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Abstract—A theoretical investigation of the frequency structure of multiplicative

image motion signals is presented, e.g., as associated with translucency

phenomena. Previous work has claimed that the multiplicative composition of

visual signals generally results in the annihilation of oriented structure in the

spectral domain. As a result, research has focused on multiplicative signals in

highly specialized scenarios where highly structured spectral signatures are

prevalent, or introduced a nonlinearity to transform the multiplicative image

signal to an additive one. In contrast, in this paper, it is shown that oriented

structure is present in multiplicative cases when natural domain constraints are

taken into account. This analysis suggests that the various instances of

naturally occurring multiple motion structures can be treated in a unified

manner. As an example application of the developed theory, a multiple motion

estimator previously proposed for translation, additive transparency, and

occlusion is adapted to multiplicative image motions. This estimator is shown to

yield superior performance over the alternative practice of introducing a

nonlinear preprocessing step.

Index Terms—Multiplicative motion, translucency, dynamic occlusion,

pseudotransparency, non-Fourier motion, spectral analysis, optical flow, multiple

motion.
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1 INTRODUCTION

THE study of spatiotemporal structure in vision is dominated by
optical flow approaches. A fundamental assumption of these
formulations is that a single motion is present within a finite
image region of analysis. This single motion assumption com-
monly appears in the form of the conservation of some image
feature property (e.g., brightness [20], phase [15], etc.). The
performance of optical flow approaches, as measured on the
synthetic Yosemite sequence [5], has steadily improved to the point
where state-of-the-art algorithms obtain an impressive average
angular error (AAE) of 2 degrees (equivalent to approximately
0.1 pixels). However, caution should be taken when using these
results to predict performance with real-world imagery. As
pointed out by several researchers (e.g., [3], [5]), the Yosemite
sequence is a relatively simple example that does not contain
significant multiple motion phenomena, as one frequently en-
counters in nature as dynamic occlusion, pseudotransparency (e.g.,
partially obscuring foliage), and transparency/translucency (e.g.,
stained glass, atmospheric effects, lighting, and shadows). To
highlight these issues and others, there has been growing interest
in the community in introducing challenging real-world data sets
with ground truth [4], [24]. Not surprisingly, on these new data
sets, the state-of-the-art approaches perform relatively poorly in

regions not conforming to the intrinsic assumptions of the optical
flow algorithms.

The introduction of challenging test data sets highlights the
limitations in the dynamic image models that underlie extant
image motion estimators based on optical flow. From a practical
point of view, some of these difficulties can be surmounted by
making use of robust estimation procedures that treat data
violations of standard optical flow assumptions as outliers [25].
Nevertheless, it remains highly desirable to develop models that
capture the structure of spatiotemporal image data where optical
flow assumptions fail. Such models can serve both to further the
theoretical understanding of dynamic imagery as well as to
provide the basis for more sophisticated estimation procedures
that yield accurate and precise estimates in application to the
complexities of real-world data.

In this paper, a theoretical investigation is presented on the
frequency structure of multiplicative spatiotemporal phenomena,
such as translucency and dynamic occlusion. It appears that Fleet
presented the earliest analysis of multiple motions in the
frequency domain [14]. Subsequent research proposed computa-
tional schemes for recovering the image velocity of constituent
components within this framework [6], [16]. These approaches
focused on a world where constituent patterns were composed of
a few spectral components (e.g., sinusoids and plaids). In the real
world, the spectra of image patterns is typically of a broadband
nature [27]. For the case of dynamic occlusion with broadband
signals, Yu et al. [30] demonstrated that the spectral features
relied on in earlier work, [6], [16], are not reliable. The key to
their analysis is understanding spatiotemporal structure in a
more natural domain rather than in some highly contrived one.
In the present paper, this idea is further pursued by introducing
an additional natural domain constraint, that of nonnegativity of
the image signal and attenuation/transmittance in the signal
composition stage. It will be demonstrated that the addition of
this simple constraint imposes oriented spatiotemporal structure
that was previously claimed to be lost in the multiplicative
composition of multiple motions.

2 PRELIMINARIES

2.1 Relevance of Frequency Analysis

The Fourier transform is a global transform and, as such, care must
be taken in extrapolating results to local phenomena. A common
property among the phenomena to be studied is that they are
characterized by linear structures in the spectral domain. These
structures represent idealizations. In practice, as a consequence of
the uncertainty principle [8], these structures are subject to blurring
by the window of analysis. The use of smooth windows (e.g., a
Kaiser window [17]) can ameliorate this problem to some degree but
will not remove it completely. The use of larger windows can also
reduce this problem; however, this increases the possibility of
mixing simple local structures. This dilemma represents an
instance of the generalized aperture problem [21].

In order to apply the Fourier transform, the signal must
conform to the Dirichlet conditions [8]. These conditions require
that, over any interval, the signal is absolutely integrable, of
bounded variation, and that it has a finite number of disconti-
nuities, each of which is finite. Since any measured physical signal
satisfies these conditions, the analysis is ensured to hold for
arbitrary natural image sequences.

2.2 Translation

Consider an image signal, Iðx; tÞ, parameterized in terms of
spatial coordinates, x ¼ ðx; yÞ>, and time, t, as it moves with
velocity, v ¼ ðu; vÞ>. The corresponding spectrum is given by [2],
[13], [18], [29]
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~Iðk; !tÞ ¼ ~IðkÞ�ðk>vþ !tÞ; ð1Þ

where k ¼ ð!x; !yÞ> denotes the spatial frequency vector, !t the
temporal frequency, ~ denotes the Fourier transform of the
corresponding signal, and �ðÞ is the Dirac delta function. Geome-
trically, this can be interpreted as the spectrum being restricted to a
plane through the origin with normal ðv>; 1Þ>. In the 2D case,
consisting of a single spatial dimension, x or y, and time, t, the
planar spectra reduces to a line through the origin. This motion is
often referred to as first-order motion or Fourier motion, whereas the
multiplicative types of motion stimuli of concern in this paper are
often referred to as non-Fourier motion [16].

2.3 Generative Model

For the cases of multiple motions considered in this paper, the
following recursive procedure is used as the generative model for
obtaining the final image from component layers [1]. Assume that
the depth ordering of the N layers relative to the viewer is given,
where the layer composition results are denoted I0ðxÞ; . . . ; IN�1ðxÞ.
At each pixel, each layer, n, may partially transmit the total
amount of light from the layers beneath it by a transmittance factor
of TnðxÞ, where 0 � TnðxÞ � 1, and may contribute its own
emission of quantity EnðxÞ, where EnðxÞ � 0. The nonnegativity
of the emission term, EnðxÞ, follows from the fact that it represents
power per unit foreshortened area per unit solid angle (radiance)
and thereby cannot take on negative values. The boundary cases of
the transmittance factor consisting of zero and one indicate that the
light from the previous layers is fully attenuated and fully
transmitted, respectively. The final composite image is the result
of applying this process recursively from back-to-front, formally,

InðxÞ ¼ TnðxÞIn�1ðxÞ þ EnðxÞ; ð2Þ

where n � 0 and I0ðxÞ � E0ðxÞ. Strictly speaking, the image signal
is given in terms of irradiance, while InðxÞ is given as scene
radiance in the generative model (2); however, since image
irradiance is proportional to scene radiance [19], this distinction
is neglected here, as it has been in developing other applicable
analyses of transparency, e.g., [1], [28].

In the sequel, the generative model (2) is used as a basis for
understanding the frequency structure of various dynamic multi-
plicative phenomena. Without loss of generality, the number of
layers under consideration will be restricted to two. As in [30], the
focus here is on broadband signals, which is the typical case for
real-world signals. A novel aspect of the present model in
comparison to previous formulations used to understand the
frequency structure of dynamic imagery [6], [14], [16], [30] is the
explicit introduction of the nonnegativity constraint of the image
signal and transmittance. It will be demonstrated that enforcing
this constraint yields oriented structure in the frequency domain
that was conjectured in earlier work to be annihilated in the
composition process [14], [16]. Interestingly, the constraint of
nonnegativity of the image signal has previously appeared in work

concerning the simultaneous reconstruction of component images
and recovery of motions in imagery containing reflections and
transparency [28]; however, the authors did not pursue the
implication of the nonnegativity constraint on the explicit structure
of the signal. In terms of the generative model (2), this case
corresponds to a spatially constant transmittance term.

3 SPECTRAL ANALYSIS OF MULTIPLICATIVE MOTION

3.1 Translucency

Assume that an image signal, I0ðxÞ, is viewed through a
nonrefractive translucent layer with transmittance T1ðxÞ. If
components I0ðxÞ and T1ðxÞ are moving with velocities v0 and
v1, respectively, using the generative model (2), the image
sequence signal can be written as

I1ðx; tÞ ¼ T1ðx� v1tÞI0ðx� v0tÞ: ð3Þ

From the generative model, the transmittance factor is strictly
nonnegative. Consequently, T1ðxÞ can be reexpressed as the sum of
a constant/DC term � and a zero mean signal, T ðxÞ ¼ T1ðxÞ � �.
Furthermore, to reflect the nonnegative nature of image signals,
I0ðxÞ can be reexpressed as a constant/DC term � plus a zero mean
signal, IðxÞ ¼ I0ðxÞ � �. Including these constraints in (3) yields

I1ðx; tÞ ¼ ð�þ T ðx� v1tÞÞð� þ Iðx� v0tÞÞ
¼ �� þ �Iðx� v0tÞ þ �T ðx� v1tÞ
þ T ðx� v1tÞIðx� v0tÞ:

ð4Þ

From the standard Fourier motion result (Section 2.2), the
superposition property, and the convolution theorem of the Fourier
transform [8], it can be easily shown that the Fourier transform
of (4) is

~I1ðk; !tÞ ¼ ���ðk; !tÞ
þ �~IðkÞ�ðk>v0 þ !tÞ þ � ~T ðkÞ�ðk>v1 þ !tÞ
þ ð ~T ðkÞ�ðk>v1 þ !tÞÞ�ð~IðkÞ�ðk>v0 þ !tÞÞ;

ð5Þ

where � symbolizes the convolution operator. Assuming broad-
band component signals, the first term corresponds to a DC term.
The second and third terms correspond to two oriented spectral
planes. Their normal vectors ðv>0 ; 1Þ

> and ðv>1 ; 1Þ
> denote their

respective layer velocities. The final term corresponds to the
convolution between two 3D planes that yields a nonoriented
structure in the case of broadband signals. Finally, one can include
the emission term, E1ðxÞ, that will result in the strengthening of the
planar spectral structure of the translucent layer.

Fig. 1 illustrates the frequency spectra for the various terms of
(5) and their compositional result. For illustrative purposes,
attention is restricted to the 2D case (x� t). The constituent image
signals are both white noise moving in opposite directions with a
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Fig. 1. Synthetic multiplicative transparency image sequence. The term-by-term composition of a multiplicative transparency is illustrated in the 2D, !x � !t, frequency

domain (magnitude terms displayed), as given by (5). The white noise structures are moving in opposite directions with a speed of 1 pixel/frame. A Kaiser window in the

spatiotemporal domain was used to reduce windowing distortions for all terms, except the DC term. For display purposes, the logarithm of the spectrum is displayed.



speed of 1 pixel/frame. As can be seen, enforcing the nonnega-
tivity constraint on the image signal by way of introducing DC
components reveals the oriented structure of the constituent
surfaces with the convolution (distortion) term acting as a
nonoriented noise-like backdrop. In the case where both DC terms
are zero, a clear violation of the nonnegativity constraint, the
translucency reduces to the nonoriented term

ð ~T ðkÞ�ðk>v1 þ !tÞÞ � ð~IðkÞ�ðk>v0 þ !tÞÞ: ð6Þ

In Fig. 2, a real translucency example is presented. This

example consists of a painting moving behind a spatially varying

translucent material that is also in motion and captured by a

stationary video camcorder. In the epipolar slice image, two

symmetric diagonal-oriented structures are clearly evident. Corre-

spondingly, the main power in the spectral domain is dominated

by two lines through the origin. These structures are consistent

with the constant leftward and rightward motions present within

the analysis window.
Structured lighting and shadows can also be modeled as

multiplicative motions as the local surface albedo determines the

proportion of impinging light that is reflected. In Fig. 3, a real

structured light example is presented. This example consists of a

moving structured light illuminating a textured surface moving in

the opposite direction, captured by a stationary video camcorder.

In the epipolar slice image, two symmetric diagonal-oriented

structures are clearly evident. Correspondingly, the main power in

the spectral domain is dominated by two lines through the origin.

These structures are consistent with the constant leftward and
rightward motions present within the analysis window.

Beauchemin and Barron [6] also considered the case of
translucent materials. However, the authors focused on a special
case consisting of a spatially constant translucent material, as
opposed to spatially varying in the analysis above, that results in
the following weighted superposition of signals:

I1ðx; tÞ ¼ ð1� �ÞE1ðx� v1Þ þ �I0ðx� v0Þ; ð7Þ

where � represents the constant translucency factor. This case is
commonly referred to as additive transparency. By the superposition
property of the Fourier transform, its spectrum consists of the sum
of the translational spectra of the individual layers. With the
exception of the distortion term, scaling factors, and DC
component, the spectra for additive and multiplicative transpar-
ency are identical. Computational schemes for dealing with the
additive transparency case are presented in [26], [31].

3.2 Occlusion

In this section, the analysis of dynamic occlusion given in [30] is
extended by enforcing the nonnegativity constraint on image
signals.

Assume that an image signal, I0ðxÞ, moves with a velocity v0

behind an opaque surface with transmittance T1ðxÞ and
emission E1ðxÞ moving with velocity v1. Unlike the translucency
case in Section 3.1, the transmittance function is now binary
(i.e., T1ðxÞ 2 f0; 1g). The occlusion relationship between the two
surfaces can be modeled as follows:
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Fig. 2. Real translucency example. (a) and (b) depict the “raffia weave” texture from the Brodatz database [9] and van Gogh’s Starry Night painting, respectively, used to
form the constituent layers of the translucency example. (c) and (d) represent the first and last frames of a 32-frame image sequence depicting the Starry Night painting
(i.e., opaque surface) moving behind an acetate (i.e, translucent material) depicting the “raffia weave” texture, captured by a stationary video camcorder. The surfaces
are moving in opposite directions (leftward and rightward) with approximately equal speed. The movements were generated using computer-controlled translating
stages. The white solid lines overlayed for display purposes only in (c) and (d) denote the 32 pixel (horizontal) spatial extent of the analysis window; the temporal extent of
the analysis window is 32 frames. (e) The epipolar slice of the sequence along the analysis window; the spatial and temporal axes point rightward and downward,
respectively. (f) The 2D power spectrum of the Kaiser windowed analysis region; the origin of the spectrum lies in the middle of the image. For display purposes, the DC
component has been removed.



I1ðx; tÞ ¼
ð1� T1ðx� v1tÞÞE1ðx� v1tÞ þ T1ðx� v1tÞI0ðx� v0tÞ:

ð8Þ

Next, let the nonnegativity constraints be introduced to both the

transmittance and emission terms. The transmittance T1ðxÞ can be

reexpressed as the sum of a constant/DC term � and a zero mean

signal, T ðxÞ ¼ T1ðxÞ � �. While the emission terms E1ðxÞ and I0ðxÞ
can be reexpressed as constant/DC terms, � and �, plus zero mean

signals: EðxÞ ¼ E1ðxÞ � � and IðxÞ ¼ I0ðxÞ � �. Introducing these

constraints in (8) yields

I1ðx; tÞ
¼ ð1� �� T ðx� v1tÞÞð� þ Eðx� v1tÞÞ
þ ð�þ T ðx� v1tÞÞð� þ Iðx� v0tÞÞ:

ð9Þ

The corresponding Fourier transform can be written as

~I1ðk; !tÞ ¼ ðð1� �Þ� þ ��Þ�ðk; !tÞ
þ �~IðkÞ�ðk>v0 þ !tÞ
þ ð1� �Þ ~EðkÞ�ðk>v1 þ !tÞ
þ ð� � �Þ ~T ðkÞ�ðk>v1 þ !tÞ
� ð ~T ðkÞ�ðk>v1 þ !tÞÞ � ð ~EðkÞ�ðk>v1 þ !tÞÞ
þ ð ~T ðkÞ�ðk>v1 þ !tÞÞ � ð~IðkÞ�ðk>v0 þ !tÞÞ:

ð10Þ

The final step consists of defining a transmittance function.

Following [14], [30], the 2D Heaviside function (i.e., unit step) is

used for the support of the occluder

T1ðxÞ ¼
�

1; x>n̂ � 0;
0; otherwise;

ð11Þ

where n̂ denotes the unit normal vector to the occluding boundary.
Note that the DC term of (11) is given by � ¼ 1=2. The assumption
of a linear occluding boundary can be justified on the grounds that
the region of analysis that straddles the boundary is generally
much smaller than the constituent surfaces.

With the occlusion model (10), fully specified, it can now be
interpreted with broadband signal components. The first term
corresponds to a DC component. The second and third terms
correspond to the scaled spectral planes of the occluded and
occluder signals, respectively. Their normal vectors ðv>0 ; 1Þ

> and
ðv>1 ; 1Þ

> denote their respective layer velocities. It is interesting to
point out here that, in the present derivation, both the occluder and
occluded signals explicitly appear as separate terms (ignoring scale
and bias), whereas, in the original derivation of [30, (12)], only the
occluder signal appears undistorted. The oriented structure of the
occluder signal is reinforced by the fourth and fifth terms.
Observing that the motion of the Heaviside function is an instance
of the aperture problem [19], the final term corresponds to a
convolution between a 3D line and a 3D plane. This lone term
contributes to a distortion from the ideal case of superposition
between two oriented planes. As pointed out in [30], the influence of
the convolution of the line corresponds to a hyperbolic distortion
that can be assumed negligible as compared to noise. Importantly,
the main energy of the spectrum lies on the two spectral planes
given by the motion of the occluder and occluded signals.

3.3 Pseudotransparency

Pseudotransparency (also commonly referred to as diaphanous or
gauzy/sheer transparency) can also be accommodated by the
model (10). This spacetime structure corresponds to the case where
the holes in a perforated occluder are below the observer’s spatial
resolution limit [22]. In other words, across the region of concern,
each analysis window contains both the foreground and back-
ground. A prime example of this case in the real world is viewing a
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Fig. 3. Real structured light example. (a) and (b) depict the “wood grain” and “pigskin” textures, respectively, from the Brodatz database [9], used to form the constituent
layers of the structured light example. (c) and (d) represent the first and last frames of a 32-frame image sequence depicting a moving structured light pattern projected
(using an LCD projector) onto an opaque moving surface, captured by a stationary video camcorder. The structured light and opaque surface depict the “wood grain” and
“pigskin” textures, respectively. The surfaces are moving in opposite directions (leftward and rightward) with approximately equal speed. The movement of the opaque
surface was generated using a computer-controlled translating stage. The white solid lines overlayed for display purposes only in (c) and (d) denote the 32 pixel
(horizontal) spatial extent of the analysis window; the temporal extent of the analysis window is 32 frames. (e) The epipolar slice of the sequence along the analysis
window; the spatial and temporal axes point rightward and downward, respectively. (f) The 2D power spectrum of the Kaiser windowed analysis region; the origin of the
spectrum lies in the middle of the image. For display purposes, the DC component has been removed.



moving object through some fragmented surface, such as a fence,
leafless bush, grassy field, etc. Assuming that the binary
transmittance function of the occluder is broadband, reflecting its
typically “complex” nature, (10) can again be interpreted as two
oriented spectral planes through the origin reflecting the velocities
of the two surfaces, where the distortion in the last term, as in the
case of translucency, corresponds to a nonoriented noise backdrop.

In Fig. 4, a real pseudotransparency example is presented. This
example consists of a person moving rightward behind a stationary
chain-linked fence, captured by a stationary video camcorder. In
the epipolar slice image, diagonal and vertical-oriented structures
are clearly evident. Correspondingly, the main power in the
spectral domain is dominated by two lines through the origin.
These structures are consistent with the constant rightward motion
and static structures present within the analysis window.

4 EXAMPLE APPLICATION: MULTIPLE MOTION

RECOVERY

As an example application of the theoretical analysis developed in
this paper, this section considers the problem of multiple motion
recovery with multiplicatively combined image motion signals. In
order to recover the multiple motions, the approach of Yu et al., [32]
is adapted. This approach originally was proposed in the context of
translation, additive transparency, and occlusion image motion
signals, where component motions were taken as giving rise to
corresponding planes in the frequency domain. Accordingly, the
basic idea behind the approach is to simultaneously fit a set of
planes to the 3D power spectrum of the input image sequence to
estimate the component motions. Significantly, previous analyses
of multiple motions suggest that such an approach will fail in
application to multiplicatively combined signals, as the compo-
nent-oriented structures would have been annihilated. In contrast,
the present analysis suggests that such a method can be applied
directly to the input signal, as the orientation structure is preserved,
and that is the basis of the present approach. For the sake of keeping
the current paper self-contained, the spectral fitting method is
summarized next. The approach breaks down into two parts: First,
the input image signal is mapped to the frequency domain and
distortions suppressed; second, Expectation-Maximization (EM)
[10] is applied to estimate the component velocities.

Mapping to the frequency domain is accomplished via
application of a windowed Fourier transform over the spatiotem-
poral region of interest. This processing is accomplished using a
Kaiser windowed Fourier transform, as used elsewhere in the
current paper. Next, a 3D low-stop filter is applied to mitigate the
effects of distortions at low frequencies. The frequency response of
the low-stop filter is defined as

Lðk; !tÞ ¼
1

�þGðk; !t;�0; �
2
0Þ
� 1

�þGð0; 0; 0;�0; �
2
0Þ
; ð12Þ

where Gðk; !t;�; �2Þ denotes the 3D Gaussian in the spectral
domain with mean value, �0 ¼ ð0; 0; 0Þ>, and variance, �2

0 ¼ �=16.
The parameter �, which acts as a signal pedestal, is set to 0.1.

With the data so transformed, the second part of the method
consists of iterating between an expectation step (E-step) and a
maximization step (M-step), until the velocity estimates converge.
Assuming that there are two motions in the composition, and
beginning with arbitrary initial motion values, �u1 ¼ ðu1; v1Þ> and
�u2 ¼ ðu2; v2Þ>,1 the E-step assigns weights wi;1 and wi;2 to the
ith point as follows:

wi;1 ¼
1

1þ e�ðri;2�ri;1Þ=�2 ; ð13Þ

wi;2 ¼
1

1þ e�ðri;1�ri;2Þ=�2 ; ð14Þ

where

ri;1 ¼ a2
i ð!i;xu1 þ !i;yv1 þ !i;tÞ2; ð15Þ

ri;2 ¼ a2
i ð!i;xu2 þ !i;yv2 þ !i;tÞ2; ð16Þ

and ai denotes the amplitude of the ith point in the spectral domain.
These weights represent the membership probability for each point.

Given the weights from the E-step, the M-step solves the
following two (weighted) linear systems in a least-squares manner:

wi;1ai!i;xu1 þ wi;1ai!i;yv1 þ wi;1ai!i;t ¼ 0; ð17Þ

wi;2ai!i;xu2 þ wi;2ai!i;yv2 þ wi;2ai!i;t ¼ 0: ð18Þ

In contrast to the approach suggested in the present paper, i.e.,
analyzing the spacetime-oriented structure directly, some previous
research has proposed preprocessing image sequence data with a
logarithmic transformation to deal with multiplicative transpar-
ency, e.g., [7], [23]. Under such a transformation, the multiplicative
composition is changed to an additive one and subsequent
processing proceeds much the same as it would for additive
transparency (i.e., consideration of multiple dominant orienta-
tions).2 To conclude this section, an empirical comparison is made
between analyzing the signal directly (as suggested in this paper)
and the logarithmic preprocessing step for multiple motion
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Fig. 4. Real pseudotransparency example. (a) and (b) represent the first and last frames of a 32-frame image sequence depicting a person moving rightward behind a
stationary chain-linked fence, captured by a stationary video camcorder. The white horizontal lines overlayed for display purposes only in (a) and (b) denote the 32-pixel
(horizontal) spatial extent of the analysis window; the temporal extent of the analysis window is 32 frames. (c) The epipolar slice of the sequence along the analysis
window; the spatial and temporal axes point rightward and downward, respectively. (d) The 2D power spectrum of the Kaiser windowed analysis region; the origin of the
spectrum lies in the middle of the image. For display purposes, the DC component has been removed.

1. In the following, � is used to distinguish empirically recovered
estimates.

2. Interestingly, Langley [23] asserted a positivity constraint on the
component signals of multiplicative motions. This was for the purpose of
ensuring that the logarithmic operation was defined. The author did not,
however, study the implications of such a constraint on the explicit
structure of the signal.



recovery with multiplicative image signals. For both cases, motion
estimates are recovered using the spectral plane fitting method
[32], as summarized above.

The first comparison considered a synthetic signal consisting of
two (nonnegative) white noise signals that have been combined
multiplicatively, analogous to the pattern used to generate Fig. 1.
The component signals translate with velocities u1 ¼ ð1; 1Þ> and
u2 ¼ ð1;�1Þ>. The spatiotemporal support of the input signal was
32� 32� 32. For this case, the spectral plane fitting algorithm
applied directly to the input signal successfully converged to
velocity estimates of �u1 ¼ ð0:924; 0:992Þ> and �u2 ¼ ð0:987;�0:973Þ>
after six iterations. In contrast, the logarithmically preprocessed
signal converged to incorrect results of �u1 ¼ ð1:118;�0:374Þ> and
�u2 ¼ ð0:183; 1:054Þ>. Several additional runs of the algorithm
applied to the logarithmically preprocessed signal were attempted
by randomly varying the initial motion values without success. As
a control, the spectral plane fitting method also was run directly on
an additive combination of the same component signals used to
construct the multiplicative signal. In this case, the algorithm
converged to �u1¼ð0:904; 0:995Þ> and �u2 ¼ ð0:995;�0:941Þ>, which is
close to both the ground truth and the result of directly processing
the input multiplicative transparency signal. Taken together, these
results suggest that the spectral plane fitting method is directly
applicable to both additive and multiplicatively combined motion
signals; however, preprocessing with the logarithmic transforma-
tion significantly damages performance.

As a second comparison, the real translucency example in Fig. 2
was considered. A 32� 32� 32 spacetime volume around the
region marked with the white line overlaid on the figure was used
as input. While effort was made to move the component surfaces in
opposite horizontal directions with approximately the same speed
and maintain minimal vertical motion, no strict ground truth is
available; so, only qualitative observations can be made. Here, the
spectral plane fitting algorithm applied directly to the input signal
converged to the velocities of �u1 ¼ ð�0:619; 0:007Þ> and
�u2 ¼ ð0:710;�0:005Þ>, which qualitatively is consistent with the
input. In contrast, the logarithmically preprocessed signal erro-
neously converged to the velocity estimates of �u1 ¼ ð�0:307;
0:048Þ> and �u2 ¼ ð0:739;�0:058Þ>. Again, the spectral plane fitting
method was run numerous additional times on the logarithmically
preprocessed signal while randomly varying the initial motion
values without a change in the converged result. These results
further demonstrate practical relevance of the present analysis of
multiple motions for application to real imagery.

What is the cause of the relatively poor performance of the
logarithmically transformed imagery? An explanation can be had
by observing that the logarithmic transformation is compressive
and thereby reduces the dynamic range of the imagery to which it
is applied. In the case of the natural imagery example, the
constituent surface patterns have a relatively small dynamic range

even prior to the transformation. After application of the
logarithmic transformation, the structure in the power spectrum
attributable to the Starry Night painting apparently is not reliably
discernable from the noise in the input signal; consequently, its
motion component is poorly estimated. Similarly, in application to
the synthetic imagery, the logarithmic transformation compresses
the dynamic range of the signal and neither of the velocities are
estimated accurately. Overall, it is seen that the method based on
the analysis presented in the present paper is not only simpler than
the alternative (it requires no logarithmic preprocessing), it also
produces more reliable results.

5 DISCUSSION

The contributions of this paper are both theoretical and practical.
From a theoretical point of view, the analysis shows that five
major classes of image motion patterns can be treated in a unified
manner simply through consideration of the physical constraint
that natural image signals cannot take on negative values. In
particular, the cases of translational motion, additive transpar-
ency, dynamic occlusion, pseudotransparency, and multiplicative
transparency are all characterized by dominant planes through the
origin in the spectral domain, where the planes are indicative of
the individual component motion patterns (see Fig. 5).

From a practical point of view, with the common structure of
various multiple motion patterns revealed, correspondingly uni-
fied image processing and inference mechanisms can be devel-
oped. Such developments can remove the need for operations that
proceed on a case-by-case basis, including potentially complicated
integration mechanisms. As an example, a spectral plane fitting
mechanism, previously demonstrated with respect to translation,
additive transparency, and occlusion [32], was generalized in
Section 4 of this paper to apply to multiplicative multiple motion
estimation as well. More generally, the theoretical developments
can serve to motivate further techniques for image sequence
processing and interpretation based on spatiotemporal orientation
measurements, irrespective of whether multiple motions are
present or not and irrespective of whether multiple motions are
combined additively or multiplicatively. For example, recent
techniques for segregating and delineating boundaries between a
wide range of juxtaposed spatiotemporal patterns in image
sequences based on spacetime orientation measurements have
their theoretical foundation in the present analysis of multiple
motions [11], [12]. Along these lines, a practical limitation that will
enter into the application of such techniques will arise from how
fine grained a distinction can be made between multiple orienta-
tions in visual spacetime, Iðx; tÞ.

As discussed in Section 4, an alternative to the approach
suggested in the present paper is to preprocess the input image
sequence with a logarithmic transformation to deal specifically
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Fig. 5. Comparison of 2D spectra of various spacetime structures with white noise sequences. Each of the patterns is windowed with a Kaiser window prior to applying
the Fourier transform. Each of the component layers moves with a speed of 1 pixel/frame; motion is in opposite directions in the case of multiple components. (a)-(e) The
magnitude spectra for: (a) translational motion, (b) additive transparency, (c) dynamic occlusion, (d) pseudotransparency, and (e) multiplicative transparency; the origin
of the spectrum lies in the middle of the image. The pseudotransparency case was realized using white noise patterns for the emission terms and a numerically rounded
low-pass white noise pattern for the transmittance factor. Each of these spacetime structures are characterized by oriented lines passing through the origin, where their
orientation reflects the speed and direction of motion of the constituent layers. For display purposes, the DC components have been removed.



with the case of multiplicative transparency [7], [23]. Such an

approach has significant limitations. First, it suggests that multi-

plicative transparency be dealt with as a special case, including

attendant issues of integration with results produced in terms of

other motion classes. Second, the logarithmic transformation is

compressive and thereby will result in a significant reduction of

the signal-to-noise ratio. Indeed, the practical ramification of such

reductions were seen in the experiments reported in Section 4.

Moreover, the analysis presented in this paper shows that such a

transformation of the image data is not needed, as the physical

nature of the signal already ensures that the data are amenable to a

uniform treatment in terms of orientation processing for an

important range of image motion patterns: single translation,

additive transparency, dynamic occlusion, pseudotransparency,

and multiplicative transparency.
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