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Abstract

Code duplication, or code cloning, is a common phenomena in the development of large

software systems. Developers have a love-hate relationship with cloning. On one hand,

cloning speeds up the development process. On the other hand, clone management is a

challenging task as software evolves. Cloning has commonly been considered as undesirable

for software maintenance and several research efforts have been devoted to automatically

detect clones and eliminate clones aggressively. However, there is little empirical work done

to analyze the consequences of cloning with respect to the software quality. Recent studies

show that cloning is not necessarily undesirable. Cloning can used to minimize risks and

there are cases where cloning is used as a design technique.

In this thesis, three visualization techniques are proposed to aid researchers in ana-

lyzing cloning in studying large software systems. All of the visualizations abstract and

display cloning information at the subsystem level but with different emphases. At the

subsystem level, clones can be classified as external clones and internal clones. External

clones refer to code duplicates that reside in the same subsystem, whereas external clones

are clones that are spread across different subsystems. Software architecture quality at-

tributes such as cohesion and coupling are introduced to contribute to the study of cloning

at the architecture level. The Clone Cohesion and Coupling (CCC) Graph and the Clone

System Hierarchy (CSH) Graph display the cloning information for one single release. In

particular, the CCC Graph highlights the amount of internal and external cloning for each

subsystems; whereas the CSH Graph focuses more on the details of the spread of cloning.

Finally, the Clone System Evolution (CSE) Graph shows the evolution of cloning over a

period of time.
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Chapter 1

Introduction

Clones are identical or near identical segments of source code. Code clones are usually

intentionally created through copying another piece of code. However, in certain cases [35]

clones appears unintentionally due to code segments using the same APIs. Code cloning

is a common phenomena in the development of large software systems. It is reported that

5-50% of large software systems are clones [8, 39, 7].

This chapter consists of the following parts: Section 1.1 provides a background of code

cloning. Section 1.2 gives an overview of the thesis. Section 1.3 briefly discusses the

novelties of this thesis. Section 1.4 talks about the organization of the thesis.

1.1 Code Cloning

A clone is a segment of code that has been created through duplication of another piece

of code. Clones share similar code structures. However, since the size and the degree

of similarities among code segments vary, code cloning is a fairly subjective concept. It

depends on the context or human judgement whether it is a code clone or not.

1



2 Visualizing and Understanding Code Duplication in Large Software Systems

Figure 1.1: Clone example taken from Linux Kernel version 2.6.16.13.

Figure 1.1 shows an example of code cloning drawn from the Linux Kernel. The source

code is taken from the code responsible for supporting the different network cards in

the Linux Kernel version 2.6.16.13. The top row shows the file names and line numbers

separated by colons. Areas highlighted in grey indicates the code duplication sections and

the red font marks variation points.

When referring to clone relations, we use two terms: clone pairs and clone classes. A

clone pair is a pair of code segments which are identical or similar to each other. A clone

class is the maximum set of code segments in which any two of the code segments forms

a clone pair. For example, A, B, C is a clone class. It implies that we have clone pairs

(A, B), (B, C), and (C, A).

Figure 1.2 shows 4 clone pairs. Three red blocks from “File1”, “File2” and “File3” form

three clone pairs, respectively. Two blue blocks from “File2” and “File3” form another
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Figure 1.2: An example of clone pairs.
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Figure 1.3: An example of clone classes.
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clone pair. Figure 1.2 shows the same cloning data by using clone classes relations. It has

two clone classes: a pink diamond indicating the clone class connecting three red blocks;

and a blue diamond representing another clone class connecting two blue blocks.

The rest of this section is organized as follows. First, we talk about intentions why

developers clone source code. Then we discuss reasons why developers should not clone

source code. Finally, we present a few challenges of managing code clones.

1.1.1 Why Do People Clone Source Code?

There are a number of reasons why developers clone source code [36, 8, 32]. Here we

summarize a few common scenarios.

Code cloning is unavoidable due to language limitations. For example, Standard

Template Library(STL) in C++ is considered as a typical example of genericity.

However, Basit et. al. [20] showed that there are still code duplications which cannot

be eliminated by using generic programming language features such as templates.

Code cloning is used for reusing certain design patterns. For example, Cordy [22]

pointed out from his years of experience in dealing with financial software systems

that cloning is “the way in which designs are reused in these systems”. He observed

that there are only a limited number of tasks in the finance field; therefore the

data structure and data manipulation operations are quite similar to each other.

Consequently, whenever there is a need to write a new module; it is considered

common practice to copy from the old code, which is trusted and tested.

Code cloning is adopted to preserve performance. For example, in real-time appli-

cations, some common operations are hand-optimized to achieve best performance.
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It is required to copy from the existing optimized code whenever the same operations

is needed.

Code cloning is used for experimentation purposes. It is discovered that [32] when

developers start implementing new features they tend to copy from existing code. As

they gain a deeper understanding of the problem and think more about the solution;

these clones will be eliminated.

Code cloning is used for templating. For example, drivers are code written to enable

operating systems to interact with hardware devices. Driver code is considered as

the main source of errors in operating system [2]. What is more, it is fairly mechanic

to write drivers. To implement a Linux SCSI driver [3], we need to implement only a

few specified functions, and set these functions to point to appropriate fields for one

struct. Rather than writing driver code from scratch, which is time-consuming and

error-prone, it is preferable to copy from an existing driver code and modify it.

Code cloning is used in cross-cutting concerns. Code segments for error-checking

or logging are usually scattered across the code base [30]. Developers clone error-

checking or logging code to preserve consistency of the coding style.

Code cloning is used for risk minimization. Cordy [22] and Kapster [11] observed

that rather than abstracting out the common operations, copying well-tested code

reduces the risks of either breaking existing functionality as well as isolating the risks

of introducing software defects to a single place.

Academically, there are studies [32, 27, 11] showing that cloning is considered a common

practice in the software development process. There are quite a few cases when clone is

used as a design pattern and are considered beneficial. For example, the forking patterned
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mentioned in [11] can be used to test new features without affecting existing functionality.

Therefore, there is a need to develop various kinds of clone maintenance tools [11].

1.1.2 Why Should People Not Clone Source Code?

Many researchers believe that cloning is a “bad smell” for code quality as it brings up

challenges for software maintenance.

• Code cloning leads to a bloated code base. This leads to a large binary executables

and requires more storage spaces. In devices that have limited storage spaces such

as cell-phones, the amount of cloning has to be minimized.

• Code cloning causes additional effort for developers. As clone instances are similar

to each other, developers need to careful examine the two pieces of code in order to

tell the differences among clone instances.

• Code cloning brings challenges to software maintenance. When developers modify

one clone piece apart(usually for bug fixes), it is very likely that they need to apply

the same changes to its cloning instances. Therefore,

– developers need to check all its cloning instances to decide whether similar

changes need to be applied on them, and

– uncover cloning information is hard, since cloning knowledge is usually left as

undocumented and only exists in developers’ head as short term memory.

Based on this brief, tools have been developed to automatically detect clones [25, 28, 8]

and techniques have been proposed to automatically eliminate clones [16, 34].
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1.1.3 Challenge of Dealing with Clones

Code cloning is a common practice in the software development, yet the long term effects are

not well-understood. As we have shown in Sections 1.1.1 and 1.1.2, there are two opposing

views towards code cloning. These two views examine clones from different perspectives

and are both tenable. Unfortunately, to date there has been only one empirical study done

to study the consequence of cloning [4].

A major problem of conducting clone studies in a large software system is how do

handle large volume of data. Code clones are quite common in large software systems.

Software systems such as Linux Kernel, which has several million lines of source code, may

contain thousands of lines of clones.

The goal of this thesis is to develop tools and techniques to aid researchers to analyze

code cloning in large software systems.

Our approach uses scaling and visualizing. We scale the huge volume of cloning data by

three techniques: merging clone classes into bigger clone classes, lifting cloning relations

from code segment level to file level or subsystem level, and pruning irrelevant cloning

relations. Then we visualize our data along three dimensions: amount, spread, and time.

The overview of the thesis is presented in Section 1.2.

1.2 Overview of Thesis

In this thesis, we propose tools and techniques to help researchers to understand code

cloning in large software systems. We accomplish this by providing visualizations which

support large data set.

We scale down the cloning data by providing various levels of abstractions and then

provide three visualization techniques to highlight cloning along three different dimensions.



Introduction 9

1.2.1 Scaling

We achieve scaling by three techniques: merging, lifting and filtering. We detail the scaling

process as follows:

Merging: Each clone class obtained from the clone detection tools contains the line

interval which are duplicates. Different clone classes can have the same files but

with different line intervals. If two clone classes contain exactly the same files or

subsystems, then we merge these clone classes into one bigger clone class.

We are going to illustrate this by means of an example. Figure 1.4 shows the clone

classes before merging. We have three clone classes: the red, the blue and the yellow

clone classes. Both the red clone class and the blue clone class contain three files;

whereas the yellow clone class only contains 2 files. Figure 1.5 shows the clone classes

after merging. We have two clone classes: the grey clone class, which is the result of

merging the red and the blue clone classes; and the yellow clone class stays the same

since it only contains 2 files and cannot be merge with the other two clone classes

which both contain three files.

Lifting: The lifting step elevates cloning relations from the code segment level to the

file level or up to the subsystem level.

We will illustrate the lifting process by means of an example. Figure 1.6 shows the

cloning relations before lifting. We have three directories: “dirA”, “dirB” and “dirC”.

Under “dirA”, we have three files: “File1”, “File2” and “File3”; under “dirB”, we

have 1 file: “File4”; and under “dirC”, we have 1 file: “File5”. We have 2 clone

classes: one clone classes contains code segments shown in red and one clone classes

contains code segments shown in blue. Figure 1.7 shows the result after lifting. Since

“File1” and “File2” are both under “dirA”, therefore the red clone class gets lifted to
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Figure 1.4: Clone classes before merging.
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Figure 1.5: Clone classes after merging.
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File1 File2 File3 File4 File5

dirA dirB dirC

Figure 1.6: Clone classes before lifting.
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File1 File2 File3 File4 File5

dirA dirB dirC

Figure 1.7: Clone classes after lifting.



14 Visualizing and Understanding Code Duplication in Large Software Systems

“dirA”, one blue block in “dirA” is from “File3”. Similary, all the cloning relations

from “File4” and “File5” are lifted to “dirB” and “dirC”, respectively.

Pruning: Depending on the study we focus on, irreverent cloning data can be selec-

tively removed. For example, if we are only interested in cloning related to “drivers”

subsystem; then we can remove all the clone classes which do not contain files in

“drivers”. If we are only interested in cloning relations among subsystems, then we

can remove all the file level cloning relations.

We name the resulting clone classes after merging and lifting steps as Super Clone

Classes.

Note that merging and lifting steps can be used at any levels of system abstraction. In

addition, the ordering of executing merging and lifting actions does not really matter.

For example, if we want the data to be scaled at the file level, we can first lift the clone

classes at the code segment level first to the subsystem level and then merge the lifted

clone classes. Alternatively, at the code segment level we can choose to merge clone classes

that contain exactly the same set of files, then we lift them to the file level. The results

will be the same.

Similarly, if we want the data to be scaled at the lowest subsystem level, we can first

merge clone classes which associate with exactly the same lowest level subsystems, then

we lift the clone classes into the lowest subsystem level, or the other way around.

1.2.2 Visualization

Three visualization techniques are proposed in this thesis. Each of them emphasizes cloning

along different dimensions: quantity, spread and time, respectively. Quantity refers to

how much duplications within one subsystem (internal cloning) and between subsystems
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(external cloning). Spread refers to the details of cloning relations; that is how many

subsystems or files it cross-cut. Time refers to how clones evolve over time in different

parts of the subsystem.

Quantity: The Clone Cohesion and Coupling (CCC) Graph displays the amount of

cloning that exists within one subsystem (internal cloning) as well as the the amount

of cloning that exists between subsystems (external cloning).

It highlights the amount of code duplication between subsystems.

Spread: The Clone System Hierarchical (CSH) Graph lays out the cloning data in the

system hierarchical structure.

It highlights cloning relations for individual files and directories by mouse movements.

It emphasize the spread of cloning.

Time: The Clone System Evolution (CSH) Graph visualizes the evolvement of clones

over time.

It highlights the most recent changes of code cloning.

1.3 Major Thesis Contributions

In this thesis, we introduce the concept of “Architecture of Clones” to help researchers to

understand large set of cloning data. The concepts of cohesion and coupling are applied

in the context of cloning to evaluate the quality of the software systems.

Three visualization techniques are proposed to help researchers to better understand

large set of cloning data.
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• The CCC graph is the first attempt to use energy-based graph layout to visualize the

strength of external cloning among subsystems. Super clones scale the studies; what

is more, visualization clone classes rather than pairs reduces the cross-cutting edges.

• The CSH graph lays out clone information in the hierarchy containment structure

highlighting the spread of cloning. It also provides mechanisms to allow researchers

to interactively query clone relations for each subsystem.

• The CSE graph shows the evolution of architecture of clones over time.

• For each of the three of the visualizations proposed in this thesis, we provide a

guideline that summarizes how to reconstruct our visualizations. This is useful for

researchers who are interested in using our tools to analyze cloning for other software

systems.

• All three graphs covey the information of clone cohesion and coupling in the large

software systems. They can also be applied to other areas of research like co-change.

In addition, two data filtering techniques are introduced and compared to remove false

clones.

Finally, the metric uloc is a new metric to study the growth rate of the software systems.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 shows how we obtain the cloning

data set. Chapter 3 presents related research. Chapter 4 presents the first of our three

clone visualizations: the Clone Cohesion and Coupling( CCC) graph. Chapter 5 explains

the second visualization technique: the Clone System Hierarchical (CSH) graph. Chapter 6
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introduces the concept of uloc and the third visualization: Clone System Evolution (CSE)

graph. Finally, Chapter 7 summarizes our work and presents some future work.



Chapter 2

Clone Data Extraction

This chapter explains the steps used to extract the cloning data from a large software

system. It is organized as follows: Section 2.1 explains the current existing clone detection

techniques. Section 2.2 explains our choice of clone detection tool and techniques to remove

inappropriate clones.

2.1 Summary of Clone Detection Techniques

There are four general techniques to detect clones:

Metrics Analysis: Metric-based clone detection techniques [28] collect various metrics

such as: McCabe’s Cyclomatic complexity, number of passed parameters, number of

used/defined local/global variables, etc. Depending on how similar these metrics are,

various code segments may be marked as clones. This approach is fast to compute,

but it lacks precision. It is recommended to be used for pre-processing step to narrow

down the selection of files that are going to be processed for more finely grained clone

detection.

18
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Simple Text Comparison: Simple text comparison techniques locate exact matches

of code segments. The Exact Match Clone Detection algorithm described in [14] is

an example of such a technique. The algorithm normalizes the code by removing

comments and suppressing white spaces. It then tries to find all matched lines for

each line. The algorithm uses a pattern matching algorithm to generate a list of

maximal number of consecutive lines of cloned code for each code segment. Finally,

cloning results are generated by filtering out smaller code segments. For the example

shown in Figure 1.1, a simple text comparison technique would not recognize the

variation points (in red). Instead of identifying a single large clone code segment,

the algorithm would identify several smaller code segments as clones.

Lexical Analysis: Lexical analysis techniques tokenize the code and concatenate tokens

into token sequences. Then they create abstract token strings to mark identifers and

code constructs. The abstract token strings are used to locate maximal substring

matches. An example of a tool that uses such a technique is the CCFinder tool [25].

The example shown in Figure 1.1 was identified by CCFinder.

AST Analysis: Abstract Syntax Tree (AST) Analysis techniques parse the code and

create an abstract syntax tree. The techniques then compare AST subtrees. Clones

are detected if two subtrees are identical to each other. An example of such a tech-

nique is presented in [5]. The example shown in Figure 1.1 would be identified by

such techinques.

2.2 Data Generation and Pre-Processing

This section describes how we pre-process the data used for our visualizations. It consists

of two steps: automatic detecting clone data and removing false clones.
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2.2.1 Automatic Clone Data Detection

We use the CCFinder [25] as our clone detection tool. CCFinder is a lexical-analysis-type

clone detection tool. It uses“Parameterized String Matching” algorithm to extract clone

pairs and is reported to have a high recall rate compared to other tools [9].

In order to reduce the reporting of rather small trivial clones, CCFinder must be con-

figured with a minimum clone size. We chose 30 tokens as the minimum clone size, since

previous studies [27, 26] show that the output of CCFinder is of reasonable accuracy at

this token level. We also turn off the option to locate clones within the same file, since we

are more interested in detecting similarities across source code files and subsystems at the

architecture level. Different options can be configured and other clone detection tools can

be used if needed.

CCFinder output the clone detection results both in the form of clone pairs and clone

classes.

2.2.2 Clone Data Filtering

Through a manual analysis of the CCFinder output, we discovered that CCFinder occa-

sionally produces inappropriate cloning relations.

For example, it treats blocks of code that contain variable declarations and function

prototypes as clones. The following function prototype declarations taken from linux −

2.6.16.13/drivers/scsi/aha152x.c and linux−2.6.16.13/drivers/scsi/esp.c are considered

as clones by CCFinder:

l inux −2 .6 .16 .13/ d r i v e r s / s c s i /aha152x . c :

s t a t i c void d a t a i i n i t ( s t r u c t Sc s i Hos t ∗ shpnt ) ;

s t a t i c void data i run ( s t r u c t Sc s i Hos t ∗ shpnt ) ;

s t a t i c void data i end ( s t r u c t Sc s i Hos t ∗ shpnt ) ;

s t a t i c void d a t a o i n i t ( s t r u c t Sc s i Hos t ∗ shpnt ) ;

s t a t i c void datao run ( s t r u c t Sc s i Hos t ∗ shpnt ) ;
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l inux −2 .6 .16 .13/ d r i v e r s / s c s i / esp . c :

s t a t i c i n t e sp do phase determine ( s t r u c t esp ∗ esp ) ;

s t a t i c i n t e s p d o da t a f i n a l e ( s t r u c t esp ∗ esp ) ;

s t a t i c i n t e s p s e l e c t c omp l e t e ( s t r u c t esp ∗ esp ) ;

s t a t i c i n t e sp do s t a tu s ( s t r u c t esp ∗ esp ) ;

s t a t i c i n t esp do msgin ( s t r u c t esp ∗ esp ) ;

To remove the inappropriate clone relations reported by CCFinder, we have developed

two filtering techniques: Structural Filtering and Textual Filtering.

• Structural Filtering

We call cloned code segments that are not inside a function “non-functional clones”.

In the above example, the reported cloned segments are inside the variable declaration

block and these false positives are due to similar structures in variable declarations.

Therefore, we choose to remove non-functional clones to eliminate inappropriate clone

relations caused by variable declarations.

The filtering is accomplished by a Perl script. The script invokes a source code

tagging tool, called ctags [13] then parses the file to determine the beginning and

ending lines of all defined code entities such as functions, variables, macros, and

prototypes. The script then removes all identified CCFinder clone pairs which are

non-functional clones.

• Textural Filtering

Although structural filtering allows us to remove the non-functional clones caused

by variable declarations, it cannot filter out false positives caused by similarities in

program constructs.

For example, the format for case switch statement is usually one case statement

followed by one line of method invocation and then the break statement. The two
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code segments shown are reported as clones to each other by CCFinder, since they

both use case switch statements. However, we do not consider them as appropriate

cloning relations since they do not share similar semantic meanings.

l inux −2 .6 .16 .13\ d r i v e r s \ s c s i \ i p s . c : 2383−2398

case IPS SUBDEVICEID 4M :

ha−>ad type = IPS ADTYPE SERVERAID4M;

break ;

case IPS SUBDEVICEID 4MX :

ha−>ad type = IPS ADTYPE SERVERAID4MX;

break ;

case IPS SUBDEVICEID 4LX :

ha−>ad type = IPS ADTYPE SERVERAID4LX;

break ;

case IPS SUBDEVICEID 5I2 :

ha−>ad type = IPS ADTYPE SERVERAID5I2 ;

break ;

l inux −2 .6 .16 .13\ d r i v e r s \ s c s i \ i s c s i t c p . c : 3466−3477

case ISCSI PARAM IMM DATA EN:

s e s s i on−>imm data en = value ;

break ;

case ISCSI PARAM FIRST BURST :

s e s s i on−>f i r s t b u r s t = value ;

break ;

case ISCSI PARAM MAX BURST:

s e s s i on−>max burst = value ;

break ;

case ISCSI PARAM PDU INORDER EN:

s e s s i on−>pdu inorder en = value ;

break ;

In order to focus on the code segments which have not only similar code structures

but also similar semantics, we adopt the Textural Filtering technique. We write

another Perl script to accomplish this task. We take the clone relations generated

from clone detection tools and then for each clone pairs we do a textural diff between

two code segments. If the percentage in common between these two code segments

falls below certain threshold we set, we filter them out. To determine a reasonable
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value of the threshold, we sample a few clone pairs and see whether there are similar

in semantics. If they are common in code structure only, we set the threshold to be

high enough to filter it. We repeat this process until it filters out all the “structural

similar only” clones in the sample.

In addition, textual filtering require a lot of I/O operations as for each clone pair

we need to compare the differences between the code segments. The amount of

clone pairs produced by CCFinder is massive, thus it will take a long time to do

the comparison. Our experiment shows that it takes more than 2 months to do the

filtering tasks on a server for one release of Linux 2.6 series! To resolve this, we need

to minimize the I/O overhead as much as possible. We group clone pairs by the files.

So for comparing different code segments from the same pairs of files, we do not need

to read the same files multiple times. Then we use the Perl’s diff package rather than

the Unix diff. This enables us to do the textual comparison in-memory rather than

writing the code segments into files and invoke the Unix “diff” command. These

ehancements dramatically improve the filtering performance, as it only takes hours

to complete filtering on one version of Linux 2.6 series!

Textual filtering technique removes more cloning relations than structural filtering,

since it removes non-functional clones as well. Take the inappropriate cloning rela-

tions due to similar code constructs in variable declarations for example. If we do a

line-by-line textual comparison, the two code segments resembles nothing in similar.

Therefore, they will be removed by our textual filtering technique.

Table 2.1 shows the filtering result using Textural Filtering technique. We apply the

filtering technique on the CCFinder’s reported clones on 12 versions of Linux Kernel.

The numbers of clone pairs both before and after filtering are shown.
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releases before(pair) after(pair)

1.0 2486 1296

1.1.0 2488 1105

1.2.0 5766 1672

1.3.0 6745 1828

2.0.1 37154 4583

2.1.0 40000 5745

2.2.0 633522 22362

2.3.0 687555 23671

2.4.0 2403684 73299

2.5.0 3303538 95202

2.6.0 5773032 124301

2.6.16.13 7369040 160707

Table 2.1: Number of Clone Pairs Before and After Filtering for Linux Kernel.

Figure 2.1 shows the number of clone pairs before and after our structural filtering.

As shown in Figure 2.1(A), our filtering technique eliminates a lot of false clones. The

number of clone pairs before filtering and is much bigger than the number of clone

pairs after filtering. The difference between the two is so big that the the number

of clone pairs after filtering almost shapes like a flat line along the horizontal axis.

Figure 2.1(B) only displays the number of clone pairs after the filtering. Interesting

enough, the trend of number of clone pairs across releases stay the same before

filtering and after filtering.

The filtering step takes detected clone pairs and perform textural diff between two

pieces of code; therefore, the result of the filtering is also in clone pair format. Most
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Number of Clone Pairs Before and After Filtering
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Figure 2.1: Structural Filtering
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of our study uses clone classes. We write a Perl script to transform the data format

from clone pairs to clone classes.

In summary, this chapter describes the steps to obtain cloning data in this thesis. The

data is initially extracted from a clone detection tool, CCFinder. Then textual filtering is

applied to remove the inappropriate clone relations.



Chapter 3

Related Work

In this chapter, we present two areas of related work: clone visualization and clone evolu-

tion.

3.1 Clone Visualization

For large software systems, clone detection tools usually report a large number (thousands)

of clone pairs and clone classes. In order to help software maintainers in examining the

output of clone detection tools, several clone visualization approaches and tools have be

proposed in literature.

We break down previous clone visualization approaches along two dimensions:

1. Visualized Source Entities: Are clones shown at the code segment level, lifted to

the file level, or lifted to the subsystem level? Higher abstractions (such as subsys-

tems) permit the study of large software systems since they reduce the amount of

clutter shown in the generated visualization.

27
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2. Visualized Clone Relations: Are clones shown as clone pairs, grouped as clone

classes, or grouped as super clone classes? By grouping clone code segments between

common files or subsystems, then practitioners can concentrate on suspicious (large

amounts of) cloning between two source entities instead of being overwhelmed by

many smaller clone pairs.

Table 3.1 summarizes current clone visualization research along these two dimensions.

The table also compares our presented visualizations to prior work. It categorizes each

visualization along two dimensions: the source entities the tool visualizes (such as code

segment level, file level or subsystem level) and the clone relations the tool visualizes (such

as clone pairs, clone classes or super clone classes).

In addition, our Clone Cohesion and Coupling (CCC) graphs visualize the cloning

relations by clone classes rather than clone pairs. Kapster et al. [26] show cloning relations

in boxes-and-arrows like architectural diagrams. They visualize cloning pairs between

subsystems. Figure 3.1 compares two different approaches (visualizing files using clone

pairs and clone classes). The square nodes are files; the circle nodes are clone classes.

Edges indicating cloning relationship. Both views visualize the same cloning data. The

left view shows clone pairs, whereas the right view groups clones into clone classes. The left

view contains more crossing edges than the right view. These edges make the visualization

much harder to view in particular for large software systems. Moreover, the use of clone

pairs in the visualization causes the loss of other relevant information. For example, it is

not clear that the cloning relationship AB 1 is only between files A and B (clone class 2) or

if it is among files A, B, C and D (clone class 1). Both of these problems are exaggerated

for large software systems.

To further reduce the clutter for large software systems, we propose the creation of

super clone classes. Super clone classes group multiple clone classes between the same
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Name Source Entity Clone Relation

Scatter Plot [21, 38, 43] Code Segments Clone Pair

Metric Graph [43] Code Segments Clone Class

File Similarity Graph [43] File

Hass Diagram [23] File Clone Class

Hyper-linked Web [24] File Clone Class

Link Editing [42] Code Segment Clone Class

Dependency Graphs [26] Subsystem Clone Pair

Duplication Web [38] File Clone Pair

Duplication Aggregation Tree

Map [38]

Subsystem Clone Class

System Model View [38] File, Subsystem Clone Pair

Clone Class Family Enumera-

tion [38]

File Clone Class

Clone Cohesion and Coupling

(CCC) Graph

Subsystem Super Clone Class

Clone System Hierarchy (CSH)

Graph

Files and Directo-

ries

Lifted Clone

Classes

Clone System Evolution (CSE)

Graph

Files and Directo-

ries

Lifted Clone

Classes

Table 3.1: Summary of Clone Visualization Tools
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Clone 
Class 1

File A File B

File C File D

Clone 
Class 2

(B) 
Visualizing Cloning Relations With 

Clone Classes

File A File B

File C File D

AB_1
AB_2

AC BD

AD BC

CD

(A) 
Visualizing Cloning Relations With 

Clone Pairs

Figure 3.1: Comparison between two approaches

source entities. These super clone classes aggregate many small clone classes into one

large super clone. These super clone classes help us deal with the limitation of simple

text comparison techniques and other clone techniques which may not recognize variation

points and may instead report them as separate clones. These super clone classes help

highlight and summarize to developers the magnitude of cloning between two source code

entities.

The Clone System Hierarchy (CSH) graph and the System Model View [38] display the

cloning information in a directory structure. They both use the node size and edge width

to indicate the amount of internal and external cloning. However, the System Model View

shows the cloning relations between files whereas CSH can display cloning relations for any

subsystems or files. In addition, CSH highlights the cloning relations by mouse movement

rather showing all the edges in the graph. Therefore, CSH has less cross-cutting edges and

contains more detailed cloning information than System Model View.
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No previous techniques, to the author’s knowledge, has been proposed to visualize

the evolution of code clones. Clone System Evolution(CSE) graph is the first attempt to

display the change of code cloning over time.

3.2 Clone Evolution

Lague et al. [4] studies the clone evolution on six subsequent versions of a large telecom-

munication projects over a period of three years. They incorporate the metric based clone

detection technique and found out that even though old clones have been removed and

but the overall number of clones keep increasing since new clones have been added in at a

faster pace. They classify clone changes as new clones, deleted clones and modified clones.

Merlo et al. [15] analyzes 365 releases(from 1994 to 2001) of Linux kernel are analyzed.

They uses the metric approach as their clone detection technique and found out that as

system evolves over time, the quality of the code base does not degenerate because of

cloning. As the addition of similar subsystem is accomplished through code reuse rather

than code cloning.

Kim et al. [27] proposed a clone genealogy extractor which tracks individual clone

instances over multiple releases. They present a more fine grained clone change patterns:

same, add, subtract, consistent change, inconsistent change and finally shift. Their case

study using the genealogy extractor shows that many clones are short lived and long lived

clones usually change consistently over time and are not easily refactorable.

In summary, this chapter cover the previous work related to this thesis, namely the

related work in the area of clone visualization and clone evolution.



Chapter 4

Clone Cohesion and Coupling (CCC)

Graph

This chapter introduces Clone Cohesion and Coupling (CCC) graph, which visualizes the

amount of internal cloning and external cloning for subsystems.

Coupling and cohesion between subsystems are commonly studied metrics when ana-

lyzing the architecture of large software systems. It is usually desirable for subsystems to

have high cohesion within the subsystem and to have low coupling to other subsystems.

In this chapter, we extend the ideas of coupling and cohesion to code cloning. As it has

been previously explained, a code clone is a segment of code that has been created through

duplication of another piece of code. Previous research has shown that in some instances

code cloning is desirable, whereas in other cases it is not. This thesis takes the position

that it is justifiable to have code cloning within subsystems (high cohesion), whereas it is

not justifiable and likely not desirable to have it across subsystems (high coupling).

We present an approach, which consists of a framework that generates cloning data and

a visualization technique for visualizing clone cohesion and coupling. Our approach can be

32
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used by developers to locate undesirable cloning in their software system. We demonstrate

our approach through a case study on the code responsible for SCSI drivers in the Linux

kernel.

The rest of this chapter is organized as follows. Section 4.1 discusses the concept of

the architecture of clones as well as the concept of clone cohesion and clone coupling.

Section 4.2 presents our clone architecture recovery framework and discusses the data

schema used in our framework. We present our visualizations and showcase their main

benefits and features. Section 4.3 demonstrates our visualizations using a case study from

the Linux Kernel (in particular its SCSI drivers). Finally, section 4.4 shows a brief usage

guideline for researchers who are interested in using our visualization.

4.1 Architecture of Clones

Software architecture [17] provides a high-level understanding of large software systems. By

analogy, we introduce the concept of Architecture of Clones 1 in the hope of abstracting

a large volume of cloning information. The architecture of clones and software architecture

both consist of two parts: components and connectors. Table 4.1 compares these two kinds

of architectures. Components in both architectures refer to a collection of computation

units, referred as subsystems. Connectors in software architecture refer to the description

of interaction among components, such as data flow, call dependencies and so on, whereas

in the context of architecture of clones, they mean cloning relations.

The terms cohesion and coupling are commonly used in studying the design or archi-

tecture of a software system. These terms measure the structure of dependencies within

each subsystem and between subsystems (a subsystem contains files or other subsystems),

1We decide not to name it as “Clone Architecture” as to avoid the confusion of copying an architecture.
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Category Software Architecture Architecture of Clones

Components Subsystems Subsystems

Connectors Data/Dependency Cloning

Cohesion and Coupling Dependency Internal and External

Cloning

Examples Pipe and Filters, Client and

Server

Forking, Templating

Table 4.1: Comparison Between Software Architecture and Architecture of Clones

respectively. Coupling is concerned with dependencies between subsystems; while cohesion

refers to the dependencies within the subsystem. It is commonly desirable for a software

architecture to have low coupling and high cohesion. For example, a subsystem with a

large number of functions that are dependant on each other (high cohesion) is more desir-

able than a subsystem where functions depend heavily on functions in other subsystems

(high coupling). This intuition forms the basis of many modern software clustering tech-

niques [33].

Highly cohesive subsystems are desirable since they imply that subsystems represent

closely related concerns. Low coupling is also desirable since it implies that the subsystems

are relatively easy to modify and evolve. Developers changing software systems with low

coupling can have their changes focused to a limited number of subsystems instead of

needing to propagate their changes to a large number of subsystems.

In this thesis, we extend the concepts of coupling and cohesion to code cloning. This

thesis takes the position that it is justifiable to have some cloning within a subsystem (clone

cohesion); whereas it is not desirable to have cloning across subsystems (clone coupling).

Cloning within a subsystem is “justifiable” since it is likely due to the similarity between
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functions and files within a subsystem. Large amount of cloning across subsystems is not

“justifiable” since it is expected that subsystems represent different concerns that are not

similar and therefore should not share a large amount of code cloning. This intuition is

analogous to coupling for code dependencies, where it is not desirable to have coupling

between different subsystems. In summary, we consider that low code coupling and high

code cohesion are desirable, and low clone coupling and high clone cohesion are justifiable.

We use the term justifiable for clone coupling and cohesion since as we mentioned earlier

that may be good reasons to clone code and there are no definitive research results that rule

out the shortcomings or advocate the benefits of clones [27]. Determining whether a clone

is desired or not should be done on a project by project basis by system experts. In this

chapter, we present an approach to assist system experts to study cloning in their software

system. The approach presents a visualization that a system expert use to gain an overview

of the amount of clone cohesion and coupling in their software system. Using the same

visualization, the system expert can investigate specific code clones to determine if they

are justifiable or not. If they are not justifiable, then the system expert can schedule their

removal as part of future code refactoring activities. The visualization as well permits

the system expert to perform “What-if” analysis to determine the impact of removing

particular clones and to determine the amount of effort needed to remove clones between

subsystems in large software systems.

4.2 Our Approach

The main motivation for our visualization is to assist practitioners in coping with the large

amount of results displayed by clone detection tools. The main purpose of the generated

visualization is to highlight to developers cloning within each subsystem and across sub-



36 Visualizing and Understanding Code Duplication in Large Software Systems

systems. Developers can then investigate whether the cloning is undesirable or not. For

example, if a developer examining our visualization notices that there is a large amount

of cloning between the memory manager and the network drivers in Linux, then he or she

may be alarmed since there is no clear justifiable reason for such cloning to occur. On the

other hand if our visualization highlighted that two similar driver families using the same

hardware chipset have a large amount of common code then the developer may consider

such cloning justifiable. The developer may later consult other senior developers to de-

termine whether such cloning is desirable. In short, our produced visualization highlights

potentially troublesome clones and we permit developers to study them closely instead of

displaying all clones between all code segments in large software systems.

We now detail the main two components of our approach: a clone recovery framework

and clone visualization.

4.2.1 Clone Architecture Recovery Framework

In order to visualize clones we must first recover them by running a clone detection tool.

The results of the clone detection tool are then post-processed in order to remove false

positives. Using the filtered cloning information and the domain knowledge (gathered by

a system expert or through reading system documentation), we can produce our visualiza-

tions.

Figure 4.1 gives an overview of our framework. In order to communicate between the

different tools and steps in our framework we used a set of data schemas. Each step

in our framework expects data in the appropriate schema. The schemas are shown in

Figure 4.2. The schemas are at decreasing level of detail: Clone-Class-Code-Segment

Level, Clone-Class-Subsystem Level, and Super-Clone-Subsystem Level. The steps in our

framework lift the cloning data from Clone-Class-Code-Segment Level schema, to
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Figure 4.1: Our Clone Architecture Recovery Framework.
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Clone-Class-Subsystem Level schema; and then merge clone classes to get Super-

Clone-Subsystem Level cloning relation. We present below the steps in our framework

Source 
Code File

Code 
Segment

Clone 
Class

Clone-Class-Code-Segment Level

Clone 
Pair

Consists Of Clone 
Class

Clone-Class-Subsystem Level Super-Clone-Subsystem Level

               (A)                 (B)                 (C)

Lifted Merged

Consists Of

Consists Of

Contains

Consists Of

Consists Of Consists Of

             Contains
Subsystem Subsystem Subsystem

Super 
Clone
Class

Super 
Clone
Class

Super 
Clone
Class

Figure 4.2: Schemas Used in Our Framework.

Data Pre-Processing The first two steps (Clone Detection, and Clone Data Filtering)

in the framework are the data pre-processing step. We choose CCFinder as our clone

detection tools and set 30 as the minimum number of common tokens to qualify

as clones when comparing two segments of code. Then we use textural filtering to

remove the false clones. Details are presented in Section 2.2.

Figure 4.2(A) shows the Clone-Class-Code-Segment Level schema after the clone

detection and filtering steps. The schema contains four types of entities: source code

segments, files, clone pairs and clone classes. A file contains one or more source

code segments; each clone pair consists of two code segments; and each clone classes

consists of at least one clone pair.
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Clone Relation Lifting At this stage, each clone class contains a set of code segments

from different files. We use two lifting operations here. First, we lift information

to the file level (i.e. we lift our cloning data from Clone-Class-Code-Segment level

to Clone-Class-File level). For example, if clone class A contains lines 110 − 130 in

file1.c, lines 210 − 230 in file2.c and lines 10 − 30 in file3.c, then the lifting will

results in clone class A containing 20 lines of cloned code, which reside in files file1.c,

file2.c, and file3.c, respectively.

Since we plan to visualize relations between subsystems, we need to lift our cloning

data to the Super-Clone-Class-Subsystem level. Several clone classes might contain

the same set of subsystems or some of them might only contain one subsystem as all

the duplicates are within the same subsystems.

To perform the lifting to the subsystem level, we need a mapping from files to sub-

systems. Ideally, such a mapping would be provided by a system expert. However,

if we don’t have an expert, as suggested in [6], we have to create this mapping by

a few heuristics: such as consulting the documentation, grouping files based on di-

rectory structure and naming conventions or manually examining the source code.

Continuing the above example, if file1.c is in subsystem S1, file2.c in subsystem S2,

and file3.c in subsystem S3; then the lifting result will create clone class A which

contains consists of subsystems S1, S2 and S3 which contain 20 duplicated lines,

respectively.

Note that, subsystems can contain smaller subsystems. Therefore, depending on the

level of system abstractions desired, repeated lifting process should be performed,

accordingly. Figure 4.2(B) shows the Clone-Class-Subsystem Level schema after the

lifting step. The data at this level contains two types of entities: clone classes and

subsystems. Each clone classes consists of at least one subsystem.
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Merging of Clone Classes

In this final step, we aggregate the clone classes which contain the same set of subsys-

tem(s) to simplify the cloning relationship. For example, suppose clone classes 128

and 233 both contains subsystems S1, S2 and S3 and no more. We can merge these

two clone classes into one super clone class node. Super clone class nodes are named

after the names of the subsystems in which the super clone classes contain. If they

cross multiple subsystems, then each subsystem is separated by a “#” sign. In the

above example, the super clone class is named as S1#S2#S3 to indicate that they

all exactly contain subsystems S1, S2 and S3. We found that this naming convention

helps easily identify the degree of cloning in a super clone in our visualization instead

of having users follow a large number of edges.

Figure 4.2(C) shows the Super-Clone-Class-Subsystem schema. There are two types

of entities here: Super Clone Classes and subsystems. Each super clone class contains

one or more subsystems.

4.2.2 Clone Cohesion and Coupling (CCC) Graph

The main goal of our Clone Cohesion and Coupling (CCC) graph visualization is to high-

light cloning within each subsystem (cohesion) and across subsystems (coupling). To help

to direct practitioners to the most troublesome spots, we define “cloning hotspots” that

are brightly colored large nodes that would capture the attention of the viewer.

A secondary goal of our visualization is to show how different subsystems are interre-

lated according to cloning. Our cloning visualization shows close together subsystems that

have a large amount of common code due to cloning, and shows far apart subsystems that

have little cloning between each other.
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We now discuss the different entities in our visualization. See Figure 4.4 for an example

of this visualization. The graph consists of two types of entities: nodes and edges. There are

two types of nodes in our graphs: rectangle nodes (subsystems) and diamond nodes (super

clones). An edge between a rectangle and a diamond represents a cloning relationship.

We now explain the semantics of our visualization by showing how we satisfy our

aforementioned goals.

Goal 1: Cohesion, Coupling and Hot Spots

Node Type Width Height

Subsystem (box) Number of Lines Cloned

Within the Subsystems

Number of Clone Classes

Involved Within the Sub-

systems

Super Clone (dia-

mond)

Number of Lines Cloned

With Its Associated Sub-

systems

Number of Clone Classes

Involved With Its Associ-

ated Subsystems

Table 4.2: Description of the Dimensions of Nodes

To highlight cohesion and coupling, we define the dimensions of the nodes represent-

ing them according to Table 4.2. Using these dimensions, large boxes imply that

there is a large amount of cloning within a subsystem (high cohesion) and large dia-

monds indicate that there there is a large amount of cloning across subsystems (high

coupling).

In addition to varying the sizes of the nodes to highlight the amount of cloning, we

vary the color of the nodes. In particular, we vary the color of the diamond nodes
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Figure 4.3: Heat Coloring.

since we believe that cross subsystem coupling (i.e. high coupling) is troublesome

and should be investigated. We consider large diamonds as “cloning hot-spots”. We

“heat color” super clones using a quartile based coloring technique. The color of a

diamond is based on the total number of lines cloned across subsystems in that super

clone node. We choose the total lines of cloned code rather than the total number of

cross family clones since we feel that total lines of cloned code is a better indicator

of how much effort will be required to examine and refactor a particular super clone

node.

The “Heat Coloring” works by calculating the median and the quartiles (the lower

quartile is the 25th percentile and the upper quartile is the 75th percentile), the value

range of the studied metric is divided into four quarters, which are associated with

four different colors respectively. In our case studies, we have chosen red, yellow,

light-green, and light-grey as shown in Figure 4.3.

Goal 2: Overall System Cloning View

In order to demonstrate the interrelations between different subsystems according to

cloning, we apply a force-based graph layout [41] in our visualization to arrange the
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relative position of subsystems. Weights have been exerted to the edges to represent

the number of cloned lines from the subsystems to the super clone nodes. Subsystems

which have more duplications with each other will be placed closer to the super

clone classes; conversely, subsystems which have less cross-family cloning will be

pushed further away from the super clone nodes. Overall, subsystems which have a

large amount of code cloning with other subsystems will be placed closer to these

subsystems than other subsystems.

A Simple Visualization Example

Figure 4.4: An Example of the Clone Cohesion and Coupling (CCC) graph.

Figure 4.4 shows an example visualized using our technique. It consists of three
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subsystems: A, B, and C; and four super clone nodes: A#B#C, A#B, B#C, and

A#C. As indicated by the color: A#C has the biggest cross-subsystem cloning, sub-

systems A and C are pulled towards that super clone. The second largest super clone

node is A#B, followed by A#B#C, and finally B#C. Since B#C is the smallest

clones, subsystems B and C are pushed away from that super clone node. Subsystem

A is taller and wider, since it contains more internal cloning than other subsystems.

All super clone nodes are colored using the heat based coloring techniques.

4.3 Case Study: The Clone Architecture of SCSI Sub-

system

To demonstrate our framework, we present a study of cloning in the code responsible for

SCSI drivers in the Linux kernel. SCSI stands for “Small Computer System Interface”.

We believe studying SCSI drivers is a good case study to demonstrate clone cohesion and

coupling.

Device drivers are programs for interacting with hardware devices. Studies show that

writing device drivers is error-prone and is considered as a major source of errors in oper-

ating systems [10]. Around 30% of the source code files in the Linux Kernel are devoted

for implementing various device drivers. Due to the similarity between hardware devices

in the same family (i.e. from the same vendor or that use the same hardware chipset),

developers are more likely to clone code between drivers in the same family in order to

speed up development and reduce the likelihood of errors. Therefore, we believe that it

is justifiable and probably desirable to have cloning within a driver family. However, it

may not be justifiable nor desirable to have cloning across different driver families; since

drivers from different families resemble little similarities thus these types of cloning might
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be questionable. Developers have to be aware of such cross family cloning and may need to

propagate changes across driver families. Such change propagation are likely to introduce

errors over time as developer forget such unexpected dependencies.

4.3.1 Results of Our Clone Extraction Framework

All code in the SCSI related directories in Linux consists of 858, 727 tokens, 476, 612 lines,

and 381 files. CCFinder (with 30 tokens as the minimum clone size) reported that this

code has 54, 195 clone pairs and 2, 034 clone classes. After filtering the non-function clones,

we have 305 clone classes left. We have 119 clone classes which cross cut two or more

subsystems. We have obtained 33 super clone nodes after the merging process, about 67%

of them cross cut two or three subsystems.

4.3.2 Subsystem Mapping

An important input needed for our framework is the mappings from files to subsystems.

Ideally, a system expert would provide such a mapping. Unfortunately, we don’t have

one. By reading documentation, analyzing source code and examining files, we created a

subsystem mapping. Our subsystem mapping groups files belonging to the same driver

family (similar vendor or similar driver chip in the same family) in the same subsystem.

We now explain how we built our mapping.

There are 425 files that are in the directories that implement the SCSI drivers in the

Linux Kernel version 2.6.16.13. Nevertheless, many of these files do not implement drivers

but rather they are testing or libraries files. For our study we decided to only focus on

files that implement specific SCSI drivers. To uncover such files, we started by parsing the

Makefiles responsible for building the SCSI drivers in the Linux Kernel. We show below

an excerpt of a Makefile for SCSI.



46 Visualizing and Understanding Code Duplication in Large Software Systems

obj−$ (CONFIG SCSI SATA PROMISE) += l i b a t a . o sata promise . o

obj−$ (CONFIG SCSI SATA QSTOR) += l i b a t a . o s a t a q s t o r . o

obj−$ (CONFIG SCSI SATA SIL) += l i b a t a . o s a t a s i l . o

obj−$ (CONFIG SCSI SATA SIL24) += l i b a t a . o s a t a s i l 2 4 . o . . .

obj−$ (CONFIG SCSI IN2000 ) += in2000 . o

In the above example, libata.o corresponds to a library; and files like sata promise.o

and sata sil.o refer to driver files sata promise.c and sata sil.c, respectively. In addition,

sata promise.c and sata sil.c are part of the same family (i.e subsystem). In order to

automate the subsystem mapping process, we followed the following steps:

• Object files (e.g. libata.o) which appear multiple times are considered as library files

and are not considered as driver files. For our analysis all files related to such a

library file are considered to be in the same family (i.e. subsystem).

• Object files (e.g sata promise.o and sata sil.o) which appear once in a Makefile are

considered as driver files.

• If an object file (e.g sata promise.c) appears on the same line as a library file (e.g.

libata.o), then the object file is considered as part of the subsystem called libata.

• If an object file (e.g. in2000.o) appears alone on line without a library file, then we

have to manually examine the file’s comment and reading additional system docu-

mentation to determine if it is a driver or not and which subsystem it should be

mapped to. For example, when we manually examine the in2000.c we find that it

is a device driver for the Always IN2000 ISA SCSI card. In grouping such files (ie.

files with no libraries), we had two options either to group them according to the

vendor or according to their chipset. Each group criteria would result with a different

system decomposition, a system expert may decide one criteria over the other. For

our study we decided to group such files by chipset in order to be consistent with the
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grouping created by the Makefile. The grouping obtained from the Makefile, in the

previous steps, is based on the chipset.

This process has helped us identify 109 drivers and we created 17 driver subsystems

(i.e. families). Our automatic Makefile clustering has helped us cluster 56 drivers. The

remaining drivers are clustered manually.

4.3.3 Clone Cohesion and Coupling (CCC) Graph

Figure 4.5 shows a screenshot of our Clone Cohesion and Coupling graph for the SCSI

driver subsystems. The figure shows a zoomed out view of the visualization. On the right

side of the figure we mark a few noteworthy nodes. The figure is generated using the aiSee

tool [1] which permits us to zoom in and zoom out the diagram. The forced-based graph

layout permits us to see the degree of clone coupling between subsystems. For example,

IOMEGA and FUTUREDOMAIN are more tightly coupled than ATA and NCR53C9x.

In our study we focus on the hot spots (large red diamond nodes and large boxes). Our

visualization indicates that there is a large amount of cloning within the ATA and IOMEGA

subsystems (i.e. both subsystems have high clone cohesion). We also investigated two of

the largest diamond nodes since they indicate high coupling between subsystems).

ADAPTEC#IOMEGA is one of the biggest super clone nodes (Number 5 in Fig-

ure 4.5). It contains 864 lines of cloned code and has 5 driver files across two subsystems

(ADAPTEC and IOEMA). By manually examining source code, we discover that this

super clone node is superfluous. The clones are code segments that contain case switch

statements. It is a false clone produced by CCFinder. CCFinder tokenizes the source code

and recognizes the similar code structures.

ULTRASTOR#EATA is another big super clone node (Number 1 in Figure 4.5). A

closer analysis of this super clone node reveals that it contains 14 clone classes and all the
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Super Clones:
  1. ULTRASTOR#EATA
  2. ULTRASTOR#EATA#RAID
  3. ADAPTEC#NCR580
  4. ADAPTEC#NCR580#TEKRAM
  5. ADAPTEC#IOMEGA

Subsystems (Driver Family):
  6. ATA
  7. NCR53C9x
  8. NCR5380
  9. FUTUREDOMAIN
 10. IOMEGA
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Figure 4.5: Annotated Screenshots of the CCC graph for the Linux SCSI drivers.
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cloning occurs between only two files: eata.c from the EATA family and u14−34f.c from the

ULTRASTOR family. They are neither from the same vendor nor do they have a common

hardware chipset. eata.c is the Low-level driver for EATA/DMA SCSI host adapters and

u14− 34f.c is the Low-level driver for UltraStor 14F/34F SCSI host adapters. We decided

to explore the reason behind such large degree of coupling between both subsystems (in

particular both files). We manually inspected the change logs for both files. The change

logs indicate that changes to both files are almost identical and that changes occur almost

at the same date throughout the lifetime of both files. Moreover, we discovered that

the copyright for both files is attributed to the same person. We suspect that the same

developer has cloned one of the files as part of knowledge transfer from one driver to the

other. As development progresses, the clones have been maintained synchronously.

The visualization has been able to highlight the most noteworthy clones across subsys-

tems and within subsystems. Using the visualization we are able to quickly locate these

noteworthy and investigate them instead of investigating a large number of clone pairs in

an ad-hoc manner.

4.4 Usage Guideline

We summarize the steps for using our visualization. Researchers can follow this guidelines

to process, visualize and analyze cloning for other software systems.

Overall Process: Take the above case study for example. Inside Linux scsi subsys-

tem, cloning can occur among drivers which share same hardware platform, or from

the same manufacture, etc. Therefore, there can be different criteria to group files

into subsystems. So, it is recommended to produce several CCC graphs using dif-

ferent subsystem decomposition and cross-examine the interesting spot. A thorough
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empirical clone study on SCSI drivers should examine the subsystem level cloning

according to different subsystem decomposition. For example, driver files can be

grouped by parsing the Makefiles (check Section 4.3.2) or by file name similarity

(such as “sun3 NCR5380.c” and “atari NCR5380.c” are similar) or by the length of

file sizes (files with similar sizes are grouped together), etc.

Using each subsystem grouping, a CCC graph is generated and analyzed. The aim is

to investigate places where it has heavy cloning. For example, we need to investigate

subsystems which have heavy internal cloning to see whether it is justifiable as well

as examining big super clones to see whether it is desirable.

Data Processing: Lifting refers to the process of aggregating the cloning data from

the file level to the subsystem level. Lifting process is repeated until it reaches to the

level of system abstractions desired. The lifting process can be stopped at the lowest

subsystem level or be performed all the way up to the top level subsystems or to any

intermediate levels in between.

Once lifting is done, merging combines the clone classes into one bigger clone classes.

Note that, merging is invoked only if clone classes contains exactly the same set of

subsystems.

Graph Analysis: We now describe a few issues that require attention for:

Thin Rectangle Nodes are subsystems that contain a lot of duplicated code

segments but each clone is relatively small. This type of nodes is worth inves-

tigating since it could possibly be a cross-cutting concern or just repeated code

idioms.

Flat Rectangle Nodes are subsystems that contains very few cloned segments
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but a lot of code gets duplicated. This could possibly be a copy of entire source

code file.

Red Diamond Nodes are a group of clone classes which have the largest number

of cross-subsystem cloning. We need to further investigate why these subsystems

are tightly coupled.

Diamond Nodes with Several “#”: we name the merged clone class as the

names of the clone classes to be merged separated by “#”s. For example, if we

merge clone class 1 and 2, the super clone class is 1#2. If a super clone class

has several “#”s, this means that clones are cross-cut across many subsystems.

We need to further investigate the reason behind this cloning. Is it due to our

system decomposition, these files should be grouped into one subsystem? Or is

it a coding idiom? Or is it something else?

In addition, researchers need to consult other references, such as documentation, the

source code itself, static dependencies, etc., to uncover the original rationale behind cloning.

4.5 Conclusion

The chapter proposes Clone Cohesion and Coupling (CCC) graph, which visualizes code

cloning at the subsystem level. The graph shows the amount of internal cloning and

external cloning in each subsystem. In particular, the force-based graph layout and heat

colouring of the super clone class nodes highlights the surprising cloning relations among

subsystems.



Chapter 5

Clone System Hierarchical(CSH)

Graph

In this chapter we propose Clone System Hierarchical (CSH) graph, which visualizes

cloning data in a directory tree.

The goal of this thesis is to develop tools and techniques to assist researcher to better

analyze code cloning in large software systems. A major obstacle researchers face is how

to handle large volume of cloning data. Chapter 4 presents Clone Cohesion and Cou-

pling(CCC) Graph, which displays the cloning information at subsystem level. It provides

users with an overview of the amount of internal and external cloning of the subsystems.

Unfortunately, the CCC graph lacks of cloning details; as it only displays cloning informa-

tion for one level of subsystems. It is unclear whether heavy cloning between two subsystem

is due to a small number of files or a large number of files. We need a visualization tool

which shows the details of the code duplication and preferably highlights the spread of the

cloning.

Knowing the spread of cloning at the file level is important because the more spread

52
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clones are, the more effort is required to modify the code base such as propagating bug

fixes selectively to clone instances or to perform re-engineering tasks such as refactoring

common code to eliminate clones. For example, “drivers/net/3c501.c” in Linux Kernel

version 1.0 has 11 files that have cloning relationships. It is relatively harder to maintain

than “drivers/FPU-emu/reg add sub.c”, which has code duplications with only 1 file.

Knowing the spread of cloning at the subsystem level is useful, since it helps to have a

deeper understanding of the design of the systems because it can uncover certain functional

relations or cloning patterns which are usually not documented. If we examine the cloning

of file system (fs) inside Linux Kernel, subsystems like “fs/ext2”, “fs/minix” have a lot

of external cloning with each other but little internal cloning. This is a sign of potential

“forking” pattern [11].

This chapter introduces Clone System Hierarchical (CSH) Graph which embeds the

cloning information in the directory tree. Although the cloning information can be em-

bedded into other backbone structures like subsystem decompositions, we feel directory-

structure tree is the most suitable framework for several reasons. Our visualization is used

to study the cloning phenomenon and developers are more comfortable working with di-

rectories. They navigate through directories and copy-paste code between files. Therefore,

it is more natural to conduct the cloning study within the directory trees. Our CSH graph

provides the details of copying at different levels of system abstractions. Researchers can

easily spot the amount of internal cloning and external cloning for each file and subsys-

tem. In addition, the CSH graph highlights the cloning relation for individual files and

subsystems, through mouse pointing and clicking.

The rest of this chapter is organized as follows: Section 5.1 explains the steps to lift

the cloning data to the system hierarchical level. Section 5.2 presents the Clone System

Hierarchy (CSH) graph. Section 5.3 provides some discussions with our visualization and
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presents some future work. Finally, Section 5.4 presents a short guideline for researchers

who are interested in using our visualization.

5.1 Clone System Hierarchy Extraction Framework

Before we can visualize cloning relationship at the subsystem level, we need to abstract

cloning data to the system level. Figure 5.1 illustrates the process. In order to communicate

among different tools and steps in our framework, we use a set of data schemas. Each step

in our framework expects data in the appropriate schema. The schemas are shown in

Figure 5.2. The schemas are at two level of abstractions: Clone-Class-Code-Segment Level

and Clone-Class-File-Subsystem Level. Our framework first lifts the cloning data from

Clone-Class-Code-Segment Level schema, and aggregates the cloning information

from lower subsystems to Clone-Class-Subsystem Level schema. We present below

the different steps in our framework.

Data Pre-Processing

Similar as the Clone Recovery Framework described in Section 4.2.1, the first two steps

in the framework are the data pre-processing step. We choose CCFinder as our clone

detection tools and set 30 as the minimum number of common tokens to qualify as clones

when comparing two segments of code. Then we use textural filtering to remove false

clones. Details are presented in Section 4.2.1

Figure 5.2(A) shows the Clone-Class-Code-Segment Level schema after the clone de-

tection and filtering steps. The data contains four types of entities: source code segments,

files, clone pairs and clone classes. A file contains one or more source code segments; each

clone pair consists of two code segments; and each clone classes consists of at least one
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Figure 5.1: Our Clone System Hierarchy Extraction Framework.
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Figure 5.2: Schemas Used in Our Framework.
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clone pair.

Clone Relation Lifting and Aggregating

Now each clone class contains cloning relations among code segments from different files.

The lifting operation is also the same as the lifting processes in Section 4.2.1. We first

lift the cloning information from code segment level to file level, the from file level to

lower level subsystem level, followed by lifting from lower level subsystem level to higher

subsystem level until all the way up to the top level subsystems. The only difference is

that, in Clone Recovery Framework the information before lifting is discarded whereas the

cloning information from the lower level entities (files, subsystems) are preserved. (In this

and the following chapters, we consider directory structure as the software architecture

decomposition. We use the term directory and subsystem interchangeably. Note that, for

other software architecture decompositions, we can use similar technique to lift the cloning

data and visualize it in the graph.) This processed in illustrated an an example shown in

Figures 1.6 and 1.7.

5.2 Clone System Hierarchical (CSH) Graph

The main goal of our visualization is to show the spread of cloning at different levels of

granularity: from top level directories to the lower level directories and lastly to the file

level.

As shown in Figure 5.3, our tool consists of 4 components: Node Name, Clone System

Hierarchical Tree, Selection Menu, and Clone Information Panel. Node Name shows the

name of the node currently examining. Clone System Hierarchical Tree is an interactive

graph that allows the user to point and click nodes to highlight the spread out of the
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Figure 5.3: Annotated Screenshots of the CSH Graph for Linux Kernel 1.0.

cloning within the directory tree structure. Selection Menu allows you to select either a file

or a directory to highlight the cloning information on the Clone System Hierarchical Tree.

Finally, Clone Information Panel displays the cloning instances which have duplications

with the currently selected node.

Our visualization can be further divided into three sub-views: Static View, Interactive

View, and Animation View. We now demonstrate the usage of these three sub-views by

analyzing the cloning of Linux Kernel version 1.0 as a case study.

5.2.1 Sub-View 1: Static View

When we initially launch our visualization, it looks as shown in Figure 5.4: Node Name

section is blank, as no node is selected; all the nodes in Clone System Hierarchical Tree

remains as pink and edges as black. Clone System Hierarchical Tree is laid out as the
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1. Choose A Node:
Linux-1.0/

2. Cloning Buddies
File: linux-1.0/

Figure 5.4: Screenshots of Static View of CSH Graph for Linux Kernel 1.0.

directory structure of Linux Kernel version 1.0. There are two types of entities: nodes

and edges. The nodes represent either files (for the bottom level nodes) or directories (for

the rest of other nodes). Edges indicates the containment relationship. What is more, for

siblings directories (directories under the same parent directory), it is sorted by its number

of children. The more number of children that directory contains, the farther left it will

be placed.

This gives an overview of the amount of internal and external cloning of different levels

of directories as indicated by the size of nodes and the thickness of the edges. The width of

the directory nodes shows the number of duplicated lines; whereas the height is proportional

to the number of internal cloning classes. Flat node implies that the subsystem contains

very few clone classes but these clone classes contain a large amount of duplicated code.

Thin node indicates that the subsystems contains a lot of small clone code fragments.

Thickness of the edges shows the degree of external cloning from that node. The thicker
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the edges, the larger the amount of external cloning from that node. At the top level

directory, as implied from the size of the nodes: “fs” has more internal cloning than

“drivers” and “net”. Within “fs”, directories like “ext2”, “minix2”, “ext”, “xiafs”, and

“sysv” have a lot of external cloning as indicated by the thickness of the edges. We decide

to use the same size for the file nodes mainly for scalability concerns: if we embedded the

cloning information into the dimension of the file nodes it would be too big to fit them in

the screen; as there are too many files.

In addition, the CSH graph also provides us with a rough idea of the degree of code du-

plication within each directory. For example, “drivers/scsi”(the SCSI device drivers) is the

left-most directory among directories within “drivers”(all the device drivers). This implies

that “scsi” contains the largest number of files among its siblings directories. However,

it contains less cloning than “drivers/net”(network device drivers); since it is shown as a

smaller node and the thickness of outgoing edge does not differ too much.

5.2.2 Sub-View 2: Pointing and Clicking View

We got an overview of the cloning situation. Our second sub-view: Pointing and Clicking

View can help user to explore and investigate the cloning instances for certain directory

or file. There are three modes to query the cloning information for certain nodes. Each

approach is used at different occasions.

• Pointing

Table 5.2.2 summarizes the actions and changed entities at the pointing mode. There

are two actions associated with this mode: mouse over a node and mouse away from

that node.

When the user moves the mouse over a certain node, there is a couple of noticeable
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Action Entities Effect

Mouse Over A Node

the pointed node green/blue

path from the pointed node

up to the root

green

clone instance nodes red

path from the pointed node

up to the root

green

path from clone instance

nodes up to the root

red

Node Name area name of the pointed node

Selection Menu name of the pointed node

Clone Information Panel names of the clone in-

stances

Mouse Away

previously pointed node pink

path from previously

pointed node up to the root

black

clone instance nodes pink

path from previously

pointed node up to the root

black

path from clone instance

nodes up to the root

black

Node Name area blank

Selection Menu name of the previously

pointed node

Clone Information Panel blank

Table 5.1: The Actions and Effects for the Pointing Mode
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1. Choose A Node:
Linux-1.0/fs/sysv

2. Cloning Buddies
File: linux-1.0/fs/sysv
buddies: 

linux-1.0/fs/ext
linux-1.0/fs/nfs
linux-1.0/fs/xiafs
linux-1.0/fs/msdos
linux-1.0/fs/ext2
linux-1.0/fs/minix
linux-1.0/fs/isofs

Figure 5.5: Pointing and Clicking View of CSH Graph for Linux Kernel 1.0.

changes. First the node name will appear in the Node Name section; as well as

in the Selection Menu section. Furthermore, the colour of the node as well as the

colour of certain edges will change. The pointed node will turn green if it has cloning

instances; and blue if it does not. The cloning instances for the pointed node will be

coloured in red. In addition, the path coming from the currently pointed node up

to the root directory will be highlighted in green. Meanwhile, the path coming from

its cloning instances up to the root directory will be highlighted in red. Finally, the

Clone Information Panel will display the name of the currently selected node as well

as names of all the associated cloning instances.

Figure 5.5 shows how the graph appears like when the user moves the mouse to the

node “fs/sysv”: the node name is shown in the upper left corner; the pink node

“fs/sysv” turns into green; all its cloning instances are highlighted in red; the path
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from “fs/sysv” to the root is colored in green and red for the paths from its cloning

instances to the root(notices the red path from “fs” gets covered by the green path

as the query node and its cloning instance share the same path segment from “fs”

up to the root node); the name is displayed in the selection menu; and finally the

Clone Information Panel displays the corresponding information: all the cloning of

“fs/sysv” happens within “fs”; there is no external cloning which involves subsystems

outside of “fs”.

When we move the mouse away from that node; it will undo all the visual changes

mentioned above, and revert it back to the Static View. Consequently, if you move

the mouse back to this node or some other node; all the four components will change

accordingly. For example, if this time we place our nodes on “drivers/net”. As

shown in Figure 5.6, all the changes associated with cloning of “fs/sysv” are undone

and the graph is adjusted accordingly. Notice that there is no external cloning for

“drivers/net” thus the node is coloured in blue as well as there is only one path

(coloured in green) going from the node up to the root. Consequently, there is no

cloning instances displayed in the Clone Information Panel.

• Clicking “Pointing” action is useful when developers trying to quickly explore the

directory tree and looking for interesting scenario to examine. Once they have found

the interesting node they want to “pause” the graph to further investigate the high-

lighted information. This calls for the “clicking” action.

Table 5.2.2 shows the actions and effects for the clicking mode. The effect of “Click-

ing” mode is similar as the “pointing” mode except once clicked all the cloning

information stay the same independent of the mouse movement. When you mouse

over a different node; the only change is that the Node Name area will display the
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Action Entities Effect

Clicking A Node

the clicked node green/blue

path from the clicked node

up to the root

green

clone instance nodes red

path from the clicked node

up to the root

green

path from clone instance

nodes up to the root

red

Node Name area name of the clicked node

Selection Menu name of the clicked node

Clone Information Panel the clone instances

Mouse Over A Node 1 Node Name area name of the pointed node

Unclicking The Node

previously clicked node pink

path from previously clicked

node up to the root

black

clone instance nodes pink

path from previously clicked

node up to the root

black

path from clone instance

nodes up to the root

black

Node Name area blank

Selection Menu previously clicked node

Clone Information Panel blank

Table 5.2: The Actions and Effects for the Clicking Mode
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1. Choose A Node:
Linux-1.0/drivers/net

2. Cloning Buddies
File: linux-1.0/drivers/net

Figure 5.6: Another Pointing and Clicking View of CSH Graph for Linux Kernel 1.0.

name of the currently pointed node. Clicking the same node for the second time

revert the graph back to Static View. In fact, there is another possible action in

this mode: clicking another node when there is one node currently has been clicked.

The action is equivalent of unclicking the previously clicked node and click the newly

selected node.

• Selecting “Pointing” and “clicking” on the graph is useful, since it allows users to

navigate and query the cloning information interactively. However, certain nodes

(like file nodes) are too small for mouse to be properly positioned at or nodes can be

too close together to have the mouse properly pointing to the correct node.

To solve this problem, the drop-down list from the Selection Menu can be used

to locate node. Once we select an item from the drop-down menu, all the same

visual changes described above will appear, except the current selected item will be
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highlighted in the Selection Menu. It is equivalent to “clicking” one node on the

Clone System Hierarchical Tree.

This sub-view enables a user to pick a node and understand how spread the cloning is

compared to its siblings. For example, even through “fs/minix” has bigger external cloning

as the edge from “fs/minix” to “fs” are thicker; “fs/iosfs” has 9 cloning instances whereas

“fs/mininx” has 7 cloning instances.

5.2.3 Sub-View 3: Animation View

The bonus feature in our visualization is that it helps users to find cloning patterns and

anti-patterns among files within the same directory. Once we have selected an item from

the Selection Menu; it is highlighted. Then if we move the up and down arrow keys,

the graphs will animate the changes accordingly. Since files are grouped under the same

directory; it enables us to spot patterns and anomies by using the arrow keys.

As we navigate through files in the “fs” directory, we notice that all the cloning happens

among one or two files inside the sibling directories as shown in the upper half in Figure 5.7.

“fs” is the file system subsystem in Linux kernel. It contains a number of subsystems

which are different types of subsystems like minix (“fs/minix”) or ext2 (“fs/ext2”) or nfs

(“fs/nfs”). This is the “template” pattern in [11]. Inside each individual file systems,

there is a set of structs which contains function pointers for each specific operations. For

example, file.c is contained in all the file systems. It contains definitions for structs like

“inode operations”, or ““file operations”. “inode operations” is an interface for the inode

related operations. It contains function pointers for creating and removing directories,

etc. “file operations” is an interface for the file related operations. It contains function

pointers for reading and writing to a file, etc. To implement each file systems, developers

need to implement specific purpose functions like reading and writing to file, creating and
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Pattern
1. Choose A Node:
linux-1.0/fs/nfs/dir.c

2. Cloning Buddies
File: linux-1.0/fs/nfs/dir.c
buddies: 

linux-1.0/fs/ext2/inode.c
linux-1.0/fs/ext/namei.c
linux-1.0/fs/xiafs/namei.c
linux-1.0/fs/ext/inode.c
linux-1.0/fs/minix/inode.c
linux-1.0/fs/sysv/inode.c
linux-1.0/fs/sysv/namei.c
linux-1.0/fs/minix/namei.c
linux-1.0/fs/ext2/namei.c
linux-1.0/fs/isofs/inode.c
linux-1.0/fs/xiafs/inode.c

Pattern

1. Choose A Node:
linux-1.0/fs/nfs/mmap.c

2. Cloning Buddies
File: linux-1.0/fs/nfs/mmap.c
buddies: 

linux-1.0/mm/mmap.c
linux-1.0/mm/memory.c

Anti-Pattern

Figure 5.7: Animation View of CSH Graph for Linux Kernel 1.0.
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removing a file; then set the appropriate function points to these functions in the struct.

Thus, “file.c” in one file system is similar to “file.c” in other file systems.

However, the pattern does not apply to “fs/nfs/mmap.c”. As it does not have any

cloning instances from files within the “fs” directory. Furthermore, as displayed in the

lower half of Figure 5.7, it shares common code with files from the top level “mm”(memory

management) directory! It is a bit surprising since not all file systems contains file mmap.c.

The source code comments of this file states that code is borrowed from “mm/mmap.c”

and “mm/memory.c”; which explains the cloning relations.

5.3 Discussion and Future Work

Comparison with CCC Graph: The CSH graph embeds the cloning information

within a directory tree. The dimension of the nodes implies clone cohesion and

the thickness of the edges implies clone coupling. Rather than showing the cloning

information just at one level of system hierarchy as in the CCC graph, the CSH

graph contains cloning relations at different levels of abstractions: from file level up

to the top level directories. Its adaptive feature allows users to pick an individual

node and highlights the spread out of the cloning. However, one disadvantage for

the CSH graph is that the notion of coupling is not as well indicated as in the CCC

graph, as we do not know the strength of coupling among various subsystems.

Layout: Over-plotting is the problem when there are too many nodes and edges trying to

fit into limited screen space. An over-plotted graph is hard for human to comprehend.

The CSH graph uses the directory structure as the back-bone to display cloning

information. When system contains too many files and the directory structure is

shallow; our visualization will run into the risk of over-plotting. In the future, we are
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going to experiment other layout algorithms, such as the radial layout.

Pruning: As mentioned above, our visualization can run into the risk of over-plotting

when the directory structure is shallow and there are a lot of files contained in the

system. Our approach to solve this problem is to use filtering to remove uninteresting

or redundant information. There are two types of filtering we can use: level filtering

and subsystem filtering.

Level pruning means removing all the nodes and edges if they are below the threshold

value. For example, if the directory tree is 6 levels deep and we set threshold of level

filtering to be 3, then all the nodes and edges that are at levels 4, 5 and 6 are filtered.

This is effective; since the deeper into tree, the more nodes we have. Obviously, the

file level, which is at the lowest level of the trees, contains the largest number of

nodes. We apply level filtering when we are interested to examine cloning relations

among subsystems.

Subsystem pruning means removing all the cloning information which is unrelated to

one specified subsystem. Take Linux Kernel for example. If set subsystem filtering to

be “fs”(file system), then all the cloning relations not related to “fs” will be removed

from the data set. We apply subsystem filtering when we want to closely examine

the cloning details for one subsystem.

Other Applications: Depending on the information embedded, this graph can be used

for other purposes as well. For example, we can display the dependency graph or the

co-change graph using the same visualization technique.
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5.4 Usage Guideline

We summarize the steps for using our visualization. Researchers can follow this guideline

to process, visualize and analyze cloning for other software systems.

Overall: The CSH graph shows the details of cloning at every level of system abstraction

as well as highlighting the spread of cloning for each individual file and directory.

Data Processing: When we lifting the clone classes, if it is an internal clone class at

the lower level; upon lifting it will still be an internal clone class. For external cloning

classes, if all the entities in the set are under the same parent directory; then it will

become an internal cloning class after lifting. Otherwise, it is an external cloning

class.

Graph Analysis: We summarize the different functions of each sub-view and discuss

a few aspects in the graph that require attention:

Static View is the view when the graph initialized. We get an overview of how

deep the directory structure is, how many entities are actually contained in this

graph.

Pointing and Clicking View enables user to highlight cloning relations for

individual nodes. We need to pay special attentions to the following nodes:

wider nodes since they contain some big internal clone class; thinner nodes

since they contain many small internal clone classes; nodes which have thicker

edges coming out can be alarming as well, since it contains large number of

external cloning.

Animation View allows us to quickly spot the cloning patterns and anomalies

by using the drop down selection menu.
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In addition, researchers need to consult other references, such as documentations, the

source code itself, and static dependencies, etc., to uncover the rationale behind cloning.

5.5 Conclusion

This chapter proposes Clone System Hierarchical (CSH) graph, which lays out code cloning

information in a directory tree. It shows code cloning relations at different system abstrac-

tion level varying from the file level, lower-level-subsystem level, and all the way up to the

top-level-subsystem level. In addition, it highlights individual cloning relations for each

files or subsystems by mouse movements.



Chapter 6

Clone System Evolution (CSE)

Graph

This chapter proposes visualization techniques to help researchers to study software evo-

lution. The visualization techniques are ULOC plot, which examines the evolution of

unique features and Clone System Evolution (CSE) graph, which highlights changes in

code cloning over time.

To fully understand code cloning, researchers want to see how current cloning situations

are and why clones evolve to this stage. The previous two views (Clone Cohesion and

Coupling (CCC) graph and Clone System Hierarchical (CSH) graph) focus on visualizing

clones for single software release. We consider them to be snapshot views. They are

important since we need to know the severity of code duplication of current software

system.

To answer why the system ends up with such cloning situation, we need to study how

clones evolve over time, especially the cases when there are lots of clones gets added or

removed. For example, if many clones are added over a short period of time; then we may

72
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wish to investigate the effects on code quality. If many clones are removed, then we need

to be careful since there might be a major refactoring occurred and the interface or system

documentation need to be updated accordingly.

This chapter is organized as follows: Section 6.1 motivates the clone evolution study by

showing the evolution of system growth with or without cloning. Section 6.2 explains our

visualization technique, which highlights the clone changes over time. Section 6.2.4 presents

some discussion about the clone evolution. Finally, section 6.3 gives a short guideline for

researchers who are interested in using our visualization.

6.1 Software Evolution

Software systems evolve over time to accommodate changes such as introduction to new

features, modifications for bug fixes and support for additional platforms, etc.

There are two schools of thoughts about the software development models: the tradi-

tional in-house commercial software development and the open source development model.

It happens that the in-house commercial software development has longer release cycles.

For example Microsoft releases new version of Windows every two or three years. In

addition, they impose tighter coding guidelines. For example, companies like IBM require

developers to prefix their variable names with the module names; some companies even

require strict code ownership: developers need to ask for permission if they want to modify

certain parts of the code which are not owned by them. Furthermore, they incorporate

strict quality assurance procedures before they release their product. Finishing products

are evaluated on a number of aspects such as peer code review, functionality testing,

regression testing, etc.

On the other hand, open source development often seems to takes an opposite approach:
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as most of the developers are volunteer based; it has a less strict release schedule since it

would be hard to force volunteer to work hard to meet up the deadlines. Furthermore,

since developers contribute to the project according to their interest; it would be hard to

incorporate the idea of code ownership. What is more, because such projects are volunteer

based, imposing a strict code guidelines would drive away potential contributors. Finally,

since most of the open source developers are also its users; the software incorporates lazy

testing. Lazy testing means software is released without doing any rigorous testing and it

relies on user feedback to report bug. The philosophy behind is called “Linus’s Law” [37]:

“Given enough eyeballs, all bugs are shallow.” User feedbacks should catch most of the

software defects.

Research shows the growth rate for these two development models follows different

models. Lehman et al. [29] devised a set of laws about software evolution based on his

studies on several large E-type legacy software systems, which adopt the in-house commer-

cial software development model. Subsequently, Godfrey et al. [31] studied the evolution

of open source software and discovered that the growth rate does not follows these Laws.

They picked the Linux kernel as their case study and found out that the project grows at

the super-linear rate. Their further analysis shown that one of the subsystems “drivers”

grows at a much faster rate than the rest of subsystems, which is the main reason Linux

follows a much faster growth rate. Robles et al. [19] performed similar case studies on

Linux and a number of other open source software systems. Their results also confirmed

with Godfrey et al.’s findings that the growth of open source software systems do not

follow Lehman’s Law of Software Evolution, which are derived from studies of traditional

commercial software systems. In addition, as pointed in the subsequent work [18], Godfrey

et. al. discovered that “drivers” subsystems have exhibit a large degree of code duplica-

tion. Their findings are: drivers tend to be stand-alone and implement a uniform interface.
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What is more, lots of code copying occur among drivers which come from same hardware

vendors, or interact with same hardware chips or even drivers written by the same devel-

opers, etc. We expect much less cloning happening among commercial software; as they

require a tighter code reviewing policy. So it is quite natural to ask the following question,

how about we perform a control experiment: what is the growth rate of Linux excluding

the cloning factor?

Most of the recent software evolution research papers, such as [31, 19] use SLOC as

the main metric to measure the growth and the complexity of the software systems. In our

study, we introduce the concept of ULOC. ULOC, which measures the number of unique

lines, is different from SLOC, which measures the number source code lines. For example,

if we have two pieces of code segments, which are duplicates of each other; in SLOC we

are going to count both of them whereas in ULOC we are going to count only one of them.

The rest of this section is organized as follows, we are going to first explain our method-

ology and then present a small case study of Linux kernel.

6.1.1 Our Methodology

As the name of ULOC suggests, it is “unique lines of source code”. The idea is simple:

we reduce total lines of source code(SLOC ) by the amount of duplication. It takes two

steps to find the amount of duplicated code: clone data collection, and code duplication

aggregation.

• Calculation of SLOC: In our study, we use a perl script and unix command “wc

-l” to calculate SLOC. There are two main reasons not to choose existing tools like

“sloccount” [40]:

First, this study is intended to compare our findings with existing research, especially
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with [31]; so it would be easier to adopt the similar metrics and similar measurement

methods.

Second, as most of the clone detection tools report code duplications using line inter-

vals, we choose the lines of codes with comments to be consistent with the output of

the clone detection tools. These intervals contain source code as well as blank lines

and comments. The perl script we write, recursively searches for the source code files

(.c or .h files); invokes “wc -l” on them and aggregates the results.

• Clone Data Collection: Clone data collection step requires clone detection and

then clone filtering. We choose CCFinder as our clone detection tool and textual

filtering as our filtering technique. The details are described in Section 2.2.

• Code Duplication Aggregation: The next step is to calculate the amount of

duplication. Note that we do want to keep one copy of duplicates. We achieve these

by extracting the information of clone classes. For tools which only outputs clone

pairs, we can form clone classes from the set closure property: as any two elements

in the clone class forms a clone pair. For example, as shown in Figure 1.1, although

(A), (B), and (C) are duplicates of each other and they form a clone class. Then

to obtain the amount of duplicated code, we just need to add up all the duplicated

lines but one. In the above example, we need to pick any two code segments from

(A), (B), and (C) in our calculations. Since each of them have 10 lines duplicated

with each other, thus would be 20 lines counted as duplicated lines.

6.1.2 Examining the Evolution of Linux using ULOC

Previously there have been two parallel releases for the Linux kernel: the stable releases

and the development releases. Stable releases contains relatively less bugs and is preferred
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to use for production; whereas development releases contains more features and are mainly

used for testing purposes.

The format of the release number usually looks like A.B.C. Stable releases use even

numbers for the middle digit(B), whereas development releases use odd numbers for the

middle digit. Prior to version 2.6, there have been five series of stable releases (1.0.x, 1.2.x,

2.0.x, 2.2.x, 2.4.x) and five series of development releases (1.1.x, 1.3.x, 2.1.x, 2.3.x, 2.5.x).

After that, there are no such distinctions; as everything goes under 2.6 series. Since new

features and bug fixes are going under the same series, the conversion of version numbering

also changes. The usual format for 2.6 series is 2.6.C.D. As the fourth digit(D) is used for

minor revision changes such as bug fixes.

SLOC/ULOC
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Figure 6.1: SLOC and ULOC plots for Linux stable releases

A plot of SLOC on software releases over time shows the growth rate of the system,
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whereas a plot of ULOC shows the growth rate for essential features. We conduct our

analysis on 9 stable versions of Linux, raging from Linux-1.0 (released on March 1994) to

Linux-2.6.16.13 (released on May 2006). We plot both the SLOC and ULOC graph for

these 9 releases.

Figure 6.1 shows the growth rate of Linux software systems as a whole. The horizontal

axis shows the release date for each point and the vertical axis shows the total lines of

code. Everything relates to SLOC is coloured in dark blue and yellow for stuff associated

with ULOC. SLOC follows the super-linear growth; as shown in the graph with the dark

blue dotted line, it best fitted with a polynomial with degree 2. The ULOC follows a much

slower rate, it can be nicely fitted with both a linear growth rate, as shown in red dotted

line. Therefore, we have shown that the growth rate of “essential features” follows the

linear rate, slower than the overall growth rate which is the super-linear growth rate.

We dig deeper into the top level directory to investigate the variation between SLOC

and ULOC. Figure 6.2 shows the growth rate of six of the biggest top level directories

in Linux kernel. As we can see, “drivers” subsystem(in both SLOC and ULOC graph)

dominates the growth. Despite the fact of subtraction from cloning, the size of driver

code still grows much faster than cloning as indicated by the slop of two adjacent points.

Therefore, we conclude that, using our newly introduced metric ULOC, we still end up

with the same findings:

• Lehman’s Law states that as software becomes more complex the growth of the

system would slow down since it is harder to add in new features. However, Linux

grows faster than Lehman’s Law of Software Evolution has predicted.

• “drivers” subsystem suffers from heavy cloning. If we remove the duplicated code

from “drivers” subsystem, it is still the fastest growing subsystems among all Linux
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Figure 6.2: SLOC and ULOC plots for top level directories Linux stable releases
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kernel subsystems. The fast growth rate of “drivers” subsystem is main reason caus-

ing the rapid growth rate of Linux compared to traditional in-house software systems.

6.1.3 An Alternative
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Figure 6.3: Plot of Compressed tar.gz File sizes for Linux stable releases.

Because of the enormous size of Linux, it is normally distributed in compressed form.

Most of the compression algorithm reduce file sizes by looking for common patterns among
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files, such as longest common sequence, etc. This idea is somewhat similar as our idea

of ULOC. Therefore, we try to examine the growth rate of compressed tar file size(tar.gz

files). However, this is one little problem: as the available compressed tar files includes

all kinds of files for the Linux kernel, varying from documentation files, source code files,

build configuration files, etc; whereas all of the above experiments have been conducted

on source code files only. So we write a perl script that for each release it groups all the

source code files (.c and .h files) into a tar file and compress the tar file into the gzip file.

Figure 6.3 plots both the original tar.gz files which have everything (shown in pink) and

the tar.gz files which only compress .c and .h files (shown in dark blue). As we can see the

gaps between pink points and dark blue points becomes bigger and bigger indicates more

non-source code files gets added as Linux evolves also these files probably resemble little

similarity thus it becomes harder to compress as the size of the gaps increases over time.

In addition, the growth rate of the compressed source code files can be fitted nicely

with a linear model shown in dark blue. This coincides with our ULOC case study.

6.1.4 Discussion

Motivation for Clone System Evolution Study: We have shown the difference

in system growth rate with(SLOC plot) and without(ULOC plot) account for code

cloning. Code clones are growing at a noticeable rate as the system evolves with

introduction to new features and modifications for bug fixes. Therefore, to fully

uncover the myth of how software systems evolve; it is necessary to study changes in

clones over time.

ULOC as a better metric: SLOC has long been used as an indication of complexity

of the software systems and used for estimating development costs [12]. However, it
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is oblivious that the effort to write 100 lines from scratch is different from copying

100 lines and modify based on it. What is more, the cognitive efforts required to

understand two cloning instances is not the same as the time require to decipher two

pieces of code which are totally unrelated. Therefore, we argue ULOC is a better

metric to measure the complexity of the system and to estimate the development

cost.

How To Estimate ULOC: Even though CCFinder is relatively faster than other clone

detection tools, it is still time-consuming to do clone detection on a large software

system. For example, it takes more than 6 hours on a Windows Desktop machine

for CCFinder to do clone detection on one release of 2.6x series. On the other

hand, compressing source code files is much faster. It takes normally minutes to

compress the entire source code directory. In our Linux kernel study, the growth rate

of compressed tar file size coincides with the growth rate of ULOC. In the future, we

are going to verify the co-relation between the size of compressed achieve file sizes

with ULOC on other software systems. If such co-relation exists, we can use the size

of the compression file to predict the growth rate to ULOC.

6.2 Clone System Evolutionary (CSE) Graph

As we can see the system growth rate varies significantly with or without accounting for

code cloning; thus it is important to study the evolution of code cloning to fully under-

stand how the software evolves over time. Our last visualization graph: the Clone System

Evolution (CSE) graph highlights the most recent clone changes from the files all the way

up to the top level subsystems.

The rest of this section covers two components: steps to compute the clone evolutionary
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data and the Clone System Evolution (CSE) graph.

6.2.1 Clone System Evolution Framework

We divide the tasks of computing clone evolutionary data into two steps: Clone System

Hierarchy Extraction and Historical Clone Data Encoding, illustrated in Figure 6.4.

• Clone System Hierarchy Extraction: for each release we perform clone system

hierarchy extraction process. The details are explained in Section 5.1.

• Historical Clone Data Encoding: We now have obtained the clone system

hierarchy information for each release through the development history of the software

project. The challenge comes when we need to visualize the historical information.

The clone system hierarchy information for each release is like a snapshot of the

code duplication situation at one point of time in history. We need to super-impose

these pictures one by one to form the evolutionary view. The result should satisfy

two requirements: first, as cloning information changes from time to time, we need to

reflect the history of changes into our visualization; second, it is would be preferable if

the tool can rank the information and highlight places which are more important and

deemphasizes places which are not so important. We achieve the above requirements

by applying a decay function.

We choose to encode our historical data using a decay function. Decay period refers

to the period of time which information becomes stale, and not interest to us. Half life

is a special kind of decay rate. Half life, originally used in radio-active substances,

refers to the period of time when the mass is only half of the original weight. In

our study, half life can be interpreted as the period of time when the weight of the
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previous releases becomes half. So for example, if the half life is 2 releases, if there

are 200 lines of cloning in the past, it becomes 100 lines in the next release.

Our decay function looks like:

result = (new value− old value) + decay rate ∗ old value;

For example, the old value is 400 and the new value is 500; the decay rate is set to

be 0.2. Then the result computed from the decay function is 180. The decay rate

can be set to different values according to what kind of information users want to

uncover. If users are more interested in the more recent changes, then the decay rate

should be set small, as the information in the past is not so important to us. If users

are more concerned with the cloning history of each entity, the decay rate should be

set to high to preserve the information in the past. Our decay function is applied to

both the internal cloning and the external cloning.

6.2.2 Clone System Evolutionary (CSE) Graph

Once we have encoded all the historical information. We use Clone System Evo-

lutionary (CSE) graph to visualize it. Similar as Clone System Hierarchy View, it

shows all the cloning information in a tree. Additionally, it uses colours to group

and categorize historical cloning information. In this case, we sort subsystems under

the same parent directory by the amount of external cloning from the highest to the

lowest and split them by values into 4 quarters. We assign the entities in the highest

quarter to be red, followed by yellow, light green and grey as shown in Figure 4.3.
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6.2.3 An Example

Figure 6.5: The CSE graph for 9 releases of Linux Kernel.

Figure 6.5 shows the historical cloning information for the Linux kernel. To be consis-

tent with Figures 6.1 and 6.2; it contains 9 releases (from Linux 1.0 released in March 1994

to Linux 2.6.16.13 released in May 2006). The hierarchy tree contains 9845 .c files and 6211

.h files and 5813 directories. We set the decay rate to be 0.2, just hoping to highlight the

changes between two of the most recent releases (2.6.16.13 and 2.6.0). Among the top level

directories, “drivers” positioned at left-most and coloured in red has the largest amount

of cloning exposed; directories like “scripts” and “lib”, positioned on the right-most, are

coloured in lightgrey indicating the least among of changes.

Figure 6.6: The CSE graph for drivers subsystem in 9 Linux Kernel releases.

Figure 6.6 is the zoomed in view of “drivers”. As we can see, “net” and “scsi” are the
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only two of the sub-directories coloured in red and on the right, there are quite a few small

sub-directories such as “bluetooth”, and “macintosh” coloured in grey. We then further

investigate the reasons why there are so many clones get modified in two of the subsystems

“net” and “scsi”.

We wrote a perl script to measure the differences in clone pairs between two versions of

Linux Kernel. The script first extracts the cloning information only relevant to “drivers”.

Then it compares the cloning data in the previous release with the next release. Finally it

classifies the cloning differences into three categories: clones in new files, new clones in old

files, and changes in the old clones, missing clones:

Clones in new files: refer to clone pairs that at least one of the two code segments is

from newly added files. So the clone pairs can be between two newly added files or

between one newly added file and one legacy file.

Missing clones: refer to the clone pairs from which files are removed in the newer

releases. So for example, in the older version, it has one clone pair between “fileA.c”

and “fileB.c”. In the newer version, either “fileA.c” or “fileB.c” or both gets removed.

Therefore, this clone pair no longer exists. We name this type of clones as missing

clones.

New clones in old files: refer to clones in which files exist in both releases but the

cloning relation only appears in the newer release. For example, between “fileA.c”

and “fileB.c”, there is no cloning relations in the older releases but in the newer

release there are code segments from two files which are similar to each other.

Changes in old clones: refer to clones that exist in both releases whose amount of

cloning can stay the same, decrease (existing clones less lines) or increase (existing

clones less lines). So a clone pair which is between “fileA.c” and “fileB.c” exists both
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versions. Then depending the number of duplicated lines, we can have “existing

clones with more lines” if the number of duplicated lines increases in the newer

version, or “existing clones with less lines” if the number of duplicated lines decreases

in the newer version, or “existing clones with equal lines” if the number of duplicated

lines remains the same.

Linux drivers 2.6 and 2.6.16.13

34%

20%

1%

44%

1%
existing files new clone

new files new clones

existing_clones_more_lines

existing_clones_less_lines

miss clones

Figure 6.7: The Clone Difference Between Linux 2.6 and 2.6.16.13.

Figure 6.7 shows the break down of the differences in cloning at the “drivers” direc-

tory. We choose not to show the amount of “existing clones with equal lines” for clarity
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because the focus of the study is to analyze the difference in cloning between two versions.

As we can see there are little changes in existing cloning relations, the biggest amount

of cloning changes are due to clones in the newly added files, followed by new clones in

existing files and then missing clones by deleted files. There are a lot of cloning in newly

added files. This is understandable since when developers trying to experiment new fea-

tures, they first try to copy from the old code and modify based on it. For example, the

newly added “drivers/mtd/nand/sharpsl.c” resembles a lot similarity as the legacy driver

“drivers/mtd/nand/spia.c”; as they both implement the NAND device. This is the con-

ventional approach to implement new drivers in the Linux “drivers” subsystem. There are

a lot of new clones getting added within the existing files. They are mostly due to newly

added methods. For example, there are about 1200 lines of duplicated code caused by

the added method “zfcp fsf link down info eval” within “drivers/s390/scsi/zfcp fsf.c”. In

addition, a lot of files have been removed in version 2.6.16.13. For example, “drivers/mac-

intosh/macserial.c” is missing, which leads to about 700 reduction of duplicated lines of

code.

6.2.4 Discussion and Future Work

The Clone System Evolutionary(CSH) Graph embeds the historical cloning information

and tries to highlight spots which are of interest. We use decay function as a proof

of concept. We can certainly use any other functions to encode the historical infor-

mation. For example, if we need to examine the places where are long-live clones

and short-live clones, then it is probably better to just aggregate the cloning rela-

tion from one release to the next. As another example, if we are more interested in

the amount of external and internal cloning for each file or directory, we probably

set the cloning weights differently: assign weight 1 to files or directories if all the



90 Visualizing and Understanding Code Duplication in Large Software Systems

clone instances appear to reside under the same directory and 2 if they reside in two

different directories, and so on.

Layout: Developers are more comfortable to visualize the architecture in the directory

structure like framework. However, our visualization technique may not up to scale.

As the number of files increases, it becomes too crowed to fit in the screen. Users

have to zoom in and zoom out to gain a better understanding of certain part of the

diagram. In the future, we are going to experiment with different kinds of layout,

especially the effectiveness of radial layout.

Filtering: Since both the CSH graph and CSE graph use tree structure layout, they

suffer the same over-plotting problem. As there might be too many nodes and files

cramming into the screen. Similar as the CSH graph, we use level filtering and

subsystem filtering to scale down the graph.

Animation: As our view is static, it does not coincide with the dynamic nature of

software evolution. However, one challenge which hinders us from animating the

evolution as the hierarchical view is the “minimal impact” principle. It is preferred

to keep the relative position of directories and files stable, since it is easier for user

to keep track of the changes. However, if one directory gets added or removed how

do we put them without affecting the relative position of other directories and files;

especially in big software systems like Linux which contains millions of files and

thousands of directories? In the future, we are going to look into the ways of of

animating the evolution of code cloning.
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6.3 Guideline

We summarize the steps for using our visualization. Researchers can follow this guideline

to process, visualize and analyze cloning for other software systems.

Overall: The clone evolution graph highlights the most recent changes of cloning in the

system.

Data Processing : We aggregate cloning information across releases. We first create a

directory structure which contains all the directories and files ever existed. Then, we

apply some decaying function to embed the historical information at the file level.

Then we lift the file level information to the subsystem level.

Note that different decay function can be used to highlight different aspects of the

cloning. For example, we can device our decay function to put more values on the

most recent changes or we can instrument the function to put more emphasis on the

spread of the clones, and so on.

Graph Analysis: The graph is highlighted to different colours. Depending on the focus

on the task, we need to pay attention to different entities. In particular the red area

to the left and grey area to the right of the graph.

The most recent biggest clone changes are coloured in red, this can be interesting

since the rationale behind cloning to red nodes can answer questions like: Is cloning

introduced for new features or for bug fixes or something else? If a lot of clones have

been removed, then we want to answer questions like: is there a refactoring or system

restructuring occurred; is there any the interfaces got updated, etc.

For places which have little cloning changes is coloured in grey. They could be

valuable to answer questions like: why there is little cloning changes? Is it due to the
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introduction of new clone-free code or is it because that part is relatively stable and

little changes have been performed? If it is due to the addition of clone-free code,

how many call dependencies is introduced to avoid cloning?

Others: The graph of ULOC over releases shows the growth rate of essential features. It

is complementary to the CSE graph, which studies the changes in code duplications.

6.4 Conclusion

This chapter introduces techniques to analyze the evolution of the software systems. The

ULOC plot examines the growth of the essential features; whereas the complementary

Clone System Evolution (CSE) graph displays the most recent changes in code duplications.



Chapter 7

Conclusion and Future Work

This chapter summarizes the main ideas addressed in this thesis and proposes some future

work in the areas of clone evolution and visualization.

As was explained in Chapter 1, clones are identical or near identical segments of code.

Clones can be good or bad depending on the context. Cloning may be desirable since it

speeds up the development process. Reusing the already tested components reduces the

risks. Cloning can be avoidable due to language limitations or performance requirements.

Cloning is bad since it leads to a bloated code base and in term requires more storage spaces.

Clones are considered bad smell for code quality; since it brings challenges for software

maintenance. Many of the above points are drawn either from some user experience or

from the academic research. There is a lack of empirical study on the consequence of code

cloning.

One of the major challenges for studying code clones in large software systems is how to

handle large set of cloing data; as about 5-50% of the source code can be clones [8, 39, 7].

In this thesis, techniques and tools have been proposed to scale down and visualize the

cloning data.

93
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7.1 Major Topics Addressed

To scale down the cloning data, we have proposed three types of scaling: abstracting the

data by lifting the cloning relation from the file level to the subsystem level; merging mul-

tiple similar clone classes into one big clone class; and filtering out irrelevant information.

Using the scaled data, we have proposed three types of visualization, ranging from a

snapshot view of how cloning situations are to the evolutionary view showing how clones

evolves over time. Three of our visualizations emphasize cloning along different dimensions:

along the quantity scale: the Clone Cohesion and Coupling (CCC) graph shows the

degree of internal and external cloning among subsystems;

along the relation scale: the Clone System Hierarchy (CSH) graph puts more focus

on the details of cloning, especially the spread of the cloning;

along the time scale: the Clone System Evolution (CSE) graph highlights the most

recent clone changes.

We showcase our visualizations by applying them to a large open source software system:

the Linux Kernel.

7.2 Future Research

First of all, this thesis demonstrates our visualization tools mainly on various case studies

of Linux Kernel. In the future, we plan to work on additional software projects to evaluate

the effectiveness of these three visualization techniques and hope to uncover interesting

clone design patterns.
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In addition, as the directory tree structure may not up to scale; various layout algo-

rithms, such as radial layout, will be experimented with. Furthermore, as we can apply

different evolution functions in Clone System Evolution (CSE) graph; we plan to devise a

few of these evolution functions and test to see which ones are best suited to explore which

aspects of clone evolution studies.

We are also interested in applying more user studies to verify and improve the effec-

tiveness of our visualizations.

Finally, we may redo Godfrey et. al.’s study [31] but using ULOC to study the growth

rate to a number of open source software systems.



Bibliography

[1] AiSee. http://www.aisee.com/.

[2] A. Chou, J. Yang and B. Chelf and S. Hallem and D. R. Engler. An empirical study of

operating system errors. In In Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP), October 2001.

[3] A. Cox. An Introduction to SCSI Drivers. Available online at

http://www.linux-mag.com/1999-08/gear_01.html.

[4] A. Monden and D. Nakae and T. Kamiya and S. Sato and K. Matsumoto. Software

quality analysis by code clones in industrial legacy software. In In Proceedings of

IEEE Symposium on Software Metrics 2002, 2002.

[5] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection Us-

ing Abstract Syntax Tree. In Proceedings of Sixth Working Conference on Reverse

Engineering), November 1998.

[6] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a Case Study: Its

Extracted Software Architecture. In Proceedings of the 21st International Conference

on Software Engineering, Los Angeles, USA, May 1999.

96



Conlusion 97

[7] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore Merlo, John P. Hudepohl. Assess-

ing the Benefits of Incorporating Function Clone Detection in a Development Process.

In Proceedings of the International Conference on Software Maintenance(ICSM1997),

pages 314–321, 1997.

[8] B.S. Baker. On finding duplication and nearduplication in large software system. In

Proceedings of Second IEEE Working Conference on Reverse Eng. (WCRE 1995),

July 1995.

[9] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventative

maintenance. In Second IEEE International Workshop on Source Code Analysis and

Manipulation (SCAM’02), pages 36–43, 2002.

[10] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical study of

operating system errors. In In Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP), pages 73–88, Banff, Alberta, Canada, October 2001.

[11] Cory Kapser and Michael W. Godfrey. Cloning Considered Harmful’ Considered

Harmful. In Proceedings of the 2006 Working Conference on Reverse Engineering

(WCRE-06), Benevento, Italy, October 2006.

[12] More Than a Gigabuck: Estimating GNU/Linux’s Size. Available online at

http://www.dwheeler.com/sloc/.

[13] Exuberant Ctags. Available online at http://ctags.sourceforge.net.

[14] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detect-

ing duplicated code. In Proceedings ICSM99 (International Conference on Software

Maintenance), pages 109–118, 1999.



98 Visualizing and Understanding Code Duplication in Large Software Systems

[15] Ettore Merlo and Michel Dagenais and P. Bachand and J. S. Sormani and Sara

Gradara and Giuliano Antoniol. Investigating Large Software System Evolution: The

Linux Kernel. In In Proceedings of COMPSAC 2002, pages 421–426, 2002.

[16] Richard Fanta and V’aclav Rajlich. Removing clones from the code. Journal on

Software Maintenance and Evolution, 11(4):223C243, July/Aug 1999.

[17] David Garlan and Mary Shaw. An Introduction to Software Architecture. In V. Am-

briola and G. Tortora, editors, Advances in Software Engineering and Knowledge En-

gineering, pages 1–39, Singapore, 1993. World Scientific Publishing Company.

[18] Michael W. Godfrey, Davor Svetinovic, and Qiang Tu. Detecting duplicated and

near duplicated structures in large software systems: methods and applications. In

CASCON workshop, November 2000.

[19] Gregorio Robles and Juan Jose Amor and Jess M. Gonzlez-Barahona and Israel Her-

raiz. Evolution and Growth in Large Libre Software Projects. In Proceedings of the

2005 International Workshop on Software Evolution(IPWSE 2005), pages 165 – 174,

2005.

[20] Hamid Abdul Basit and Damith C. Rajapakse and Stan Jarzabek. Beyond templates:

a study of clones in the STL and some general implications. In In Proceedings of

International Conference on Software Engineering (ICSE 2005), May 2005.

[21] J. Helfman. Dotplot Patterns: a Literal Look at Pattern Languages. In TAPOS, pages

31–41, 1995.

[22] James R. Cordy. Comprehending Reality: Practical Challenges to Software Main-

tenance Automation. In In Proceedings of IEEE 11th International Workshop on

Program Comprehension, IPWC 2003 (Keynote paper), May 2003.



Conlusion 99

[23] J. H. Johnson. Visualizing textual redundancy in legacy source. In In Proceedings of

CASCON 94, pages 9–18, 1994.

[24] J. H. Johnson. Navigating the textual redundancy web in legacy source. In In Pro-

ceedings of the 1996 conference of the Centre for Advanced Studies on Collaborative

research, 1996.

[25] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A Multi-

Linguistic Token-based Code Clone Detection System for Large Scale Source Code.

IEEE Transactions on Software Engineering, 28(7):654–670, july 2002.

[26] Cory J. Kapser and Michael W. Godfrey. Supporting the Analysis of Clones in Soft-

ware Systems: A Case Study. Journal of Software Maintenance and Evolution: Re-

search and Practice, 18(2), 2006.

[27] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An empirical study

of code clone genealogies. In ESEC/SIGSOFT FSE 2005, pages 187–196, 2005.

[28] Kostas Kontogiannis. Evaluation Experiments on the Detection of Programming Pat-

terns Using Software Metrics. In Proceedings of the Fourth Working Conference on

Reverse Engineering(WCRE1997), 1997.

[29] M. M. Lehman and J. F. Ramil and P. D. Wernick and D. E. Perry and W. M. Turski.

Metrics and laws of software evolutionthe nineties view. In Proceedings of the Fourth

Intl. Software Metrics Symposium (Metrics97), Albuquerque, NM, 2001.

[30] Magiel Bruntink and Arie van Deursen and Tom Tourwe and Remco van Engelen. An

Evaluation of Clone Detection Techniques for Identifying Crosscutting Concerns. In

In Proceedings of ICSM 2004, pages 200–209, 2004.



100 Visualizing and Understanding Code Duplication in Large Software Systems

[31] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case study.

In Proceedings of the 16th International Conference on Software Maintenance, pages

131–142, San Jose, California, October 2000.

[32] Miryung Kim and Lawrence D. Bergman and Tessa A. Lau and David Notkin. An

Ethnographic Study of Copy and Paste Programming Practices in OOPL. In Inter-

national Symposium on Empirical Software Engineering(ISESE 2004), August 2004.

[33] B.S. Mitchell and S. Mancordis. On the Automatic Modularization of Software Sys-

tems Using the Bunch Tool. IEEE TSE, 32(3):193–208, 2006.

[34] Raghavan Komondoor and Susan Horwitz. Eliminating duplication in source code via

procedure extraction.

[35] Raihan Al-Ekram and Cory Kapser and Richard Holt and Michael Godfrey. Cloning

by Accident: An Empirical Study of Source Code Cloning Across Software Systems. In

Proceedings of the 2005 Intl. Symposium on Empirical Software Engineering (ISESE-

05), Noosa Heads, Australia, 2005.

[36] Rainer Koschke. Software Clone Detection Survey. In Daugstuhl Seminar Duplication,

Redundancy, and Similarity in Software, July 2006.

[37] Eric S. Raymond. Cathedral and the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary. O’Reilly Media, 2001.

[38] Matthias Rieger, Stphane Ducasse, and Michele Lanza. Insights into System-Wide

Code Duplication. In WCRE 2004, pages 100–109, 2005.



Conlusion 101

[39] S. Ducasse and M. Rieger and S. Demeyer. A language independent approach for de-

tecting duplicated code. In Proceedings of IEEE Internaltional Conference on Software

Maintenance(ICSM 1999), August 1999.

[40] SLOCCount. Available online at http://www.dwheeler.com/sloccount/.

[41] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. page

1129C1164, 1991.

[42] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing Duplicated Code

with Linked Editing. In VL/HCC 2004, pages 173–180, 2004.

[43] Yasushi Ueda, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.

Gemini: Code clone analysis tool. In Proc. of 2002 International Symposium on

Empirical Software Engineering (ISESE2002), Nara, Japan, Oct 2002.


