR580
  4. ADAPTEC#NCR580#TEKRAM
  5. ADAPTEC#IOMEGA

Subsystems (Driver Family):
  6. ATA
  7. NCR53C9x
  8. NCR5380
  9. FUTUREDOMAIN
 10. IOMEGA

1
2

3

45

6

7

9

10

8

Figure 7. Annotated Screenshot of our Visu-
alization for the SCSI drivers.

4.3 Our Clone Visualization

Figure 7 shows a screenshot of our clone visualization
for the SCSI driver subsystems. The figure shows a zoomed
out view of the visualization. On the right side of the figure
we mark a few noteworthy nodes. The figure is generated
using the aiSee tool [1] which permits us to freely navigate
through the diagram. The forced-based graph layout per-
mits us to see the degree of clone coupling between subsys-
tems. For example, IOMEGA and FUTUREDOMAIN are
more coupled together than ATA and NCR53C9x. In our
study we focus on the hot spots (large red diamond nodes
and large boxes). Our visualization indicates that there is a
large amount of cloning within the ATA and IOMEGA sub-
systems (ie. both subsystems have high clone cohesion).
We investigated as well two of the largest diamond nodes
since they indicate high coupling between subsystems).

ADAPTEC#IOMEGA is one of the biggest super
clone nodes (Number 5 in Figure 7). It contains 864 lines
of cloned code and has 5 driver files across two subsys-
tems (ADAPTEC and IOEMA). By manually examining
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source code, we discover that this super clone node is su-
perfluous. The clones are code segments which contain case
switch statements. It is a false clone produced by CCFinder.
CCFinder tokenizes the source code and recognizes the sim-
ilar code structures. However, each case switch statement
has the same construct: the case then a following statement.

ULTRASTOR#EATA is another big super clone
node (Number 1 in Figure 7). A closer analysis of this super
clone node reveals that it contains 14 clone classes and all
the cloning occurs between only two files: eata.c from the
EATA family and u14−34f.c from the ULTRASTOR fam-
ily. They are neither from the same vendor nor do they have
a common hardware chipset. eata.c is the Low-level driver
for EATA/DMA SCSI host adapters and u14 − 34f.c is the
Low-level driver for UltraStor 14F/34F SCSI host adapters.
We decided to explore the reason behind such large degree
of coupling between both subsystems (in particular both
files). We manually inspected the change logs for both files.
The change logs indicate that changes to both files are al-
most identical and that changes occur almost at the same
date throughout the lifetime of both files. Moreover, we
discovered that the copyright for both files is attributed to
the same person. We suspect that the same developer has
cloned one of the files as part of knowledge transfer from
one driver to the other. As development progresses, the
clones have been maintained synchronously.

The visualization has been able to highlight the most
noteworthy clones across subsystems and within subsys-
tems. Using the visualization we are able to quickly locate
these noteworthy and investigate them instead of investigat-
ing large amount of clone pairs in an ad-hoc manner.

5 Conclusion

A subsystem is a set of modules which are closely re-
lated to each other. We believe it is justifiable for cloning
to exist within the same subsystem since modules within a
subsystem are closely related to each other. Cloning can
be considered as a mechanism of reuse. However, cloning
across subsystems is usually not desirable nor justifiable.
Our framework is used to generate the data need to inves-
tigate and manage cloning activities within and across sub-
systems. We propose a visualization of cloning at the archi-
tecture level. We apply our approach to the SCSI drivers in
the Linux Kernel. Our visualization directs our focus to the
most noteworthy cloning relations in the SCSI drivers.
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