
On the use of Internet Relay Chat (IRC) meetings by developers
of the GNOME GTK+ project

Emad Shihab, Zhen Ming Jiang and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, K7L 3N6, Canada

{emads, zmjiang, ahmed}@cs.queensu.ca

Abstract
Developers of open source projects are distributed

across the world. They rely on email, mailing lists, instant
messaging, IRC channels and more recently IRC meetings
to communicate. Most of the studies thus far focus on the
use of mailing lists by OSS developers, however, an increas-
ing number of open source projects are using IRC meetings
to hold developer meetings.

In this paper, we mine the #gtk-devel IRC meeting
channel and study the usage of the IRC meetings held by
the GNOME GTK+ core developers and maintainers. We
look at three different dimensions: the discussion volume
of the meetings, the number of participants attending the
meetings and the activity of these participants. Our find-
ings show that IRC meetings are gaining popularity among
open source developers and maintainers: the IRC meeting
discussions are increasing in volume, have increasing atten-
dance levels, and the participants actively contribute to the
meetings. To the best of our knowledge, this is the first study
on the use of developer IRC meetings by OSS developers.

1 Introduction

Developers of Open Source Software (OSS) are dis-
tributed across the world. They communicate through
mailing lists, emails, Internet Relay Chat (IRC) channels,
IRC meetings or instant messaging (IM). Their discussions
cover a wide range of topics such as design decisions, code
quality, patch reviews and future project plans [9,12]. These
discussions contain a wealth of information that can be
mined to better understand the dynamics of OSS develop-
ment.

Most of the work studying the communication of OSS
developers has used mailing lists to conduct their studies
(e.g. [3, 11]). IRC has been around since the late 1980s,
however, its use by the OSS development community did
not start until recently. For example, 8 years ago (year

2000), neither Apache nor Mozilla had official developer
IRC channels, and today they both do [8].

There are two types of developer IRC channels: general
developer IRC channels and developer IRC meeting chan-
nels. General developer IRC channels are common servers,
open 24 hours a day, where developers can connect and dis-
cuss questions that pop up at the spur of the moment, infor-
mally and with no real agenda [7]. General developer IRC
channels are very similar to instant messaging, except for
the fact that messages, by default, are viewable by every-
one logged into the channel. Several prior studies used data
from general developer IRC channels to study the cultures
and beliefs of OSS developers and the social networks in
commercial software development [4–6].

On the other hand, developer IRC meeting channels are
used by developers to hold focused group discussions in a
short period of time (usually 1 hour). These meetings are
generally used to discuss several maintenance and project
related issues such as upcoming releases, major bugs or task
assignments. Therefore, mining IRC meeting logs can pro-
vide us with valuable information that can be leveraged by
researchers to better understand OSS development.

In this paper, we study the usage of IRC meeting chan-
nels by the GNOME GTK+ core developers and maintain-
ers using three different metrics: the meeting discussion
volume, the meeting attendance levels and the contribution
level of meeting participants. We look to answer the follow-
ing questions:

1. Is the discussion volume of IRC meetings changing
over time?

2. Do participants attend IRC meetings and does their
attendance change over time?

3. How much do IRC meeting participants contribute?
Our studies show that IRC meeting channels are gaining

popularity among open source developers and maintainers.
Overview of Paper. Section 2 describes the IRC data.

The framework used to mine and analyze the IRC logs is



Figure 1: Sample IRC meeting log

detailed in Section 3. Our results are presented and inter-
preted in section 4. The paper is concluded in Section 5.

2 IRC Data
The meeting logs of the #gtk-devel IRC meeting

channel are archived by the GTK+ project on their Meeting
Space site [1]. A sample meeting log is shown in Figure 1.
The first few lines of the meeting logs contain information
about the meeting, such as the start time (denoted as A in
Figure 1). Then, the list of attendants is noted (denoted as
B). These lines are followed by the messages exchanged by
the meeting participants (denoted as C). The meeting logs
are concluded with a few lines that mention the end time of
the meeting (denoted as D). It is important to note that not
all of the meeting logs follow the standard format. In some
cases, only the messages exchanged were made available in
the archived logs.

Furthermore, there are different types of IRC message
lines that one might encounter when mining meeting logs,
depicted in Figure 2. In some cases, the month, date and
time are included in the time stamp, while in others only
the time is logged. In some cases, the time stamp is omitted
altogether. In the next subsection, we outline the framework
used to mine and store the IRC data.

3 The IRC Analyzer Framework
We built a framework that parses the meeting logs and

stores the messages in a PostgreSQL database.

Step 1: Data Collection

IRC meetings are held by the GTK+ core team “as reg-
ularly as possible” to discuss various project related issues,
i.e., bugs, release schedules, code quality [2]. However, the
meetings are open to anyone interested in the GTK+ project.

Figure 2: Different types of IRC messages

We obtained the meeting logs for the years 2004 till 2008
from the GTK+ Meeting Space site [1] and mined a total of
105 meeting logs. The logs contained 17,217 message lines
from 148 different participants.

Step 2: Data Parsing

Initially, we conducted an inspection of the meeting logs
and identified 5 different types of IRC message lines (shown
in Figure 2). Then, we built the IRC message parser to han-
dle the different message types. Our framework uses regular
expressions to handle the different message types, and was
able to successfully parse all of the 105 meeting logs.

Step 3: Multiple Alias Resolution

Participants of meetings assign themselves nicknames
when joining the IRC meeting or change their nicknames
during the meeting. Therefore, there can be multiple nick-
names (aliases) for the same person. This so called multiple
alias problem is similar to the multiple alias problem ob-
served in mailing lists [3].

For example, the participant jrb uses the aliases:
jrb
<jrb>
<jrb_>
<jrb_meet>
<jrb_sick>

Using name resolution heuristics we were able to find and
resolve the majority of the aliases. However, manual in-
spection was needed to resolve some of the rare cases.
Furthermore, it is worth noting here that the majority of
the meeting participants use abbreviated names, therefore,
methods such as the one proposed by Robles and Gonzalez-
Barahona [13] need to be used to accurately identify the
participant’s real names. Such identification becomes ex-
tremely important when multiple data sources (i.e. source
code repository, mailing lists and IRC meeting logs) are
used in combination and one needs to be able to identify
the same person in all sources.

Step 4: Data Storage

After parsing the message lines, we reconstructed the
IRC messages in preparation for storage in the database.
Each IRC message contains three properties: date, name
and message. Then, the information was stored in a Pos-
greSQL database for further use.

The use of a database eased the exploration of the large
data at hand since we could rapidly explore different ques-
tions and generate specialized views to answer these ques-
tions.

4 Results and Interpretations

In this section, we report our results and answer the ques-
tions posted earlier.



Figure 3: Number of message lines in IRC meetings

Figure 4: Number of participants attending IRC meetings

4.1 Discussion Volume

1) Is the discussion volume of IRC meetings changing
over time?
As a first step, we wanted to study the change in discussion
volume. The reason for this study is to see whether meet-
ings are increasing in popularity over time.

We measured the number of message lines in each meet-
ing and plot our findings using violin plots. Violin plots [10]
are similar to box plots. The center of the plot shows the me-
dian. The top of the plot shows the maximum value and the
bottom shows the minimum value. The first and third quar-
tile are represented as the top and the bottom of the thick
line in the center of the violin plot. The main advantage
of violin plots, compared to a box plot is the fact that vio-
lin plots present the density. The wider the violin plot, the
higher the density. In addition, we plot the moving average
(denoted by the black line).

Considering the violin plot for 2004 in Figure 3 as an
example, we can see that the median is approximately 150
(denoted by the white dot), the max is approximately 500
and the min is approximately 50 (represented by the top and
bottom of the violin plot). The highest density occurs for
value 100 (i.e. the violin is widest around 100) and the high
values (between 400 and 500) have a small density (i.e. the
pointy top of the violin plot around 500).

It can be observed from Figure 3 that a general trend
showing an increase in discussion volume is observed. The
increase in discussion volume may be due to two factors:
1) the fact that meeting attendants are discussing more or
2) the fact that meetings are becoming increasingly popular
and more attendants are joining in the discussions. Also,
the majority of the meetings are between 100 and 200 mes-
sages in length. However, there are a few meetings that are

longer than usual (represented by the pointy tops of the vi-
olin plots, e.g. 2004). We hypothesize that these meetings
were probably held just before major releases. Tradition-
ally, meetings held before major releases are longer than
usual because they cover many issues such as, open bugs,
code freezes, feature inclusions and documentation updates.
In the future, we plan to explore the reason for the increase
in discussion volume and the relationship between discus-
sion volume and release schedules.

4.2 Meeting Attendance

2) Do participants attend IRC meetings and does their
attendance change over time?
Studying the attendance of participants provides insight
about popularity and usefulness of the IRC meetings. Gen-
erally, low meeting attendance could indicate that partic-
ipants are not seeing the usefulness of the meetings and
therefore, they decide not to attend. At the same time, we
do not expect full attendance by participants because meet-
ings are held for 1 hour, once a week (Tuesdays at 20:00
UTC) and are mostly attended by members of the core team
(made up of 10 members in the case of the GTK+ project).
Some of the participants may not be able to attend due to
time zone differences or scheduling conflicts.

Figure 4 shows the number of participants for each year.
It is observed that on average, meetings are attended by 6 or
more members. The number of attendants in recent years
(2007 and 2008) is higher than the previous years, indi-
cating that perhaps meetings are becoming more popular
among developers of the project. We plan to study the pop-
ularity of meetings among OSS developers in more detail in
our future work.



Figure 5: Number of IRC messages per participant per session

4.3 Participants’ Contribution

3) How much do IRC meeting participants contribute per
session?
As we have seen above, the meeting attendance is satisfac-
tory and increasing over time. Now we would like to deter-
mine whether participants actively participate in the meet-
ings or whether they attended just because they are obliged
to. If we determine that participants actively participate in
meetings, then we can say that participants see a benefit in
these meetings and therefore, keep coming back and partic-
ipating. If on the other hand we notice that participants are
not actively participating, then perhaps they are not seeing
the benefit of these meetings and studying them may not be
so beneficial.

We measure the number of message lines per participant
in a session and plot our findings in Figure 5. It is observed
that the average number of messages per participant is be-
tween 15-20 message lines. Further, we observe that in the
years prior to 2007, there exist a few participants who con-
tribute more than the average (i.e. the pointy tops of the
violin plots). Most likely, these above average participants
are project leaders who are looking for updates from others.
As for the recent years (2007 and 2008), we see a different
type of violin plot. In those years, we observe that the ma-
jority of the participants have very similar contribution lev-
els. This might suggest a change in leadership or a change
in meeting style. We plan to explore this point further in our
future work.

5 Conclusion and Future Work
In this paper, we mined and studied the IRC meeting logs

of the #gtk-devel IRC meeting channel. We used the
mined information to study the usage of the IRC meeting
channel by project developers and maintainers, their atten-
dance levels and their contributions. We found that: 1) the
discussion volume is increasing over time, 2) IRC meetings
have a positive level of attendance that is increasing over
time and 3) participants are actively contributing in the IRC
meetings.

In the future, we plan to further our study on the afore-
mentioned points and study the IRC meeting contents to see
whether we can leverage the information in IRC meeting
logs to gain better insight on OSS development.

References

[1] Gtk mettings space. http://live.gnome.org/GTK+/Meetings.
[2] The gtk+ project. http://www.gtk.org/development.html.
[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-

nathan. Mining email social networks. In MSR ’06: Pro-
ceedings of the 2006 international workshop on Mining soft-
ware repositories, pages 137–143, New York, NY, USA,
2006. ACM.

[4] G. Breach. I’m not chatting, i’m innovating! lo-
cating lead users in open source software communities.
http://www.business.uts.edu.au/management/workingpapers
/files/Breach2008.pdf.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: implica-
tions for the design of collaboration and awareness tools. In
CSCW ’06: Proceedings of the 2006 20th anniversary con-
ference on Computer supported cooperative work, 2006.

[6] M. S. Elliot. The virtual organizational culture of a free soft-
ware development community. In Proceedings of the 3rd
Workshop on Open Source Software Engineering, 2003.

[7] D. M. German. The gnome project: a case study of open
source, global software development. Software Process: Im-
provement and Practice, 8(4):201–215, September 2004.

[8] D. M. German, D. Cubranić, and M.-A. D. Storey. A frame-
work for describing and understanding mining tools in soft-
ware development. SIGSOFT Softw. Eng. Notes, 30(4):1–5,
2005.

[9] A. E. Hassan. The road ahead for mining software reposi-
tories. In Proc. FoSM 2008. Frontiers of Software Mainte-
nance, pages 48–57, Sept. 28 2008–Oct. 4 2008.

[10] J. L. Hintze and R. D. Nelson. Violin plots: A box
plot-density trace synergism. The American Statistician,
52(2):181–184, 1998.

[11] D. Pattison, C. Bird, and P. Devanbu. Talk and work: a pre-
liminary report. In MSR ’08: Proceedings of the 2008 inter-
national workshop on Mining software repositories, pages
113–116, 2008.

[12] P. C. Rigby, D. M. German, and M.-A. Storey. Open source
software peer review practices: A case study of the apache
server. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 541–550, New
York, NY, USA, 2008. ACM.

[13] G. Robles and J. M. Gonzalez-Barahona. Developer iden-
tification methods for integrated data from various sources.
SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.


