
Understanding the Rationale for Updating a Function’s Comment 
 

Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang, Ahmed E. Hassan  

Software Analysis and Intelligence Lab (SAIL) 

School of Computing, Queen’s University, Kingston, Ontario, Canada. 

{malik,istehad,tsou,zmjiang,ahmed}@cs.queensu.ca 

 

 

Abstract 
Up-to-date comments are critical for the successful 

evolution of a software application. When modifying a 

function, developers may update the comment 

associated with the function or may not update it. For 

example, comments associated with a complex function 

are likely to be updated more often when the function 

is modified to prevent the code and the comments from 

drifting apart. Nevertheless, the rationale behind 

updating a comment has never been studied.  

In this paper, we present a large empirical study to 

better understand the rationale for updating comments. 

We recover the code change history for four large 

open source projects (GCC: a compiler, FreeBSD: an 

operation system, PostgreSQL: a database 

management system, and GCluster: a clustering 

framework) with an average code history of 10 years. 

Using the Random Forests algorithm, we investigate 

the rationale for updating comments along three 

dimensions: characteristics of the changed function, 

characteristics of the change itself and time and code 

ownership characteristics. Our case study shows that 

we can predict with an accuracy of 80%; the likelihood 

of updating the comment associated with a modified 

function. We perform a sensitivity analysis to 

determine the most important attributes. Our analysis 

shows that the percentage of changed call 

dependencies and control statements, the age of the 

modified function and the number of co-changed 

functions which depend on it are the most important 

attributes in determining the likelihood of updating 

comments. 

 

1. Introduction 
 

The task of commenting one’s source code is often 

neglected, though the merits of writing consistent 

comments are well-known [1]. Reading code is a 

fundamental task during software engineering and code 

is read more often than it is written [2]. Elshoff and 

Marcotty states that the comments, as well as the 

structure of the source code are good aids for 

understanding programs and therefore reduce 

maintenance costs [3]. This finding was confirmed by 

the studies of Ted Tenny [4]. But, as the example of 

Lakhotia shows, sometimes programmers do not care 

whether someone else might want to understand their 

source-code [5]. Developers spend more than half of 

their time trying to understand code. The lack of 

comments as well as the existence of outdated 

comments is counter-productive. 

We view comments in similar capacity as [6] with 

code comments being of two types: header or outer 

comments and non-header or inner comments. Header 

comments are comments written before the definition 

of a function; whereas non-header comments are all 

other comments residing in the body of a function. 

Developers usually use header comments to describe 

the purpose of a function, and to document its 

parameters and interfaces. Non-header comments are 

usually used to document algorithms and low-level 

design decisions. In this paper, we sought to investigate 

the rationale for updating both of these types of 

comments when their associated function is modified.  

We conducted an empirical study using the 

development history of the four large open source 

projects, listed in Table 6. We recovered all code 

changes for these four projects using the C-REX 

evolutionary extractor [15]. We then investigated 

whether we could predict the likelihood of updating a 

comment when its associated function is modified 

along three dimensions: characteristics of the changed 

function, characteristics of the change and the time and 

code-ownership characteristics. Along each dimension, 

we investigated several attributes and defined measures 

to quantify these attributes. For example, for the 

characteristics of the changed function dimension, we 

used the number of changed dependencies to capture 

the level of coupling [11]. Our results show that: 

1. We can predict with 80% accuracy the likelihood of 

updating the comment for a modified function. 

2. Percentage of changed dependencies and control 

statements, age of the modified function, and the 



number of co-changed functions which depend on it 

are the most important attributes in determining the 

likelihood of updating comments.  

3. Our findings are consistent across four large open 

source projects from different domains: GCC 

(compilers), FreeBSD (operating systems), 

PostgreSQL (databases), and GCluster (cluster).  

 

Organization of the Paper 

 

The organization of the paper is as follow. Section 2 

presents related work. Section 3 discusses the three 

dimensions and presents the attributes along these 

dimensions. This section also highlights the intuition 

behind our work. Section 4 presents the Random 

Forests algorithm and motivates its use for studying the 

rationale for updating comments. Section 5 presents 

our case study and details the results of the various 

experiments conducted in our study. Finally, Section 7 

concludes the paper and identifies avenues for future 

work. 

 

2. Related Work 
 

Jiang and Hassan studied the evolution of 

comments in PostgreSQL [6]. They investigated the 

addition and deletion of header and non-header 

comments over time. In contrast to their work, we do 

not restrict ourselves to studying additions and 

deletions. We also study changes to comments and seek 

to uncover the rationale for such changes.  

Lawrie et al. [8] employed information retrieval 

techniques to measure how comments relate to the 

source code and assume that comments impact the code 

quality of a software system. Marcus and Poshyvanyk 

[7] defined metrics for measuring the conceptual 

cohesion of classes by incorporating the presence (or 

absence) of comments.  

Ying et al. [9] investigated the use of a particular 

type of comment, the Eclipse task comments. These are 

special comments which start with // TODO and are 

commonly used by developers using the Eclipse IDE. 

They argued that task comments tend to depend on the 

context of the surrounding code and that it is difficult 

to infer the scope of a task comment. This often holds 

for comments in general and, therefore, has an impact 

on our work. Ying et al. mentioned a few reasons and 

patterns that lead to an insertion of a comment task (for 

example as pointers to change requests) but they did 

not study whether some building blocks of a program 

(e.g., if-statements) are more likely to be commented. 

Fluri et al. investigated the co-evolution of source code 

and its associated comments [16]. They presented a 

technique to map source code entities to comments in 

the code and to extract comment changes over the 

history of a software project. Their study focused on 

the ratio between the source code and comments over 

the history of project and the entities that are most 

likely to be commented e.g., classes, methods, and 

control statements. They did not investigate the 

rationale for comment changes. We believe that a good 

understanding of the rationale for updating comments 

is important to better understand the factors affecting 

the evolution of large software systems. Versioning 

systems such as CVS and subversion do not provide 

features for fine-grained source code change analysis 

nor for tracking comments. In fact, they are not capable 

of providing a mechanism for distinguishing comments 

from source code without the use of additional analysis 

tools. For our work, we use the C-REX tool [15] to 

map historical code changes to the appropriate code 

entities, e.g., functions, or comment blocks, and to link 

comments to the their corresponding entities.  

 

 3. Dimensions used to predict the 

likelihood of updating a comment 
 

We investigate the rationale for updating a 

comment once its associated function is modified along 

three dimensions: 1) characteristics of the changed 

function, 2) characteristics of the change itself, and the 

3) change time and code-ownership characteristics.  

Table 1: Number of attributes per dimension 

 Dimensions Attr 

1 Characteristics of the modified function 10 

2 Characteristics of the change  10 

3 Change time and code-ownership characteristics 9 

Total attributes across all dimensions 29 

 

In this section, we explain each dimension and the 

various attributes, which we chose to consider within 

each dimension. Moreover, we explain our motivation 

for picking particular attributes. Table 1 lists the 

number of attributes considered along each dimension. 

 

3.1 Characteristics of the modified function 
 

We explore this dimension based on our strong 

belief and intuition that modifications to complex 

function are trickier and more likely to introduce 

integration bugs [12]. Therefore, such modifications 

must be properly commented to avoid the introduction 

of bugs. Table 2 describes the various attributes along 

this dimension.  

 



Table 2: Characteristics of the modified function 

Attribute Name Explanation and Rationale 

Length of the 

function name 

This attribute reflects to some extent the 

documentation maturity of a project. 

Longer function names are probably a 

good indication of the documentation 

habits of the developers working on the 

project. Longer names are good indicators 

of the team’s focus on maintaining 

understandable and readable code.  

Number of 

dependencies 

The number of dependencies is an 

indicator of the importance of a function. 

We expect functions with a large number 

of dependencies to have their comments 

updated more frequently.   

Number of control 

statements 

The number of control statements is a 

proxy for the Mccabe complexity metric 

[12]. We hypothesize that more complex 

code will lead to higher frequency of 

comment-updates. 

Number of inner 

comments 

The amount of inner comment keywords 

may imply numerous things: the 

complexity of the function or the tendency 

of the development team to comment 

function’s in general. 

Number of outer 

comments 

Unlike inner comments, the outer 

comments (comments included in 

function’s header) are usually there to 

describe the role of a function and its 

interface, rather than to describe the inner-

workings of the function.  

Has inner 

comments, 

Has outer 

comments, 

Has comments 

These are binary versions of the above 

metrics. We use these simpler metrics to 

determine if a simpler model is possible or 

if the actual count of tokens is important. 

Number of 

parameters  

The number of parameters passed into the 

function is likely to indicate the 

complexity of using a function. Therefore, 

we would expect that modifying such 

complex functions is more likely to lead to 

updating their comments. 

Number of string 

literals  

The number of string literals (i.e., constant 

strings) in the function is an indicator of 

functions that are likely interacting with 

the user or with the environment. Changes 

to such functions are likely to require 

updating the comments since the changes 

may lead to changes in the interaction of 

the software system with its surrounding 

environment.  

 

3.2 Characteristics of the change 
 

This dimension seeks to understand the comment 

update phenomena from the point of view of the 

change itself rather than the current state of the 

modified function. This dimension has attributes 

related to the actual change such as the number of 

changed control statements and the percentage of 

changed dependencies. The intuition is that more 

extensive and complex changes will increase the 

probability that a comment will get updated.  

Table 3: Characteristics of the change 

Attribute Name Explanation and Rationale 

Number of changed 

(i.e. added or 

removed)  

dependencies 

If function A calls functions B, then we 

say there is a dependency between A and 

B. It is natural to think that there would 

be an inner comment associated with a 

dependency call within the function. If 

one is added or removed, a comment 

may also be added or removed. 

Number of changed  

control statements  

The logic of considering this attribute is 

the same as the number of added or 

removed dependencies in the change 

list. A change in flow within the 

function ought to introduce a change in 

the comments associated with the 

function. 

Number of changed 

strings 

A string change can be associated with a 

locally significant modification, thus 

comments may change. 

Percentage of changed  

dependencies, 

Percentage of  

changed control 

statements, 

Percentage of changed 

strings 

These metrics mirror the above three 

metrics but try to capture the 

significance of a change. For example, a 

single dependency change for a function 

with one dependency is significant 

relative to the same change for a 

function with 20 dependencies. 

Did return value 

change? 

 

If the return type of a function changes, 

we would expect that the header 

comments should change. 

Percentage of past 

comments updates 

The percentage of times entity had its 

comments updated when it was changed. 

We expect that functions, which tend to 

have their comments updated when they 

are modified, will follow the same 

pattern for future changes.  

Number of co-changed 

functions 

This attribute represents the magnitude 

of the transaction itself. A large 

transaction may be an indicator of a 

large scale change which may lead to a 

high probability of comment updates for 

the functions in the transaction. 

Is the change a bug 

fix? 

Bug fix changes more likely to instigate 

comment updates; due to clarification 

notes, to explain the bug fixes? 

 

 Every change is associated with a change-list which 

records all the functions that changed with the current 

function. This dimension also covers attributes about 

the transaction associated with the change, such as the 

total number of co-changed functions. Table 3 lists the 

various attributes in this dimension. 

 

3.3 Time and code-ownership characteristics 

This dimension tracks information about the time of the 

change, such as the day of the week, how long it has 

been since the function has been last modified and who 

made the change.  



Table 4:  Time and code-ownership characteristics 

Attribute Name Explanation and Rationale 

Year Do comment-update habits change over 

time? When a software application is new, 

there is a higher tendency to update 

comments than when the application 

matures. 

Weekday This attribute records the day the change was 

committed into the source control system.  

Do developers commenting habits change 

based on the day of the week? Recent 

research shows that developers are more 

likely to introduce bugs on Friday [14], 

could this be due to changes on Fridays 

where the comments were not updated? 

Day or Night ‘DAY' if between 8:00 AM and 10:00 PM, 

'Night' otherwise. This attribute signifies the 

time of the change. Are developers less likely 

to update the comments for the late night 

changes?  

Month,  

Quarter 

This attribute signifies the month or quarter 

in the year of the transaction. Are developers 

less likely keep comments up-to-date during 

summer months or around the holiday times? 

Age of the 

function in days 

Are more mature functions likely to have 

their comments updated when they are 

modified, or do most comment updates occur 

when functions are young  

Days since last 

change  

The number of days since the last time a 

function was changed. The current team may 

have limited knowledge of a function that 

has not changed for a long time; Therefore, 

we expect that the developers would spend 

more time trying to understand the code 

before the change. We would hope that the 

developers would then go ahead and update 

the comments based on their gained 

understanding. 

Initial developer The name of the developer who first 

committed this function. The developer’s 

coding, design, and commenting styles are 

likely to play an important role in the how 

comments in that functions are updated in 

future. 

Current developer The name of the developer who committed 

the most recent change to this function. We 

choose this attribute based on similar 

rationale as that of Initial developer. 

Same as initial 

developer 

'YES' if current developer is the same as 

initial one, 'NO' otherwise. Differences in 

developers' styles may encourage changes in 

comments too. 

 

Table 4 lists various attributes along this dimension. 

The motivation towards selecting these attributes is to 

see if time has any impact on a developer tendency to 

update a comment. Are developers more likely to 

update a comment on Fridays over other weekdays? 

Similar observations are noted by Zimmermann et al. 

in relation to the likelihood of introducing bugs on 

Fridays [14]. Are developers more likely to update 

comments over the weekends than during the 

weekdays? These are few of the questions which we 

expect to answer based on this dimension. This 

dimension also covers attributes which highlight the 

relation of a function with developers, such as whether 

the change was done by the same author who created 

the function. We expect that there would be an 

overhead and complexity associated with modifying a 

function that was not written by the developer 

performing the change. The developer performing the 

change may end up documenting their new 

understanding or at least clarifying the current 

documentation. We also expect that the likelihood of 

comment update depends on the developer performing 

the change. For example, novice developer may be 

more likely to update comments. After all, 

Khoshgoftaar et al. shows that the experience of a 

developer contributes to their tendency to introduce 

bugs [22].  

 

4. Random Forests 
 

The purpose of our study is to understand the 

rationale for updating a comment when its associated 

function is modified. In our study, we choose to use a 

large number of attributes to predict whether a change 

to a function will lead to its comment being updated or 

not. We model our study as a classification problem 

where each code change to a function can fall into one 

of the two classes: comment updated (YES) or not 

updated (NO).  

There exist several machine learning techniques, 

such as Support Vector Machines (SVM) and neural 

networks, which can solve this classification problem.  

However, we chose to use a techniques based on 

decision trees since decision trees produce explainable 

models. These explainable models are essential in 

helping understand the comment update phenomena 

and to find out the important attributes in determining 

the likelihood of updating a function’s comment. 

However, instead of using basic decision tree 

algorithms such as C4.5 [18], we used an advanced 

decision tree algorithm called Random Forests [17].  

The Random Forests algorithm outperforms basic 

decision tree and other advanced machine learning 

algorithms in prediction accuracy. Moreover, the 

Random Forests is more resistant to noise in the data. 

This is an important advantage. We expect that the data 

used in our study to have noise due to its massive size 

and the length of the studied time period (over 40 years 

of change history). The Random Forests algorithm 

requires a limited number of configuration parameters 

and produces robust and stable models [19]. Finally, 

often the prediction accuracy of basic decision tree 



algorithms suffers when many of the attributes are 

correlated. Given the large number of attributes in our 

study, we need an algorithm that does not suffer from 

correlated attributes. Fortunately, the Random Forests 

algorithm deals well with correlated attributes while 

maintaining a high accuracy in its prediction. In 

contrast to simple decision tree algorithms, the Random 

Forests algorithm builds a large number of basic 

decision trees (40 trees in our case study). Each node in 

each tree is split using a random subset of all the 

attributes to ensure that all the trees have low 

correlation between them. We use the default random 

subset value which is the square root of all the studied 

attributes. The trees are built using 2/3 of the available 

data using sampling with replacement. The 1/3 of the 

remaining data is called the Out Of Bag (OOB) data 

and is used to test the prediction accuracy of the 

created forest. The use of bootstrapping and random 

selection of attributes at each node greatly improves the 

accuracy of tree based classifiers [20].  

In our case study we use the OOB data to measure 

the accuracy of the created forest. Each sample in the 

OOB is pushed down all the trees in the forest and the 

final class of the sample is decided by aggregating the 

votes (i.e., predicted class) of each tree. One major 

benefit of using this technique is that we can adjust the 

votes accordingly based on the skewness in the data. 

Basic decision trees are known to perform badly with 

highly skewed data since the tree always changes to 

predict the dominant class. To overcome this problem 

in a Random Forests, we can assign weights to votes to 

offset the data skew.  For example, in our analysis of 

the PostgreSQL project, the ratio of comment updated 

(YES) to comment not updated (NO) is 1:1.6 as seen in 

Table 6. Therefore we assign the weights 16:10 for the 

YES and NO classes. 

Table 5: Confusion matrix 

True Class 
Classified As 

YES NO 

YES a b 

NO c d 

  

To measure the accuracy of the prediction produced by 

the Random Forests algorithm, we calculate the overall, 

YES, and NO misclassification rates. We desire the 

lowest overall and per-class misclassification rates. The 

rates are defined using the confusion matrix, shown in 

Table 5. The YES and NO represents the two classes: 

Comment updated and Comment not updated. “True 

Class” column represent the actual number of comment 

updated/not updated. Whereas a, b, c & d under 

“Classified As” column represent arbitrary values of 

correctly or misclassified instances by predictor against 

true class. For example, if there are 100 instances of an 

attribute for which comment has been updated (True 

class: YES), the classifier may correctly predict 90 

instances (a=90) and may predict 10 incorrectly 

classified instances (b=10) for that class. We further 

explain how we derived the misclassification rate with 

the help of Table 5. 

• YES misclassification rate: This captures the 

performance of the forests for updating a comment. 

It is defined as: b/(a+b). 

• NO misclassifications rate: This captures the 

performance for not updating a comment. It is 

defined as: c/(c+d). 

• Overall misclassification rate: This captures the 

overall performance of the forests for both classes 

(YES and NO). It is defined as: (b+c)/(a+b+c+d). 
 

Sensitivity Analysis 

Another benefit of using the Random Forests is that we 

can perform sensitivity analysis on the attributes to 

determine the most important attributes in the created 

forests. To perform the sensitivity analysis for a 

particular attribute, the value of the attribute is 

randomly changed in all the samples in the OOB data. 

Samples are then re-classified. Thereafter, we measure 

the change in misclassification rate. If an attribute is 

not important then we expect that the misclassification 

rate will not change much. Otherwise the 

misclassification rate would increase relative to the 

importance of an attribute.  In our case study, we 

created ten Random Forests of 40 trees each (400 trees 

in total) for each set of attributes; we then measured the 

average misclassification rates. The average 

misclassification rates for our case study are reported in 

Table 9. To determine the most important attributes in 

all of the ten forests, we calculated the attribute 

importance for each forest then combined the 

importance ranking for each forest to reach the overall 

importance values shown as weights in our case study. 

The importance weight are calculated as follows: 

1) For each forest, each attribute is given a point from 

1 to 10 relative to its rank in that forest: 10 for most 

important, 1 for the least most important and 0 if 

higher than ten. 

2) For each attribute, we sum its points across all ten 

forests and we divide this sum by the maximum 

number of points which the attribute can get. The 

maximum of points is 100: 10 (for highest rank) X 

10 (for ten forests). We multiply the resulting value 

by 100 to get a value between 0 and 100. We use 

this weight metric to measure the most important 

attributes. We only show weights higher than 50. 



Table 6: Summary of Studied Systems

Studied System Date Comments Studied  

Name Type Start  End  Updated Not updated Functions Change lists Lang. 

PostgreSQL DBMS July 1996 Feb 2008 8,817 14,251 31,000 9,705  C 

FreeBSD OS June 1993 Aug 2005 30,188 7,768 27,935 20,108 C 

GCluster Cluster Platform June 2004 Feb 2008 4,488 984 15,539 1,890 C 

GCC Lang. Compiler Aug  1997 Oct 2005 16,025 7,735 22,460 13,125 C 

 

5. Case Study 

  
We perform an extensive case study to substantiate 

that the selected attributes and the heuristics pertaining 

to the attributes are applicable in predicting comment 

update across varied software systems. Table 6 

classifies the projects used in our case study. The 

average history of the projects is around 10 years, with 

PostgreSQL and FreeBSD having the largest historical 

life span of 12 years and Cluster having the smallest 

historical span of 4 years. The average number of 

functions in a project is around 24,234. PostgreSQL 

project has the largest the number functions (31,000 

functions), whereas the GCluster project takes the last 

position with 15,539 functions. The average number of 

files for a project is around 1,112 files.  In our case 

study, we conducted five experiments. Three 

experiments (one for each of the three dimensions) are 

detailed in Section 3. The fourth experiment studies all 

the attributes for each project. In the fifth experiment, 

we combined all the attributes for the three dimensions 

for all the projects taken together. For each experiment, 

we created decision trees using the Random Forests 

algorithm then performed sensitivity analysis to 

determine the most important attributes in improving 

the accuracy of our predictions. 

 

5.1. Exp. #1: Characteristics of modified 

function 
 

Our first experiment examines attributes along the 

characteristics of the modified function. Table 2 lists 

the detailed attributes in this dimension. The most 

important attributes for predicting a comment updated 

are shown in Table 7. Function characteristics such as 

the total number of comments, number of inner 

comments, number of string literals, and number of 

control statements are very influential in predicting the 

likelihood of updating a comment. For PostgreSQL, 

GCluster, and GCC, the total number of comments 

(inner and/or overall comments) in the function is the 

most important attribute in deciding the likelihood of 

updating a comment. We closely examine a few of the  

 

decision trees in the forest to rationalize our results. 

After examining the decision trees, we find that the 

frequency of comment updates is higher in functions 

that have a large number of comments. In other words, 

well-commented functions remain well-commented. 

This finding analogously correlates to the phenomenon 

that buggier functions tend to remain buggier [10]. For 

FreeBSD, the top attributes vary from the other 

projects. The number of dependencies is an indicator of 

the coupling of a function [11]. The higher the number 

of dependencies, the more coupled the function is. 

Similarly, the number of control statements such as 

conditional statements, looping statements, and switch 

statements are indicators of the cyclomatic complexity 

[12][13].  

Table 7: Top attributes for the characteristics of the 

modified function 

  Attribute Name Weight 

P
o

st
g

re
S

Q
L

 1 Total number of comments 98 

2 Number of inner comments 88 

3 Number of dependencies 81 

4 Number of control statements 57 

5 Number of string literals 55 

F
re

eB
S

D
 

1 Number of string literals 89 

2 Number of dependencies 87 

3 Number of parameters 86 

4 Number of control statements 70 

5 Length of function name 67 

G
C

lu
st

er
 

1 Number of inner comments 98 

2 Total number of comments 88 

3 Number of string literals  81 

4 Has inner comments 57 

5 Length of function name 52 

G
C

C
 

1 Total number of comments 93 

2 Number of inner comments 79 

3 Number of control statements 79 

4 Number of string literals 72 

5 Number of dependencies 58 

 

The fact that the coupling and complexity of a 

function have a major impact on comment update 

makes intuitive sense. However, we were at first 

surprised to see that the number of strings literals and 



the length of the function name show up as the top 

attributes for FreeBSD. A closer analysis reveals that 

this is due to the nature of FreeBSD functions. In 

FreeBSD, functions can be grouped into two groups: 

internal and external functions. External functions are 

OS API functions that are exported and are used by 

other applications that run on top of FreeBSD. These 

functions tend to have lengthy names and are well 

documented in contrast to other functions. As for the 

appearance of the string literals in the top attributes, 

this is due to the fact that the code for device drivers in 

FreeBSD tends to have a large number of string literals 

and tends to be complex. Hence, there is a tendency to 

update comments whenever changes are done to the 

device drivers’ functions.  

For this dimension, the Random Forests algorithm 

has an average overall misclassification rate of around 

33%, as shown in Table 9. The overall 

misclassification rate outperforms random guessing. 

Although the overall misclassification rate is rather 

consistent among projects, the misclassification rates 

for YES and NO classes vary considerably. For 

example, in case of PostgreSQL, the misclassification 

rate is 18% for the YES class and 43% for the NO 

class. We believe that these results are promising given 

the limited information (only attributes related to the 

modified function) used in this dimension.  

 

5.2. Exp. #2: Characteristic of the change  
 

We re-ran our analysis based on the attributes 

defined in Table 3. Our overall misclassification rate 

improved slightly (3% for PostgreSQL and GCluster 

and 6% for the GCC). Moreover, unlike the case of 

previous dimension, our classifier performs almost 

equally well in predicting the YES and NO classes. 

Table 8 lists the most important attributes for each 

project. As expected, changes to dependencies and to 

the control structures are two of the most important 

attributes. Bug fix and the number of co-changed 

functions are also very important attributes. These 

findings conform to our hypothesis; the magnitude of a 

change transaction and modifications to fix bugs are 

more likely to instigate comment updates.  

The top attributes in the change information dimension 

are more consistent throughout the projects in 

comparison to characteristics of the modified function 

dimensions. We do not find any surprises in the top 

attributes. The commonality between the projects 

strengthens the generality of our findings in this 

dimension.  The characteristic of the change dimension 

is the most influential dimension out of the three 

studied dimensions. Attributes in this dimension 

produce the smallest overall misclassification rate 

relative to the other two dimensions.  

Table 8: Top attributes for the characteristics of the 

change 

  Attribute Name Weight 

P
o

st
g

re
S

Q
L

 1 Number of changed dependencies 100 

2 Percentage of changed dependencies  86 

3 Number of co-changed functions 78 

4 Is this a bug fix 70 

5 Percentage of control statements 

changed 

56 

F
re

eB
S

D
 

1 Number of changed dependencies 99 

2 Percentage of changed dependencies  85 

3 Number of co-changed functions 71 

4 Number of changed control statements 69 

5 Percentage of past comments updated 60 

G
C

lu
st

er
 

1 Number of changed dependencies 100 

2 Number of changed control statements 87 

3 Percentage of changed control 

statements  

83 

4 Number of co-changed functions 60 

5 Percentage of changed dependencies  56 

G
C

C
 

1 Number of changed dependencies 100 

2 Percentage of changed dependencies  88 

3 Number of changed control statements 80 

4 Number of co-changed functions 72 

5 Is this a bug fix 57 

 

 

5.3. Exp. #3: Change time and code-ownership  
 

This experiment is conducted to examine how the 

change time and code-ownership information help 

explain the comment update phenomena. We re-ran our 

experiment using the attributes outlined in Table 4. The 

results of the most important attributes are summarized 

in Table 10. The table shows that the developer who 

has modified the function, the age of the function, the 

number of days since the function was changed, and the 

weekday and month of the change are very influential 

factors in predicting whether the comment of their 

associated functions will be updated or not. For all the 

projects, these same five attributes repeatedly and 

consistently bubble up as the important attributes. 

Recent studies reveal that particular developers are 

more prone to introducing bugs than others [11]. 

Influenced by this information, we expected to observe 

similar phenomenon in regard to comment change. We 

anticipated that certain developers update comments 

more frequently than others. 



Table 9: Misclassification rates for all dimensions across all projects (lower values are better) 

Dimension 
PostgreSQL FreeBSD GCluster GCC 

O-All Yes No O-All Yes No O-All Yes No O-All Yes No 

Function Characteristics 33.61 18.00 42.90 33.37 34.80 25.30 37.97 36.50 28.60 33.37 51.40 24.20 

Change Characteristics 30.62 25.83 32.98 27.74 27.20 29.83 34.73 33.43 33.84 27.73 24.75 33.78 

Time and code Ownership 

Characteristics 

36.52 23.76 44.38 32.74 33.18 31.01 41.97 45.25 38.11 38.24 37.80 39.00 

All attributes 24.01 17.21 28.22 21.42 21.52     21.01 27.60 27.87 26.32 24.89 22.61 29.59 

As per our anticipation, the developer who committed 

the change (current author) is one of the most important 

attributes. It is surprising that whether the current 

author is the same as the initial author is not considered 

as an important attribute. We thought that developers 

are more likely to update comments when they are 

modifying someone else’s code rather than when 

modifying their own code. The basis of our assumption 

is that one knows their code well-enough and might 

lack the motivation to update comments. However, 

there is no such finding to support our intuition.  

Table 10: Top attributes for the change time and 

code-ownership characteristics  

  Attribute Name Weight 

P
o

st
g

re
S

Q
L

 1 Current author 98 

2 Days since last change 82 

3 Weekday 78 

4 Month 68 

5 Age of the function 67 

F
re

eB
S

D
  1 Days since last change 86 

2 Current author 85 

3 Weekday 83 

4 Age of the function 82 

5 Initial author 56 

G
C

lu
st

er
 

1 Days since last change 90 

2 Month 79 

3 Age of the function 78 

4 Current author 69 

5 Weekday 67 

G
C

C
 

1 Current author 97 

2 Age of the function 88 

3 Weekday 75 

4 Month 70 

5 Days since last change 55 

 

Our analysis reveals that the weekday and month 

are important attributes in predicting comment changes, 

as opposed to the quarter or year of the change. The 

study by Zimmerman et al. [14], show that on certain 

weekdays, namely on Fridays, developers tend to 

produce buggier codes. On that note, we thought that 

developers may be reluctant to update comment on 

certain weekdays due to laziness or time pressure to 

wrap-up a week’s work. We stipulate that this can be 

one of the many reasons why the weekday is 

considered as an important attribute. Days without 

change (indicating project phases) and age of the 

function in days (indicating maturity of a function) are 

considered as the most influential factors in predicting 

the likelihood of updating a comment. We expected 

these attributes to have some influence but never 

expected them to be as influential as (and sometimes 

more important than) the author and time of change 

related attributes. Unfortunately, the misclassification 

rates for time and code-ownership dimension are worse 

than that for the characteristics of the modified function 

and the characteristic of the change dimensions. 

 

5.4. Exp. #4: All attributes 
 

In our fourth experiment, we combine all the 

attributes from all three dimensions to derive the best 

prediction model for a project. The misclassification 

rates achieved by combining all the attributes are 

statistically better than the results produced using other 

dimensions separately. This is clearly visible from the 

contrast presented in Table 9. This observation 

suggests that best results can be achieved by 

considering all dimensions rather than one dimension 

separately. Table 11, summarizes the top attributes for 

each project. We note that most of the top five 

attributes are from the function and change 

characteristic dimensions. This observation implies that 

the attributes in these two dimensions are more 

influential than attributes in the time of change and 

code-ownership dimension. The change in dependency, 

current number of comments in the function, and 

changes in the control statements are the most 

important attributes across most projects. The only 

exception is FreeBSD where the day of the week and 

the age of function are regarded as more important. 

Nevertheless, these results show a general trend across 

all projects that we studied instead of specific trends 

per project. 



Table 11: Top attributes for each project combined 

  Attribute Name Weight 

P
o

st
g

re
S

Q
L

 1 Percentage of changed dependencies  90 

2 Number of inner comments 77 

3 Total number of comments 73 

4 Number of changed dependencies 70 

5 
Percentage of control statements 

changed 
54 

F
re

eB
S

D
 

1 Percentage of changed dependencies  85 

2 Weekday 64 

3 Number of inner comments 64 

4 Number of changed dependencies 63 

5 Age of the function 56 

G
C

lu
st

er
 

1 Number of inner comments 97 

2 Number of changed dependencies 90 

3 Total number of comments 76 

4 Number of changed dependencies 69 

5 Number of changed control statements 59 

G
C

C
 

1 Number of changed dependencies 87 

2 Number of inner comments 85 

3 Percentage of changed dependencies  84 

4 Total number of comments 81 

5 
Number of changed functions  in the 

change-list 
49 

 

5.5. Exp. #5: All projects 

 

In our final experiment, we combine all the 

attributes from all projects as shown in Table 12 and 

also include the project name as an attribute in the data 

set. We then rebuild our classifiers using Random 

Forests and perform sensitivity analysis on the 

attributes to determine the most important attributes 

across all projects instead of on a project basis. This 

type of analysis can help us determine whether the 

comment update patterns are specific to a project or if 

the patterns are more general. Had the comment update 

patterns been project-specific, the newly added 

attribute for the project name would have bubbled up 

as one of the important attributes. This did not occur in 

our experiment. Hence, our findings are project 

independent. Moreover, the performance of our 

classifier improves when combining the data from all 

projects. This is another sign of the generality of our 

findings across projects. The classifier has an overall 

misclassification rate of 20%, a YES misclassification 

rate of 17%, and a NO misclassification rate of 28%. 

Looking at Table 12, we note that the percentage of 

changed dependencies is the most important attribute 

with the age of the function as the second most 

important, and the number of control statements 

changed and the number of changed dependencies as 

the top third and fourth most important attributes.  

Table 12: Top Attributes for all project data  

 Name of attribute Weight 

1 Percentage of changed dependencies  92 

2 Age of the function 78 

3 Number of changed control statements  65 

4 Number of changed dependencies 63 

 
5.6 Limitations 

 
Most commonly used source control systems track 

source code as text instead of tracking it structurally as 

source code. Therefore, to perform our study, we used 

an evolutionary extractor [15] to process the historical 

data stored in CVS and represent it in a historical 

database for our analysis. The tool, C-REX, uses a set 

of heuristics to parse source code and to link comments 

to the appropriate functions. In previous work [21], we 

verified the high accuracy of the used heuristics. These 

heuristics are able to handle code with bad syntax using 

robust parsing techniques. Nevertheless, it is possible 

that these heuristics may fail sometimes since the code 

in the source control may have very bad syntax. 

However, we believe that these errors are minimal and 

would not statistically affect the results of our analysis. 

Large projects tend to have a large number of general 

maintenance changes such as changes to update the 

copyright and to indent the code. The C-REX tool uses 

heuristics to identify these types of changes by 

examining the change message attached to the change. 

Studying the likelihood of updating comments for these 

types of changes would be of little value, so we exclude 

these types of changes from our study. We have used 

different projects spanning across different disciplines, 

e.g., database management systems, operating systems, 

file management systems, clustering frameworks and 

compilers. Still we cannot claim that these projects are 

representative of all types of software projects. This is 

due to the fact that every type of development project 

has its own development processes and habits.  As a 

result, our findings may not generalize to all types of 

software development projects. Furthermore, the open 

source nature of the studied projects and the used 

programming language, C, may limit the generality of 

our findings. 

 

6. Conclusion and Future work 

Correct and up-to-date comments aid developers in 

understanding the source code; wrong or outdated 

comments mislead developers and cause the 



introduction of bugs. Thus, it is important that 

managers monitor code comments over time. In this 

paper, we attempt to better understand the phenomena 

of updating comments. We examined the evolution of 

four large open source projects along several 

dimensions and identified the contributing factors in 

the likelihood of a comment being updated when its 

associated function is changed. We motivate our 

dimensions and explain the various attributes in these 

dimensions. We used a Random Forests classifier to 

understand the importance of the various attributes 

along the various dimensions. 

Our case study shows that the characteristic of the 

change is the most influential dimension in explaining 

the comment update phenomena. Our findings are 

consistent across projects with the performance of our 

classifier improving when combining data from all the 

projects. The percentage of changed call dependencies 

and control statements, age of the modified function 

and the number of co-changed functions are the most 

important attributes in determining the likelihood of 

updating comments. An interesting extension of our 

work is to closely study the cases where our classifier 

predicted that a function comment should be updated 

and it was not updated. We would like to determine if 

bugs were discovered later in these functions due to 

out–of-date comments.  
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