Automated Detection of Performance Regressions
Using Statistical Process Control Techniques

Thanh H. D. Nguyen, Bram Adams,

Zhen Ming Jiang, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University
Kingston, Ontario, Canada

{thanhnguyen,bram,zmjiang,ahmed }@cs.queensu.ca

ABSTRACT

The goal of performance regression testing is to check for
performance regressions in a new version of a software sys-
tem. Performance regression testing is an important phase
in the software development process. Performance regres-
sion testing is very time consuming yet there is usually lit-
tle time assigned for it. A typical test run would output
thousands of performance counters. Testers usually have to
manually inspect these counters to identify performance re-
gressions. In this paper, we propose an approach to analyze
performance counters across test runs using a statistical pro-
cess control technique called control charts. We evaluate our
approach using historical data of a large software team as
well as an open-source software project. The results show
that our approach can accurately identify performance re-
gressions in both software systems. Feedback from practi-
tioners is very promising due to the simplicity and ease of
explanation of the results.

1. INTRODUCTION

Performance regression testing is an important task in the
software engineering process. The main goal of performance
regression testing is to detect performance regressions. A
performance regression means that a new version of a soft-
ware system has worse performance than prior versions. Af-
ter a development iteration of bug fixes and new features,

code changes might degrade the software’s performance. Hence,

performance engineers must perform regression tests to make
sure that the software still performs as good as previous ver-
sions. Performance regression testing is very important to
large software systems where a large number of field prob-
lems are performance related [19].

Performance regression testing is very time consuming yet
there is usually little time allocated for it. A typical test run
puts the software through a field-like load for an extended
period of time, during which performance counters are col-
lected. The number of counters is usually very large. One

Mohamed Nasser, Parminder Flora
Performance Engineering
Research In Motion (RIM)
Waterloo, Ontario, Canada

hour of a typical test run can produce millions of samples
for hundreds of performance counters, which require a large
amount of time to analyze. Unfortunately, performance re-
gression testing is usually performed at the end of the devel-
opment cycle, right before a tight release deadline; allowing
very little time for performance engineers to conduct and
analyze the tests.

Control charts is a statistical control technique that has been
widely used in manufacturing processes [16] where quality
control is essential. A manufacturing process has inputs, i.e.,
raw materials, and output, i.e., products. Control charts
can detect deviations in the output due to variations in the
process or inputs across different manufacturing runs. If
there is a high deviation, an operator is alerted.

A software system is similar to a manufacturing process.
There are data inputs, e.g., the load inputs, and data out-
puts, e.g., the performance counters. When performance
regressions occur, the output performance counters deviate.
A control chart can potentially be applied to compare per-
formance regression tests where the process inputs are the
load, e.g., page requests on a web server, and the process
outputs are performance counters, e.g., CPU utilization or
disk IO activities. Unfortunately, control charts have two
assumptions about the data that are hard to meet in a per-
formance regression test. First, control charts assume that
the outputs, i.e., performance counters, have a uni-modal
normal distribution, since deviations are defined from the
mean of such a distribution. Second, control charts assume
that the load inputs do not vary across runs. If the inputs
are different, the counters would fluctuate according to the
inputs. Since both assumptions do not hold for performance
load tests, it seems that control charts cannot be applied to
this domain as is.

In this paper, we propose an approach that customizes con-
trol charts to automatically detect performance regressions.
It addresses the two issues with the assumptions mentioned
above. To evaluate our approach, we conduct a case study
on a large enterprise software system and an open-source
software system. Feedback from practitioners indicates that
the simplicity of our approach is a very important factor,
which encourages adoption because it is easy to communi-
cate the results to others.

The contributions of this paper are:

e We propose an approach based on control charts to
identify performance regressions.

e We derive effective solutions to satisfy the two assump-
tions of control charts about non-varying load and nor-
mality of the performance counters.

e We show that our approach can automatically identify
performance regressions by evaluating its accuracy on
a large enterprise system and an open-source software
system.

The paper is organized as follows. In the next section, we
introduce control charts. Section 3 provides the background
on performance regression testing and the challenges in prac-
tice. Section 4 describes our control charts based approach,
which addresses the challenges. In Section 5, we present the
two case studies, which evaluate our approach. Section 6
summarizes the related work and the feedback from practi-
tioners on our approach. We conclude in Section 7.

2. CONTROL CHARTS

2.1 What Are Control Charts?

Control charts were first introduced by Shewhart [16] at
Bell Labs, formerly known as Western Electric, in the early
1920s. The goal of control charts is to automatically deter-
mine if a deviation in a process is due to common causes,
e.g., input fluctuation, or due to special causes, e.g., defects.
Control charts were originally used to monitor deviation on
telephone switches.

Control charts have since become a common tool in statis-
tical quality control. Control charts are commonly used to
detect problems in manufacturing processes where raw ma-
terials are inputs and the completed products are outputs.
We note that, despite the name, control charts is not just
a visualization technique. It is a statistical technique that
outputs a measurement index called violation ratio.

Figure 1(a) and 1(b) show two example control charts. The
x-axis represents time, e.g., minutes. The y-axis is the pro-
cess output data. For this example, we are monitoring the
response rate of a web server. The two solid lines are the Up-
per Control Limits (UCL) and Lower Control Limit (LCL)
in between which the dashed line in the middle is the Centre
Line (CL). Figure 1(a) is an example where a process output
is within its control limits. This should be the normal oper-
ation of the web server. Figure 1(b), on the other hand, is
an example where a process output is out-of-control. In this
case, operators should be alerted for further investigation.

2.2 Construction of Control Charts
A control chart is typically built using two datasets: a base-
line dataset and a target dataset.

The baseline dataset is used to create the control limits, i.e.,
LCL, CL, and UCL. In the example of Figure 1(a) and 1(b),
the baseline set would be the response time of the web server
in the previous hour, previous day, or any past operation
periods. The CL is the median of all samples in the baseline
dataset during a particular period. The LCL is the lower
limit of the normal behaviour range. The UCL is the upper

limit. The LCL and the UCL can be defined in several ways.
A common choice is three standard deviations from the CL.
Another choice would be the 1, 5% or 10" percentiles for
the LCL and 90", 95" or 99*" percentiles for the UCL. For
example: there are eleven response time readings of 3, 4, 5,
6, 7,8,9, 10, 11, 12, and 13 milliseconds in the baseline set.
If we use the 10" and the 90** percentile as control limits,
the LCL, CL, and UCL would be 4, 8, and 12 respectively.

The target dataset is then scored against the control limits
of the baseline dataset. In Figure 1(a) and 1(b), the target
data are the crosses. Those would be the response time of
the current operating periods, e.g., the current hour or day.

The result of an analysis using control charts is the wviola-
tion ratio. The violation ratio is the percentage of the target
dataset that is outside the control limits. For example, if the
LCL and the UCL is 4 and 12 respectively, and there are ten
readings of 4, 2, 6, 2, 7, 9, 11, 13, 8, and 6, then the viola-
tion ratio is 30% (3/10). The violation ratio represents the
degree to which the current operation is out-of-control. A
threshold is chosen by the operator to indicate when an alert
should be raised. A suitable threshold must be greater than
the normally expected violation ratio. For example, if we
choose the 10" and the 90*" percentile as control limits, the
expected violation ratio is 20%, because that is the violation
ratio when scoring the baseline dataset against the control
chart built using itself. So, the operator probably wants to
set a threshold of 25% or 30%.

2.3 Assumptions of Control Charts

There are two basic assumptions of control charts:

Non-varying process input. Process output usually fluc-
tuates with the process input. If the process input rate in-
creases, the violation ratio will increase and an alert will be
raised independent of how the system reacts to the fluctu-
ation input. Such alert would be a false positive because it
does not correspond to a problem. So, the first condition for
applying control charts is the stability of the process input.

Normality of process output. Process output usually
has a linear relationship with the process input. This linear
relation leads to a normal distribution of the process output
which is the main underlying statistical foundation of control
charts. However, some manufacture processes take multiple
types of input, each of which individually still output a nor-
mal distribution. However, the combination of these inputs
would have a multi-modal distribution, which is impossible
to compare using control charts.

In the following section, we explain in details why these two
assumptions are hard to meet in performance regression test-
ing. We will give examples for each condition and propose
solutions to adapt the performance counters such that we
can apply control charts to detect performance regressions.

3. PERFORMANCE REGRESSION TESTING

Performance regression test is a kind of load test that aims
to detect performance regressions in the new version of a
software system. A performance regression means that the
new version uses more resources or has less throughput than
prior versions. We note the difference between performance

—— Baseline LCL,UCL
---- Baseline CL
X Target

Response time
x
X

Time
(a) Normal operation

—— Baseline LCL,UCL
---- Baseline CL .
X
qé Target
= X Xx
© X
2 X X X x
<} XX X
Q. X X X X X X
4 XX" N Xy WX X X
o JEEVA YAV R V) S A S X oX o=y = = = = = o X___
R T3 R X-x XXy
X
X
Time

(b) Out-of-control

Figure 1: Example of a control chart, which detects deviation in process output.

Apply standard load on an -
existing software version Baseline perf. counters
e.g. v1.0 e.g. % CPU usage
Apply the same the load
on a new software version Target perf. counters
eg vl.l e.g. % CPU usage

Detect Regression Report
performgnee e.g. pass or failed
regression .

Figure 2: Conceptual diagram of performance regression testing.

regression testing and stress testing (which is not the focus
of this paper). The goal of stress testing is to benchmark
the maximum load a software system can handle. The goal
of a performance regression testing, on the other hand, is
to determine if there is a performance regression between
software versions at a normal field-like load. Figure 2 shows
a conceptual diagram of a performance regression testing
process which is very similar to other regression testing (e.g,
functional regression testing).

Apply the load. Both the existing version and the new
version are put through the same load input. The load in-
put is usually called a load profile which describes the ex-
pected workload of the system once it is operational in the
field [1]. A load profile consists of the use case scenarios
and the rate of these scenarios. For example, a commercial
website should process 100 page requests/sec. So the test
engineers would use a load generator to create 100 pages re-
quests/sec which are directed to the web server under test.
This rate is maintained for several hours or even a few days.
To mimic real life, the rate is applied using a randomizer
instead of applying it in a constant fashion.

During the test, the application is monitored to record the
execution logs and performance counters data. In our case,
we are only interested in performance counters. A load test
typically collects four main types of performance counters:

e CPU utilization: the percentage of utilized CPU per
thread (in percentage).

e Memory utilization: the used memory (in megabytes).

e Network IO: the amount of network transfer (in and
out - in megabytes).

e Disk IO: the amount of disk input and output.

Detect performance regressions. After the tests are
done, the test engineers have to analyze the performance
counters. They compare the counters of the new version
with the existing version. The runs/counters of the ex-
isting version are called the baseline runs/counters. The

runs/counters of the new version are called the target runs/counters.

If the target counters are similar to the baseline counters,
the test will pass, i.e., there is no performance regression.
Otherwise, the test engineers will alert the developers about
the potential of performance regression in the new version.
For example, if the baseline run uses 40% of CPU on average
and the target run uses 39% of CPU on average, the new
version should be acceptable. However, if the target run
uses 55% of CPU on average, there is likely a performance
problem with the new version.

3.1 Challenges in Detecting Performance Re-

gressions

There is already good commercial support for executing per-
formance regression test and recording performance coun-
ters. HP has the LoadRunner software [9], which can auto-
matically simulate the work load of many network protocols.
Microsoft also has a load test tool, which can simulate load
on web sites or web services. The tool is offered as part of
the Visual Studio suite [14]. On the other hand, detecting
performance regression is usually done manually.

Challenge 1: Many performance counters to analyze.

In large software systems, e.g., Google search engine or large
web server farms, there are many components across several

machines. The total number of counters are in the thousands
with each counter being sampled at a high rate leading to
millions of data samples to analyze. Comparing the counters
to find performance regressions is very time consuming.

Challenge 2: Inconsistent performance counters across test
runs.

A big assumption in performance regression testing, as con-
ceptualized in Figure 2, is that the performance counters
will be the same if the software does not change. Thus, if
the baseline run uses X% of CPU and target run also uses
X%, then there is no change in the performance, i.e., there
are no performance regressions. On the opposite side, if the
target run uses >X% of CPU, then there is likely a perfor-
mance regression. The assumption here is that X% is a fixed
number.

In a large software system, the output performance counters
might be different due to the nondeterministic nature of the
system. For example, a web server would cache the recently
accessed web pages to improve performance. If there is a
high burst of page requests at the beginning of a test run, the
performance of the rest of the run will be remarkably better
than if the high burst happens at the end of the run, because
the cache would be filled faster in the former case. Hence,
five different baseline runs can yield 57%, 65%, 62%, 56%,
and 60% of CPU utilization. Although all the runs average
at about 60%, it is not clear if 60% should be the baseline to
compare against when a new version of the software is tested.
If the new version’s run yields a 65% CPU utilization, can
we be certain that there is a performance regression? After
all, there is one baseline run that uses 65% CPU.

To eliminate uncertainty, every time a new test run is per-
formed, the testers usually have to rerun the old version test
right after so they can compare between the two runs. The
extra run is very time consuming.

4. A CONTROL CHARTS BASED APPROACH

TO DETECT PERFORMANCE REGRES-
SIONS

A good approach to detect performance regressions should
address the two aforementioned challenges from the previous
section.

Trubin et al. [18] proposed the use of control charts for infield
monitoring of software systems where performance counters
fluctuate according to the input load. Control charts can
automatically learn if the deviation is out of a control limit,
at which time, the operator can be alerted. The use of con-
trol charts for monitoring inspires us to explore them for
the study of performance counters in performance regres-
sion tests. A control chart from the counters of previous
test runs, may be able to detect “out of control” behaviours,
i.e., deviations, in the new test run. The difficulty though
is that we want to detect deviations of the process, i.e., the
software system, not the deviations of the input, i.e., the
load.

Figure 3 shows a conceptual overview of our proposed con-
trol charts based approach. For each counter, we use the

counters in all the baseline runs, i.e., the runs of prior ver-
sions, to determine the control limits for the control chart.
Then, we score the target run using those limits. The re-
sulted violation ratio is an indicator of performance regres-
sions in the new software version. If the violation ratio is
high, the chance of a regression is high as well. If the viola-
tion ratio is low, the chance of a regression is low.

An approach based on control charts would address the two
challenges of performance regression testing. Control charts
provide an automated and efficient way to use previous base-
line runs to compare against a new test run without having
to perform more baseline runs (i.e., with minimal human
intervention).

However, to apply control charts to detect performance re-
gressions, we have to satisfy the two assumptions of control
charts explained in Section 2: non-varying process input
and normality of the output. Unfortunately, these two as-
sumptions are difficult to meet if we use the performance
counters as is. Hence we propose two preprocessing steps
on the counter data before constructing the control chart.
These steps are represented as the Scale and Filter process-
ing boxes in Figure 3). In the next two subsections, we de-
scribe in detail each of the proposed solutions and evaluate
their effectiveness.

4.1 Satisfying the Non-Varying Input Assump-
tion

In performance regression testing (Figure 2), the same load
is applied to both the baseline and target version. For ex-
ample if the load profile specifies a rate of 5,000 requests
per hour, the load generator will aim for 5,000 requests per
hour in total using a randomizer. The randomization of the
load is essential to trigger possible race conditions and to en-
sure a realistic test run. However, the randomization leads
to varying inputs throughout the different time periods of
a test run. The impact of randomization on the input load
and the output counters increases as the system becomes
more complex with many subcomponents having their own
processing threads and timers. Even in the Dell DVD Store
system [5] (see Section 5), which is a relatively small and
simple system, the load driver employs a randomizer. This
randomizer makes it impossible to get two similar test runs
with the same effective load input.

If the input load are different between runs, it is difficult to
identify performance regressions since the difference in the
counters can be caused by the different in the input load in-
stead of performance related changes in the code. Figure 5
shows a performance counter of two different runs coming
from two successive versions of a software system (see Sec-
tion 5 for more details). We divide the runs into eight equal
periods of time (x-axis). The y-axis shows the median of the
performance counter during that period. The red line with
round points is the baseline, which is from an earlier build.
The blue line with triangular points is the target, which is
from the new build. According to documentation, the fixes
between the two builds should not affect the performance of
the system. Hence, the performance counters should be very
similar. Yet, it turns out that they are different because of
the variation in the effective input load due to randomiza-
tion of the load. The smallest difference is 2% in the eighth

Target test
Counter 1

Run new

target test Scale

Filter
\ Create :
Control

Baseline test 1
Counter 1

Chart

Repository of
load test
results

Filter

Baseline test 2
Counter 1

\ Scale
/

Violation ratio

Figure 3: Outline of our approach to detect performance regression.

period. The highest difference is 30% in the first period. On
average, the difference is about 20%. The actual load inputs
are about 14% different between the two runs.

4.1.1 Proposed Solution

Our proposal is to scale the performance counter accord-
ing to the load. Under normal load and for well designed
systems, we can expect that performance counters are pro-
portionally linear to the load intensity. The higher the load,
the higher the performance counters are. Thus, the rela-
tionship between counter values and the input load can be
described with the following linear equation:

c=axl+p (1)

In this equation, c is the average value of the performance
counter samples in a particular period of a run. [is the
actual input load in that period. a and 8 are the coefficients
of the linear model.

To minimize the effect of load differences on the counters,
we derive the following technique to scale each counter of
the target run:

e We collect the counter samples (¢;) and corresponding
loads (Iy) in the baseline runs. For example, in third
minute the CPU utilization is 30% when the load is
4,000 requests per minute. In the next minute, the
load increases to 4,100 so the CPU utilization increases
to 32%.

e We determine « and 8 by fitting counter samples, e.g.
the CPU utilization, and the corresponding load, e.g.
the number of requests per second, into the linear
model: ¢ = axly + (B as in (1). The baseline runs
usually have thousands of samples, which is enough to
fit the linear model.

e Using the fitted « and 8, we can then scale the cor-
responding counter of the target run (c¢;) using the
corresponding load value (I;) as in (2).

4.1.2 Evaluation

Evaluation Approach. The accuracy of the scaling tech-
nique depends on the accuracy of the linear model in (1).
To evaluate the accuracy of the linear model, we need to use
the test runs of a software system. Hence, we evaluate the
accuracy on an industrial software system (see Section 5 for
more information).

We run a set of controlled test runs to build the linear model
as in (1). The control runs use the same stable version. We
pick a different target load for each test. For example, if
the first three runs have actual loads of 1,000, 1,200, and
1,000, we will aim for a load of 1,200 for the fourth run.
This choice ensures that we have enough data samples for
each load level, i.e., two runs with 1,000 and two runs with
1,200 in this example.

For each test run, we extract the total amount of load [and
the mean performance counter c¢ for each period of the runs.
Then we train a linear model to determine a and S using
part of the data. Then we can test the accuracy of the model
using the rest of the data. This technique is used commonly
to evaluate linear models. A common ratio for train and
testing data is 2:1. We randomly sample two-thirds of the
periods to train the linear model. Then we use the remaining
one-third to test the model. We repeat this process 50 times
to eliminate possible sampling bias.

Results. Figure 4 shows the result of our evaluation. The
graph on the left is the box plot of the Spearman correlation
between the predicted and the actual counter values. If the
Spearman correlation nears zero, the model is a bad one.
If the Spearman correlation nears one, then the model fits
well. As we can see, all 50 random splits yield very high
correlations. The graph on the right is the box plot of the
mean error between the predicted and the actual counter
values. As we can see, the errors, which are less than 2%
in most cases, are very small. These results show that the
linear model used to scale the performance counters based
on the actual load is very accurate.

Example. Figure 6 shows the performance counters of the
two runs in Figure 5 after our scaling. The counters of the
two tests are now very similar. As we can see, after scaling,
the target runs fluctuate closer to the baseline test. The
difference between the two runs is about 9% (between 2% to
15%) after scaling compared to 20% (between 2% to 30%)
without scaling (Figure 5).

Correlation Error

o | S
- f '
:
~
o _| '
o - '
:
:
,
o ©
£ @ — 5
» ° K
c N
g =
_ :N
S < z [.
o oS '
%] O ;
:
'
~ T 1
i :
o '
,
:
:
,
3 7 —

Figure 4: The accuracy of the linear model in (1).
Left: The Spearman correlations between the pre-
dicted and actual performance counter values of 50
random splits. Right: The errors between the pre-
dict and actual value in percentage.

4.2 Satisfying the Normality of Output Assump-

tion
Process output is usually proportional to the input. So the
counter samples’ distribution should be a uni-modal normal
distribution (unless the load is pushed to the maximum, as
in stress testing, the counter distribution will skew to the
right).

However, the assumption here is that there is only one kind
of effective load input. If there are many kinds of input,
the distribution of counters would be multi-modal as we ex-
plained in Section 2.3. Figure 9 shows the normal QQ plot
of a performance counter of a software under test (the En-
terprise system in Section 5). If the counter is uni-modal,
its samples should form a diagonal straight line. As we can
see, the upper part of the data fluctuates around a diagonal
straight line. However, the lower end does not. Unfortu-
nately, the data points at the lower end are not outliers;
they appear in all test runs of the software. As such, the
overall distribution is not uni-modal. A Shapiro-Wilk nor-
mality test on the data confirms that with p < 0.05.

Figure 7 shows a density plot of a performance counter of
two test runs of the same software under test. These two
runs come from two successive versions. The green line with
round points is the baseline run, which is based on an older
version. The red line with triangles is the target, which
is from a new version. As we can see in the graph, the
distribution of the performance counters resembles a normal
distribution. However, the left tail of the distribution always
stays up instead of decreasing to zero.

/A\A/A
A A
A/ B \

Performance Counter

P

Time period

Figure 5: The performance counters of two test
runs. The difference in performance is not a perfor-
mance regression since both runs are of very similar
builds. The difference (20% average) is due to dif-
ferences in the actual load.

When the system is under a load, the performance coun-
ters respond to the according load in a normal distribution.
However, in between periods of high load, the performance
counter is zero since there is no load input. The first point
on the density plot for both runs is about 4%. Hence, the
performance counter is at zero for about 4% of the time dur-
ing both test runs. The target run spent 5% of its time at
semi-idle state (the second point from the left on the red
curve). We discover that, when there is no load, the sys-
tem performs book keeping tasks. These tasks require only
small amounts of resources. We can consider these tasks as
a different kind a load input. These secondary tasks create
a second peak in the distribution curve, which explains the
long tail in the QQ plot of Figure 9.

Unfortunately, this is a common behaviour. For example,
on a web server, a web page would contain images. When
a web page is requested by the client, the web server has to
process and serve the page itself and the attached images.
The CPU cycles required to process an image are almost
minimal. Web pages, on the other hand, require much more
processing since there might be server side scripts on them.
Thus the distribution of the CPU utilization would be a
bi-modal distribution. The main peak would correspond
to processing the web pages. The secondary peak would
correspond to processing the images.

In the software system we study, only 16% of the studied test
runs are uni-modal. We confirm that these runs are, in fact,
normal as confirmed by Shapiro-Wilk tests (p > 0.05). The
majority of the runs, which is about 84%, have a bi-modal
distribution similar to that of the target run in Figure 7. In
the bi-modal runs, the left peak corresponds to the idle-time
spent on book-keeping tasks. The right peak corresponds to
the actual task of handling the load. The relative scale of
the two peaks depends on how fast the hardware is. The
faster the hardware, the more time the system idles, i.e.,

/

° A A
O\Q/A\A/Q>§:o><o

Performance Counter

P

Time period

Figure 6: The scaled performance counters of two
test runs in Figure 5. We scale the performance
counter according to the load to minimize the effect
of load differences between test runs. The average
difference between the two runs is only 9% as com-
pared to 20% before scaling.

Baseline
' ' —A— Target
& : o -~ LcLucL
‘ N
0 | ' '
] ' '
B3 ' '
2 A
g ' '
8 %1 | / |
' ' A
I e s
x4 \\ : / ' \A
Al AN
~—
o oA A=b=0—4

Performance counter

Figure 7: Density plot of two test runs.

the left peak will be higher. The slower the hardware, the
less time the system has to idle because it has to use more
resource to process the load. The right peak will be higher
and the left peak might not be there. The two runs shown
in Figure 7 are on relatively standard equipment. Figure 8
shows another two test runs that are performed on better
hardware configurations. As we can see, the left peaks in
the density plots are more prominent in the runs with better
hardware.

4.2.1 Proposed Solution

Our proposed solution is to filter out the counters’ samples
that correspond to the secondary task. The solution works
because performance regression testing is interested in the
performance of the system when it is under load, i.e., when
performance counters record relatively high values. Small
deviations are of no interest.

: A : I
< ! ! Baseline
—&— Target
. : ; ---- LCLuCL
o _| '
8 '
w | '
2 «© i A
> '
2 o | :
2 8§ :
i3 '
0 . | !
—
o | i
— '
o /i
:\ A A
o A/l A— A=—A~A \A\z

Performance counter

Figure 8: Density plot of another two different test
runs. These two runs are on a better hardware sys-
tem so the left peak is much higher than the two
runs in Figure 7.

To implement the filtering solution, we derive a simple al-
gorithm to detect the local minima, i.e., the lowest point
between the two peaks of a bi-modal distribution. Then,
we simply remove the data points on the left of the local
minima. The algorithm is similar to a high pass filter in an
audio system. For example, after the filtering is applied, the
first three points on the target run’s density plot in Figure 7
(the red line with triangles) would become zeros.

An alternative solution is to increase the load as the server
hardware becomes more powerful. The increased load will
make sure that the system spends less time idling and more
time processing the load, thus, removing the left peak. How-
ever, artificially increase the load for the sake of normality
defeats the purpose of performance regression testing and
compromises the ability to compare new tests to old tests.

4.2.2 Evaluation

Evaluation Approach. To evaluate the effectiveness of
our filtering technique, we pick three major versions of the
software system (the Enterprise system in Section 5) that we
are most familiar with. For each run of the three versions,
we generate a QQ plot and run the Shapiro-Wilk normality
test to determine if the runs’ performance counters are nor-
mal. Then, we apply our filtering technique and check for
normality again.

Results. We first manually inspect the density plots of
each run in the three versions. About 88% of the runs have
a bi-modal distribution. About 66% do not have a normal
distribution, i.e., the Shapiro-Wilk tests on these runs re-
turn p < 0.05. If the left peak is small enough, it will pass
the normality test. After filtering, 91% of the non-normal
runs become normal. We believe this demonstrates the ef-
fectiveness of our filtering solution.

Example. Figure 10 shows the QQ plot of the same data
as in Figure 9 after our filtering solution. As we can see,
the data points are clustered more around the diagonal line.
This means that the distribution is more normal. We per-
form the Shapiro-Wilk normality test on the data to confirm.

Sample Quantiles

Theoretical Quantiles

Figure 9: Normal QQ plot of CPU utilization coun-
ters. We show only 100 random samples of CPU
utilization from the run to improve readability.

The test confirms that the data is normal (p > 0.05). We
can now use the counter data to build a control chart.

S. CASE STUDIES

In this section, we describe the two case studies that we
conduct to evaluate the effectiveness of our control charts
based approach for detecting performance regressions.

5.1 Case Study Design

To measure the accuracy of our approach: a) We need to
pick a software system with a repository of good and bad
tests. b) For each test in the repository we use the rest
of the tests in the repository as baseline tests. We build a
control chart using these tests to create the control limits.
These control limits are, then, used to score the picked test.
c) We measure the violation ratio and determine whether
a test has passed or failed. d) We measure the precision
and recall of our approach using the following formulas by
comparing against the correct classification of a test:

|classified bad runs N actual bad runs|
|classified bad runs|

3)

precision =

|classi fied bad runs N actual bad runs|

(4)

Il =
reca lactual bad runs|

There are three criteria that we considered in picking the
case studies. We pick two case studies that fit these criteria.
The first case study is a large and complex enterprise soft-
ware system (denoted as Enterprise system). The second
one is a small and simple open-source software (denoted as
DS2). Table 1 shows a summary of the differences between
the two case studies.

Which performance counters should be analyzed? In
the Enterprise system, the focus of the performance regres-

10
|

Sample Quantiles

Theoretical Quantiles

Figure 10: Normal QQ plot of the performance
counters after our filtering process. The data is the
same as in the QQ plot of Figure 9. After we remove
the data that corresponds to the idle-time tasks, the
distribution becomes normal.

Table 1: Properties of the two case studies

Factor Enterprise | DS2
Functionality Telecommu- | E-
nication Commerce
Vendor’s business model | Commercial | Open-source
Size Large Small
Complexity Complex Simple
Known counter to ana- | Yes, use | No, use all
lyze CPU
Determining kinds of | Unknown Known
performance
Source of performance re- | Real Injection
gression

sion tests is to keep the CPU utilization low because the
engineers already know that CPU is the most performance
sensitive resource. On the other hand, the DS2 system is
new. We do not know much about its performance charac-
teristic. Thus, we have to analyze all performance counters.

What kind of performance regression problems can
we detect? In the Enterprise system, the testers’ classifica-
tion of the test results is available. Hence, we can calculate
the precision and recall of our approach on real-life perfor-
mance problems. However, we do not know what kind of
performance regression problems our approach can detect
since we cannot access the code. On the other hand, we
have the code for DS2. Thus, we inject performance prob-
lems, which are well known in practice [8], into the code of
DS2 and run our own test runs.

What is the threshold for the violation ratio? For
the enterprise system, we study the impact of different vio-
lation ratios. For the DS2 system, we show an automated
technique to determine the threshold. The technique can be
used for the enterprise system as well.

8 { »a N A A A — 5 |}«
—
+\
& / + + -
/Jr °\ \ /
+—t / o— AT A
8 ° S
o
= 0o
= 9
el o —/ + +
@
Lo | L <
~ [=]
A A
o | N
N o
—— Precision
—4— Recall
o —+ F-measure
Threshold

Figure 11: The accuracy of our automated approach
compared the engineers’ evaluation in the Enter-
prise case study.

5.2 Case study 1: Enterprise system

The system is a typical multiple-tier server client architec-
ture. The performance engineers perform performance re-
gression tests at the end of each development iteration. The
tests that we use in this study exercise load on multiple sub-
systems residing on different servers. The behaviour of the
subsystems and the hardware servers is recorded during the
test run. The test engineers then analyze the performance
counters. After the runs are analyzed, they are saved to
a repository so test engineers can compare future test runs
with these runs.

We pick a few versions of the software that we are most fa-
miliar with for our case study. There are about 110 runs in
total. These runs include past passed runs without perfor-
mance regressions and failed runs with performance regres-
sions. We note that we also used this dataset to evaluate
the effectiveness of the scale and the filter processing in Sec-
tion 4.1 and Section 4.2.

5.2.1 Evaluation Approach

We first establish the baseline for our comparison. We do
this with the help of the engineers. For each test run, we ask
the engineers to determine if the run contains performance
regressions, i.e., it is a bad run, or not, i.e., it is a good run.
We used the engineers’ evaluation instead of ours because
we lack domain knowledge and may be biased.

We compare our classifications with the engineers’ classifi-
cation and report the accuracy. However, we need to decide
on a threshold, ¢, such that if the violation ratio V, > ¢, run
z is marked as bad. For this study we explore a range of
values for t, to understand the sensitivity of our approach
to the choice of t.

5.2.2 Results

Figure 11 shows the precision, recall, and F-measure of our
approach. The threshold increases from left to right. We
hide the actual threshold values for confidentiality reasons.

F-measure

Table 2: Dell DVD store configuration

Property Value
Database size Medium (1GB)
Number of threads 50
Ramp rate 25
Warm up time 1 minutes
Run duration 60 minutes
Customer think time 0 seconds
Percentage of new customers 20%
Average number of searches per order 3
Average number of items returned in 5
each search

Average number of items purchased per 5
order

When the threshold increases, our classifier marks more runs
as bad, in which case the precision (blue with circles) will
increase but the recall (red with triangles) will decrease. The
f-measure (brown with pluses) is maximized when both the
precision and recall are at the optimum balance. The higher
the f-measure, the better the accuracy. The f-measure is
highest when the precision is 75% precision and the recall is
100%.

Our approach can identify test runs having perfor-
mance regressions with 75% precision and 100% recall
in a real software project.

5.3 Case study 2: Dell DVD store

The Dell DVD store (DS2) is an open-source three-tier web
application [5] that simulates an electronic commerce sys-
tem. DS2 is typically used to benchmark new hardware
system installations. We inject performance regressions into
the DS2 code. Using the original code, we can produce good
runs. Using the injected code, we can produce bad runs.

We set up DS2 in a lab environment and perform our own
tests. The lab setup includes three Pentium III servers run-
ning Windows XP and Windows 2008 with 512MB of RAM.
The first machine is the MySQL 5.5 database server [15],
the second machine the Apache Tomcat web application
server [17]. The third machine is used to run the load
driver. All test runs use the same configuration as in Ta-
ble 2. During each run, all performance counters associated
with the Apache Tomcat and MySQL database processes
are recorded.

5.3.1 Evaluation Approach

Create data. We perform the baseline runs with the orig-
inal code from Dell. We note, though, that one particular
database connection was not closed properly in the original
code. So we fix this bug before running the tests. Then,
we perform the bad runs with injected problems. In each of
these bad runs, we modify the JSP code to simulate common
inefficient programming mistakes that are committed by ju-
nior developers [8]. Table 3 shows the scenarios we simulate.
Each of these scenarios would cause a performance regres-
sion in a test run.

Table 3: Common inefficient programming scenarios

Table 4: Target run: System print, Baseline: Good

Procedure. We derive a procedure that use control charts
to decide if a test run has performance regressions given the
good baseline runs. The input of this procedure would be
the counters of the new test runs and the counters of the
baseline runs.

e Step 1 - Determining violation ratio thresholds
for each counter: In this step, we only use the base-
line runs to determine a suitable threshold for each
counter. For each counter and for each baseline run,
we create a control chart using the that run as a tar-
get test and the remaining runs as baseline. Then we
measure the violation ratio of that counter on that run.
We define the threshold for that counter as the maxi-
mum violation ratio for all baseline runs. For example,
we have five baseline runs. The violation ratios of the
Tomcat’s page faults per second counter of each run
are 2.5%, 4.2%, 1.4%, 4.2%, and 12.5%. The thresh-
old of the page faults counter of this baseline set is
12.5%.

e Step 2 - Identifying out-of-control counters: For
each counter in the target test run, we calculate the vi-
olation ratio on the control chart built from the same
counter in the baseline runs. If the violation ratio is
higher than the threshold in Step 1, we record the
counter and the violation ratio. For example, if the
Tomcat’s page faults per second counter’s violation ra-
tio is greater than 12.5%, we consider the page faults
counter as out-of-control. We present the counters or-
dered in the amount of violation relative to the thresh-
old.

The result of the procedure for each target run on a set
of baseline runs is a list of out-of-control counters and the
corresponding violation ratio. For example, Table 4 shows
the result of the analysis where the target is one run with
the system print problem (see Table 3) using five good runs
as baseline. The first column is the counter name. The
next column is the threshold. For example, the threshold
for MySQL IO read bytes/s is 8.3% which means that the
highest violation ratios among the five good runs is 8.3%.

10

Scenario| Good Bad runs 1, 2, 3, 4, and 5
Query Limit the number of | Get everything then Counter Threshold| Violation
limit rows returned by the | filter on the web Ratio
database to what will | server MySQL IO read bytes/s 8.3% 9.7%
be displayed Tomcat pool paged bytes 19.4% 83.3%
System Remove unnecessary | Leave debug log Tomcat 10 data bytes/s 9.7% 98.6%
print debug log printouts printouts in the code Tomcat IO write bytes/s 9.7% 98.6%
DB con- | Reuse database con- | Create new connec- Tomcat 10 data operations/s | 8.3% 100%
nection nections when possi- | tions for every query Tomcat IO write operations/s | 8.3% 100%
ble
Key in- | Create database | Forget to create index
dex index for frequently | for frequently used The last column is the violation ratio. As we can see, since
used queries queries the Tomcat process has to write more to the disk in the
Text in- | Create full-text index | Forget to create full- bad run, the top four out-of-control counters are Tomcat 10
dex for text columns text index for text related.
columns

5.3.2 Results

Table 5 shows the results of our test runs with the five inef-
ficient programming scenarios as described in Table 3. We
performed ten good runs and three runs for each scenario.
Due to space constraints, we show the number of out-of-
control counters and the average violation ratio for five good
runs and one run for each scenario. We note that for the
DS2 system, most of the performance counters are already
normally distributed. So only scaling, as described in Sec-
tion 4.1 is required.

As we can see from the first five rows of Table 5, when we use
one of the good runs as the target against other good runs
as baseline, the number of out-of-control counters and the
average violation ratios are low. Two out of the five runs do
not have any out-of-control counters. The other three runs
have average violation ratios of 13.15%, 13.6%, and 27.7%.
Since we pick the 5 and 95" percentiles as the lower and
upper limits, a 10% violation is expected for any counter.
Thus 13% violation ratio is considered low.

The bottom five rows of Table 5 show the results for the
problematic runs using the good runs as baseline. The num-
ber of out-of-control counters and the average violation ra-
tios are high except for the DB connection scenario (DC).
In summary, our proposed approach can detect performance
regressions in four out of the five scenarios.

We later find that, for the DC scenario, the new version of
the MySQL client library has optimizations that automat-
ically reuse existing connections instead of creating extra
connections. So even though we injected extra connections
to the JSP code, no new connection is created to the MySQL
server. This false negative case further validates the accu-
racy of our approach.

Our approach can identify four out of five common
inefficient programming scenarios.

6. RELATED WORK

To the best of our knowledge, there are only three other
approaches that aim to detect regressions in a load test.
Foo et al. [7, 6] detect the change in behaviour among the

Table 5: Analysis results for Dell DVD Store

Target | Baseline runs # out-of- | Average

run control violation
counters ratio

GO 1 GO 2,3,4,5 2 13.15%

GO 2 GO 1,3,4,5 0 NA

GO 3 GO 1,2,4,5 3 27.7%

GO 4 GO1,2,3 5 5 13.6%

GO 5 GO1,2,3,4 0 NA

QL GO 1,2, 3,4,5 14 81.2%

SP GO1,2,3,4,5 6 81.7%

DC GO1,2,3,4,5 2 12.5%

KI GO1,2,3,4,5 2 100%

TI GO1,2,3,4,5 17 71.2%

GO - Good, QL - Query limit, SP - System print, DC - DB

connection, KI - Key index, TI - Text index (See Table 3 for
description of the problematic test runs)

performance counters using association rules. If the differ-
ences are higher than a threshold, the run is marked as a
bad run for further analysis. Malik et al. [13] use a fac-
tor analysis technique called principal component analysis
to transform all the counters into a small set of more dis-
tinct vectors. Then, they compare the pairwise correlations
between the vectors in the new run with those of the base-
line run. They were able to identify possible problems in
the new run. Other approaches analyze the execution logs.
For example, Jiang et al. [11, 12] introduced approaches to
automatically detect anomalies in performance load tests by
detecting out-of-order sequences in the software’s execution
logs produced during a test run. If the frequency of the out-
of-order sequences is higher in a test run, the run is marked
as bad.

Our evaluation shows that the accuracy of control charts
based approach is comparable to previous studies that also
automatically verify load tests. Foo et al. [7]’s associa-
tion rules approach, which also uses performance counters,
achieved 75% to 100% precision and 52% to 67% recall.

Jiang et al. [11]’s approach, which uses execution logs, achieved

around 77% precision. Our approach reaches comparable
precision (75%) and recall (100%) on the Enterprise system.
However, it is probably not wise to compare precision and
recall across studies since the study settings and the evalu-
ation methods are different.

There are also other approaches to detect anomalies during
performance motoring of production systems. Many of these
techniques could be modified to detect performance regres-
sions. However, such work has not been done to date. For
example, Cohen et al. [4] proposed the use of a supervised
machine learning technique called Tree-Augmented Bayesian
Networks to identify combinations of related metrics that
are highly correlated with faults. This technique might be
able to identify counters that are highly correlated with bad
runs. Jiang et al. [10] used Normalized Mutual Information
to cluster correlated metrics. Then, they used the Wilcoxon
Rank-Sum test on the metrics to identify faulty components.
This approach can be used to identify problematic subsys-
tems during a load test. Chen et al. [2] also suggest an
approach that analyzes the execution logs to identify prob-

11

Table 6: Practitioners’ feedback on the three ap-

proaches
Approach| Strength Weakness
Foo et | Provide support for | Complicated to ex-
al. [7] root cause analysis | plain
of bad runs
Malik et | Compresses coun- | Complicated to com-
al. [13] ters into a small | municate findings due
number of impor- | to the use of com-
tant indices pressed counters
Control Simple and easy to | No support for root
charts communicate cause analysis

lematic subsystems. Cherkasova et al. [3] develop regression-
based transaction models from the counters. Then they use
the model to identify runtime problems.

7. FEEDBACK FROM PRACTITIONERS

To better understand the differences and similarities be-
tween our, Foo et al. [7]’s, and Malik et al. [13]’s approach.
We sought feedback from performance engineers who have
used all three approaches.

The feedback is summarized in Table 6. In general, the
strength of our approach compared to the other two ap-
proaches is the simplicity and intuitiveness. Control charts
quantify the performance quality of a software into a mea-
surable and easy to explain quantity, i.e., the violation ratio.
Thus performance engineers can easily communicate the test
results with others. It is much harder to convince the devel-
opers that some statistical model determined the failure of
a test than to say that some counters have many more vio-
lations than before. Because of that, practitioners felt that
our control charts approach has a high chance of adoption
in practice.

The practitioners noted that a weakness of our approach is
that it does not provide support for root cause analysis of
the performance regressions. Foo et al. [7], through their as-
sociation rules, can give a probable cause to the performance
regressions. With that feedback, we are currently investigat-
ing the relationship between different performance counters
when a performance regression occurs. We conjecture that
we can also use control charts to support root cause analysis.

The practitioners also noted that our approach to scale the
load using a linear model might not work for systems with
complex queuing. Instead, it might be worthwhile explor-
ing the use of Queuing Network models to do the scaling
for such systems. We are currently trying to find a software
system that would exhibit such a queuing profile to better
understand the negative impact of such a profile on our as-
sumptions about the linear relation between load inputs and
load outputs.

8. CONCLUSION

In this study, we propose an approach that uses control
charts to automated detect performance regressions in soft-
ware system. We suggest two techniques that overcome the
two challenges of using control charts. We evaluate our ap-
proach using test runs of a large commercial software system

and an open-source software system.

The results in both case studies are promising. The classi-
fication by our automated approach can achieve about 75%
precision and 100% recall compared to the real evaluation
in the Enterprise system. On the DS2 system, we can cor-
rectly identify four out of the five inefficient programming
scenarios. This is especially good considered that the other
scenario is actually a false negative.

We believe that our results warrant further studies to apply
statistical process control techniques such as control charts,
into software testing. For instance, the scaling technique
that we suggested in Section 4.1 might not be suitable for
other software systems where performance counters are not
linearly proportional to the load. Similarly, the filtering
technique in Section 4.2 might not be suitable for other
software system where the secondary load should also be
considered. Different scaling and filtering techniques should
be derived for such cases.

Statistical process control has been used in many fields such
as business and manufacturing. Hence, researchers in those
fields already have a broad and solid knowledge on how to
leverage these techniques in their operation. If we can lever-
age these statistical process control techniques into software
testing we might be able to reduce the cost of running and
analyzing tests and improve software quality overall.

9. ACKNOWLEDGEMENT

We would like to thank Research in Motion (RIM) for pro-
viding support and data access for this study. The findings
and opinions expressed in this paper are those of the au-
thors and do not necessarily represent or reflect those of RIM
and/or its subsidiaries and affiliates. Moreover, our results
do not in any way reflect the quality of RIM’s products.

10. REFERENCES

[1] A. Avritzer and E. R. Weyuker. The automatic
generation of load test suites and the assessment of
the resulting software. IEEE Transactions on Software
Engineering (TSE), 21(9):705-716, 1995.
M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In International Conference
on Dependable Systems and Networks (DSN), pages
595-604, 2002.
L. Cherkasova, K. Ozonat, M. Ningfang, J. Symons,
and E. Smirni. Anomaly? application change? or
workload change? towards automated detection of
application performance anomaly and change. In
International Conference on Dependable Systems and
Networks (DSN), pages 452—461, 2008.

12

[4]

8]

[9]
(10]

(11]

(12]

(13]

(14]

[15]
(16]

(17]

(18]

(19]

I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and
J. S. Chase. Correlating instrumentation data to
system states: a building block for automated
diagnosis and control. In Symposium on Opearting
Systems Design Implementation, pages 231-244, San
Francisco, CA, 2004. USENIX Association.

Dell Inc. DVD Store Test Application, 2010. Ver. 2.1.
K. C. Foo. Automated discovery of performance
a%girlessions in enterprise applications. Master’s thesis,
K. C. Foo, J. Zhen Ming, B. Adams, A. E. Hassan,
Z. Ying, and P. Flora. Mining performance regression
testing repositories for automated performance
analysis. In International Conference on Quality
Software (QSIC), pages 32-41, 2010.

H. W. Gunther. Websphere application server
development best practices for performance and
scalability. IBM WebSphere Application Server
Standard and Advanced Editions - White paper, 2000.
Hewlett Packard. Loadrunner, 2010.

M. Jiang, M. A. Munawar, T. Reidemeister, and

P. A. S. Ward. Automatic fault detection and
diagnosis in complex software systems by
information-theoretic monitoring. In International
Conference on Dependable Systems Networks (DSN),
pages 285294, 2009.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automatic identification of load testing problems. In
International Conference on Software Maintenance
(ICSM), pages 307-316, 2008.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automatic performance analysis of load tests. In
International Conference in Software Maintenance
(ICSM), pages 125-134, Edmonton, 2009.

H. Malik. A methodology to support load test
analysis. In International Conference on Software
Engineering (ICSE), pages 421-424, Cape Town,
South Africa, 2010. ACM.

Microsoft Corp. Windows reliability and performance
monitor, 2011.

MySQL AB. Mysql community server, 2011. Ver. 5.5.
W. Shewhart. Economic Control of Quality of
Manufactured Product. American Society for Quality
Control, 1931.

The Apache Software Foundation. Tomcat, 2010. Ver.
5.5.

I. Trubin. Capturing workload pathology by statistical
exception detection system. In Computer
Measurement Group (CMG), 2005.

E. J. Weyuker and F. I. Vokolos. Experience with
performance testing of software systems: Issues, an
approach, and case study. IEFE Transactions on
Software Engineering (TSE), 26(12):1147-1156, 2000.

