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An approach to recognizing human hand gestures from a monocular temporal sequence of images is pre-
sented. Of concern is the representation and recognition of hand movements that are used in single-
handed American sign language (ASL). The approach exploits previous linguistic analysis of manual lan-
guages that decompose dynamic gestures into their static and dynamic components. The first level of
decomposition is in terms of three sets of primitives, hand shape, location and movement. Further levels
of decomposition involve the lexical and sentence levels and are beyond the scope of the present paper.
We propose and subsequently demonstrate that given a monocular gesture sequence, kinematic features
can be recovered from the apparent motion that provide distinctive signatures for 14 primitive move-
ments of ASL. The approach has been implemented in software and evaluated on a database of 592 ges-
ture sequences with an overall recognition rate of 86% for fully automated processing and 97% for
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1. Introduction
1.1. Motivation

Interest in automated gesture recognition stems from the
potentially powerful interface that can be forged between man
and his artefacts, given that those artefacts have the ability to re-
cord and interpret his gestures. In this regard, computer vision-
based approaches may provide particularly attractive methods as
they have the potential to acquire and interpret gesture informa-
tion while being minimally obtrusive to the human participant
(e.g., without requiring the user to don special devices or otherwise
take special actions). In any case, for such methods to be useful
they must be accurate in recognition with rapid execution to sup-
port natural interaction with a human. Furthermore, scalability to
encompass a sizable vocabulary of gestures is of importance.

Currently, we are focused on the representation and recovery of
the movement primitives of hand gestures, specifically single-
handed rigid movements derived from American sign language
(ASL). For the deaf community, interaction via sign language pro-
vides the most natural means of access and communication as it
employs the person’s first language, even for cases where alterna-
tive means might be available (e.g., keyboards). Moreover, success
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in the challenging, yet constrained domain of automated sign lan-
guage interpretation may provide the groundwork for further
developments in flexible, vision-based human computer
interaction.

Motivated by the preceding observations, this paper presents an
approach to recognizing hand gestures that leverages both linguis-
tic theory and computer vision methods. Linguistic theory defines
speech phonemes as the smallest contrastive unit in the sound sys-
tem of a language. These phonemes have been successfully utilized
in speech recognition [1]. Similarly, such primitives have been de-
fined for manual languages (e.g., ASL [2]). A key benefit of the pho-
nemic approach is that modeling, analytically as done here or by
training examples [3-5], of a small number of phonemes that rep-
resent the generative building blocks of the language is a feasible
task, as compared to modeling a large number of gestures as
wholes. Thus, this approach ensures that the developed approach
is scalable to the size of the language.

To affect the recovery of these primitives, we make use of ro-
bust, parametric motion estimation techniques from computer vi-
sion to extract signatures that uniquely identify each movement
from an input video sequence. Here, it is interesting to note that
human observers are capable of recovering the primitive move-
ments of ASL based on motion information alone [6]. For our case,
empirical evaluation suggests that algorithmic instantiation of
these ideas has sufficient accuracy to distinguish the target set of
ASL movement primitives. Further, since the input to our approach
is a monocular video sequence and processing demands are rea-
sonably modest, there is potential to deploy our methods with
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minimal invasiveness to signers while using simply a general pur-
pose, off the shelf, computer equipped with a single video camera.

1.2. Related research

Recently, significant effort in computer vision has been mar-
shalled in the investigation of human gesture recognition (see,
e.g., [7-10] for general reviews). Here, we highlight several repre-
sentative approaches. For the specific problem of gesture recogni-
tion, the basic approach consists of a feature extractor unit feeding
into a recognition unit. In terms of feature extraction, several ap-
proaches have been introduced that explicitly attempt to match a
rich, stored representation of a hand, namely, a 3D model of the
hand [11,12] or an appearance-based model [13], with the image
(or images in the case of a multi-camera setup, e.g., [11]) for the
purposes of tracking. These approaches have met with limited suc-
cess due to self-occlusion of the hand, convergence difficulties due
to the non-linearity of the model to image feature mappings and
the high degrees of freedom of the hand (i.e., modeled as 27 total
degrees of freedom, 21 for the finger joint angles plus 6 for global
movement of the hand).

Rather than use rich stored models to track the hand the fol-
lowing approaches have used coarser but real-time extractable
features, such as colour blobs and optical flow. These contribu-
tions are mainly differentiated by their approach to recognition.
State-space models have been used to capture the sequential nat-
ure of gestures by requiring that a temporal series of states esti-
mated from visual data match the order in time of a model of
states [14-19]. In [20,21] the pattern recognition problem has
been attacked through application of the dynamic time warping
(DTW) method, which is used to temporally align (i.e., match)
an input pattern (i.e., series of states) to a stored pattern. An
alternative approach has used statistical factored sampling in
conjunction with a model of parameterized gestures for recogni-
tion [22]; this approach can be seen as an application and exten-
sion of the CONDENSATION approach to visual tracking [23]. A
main strength of the approach is that it can be adapted to recog-
nize a sequence of gestures without the need of an explicit tem-
poral segmentation. Additionally, it may be possible to leverage
the temporal models as constraints on object tracking. A main
limitation in the approach lies in the factored sampling step,
which is very computationally expensive, making real-time
implementation a challenge.

Rule-based approaches have also been applied to the problem
of hand gesture recognition [24,25]. Rule-based approaches in gen-
eral contain a set of encoded predicates that when satisfied indi-
cate that the desired event (gesture) has occurred. As an
example, in [24] real-time, view-based gesture recognition is pre-
sented for interactive environments. Optical flow is extracted using
a feature-based (correlation) approach. Following a subsequent
segmentation stage, gestures are recognized using a rule-based ap-
proach based on characteristics of the segmented blobs. For each
gesture a unique predicate is defined. A gesture is recognized when
its predicate is satisfied over a set of consecutive frames.

Neural networks and their extensions, time-delay neural net-
works (TDNN), have also been applied to the gesture recognition
problem [26-28]. A TDNN, like a standard neural network, is a
multilayer feedforward network with the addition of delay units
between all layers. The addition of the delay units allow the TDNN
to represent temporal relationships between events in the se-
quence. The input layer is a set of features extracted from the video
ordered in time, where the time is a fixed length. A main limitation
of the approach is that to date, only isolated gestures can be recog-
nized (i.e., temporally segmented).

Further, numerous approaches have made use of the hidden
Markov model (HMM) [3,29-41], which previously had been

successfully applied to the problem of speech recognition; for a
tutorial on the topic of HMMs see, e.g., [42]. A standard application
of HMMs to the problem of gesture recognition is to associate an
HMM with each gesture; the observation sequence (extracted fea-
tures from the image) is fed into each HMM and the model return-
ing the highest score (probability) is returned as the match.
Advantages afforded by using an HMM are its non-linear time scal-
ing invariance property resulting from recurrent states in the hid-
den state topology and its ability to handle a continuous input
stream without it being explicitly temporally segmented. Disad-
vantages of HMMs include the following possibilities: the underly-
ing Markov assumption (i.e., hidden state topology) might not
hold, the required training stage might overfit the HMM to the
training data and the HMM might not capture the essential aspects
of the underlying process caused by insufficient training data and/
or unrepresentative training data.

A number of the previous approaches (cited above) have been
able to achieve potentially useful recognition rates, albeit often
with limited vocabularies. Interestingly, many of these approaches
analyze gestures without breaking them into their constituent
primitives, and thus cannot benefit from the scaling property of a
generative model. Instead, gestures tend to be dealt with as
wholes, with parameters learned from training sets. This tack lim-
its the ability of such approaches to generalize to large vocabular-
ies as the training task becomes inordinately difficult from the
perspective of model building. Also of note is the fact that several
of these approaches make use of special purpose devices (e.g., col-
oured markers, data gloves, electromagnetic trackers) to assist in
data acquisition.

In [43,44], two of the earliest efforts using linguistic concepts in
the description and recognition of both general and domain spe-
cific motion are presented. More recently, in [45] it was shown
for the case of automobile traffic scenes how “motion verbs” can
be associated with image motion patterns. For the problem of ges-
ture recognition, at least four previous lines of investigations have
appealed to linguistic theory as an attack on issues in scaling ges-
ture recognition to sizable vocabularies [3,5,36,46]. Based on the
ASL linguistics literature, the authors proposed a phoneme-based
modeling of gestures. In [36], the authors use a data glove as the
input to their system. Each phoneme from the parameters, hand
shape, location, orientation and movement, is modelled by an
HMM based on a variety of features extracted from the input
stream. The authors report an 80.4% sentence accuracy rate. In
[3], to affect recovery, 3D motion is extracted from the scene by fit-
ting a 3D model of an arm with the aid of three cameras in an
orthogonal configuration (used interchangeably with a electro-
magnetic tracker). The motion is then fed into parallel HMMs rep-
resenting the individual phonemes. The authors report that by
modeling gestures with phonemes, the word recognition rate
was not severely diminished, 91.19% word accuracy with pho-
nemes versus 91.82% word accuracy using word-level modeling.
The results thus lend credence to modeling words by phonemes
in vision-based gesture recognition. A common drawback of
[3,36] is the requirement of special purpose devices in the form
of data gloves, mechanical trackers or multiple calibrated camera
setups that limit their general deployment.

More recently, a linguistics-based approach to British sign lan-
guage recognition has appeared [46]. This approach achieves a
potentially useful level of performance while working with a single
video camera (although illustrated examples are restricted to cap-
ture against a uniform, contrastive background). Of particular note
in comparison to the approach documented in the current paper is
the fact that [46] models a smaller subset of the linguistically de-
fined single hand motion primitives, apparently restricted to image
motion that is well characterized by two-dimensional translation.
Finally, an extension to our work has been proposed that allows



1652 K.G. Derpanis et al./Image and Vision Computing 26 (2008) 1650-1662

online training [4,5]. Reported empirical results are comparable to
those reported in the present paper.

1.3. Contributions

The main contributions of the present research are as follows.
First, our approach models gestures in terms of their phonemic ele-
ments to yield an algorithm that recognizes gesture movement
primitives given data captured with a single uncalibrated video cam-
era. Second, we derive ideal mappings between the phonemic move-
ments under consideration and the kinematic description of the
visual motion field on the imaging plane. These ideal mappings are
used to form unique signatures for each of the gestures. Third, our
approach uses the apparent motion of an unmarked hand as input
as opposed to fitting a model of an arm/hand or using a mechanical
device (e.g., data glove, magnetic tracker). Our current work focuses
on isolated occurrences of the phonemic movements irrespective of
the hand shape and location of the gesture. The analysis of lexical
gestures and their streams in terms of their phonemic constituent
parts (i.e., building blocks)are beyond the scope of the present paper.
We have evaluated our approach empirically with 592 video se-
quences and find an 86% phoneme accuracy rate for fully automated
processing and 97% for manually initialized processing even as other
aspects of the gesture (hand shape and location) vary. A preliminary
version of our work has appeared previously [47].

1.4. Outline of paper

This paper is divided into four main sections. This first section
has provided motivation for modeling gestures at the phoneme le-
vel. Section 2 describes the linguistic-basis of our representation,
and derives analytic relationships between our linguistic-basis
and the resulting motion field of the hand. Section 3 documents
experimental evaluation of our algorithm instantiation. Finally,
Section 4 provides a summary.

2. Technical approach
2.1. Linguistics basis

Prior to William Stokoe’s seminal work in ASL [2], it was as-
sumed by linguists that the sign was the basic unit of ASL. Stokoe
decomposed the basic unit of a sign into units he termed che-
remes.! These units are analogous to speech phonemes: meaningless
(on their own) sub-word patterns that are combined together to de-
fine the vocabulary (i.e., the elemental sounds that make up spoken
words). Stokoe’s system consists of three parameters that are exe-
cuted simultaneously to define a gesture, see Fig. 1. The three param-
eters capture location, hand shape and movement. There are 12
elemental locations defined by Stokoe residing in a volume in front
of the signer termed the “signing space”. The signing space is defined
as extending from just above the head to the hip area in the vertical
axis and extending close to the extents of the signer’s body in the
horizontal axis (see Fig. 1A). There are 19 possible hand shapes
(see Fig. 1B). While Stokoe’s complete vocabulary of movements
consists of 24 primitives (i.e., single and two-handed movements),
as a starting point, we restrict consideration to the 14 rigid single-
handed movements, shown in Fig. 1C. It is important to point out
that the two-handed movements consist of synchronous and asyn-
chronous combinations of the single-handed movements. The gener-

1 The word chereme is derived from the Greek word “yeo:”, the hand. Most linguists
today tend to use the term phoneme rather than chereme, in order to highlight the
similarities between speech and signing. Another usage one sometimes encounters is
viseme in reference to visual languages.

ative power of this representation was displayed in the very first ASL
dictionary [2], where over 2000 different signs were described in
terms of combinations of Stokoe’s phonemes. Current ASL theories
still recognize the Stokoe system’s basic parameters but differ in
their definition of the constituent elements of the parameters [48].
We use Stokoe’s definition of the parameters since they are generally
agreed to represent an important approximation to the somewhat
wider and finer grained space that might be required to capture all
the subtleties of hand gesture languages.

2.2. Idealized gesture executions

From a purely geometric point of view, the movement of an object
from the vantage point of a camera produces a moving image on the
camera’s image plane. The resulting visual motion field contains
valuable information about the movement of the object in the world.
In this section we derive the ideal mappings between the phonemic
movements as qualitatively described by Stokoe and the kinematic
description of the visual motion field on the imaging plane. It is
our hypothesis thatan idealized definition of the signatures, if not al-
ways exact in practice, will provide a sufficiently discriminative fea-
ture set such that real movement executions can be classified.

The 3D movement of a point in space is modelled in terms of
instantaneous translation, T = (tx, ty, tZ)T. and instantaneous rota-
tion, O = (ox, wy,0;) ", about the X, Y and Z Euclidean axes, respec-
tively, with the origin defined at the camera’s centre of projection
(see Fig. 2). Additionally, we define § = (4x, qy» q,)" as the origin in
space where the rotation is conducted about (e.g., @ = (0,0,0)" for
rotation about the camera coordinate system origin). Under a per-
spective projection imaging model with focal length equal to 1, the
2D visual motion field, ¥ = (u,v)" that arises as a 3D point (X,Y,Z)
undergoes motion given by T, @ and § can be written as

U=~y + ) + 0XY — X
+ —t— qywz +q,0y + (7qywx +6+ qxwy)x
VA

V=wxy — 00X — 0yXy + u))(_y2

N —ty — q,0x + Qo7 + Z(fqycux + 1t + qyoy)y )

see [49]. Note the inclusion of Q in our formulation; whereas, stan-
Qardﬂformulations model rotation as about the camera origin (i.e.,
Q=0).

We model the hand as a planar surface. Given the relatively small
depth deviations of the fingers as compared to the distance of the
hand relative to the camera such a model is not unreasonable.
Formally,

oX+pY +9Z=1 2)
where
_
=4
_y
,
’=d
d=mXo+n,Yo +n;,Zy 3)

il = (ny,ny, nz)T corresponds to the normal of the plane and
(Xo,Yo,Zo)" represents a point in the plane. Given the planar model
of a hand, the apparent motion, (u,v)", is modelled through first-or-
der in image coordinates by an affine transformation, formally

u(x,y) = aop + 41X + azy
V(X,y) = a3 + 4X + dsy (4)

where
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Fig. 1. Stokoe’s phonemic analysis of ASL. The left panel (A) depicts the signing space where the locations reside. Shaded regions indicate locations used in our experiments.
The upper right panel (B) depicts possible hand shapes. Circled shapes indicate shapes used in our experiments. The lower right panel (C) depicts possible single-handed
movements (a) upward, (b) downward, (c) rightward, (d) leftward, (e) toward signer, (f) away signer, (g) nod, (h) supinate, (i) pronate, (j) up and down, (k) side to side, (1)
twist wrist, (m) circular, (n) to and fro. The solid ellipse, dashed ellipse and dashed arrow represent the initial hand location, the final location and the path taken, respectively.

We investigate the recognition of movement independent of location and shape.

—— e
/ te (oM
11 /‘/ A

X,Y,Z)

z

Fig. 2. Camera coordinate system. Depicted is the camera coordinate system, with
an image plane IT located at Z = 1 and parallel to the X, Y axes. Perspective proje-
ction maps a point (X,Y,Z) to (x,y). The parameters t, t, and t, represent the
translational velocities in the X, Y and Z directions respectively, oy, w, and o, re-
present the infinitesimal angle of rotation about X, Y and Z conducted about the
point 4= (0,0,0)" (i.e., camera origin).

Gp = —wy + (.G, — ty + ©yq,)y

ay = (—,q, — ty + 0yq,) o + (—xq, + wyqy + ;)7

Gy = 07 + (—w,qy — bty + 0yq,)f

a3 = oy + (—oxq; — ty + .qy)y

(—oxq, — ty + wq, )

s = (—wx, — ty + 04)f + (—xGy + wyqy + L)y (5)

a4 = —w; +

with the coefficients, a;, derived by substitution of the planar
parameterization (2) into the general equations of the visual motion
field (1) following by restriction to the affine model (4).

The selection of truncating the analytically correct quadratic
flow arising from planar motion after the first-order terms is moti-

vated by the fact that the second-order coefficients are highly sen-
sitive to image noise and are difficult to estimate accurately given a
small region of support [50]. Fortunately, this does not pose a prob-
lem since the contributions from the second-order terms are small
when considered over small image regions [50]. Furthermore, it
can be shown both analytically and through numerical simulation
that the contribution of the second-order terms for the hand move-
ments of immediate concern are negligible (see [51] for details). It
will be shown in this section that the zeroth and first-order terms
are sufficient to provide unique signatures for each of the move-
ments under consideration. The affine model for apparent motion
has been successfully applied to a variety of applications, examples
include: general optical flow [52], 2D tracking [53,54], image reg-
istration [55], 3D structure and/or motion estimation [56-60], vi-
deo partitioning [61] and hand gesture recognition [21].
Inspection of Stokoe’s qualitative description of the phonemic
movements reveals that the 2D image projection of each move-
ment as captured from a frontoparallel view of a signer may map
to a unique subset of the first-order kinematic description mea-
sures, (differential) translation, curl (i.e., rotation), divergence
(i.e., isotropic expansion/contraction) and shear: cases (shown in
Fig. 1C) a-d, j, k and m are characterized by translation, for m hor-
izontal and vertical translation oscillate out of phase (see Fig. 5a);
cases h, i and 1 involve rotation; cases e, f and n are characterized
by expansion/contraction; case g involves shear and contraction.
Owing to their apparent descriptive power in the current context,
we rewrite the affine parameters in terms of kinematic quantities
corresponding to horizontal (hor) and vertical (ver) translation,
divergence (div), curl (curl) and deformation (def) (cf. [62-65]):

hor = qg

=~y + (~0,q, — tx + 0yq,)y
ver = as

= wy + (—wxq, — ty + 0;qy)y
div=a; +as

= (—wqy — by + oyq,)a + 2(—wxqy + @y Gy + L)y
+ (—oxq, — ty + 0,q,)f
curl = —a, +ay (6)

= *sz - (7wzqy — b+ quz)ﬁ + (7wxqz - ty + wqu)a
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Table 1

Mappings of the non-periodic movements in the world space to kinematic quantities in the image space

Kinematic quantity Non-periodic gestures

Rightward Leftward Upward Downward Toward signer Away signer Supinate Pronate Nod
hor(t) —txy >0 —ty <0 0 0 0 0 0 0 0
ver(t) 0 0 —tyy <0 —tyy >0 0 0 0 0 0
div(t) 0 0 0 0 2t;y>0 2t,y <0 0 0 —pBq,wx >0
curl(t) 0 0 0 0 0 0 —2w; >0 —2w; <0 0
def(t) 0 0 0 0 0 0 0 0 | Bq o |

| - | Represents the absolute value operator.

def = ([a; — as]* + [az + a4)*)"?

= {[(~oqy — bty + yq, ) — (—xq, — bty + wqu)/ﬂz
+[(—wqy — ty + 0yq,) f+ (—wxq, — ty + ©,q,))* 2.

In the remainder of this subsection we show that our intuitions
regarding the ability of the kinematic quantities to distinguish pro-
totypes for the phonemic movements depicted in Fig. 1C can be
backed up analytically. We proceed by systematically instantiating
the kinematic parameterizations, (6), to accommodate the proto-
type movements.

For the leftward, rightward, side to side, upward, downward, up
and down, toward signer, away signer, to and fro and circular
movements (depicted in Fig. 1) we assume that the plane (i.e.,
hand) is kept parallel to the image plane throughout the execution
of the movement? this is reflected by the surface normal
fi=(0,0,—1)", the plane initially contains the point
(Xo,Y0,Z0)" = (0,0,c)" where ¢ > 0, the movements are executed
with a constant velocity and (q,,q,.q,)" = (0,0,c)". The 3D world
velocities for this class of movements are as follows. Corresponding
image kinematics are presented in Tables 1 and 2, as derived through
substitution of the 3D velocities into the kinematic formulae (6).

[Leftward/rightward] consist of a constant valued t, throughout
the gesture sequence, positive for leftward and negative for
rightward, all other world velocities are zero.

[Side to side movement] t, has a constant magnitude velocity
with its sign changing mid-gesture, all other world velocities
are zero.

[Upward/downward] consists of a constant value for t,, positive
for upward, negative for downward, all other world velocities
are zero.

[Up and down] t, has a constant magnitude velocity with its sign
changing mid-gesture, all other world velocities are zero.
[Toward/away signer] consists of a constant value for t,, positive
for toward signer, negative for away, all other world velocities
are zero.

[To and fro] t, has a constant magnitude velocity with its sign
changing mid-gesture, all other world velocities are zero.
[Circular] consists of the plane tracing a circular path parallel to
the image plane. The path can be described by the parameteri-
zation (sin(wt), cos(wt)) where o represents the frequency. The
actual velocity of the plane is described by (t(t),ty(t))
= (wcos(wt), —wsin(wt)), all other world velocities zero.

Unlike the movements described thus far, the orientation of
the plane (i.e., hand) for the supinate, pronate and twist wrist
movements (depicted in Fig. 1) is not assumed strictly parallel
to the imaging plane throughout the execution of the gesture.

2 We make the planar assumptions on the hand for the sake of simplicity in
modeling; nevertheless, in practice our estimation methods tolerate deviations from
these idealizations, as evidenced in our experiments where we do not enforce
corresponding constraints on our signers (see Section 3).

The normal of the plane is assumed initially to be pointing
roughly parallel with the Y-axis, towards the negative direction
for supinate and positive for pronate. Strictly speaking, Stokoe’s
description of the supinate/pronate movements, dictates a normal
exactly parallel with the Y-axis (i.e., palm facing initially down for
supinate and up for pronate), but under this current analysis such
configurations of the hand result in singularities in the kinematic
quantities throughout the gesture execution (i.e., viewing plane
on edge).

[Supinate/pronate] consist of a constant value for w, throughout
the gesture, where «, is negative for supinating and positive for
pronating, all other world velocities are zero.

[Twist wrist] w, is constant valued while all other world veloci-
ties are zero.

Finally, for the nod movement, initially the surface normal
fi=(0,0,—1)", although this changes throughout the execution
of the gesture as the palm rotates. The movement consists of a con-
stant rotation w, < 0 about the point (q,,q,,q,) = (0,0,c) where
¢ > 0, all other world velocities are zero.

Visual inspection of Tables 1 and 2 demonstrates that the con-
sidered phonemic movements exhibit distinctive kinematic pat-
terns. In the following sections we present a specific approach to
tracking and classifying the movement of a hand that exploits
the findings of this section.

2.3. Kinematic features

In proposing a set of distinctive prototypical signatures for the
phonemic movements, it is useful to exploit the fact that the move-
ments are defined over a finite temporal interval. Correspondingly,
we now consider kinematic time series:

ver(t) = as(t)

div(t) = a1 (t) + as(t)

curl(t) = —a(t) + aa(t)

def(t) = \/(01(0 — as (1))’ + (az(t) + aa(6))”. (7

Each of the kinematic time series (7) has an associated unit of
measurement (e.g., horizontal/vertical motion are in pixel units)
that may differ amongst each other. To facilitate comparisons
across the time series for the purposes of recognition, a rescaling
of responses is appropriate. We make use of min-max rescaling
[66], defined as

N Z — mim
zZ=—F

- x (maxXy — miny) + min, 8
max, —m1n1> (max, 2) 2 (8)

with min; and max; the minimum and maximum values, respec-
tively in the input data z, while min, and max, specify the range
of the rescaled data taken over the entire population sample. For
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Table 2
Mappings of the periodic movements in the world space to kinematic quantities in the image space
Kinematic quantity Periodic gestures

Side-side Up and down To and fro Twist wrist Circular

—txy >0, ift<N/2
() —tyy < 0, otherwise O_t y>0, if t<N/2 0 0 yeo cos(ot)
ver(t) i i S 0 0 —ywsin(wt)

—tyy <0, otherwise .
. 2t,;y >0, if t<N/2
i) ¢ e 2t;y <0 otherwise v v
z 2w, >0, ift<N/2

) © © o —2w, <0, otherwise o
def(t) 0 0 0 0" 0

Note that each of the periodic movements have dual definitions realized by swapping the sign of the quantities across the intervals of execution.

scaling ranges, we select [-1, 1] for elements of (7) that range sym-
metrically about the origin and [0, 1] for those with one sided re-
sponses, i.e., def.

To complete the definition of our kinematic feature set, we
accumulate parameter values across each of the five rescaled kine-
matic time series, hor(t), ver(t), div(t), curl(t), def(t) and express
each resulting value as a proportion. The accumulation procedure
is motivated by the observation that there are two fundamentally
different kinds of movements in the vocabulary defined in Fig. 1:
those that entail constant sign movements, i.e., movements (a-i),
which are unidirectional; those that entail periodic motions, i.e.,
movements (j-n), which move “back and forth”. To distinguish
these differences, we accumulate our parameter values in two
fashions.

First, to distinguish constant sign movements, we compute a
summed response, SR;,

T
SR = Zpi,t
=1

where i € {h6r7 Ver, div, cﬁrl, déf} indexes a time series, T represents
the number of frames a gesture spans and p;, represents the value of
time series i at time t. Constant sign movements should yield non-zero
magnitude SR;, for some i; whereas, periodic movements will not as
their changing sign responses will tend to cancel across time.

Second, to distinguish periodic movements, we compute a
summed absolute response, SAR;

T
SAR; = > [Pyl
t=1

Pi; = pi, — mean;

9)

where mean; represents the mean value of (rescaled) time series i.
Now, constant sign movements will have relatively small SAR;, for
all i (given removal of the mean, assuming a relatively constant
velocity); whereas, periodic movements will have significantly
non-zero responses as the subtracted mean should be near zero
(assuming approximate symmetry in the underlying periodic pat-
tern) and the absolute responses now sum to a positive quantity.
Due to the min-max rescaling (8), the SR; and SAR; calculated
for any given gesture sequence are expressed in comparable ranges
on an absolute scale established from consideration of all available

data (i.e., min; and max; are set based on scanning across the en-
tire sample set). For the evaluation of any given gesture sequence,
we need to represent the amount of each kinematic quantity ob-
served relative to the others in that particular sequence. For exam-
ple, a (e.g., very slow) vertical motion in the absence of any other
motion should be taken as significant irrespective of the speed.
To capture this notion, we convert the accumulated SR; and SAR;
values to proportions by dividing each computed value by the
sum of its consort, formally

SRP; = SR; / (Z | SRy |>
k
SARP; = SAR; / (Z SARk>
k

with k ranging over hor, vér, div, curl, def. Here, SRP; represents the
summed response proportion of SR parameter i and SARP; represents
the summed absolute response proportion of SAR parameter i. Notice
that the min-max rescaling accomplished through (8) and the con-
version to proportions via (10) accomplish different goals, both of
which are necessary: the former brings all the kinematic variables
into generally comparable units; the latter adapts the quantities
to a given gesture sequence. In the end, we have a 10 component
feature set SRP; and SARP;, i € {hbr, ver, div, curl, déf} that encapsu-
lates the kinematics of the imaged gesture.

(10)

2.4. Prototype gesture signatures

Given our kinematic feature set, each of the primitive move-
ments for ASL, shown in Fig. 1 has a distinctive idealized signature
based on (separate) consideration of the SRP; and SARP; values (see
Table 3). These signatures are governed by the analytic relation-
ships between the phonemic movements and the kinematic
description of the motion field of the hand as derived in Section
2.2 and summarized in Tables 1 and 2.

Distinctive signatures for the constant sign movements (i.e.,
movements a-i in Fig. 1C) are defined with reference to the SRP;
values. Rightward/leftward movements result in significant
response to hor(t) alone, with the resulting signature of
| SRP,. |=1 while | SRP; |=0,i# hor. In order to disambiguate
between rightward and leftward movements, the sign of SRP,; is

Table 3
Gesture signatures
SRP SARP
Rightward Leftward Upward Downward Toward Away Supinate Pronate Nod Side to Up and To and Twist Circular
signer signer side down fro wrist
hor +1 -1 0 0 0 0 0 0 0 1 0 0 0 .5
ver 0 0 -1 +1 0 0 0 0 0 0 1 0 0 5
div 0 0 0 0 +1 -1 0 0 +5 0 0 1 0 0
curl 0 0 0 0 0 0 +1 -1 0 0 0 0 1 0
def 0 0 0 0 0 0 0 0 +.5 0 0 0 0 0

Each movement phoneme has a distinctive prototype signature defined in terms of our kinematic feature set. Kinematic features and movement phonemes are plotted along
vertical and horizontal axes, respectively. The SRP and SARP values are defined with respect to formula (10).
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taken into account, positive sign for rightward and negative for
leftward. Similarly, upward/downward movements result in re-
sponses to ver(t) alone; hence, of all the SR;, only SR, should have
a non-zero value in (10), leading to a signature of | SRPy, |[=1
while | SRP; |= 0,i # ver, positive and negative signed SRP, corre-
sponding to downward and upward movements, respectively. The
toward/away signer movements are manifest as significant re-
sponses in div(t) alone. Correspondingly, | SRP, |= 1 while other
values are zero. For this case, positive sign on SRP, is indicative
of toward, while negative sign indicates away. The supinate/pro-
nate gestures map to significant responses in curl(t) alone. Here,
| SRP;, |= 1 while other values are zero with positively and nega-
tively signed SRP_;, indicating supinate and pronate, respectively.
Unlike the other movements described above, nod has two signif-
icant kinematic quantities, that have constant signed responses
throughout the gesture, namely def(t) and div(t). The sign of both
def(t) and div(t) should be positive. Furthermore, the magnitudes
of these two non-zero quantities should be equal. Therefore, we
have | SRP, |=| SRP,; |= 0.5 with all other responses zero.

For periodic movements (i.e., movements j-n in Fig. 1C) dis-
tinctive signatures are defined with reference to the SARP; values.
The definitions unfold analogously to those for the constant sign
movements, albeit sign now plays no role as the SARP; are all po-
sitive by construction. The side to side movement directly maps
to hor(t), resulting in a value of SARP,. equal to 1 with other
summed absolute response proportions zero. The up and down
movement maps directly to ver(t), resulting in a value of
SARP; equal to 1 while other values are zero. The to and fro
movement maps directly to div(t), resulting in a value of
SARP, equal to 1 with other summed absolute response propor-
tions zero. The twist wrist movement directly maps to curl(t),
resulting in a value of SARP_;, equal to 1 with other values zero.
The circular movement has two prominent kinematic quantities,
hor(t) and ver(t). As the hand traces a circular trajectory, these
two quantities will oscillate out of phase with each other (see
Fig. 5a). Across a complete gesture the two summed absolute re-
sponses are equal. The overall signature is thus SARP,, . =
SARP,; = 0.5, with all other values zero.

2.5. Pattern classification

For classification, we first calculate the Euclidean distance be-
tween our input signatures (i.e., SRP; and SARP;) and their respec-
tive stored prototypical signatures. The result is a set of distances d;
(14 in total). Taking the smallest distance as the classified gestures
is not sufficient, since it presupposes that we know whether the
classification is to be done with respect to the SRP; (constant sign
cases) or the SARP; (periodic cases). This ambiguity can be resolved
through re-weighting the distances by the reciprocal norm of their
respective feature vectors, formally

dj =(1/ | SR ) x d;
di=(1/ | SAR |) x dj; where j € {periodic distances}
with

SR =(SR,,
SAR =(SAR

where j € {constant sign distance}

,SRyer, SR iy SRty SRyer)
SAR\er, SAR SR, SAR 1) "

curl?

hor? curl

Intuitively, if the norm of SR is greater than that of SAR, then the
movement is more likely to be a constant sign; if the relative mag-
nitudes are reversed then the movement is more likely to be a peri-
odic. Following the re-weighting, the movement with the smallest
d; value is returned as the classification. Finally, for movements
classified by distance as nod, we explicitly check to make sure
| SRP;, |~| SRP |, if not we take the next closest movement. Sim-
ilarly, for circular we enforce that SARP, . =~ SARP.,. These explicit

hor

checks serve to reject misclassifications when noise happens to
artificially push estimated feature value patterns toward the nod
and circular signatures.

3. Experimental evaluation
3.1. Experimental design

The goal of our experiment was to test the ability of our algo-
rithm to correctly recognize isolated phonemic movements, irre-
spective of the volunteer and hand location and shape
parameters of the complete gesture. We have tested a software
realization of our algorithm on a set of video sequences each of
which depicts a human volunteer executing a single movement
phoneme.

For completeness, we next briefly describe the hand tracker
used for recovering the frame-to-frame kinematic description.
However, we do not consider this as a novel contribution of our
work. In brief, given the initial position of the hand in the first
frame (procedure detailed below), a robust affine motion estimator
operating over a Gaussian pyramid [67] is applied to regions delin-
eated by the conjunction of a Bayesian skin colour classifier [68]
and temporal change, on a frame-to-frame basis. The tracker was
initialized in either of two ways: (i) manual outlining the hand re-
gion in the initial frame by a rectangular bounding box; (ii) auto-
matic localization based on a combination of a Bayesian skin
colour classifier [68] and frame-differencing between adjacent
frames to define a map of likely regions where the hand may re-
side. In both cases, the resulting time series of affine parameters
are converted to kinematic time series and then to kinematic sig-
natures SRP; and SARP;. The accompanying appendix provides an
additional discussion of the employed tracker. For further algorith-
mic and implementation details see [47,51].

For classification, we use a nearest-neighbour classifier based
on a weighted Euclidean distance between our input signatures
and their respective stored signatures, where the weights are the
reciprocal two-norm of SR for the SRP signatures and SAR for the
SARP signatures, as detailed in Section 2.5.

Owing to the descriptive power of the phonemic decomposition
of gestures into movement, location and shape primitives, consider-
ation of all possible combinations would lead to an experiment that
is not feasible.? Instead, we have chosen to subsample the hand shape
and location dimensions by exploiting similarities in their respective
configurations. For location we have selected whole head, torso and
upper arm, see Fig.1A. These choices allow a range of locations to be
considered and also introduce interesting constraints on how move-
ments are executed. For instance, when the hand begins at the upper
arm location, the natural tendency is to have the wrist rotated such
that the hand is at a slight angle away from the body; as the hand
moves towards the dominant side, a slight rotation is introduced to
bring the hand roughly parallel with the camera. For hand shape, we
haveselected A,B5,Kand C, see Fig. 1B. The rationale for selecting hand
shapes A, B5 and Kiis as follows: A(i.e., fist) and B5 (i.e., open flat hand)
represent the two extremes of the hand shape space, whereas K (i.e.,
victory sign) represents an approximate midpoint of the space. Hand
shape C has been included since it is a clear example of a hand shape
being non-planar. This sampling leaves us with a total possible num-
ber of test cases equal to 14 (movements) x 3 (locations) x 4
(shapes) = 168. However, several of these possibilities are difficult to
realize (e.g., pronating movement at the upper arm location); so, drop-
ping these leaves us with a total of 148 cases.

3 Using Stokoe’s parameter definitions there would be 14 (movements) x 19
(shapes) x 12 (locations) = 3192 combinations for each volunteer.
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Three volunteers each executed all 148 movements while their
actions were recorded with a video camera to yield an experimen-
tal test set of 3 x 148 = 444. In addition, 12 volunteers executed an
approximately equal subset of the gesture space (approximately 14
gestures each). This allowed us to test our approach’s robustness to
the variability of gesture execution amongst different volunteers
without the associated tedium of collecting the full set of gestures
from each volunteer. It should be noted that the volunteers were
fully aware of the camera and their expected position with respect
to it, this allowed precise control of the experimental variables for
a systematic empirical test. With an eye toward applications such

control is not unrealistic: a natural signing conversation consists of
directing one’s signing towards the other signer (in this case a cam-
era). In total, our experimental test set consisted of 592 gestures.
During acquisition, standard indoor, overhead fluorescent light-
ing, was used and the normal (somewhat cluttered) background in
our lab was present as volunteers signed in the foreground. Each
gesture sequence was captured at a resolution of 640 x 480 pixels
at 15 frames/s. Typically, the imaged hand encompassed a region of
100 pixels in both width and height. On average the gesture
sequences spanned 40 frames for constant sign movements and
80 for periodic movements. Prior to conducting the gesture each

Frame 25

Frame 25

Frame 75

Frame 75

Fig. 3. Circular movement example. (a) The overlayed dotted circle denotes the path of the hand. (b) Selected input frames are shown. (c) Depicts the corresponding frames in
(b) with the points on the hand overlayed in black and white denoting inliers and outliers, respectively. Inliers are identified by the skin detection/temporal change/motion

estimation processes.
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volunteer was verbally described the gesture. This was done in or-
der to ensure the capture of naturally occurring extraneous mo-
tions which can appear when an unbiased person performs the
movements. See Fig. 3 and 4 for example sequences and Fig. 5
for representative kinematic time series plots of the circular and
nod movements.

3.2. Results

To assess the joint performance of the tracker and classification
stages, we conducted two trials. The first set derives from manually

initialized tracking; the second set derives from automatic
initialization.

Class-by-class results are shown as a confusion matrix in Table
4, Overall, in the manually segmented trials 97% of the 592 test
cases were correctly identified. When considering the top two can-
didate movements, classification performance improved to 99%.
While for the automated localization trial an accuracy rate of
86% was achieved and 91% when considering the top two candi-
dates. Further inspection of the results found that approximately
14% of the test cases in the automated localization trial failed to
isolate a sufficient region of the hand (i.e., approximately 50% of

Frame 30

Frame 45

Frame 45

Fig. 4. Nod movement example. (a) The overlayed dotted curve denotes the path of the hand. (b) Selected input frames are shown. (c) Depicts the corresponding frames in (b)
with the points on the hand overlayed in black and white denoting inliers and outliers, respectively. Inliers identified by the skin detection/temporal change/motion

estimation processes.
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Fig. 5. Example kinematic time series. Plots of the normalized kinematic time series spanning the length of the gesture for the (a) circular and (b) nod movements.

the hand). The majority of these cases consisted of the automated
localization process homing in on the volunteer’s head since the
head was the dominant moving structure. This is contrary to our
assumption that the hand is the dominant moving skin coloured
structure in the scene. Treating these cases as failure to acquire
and omitting them from further analysis resulted in an accuracy
rate of 92% and an accuracy of 95% when considering the top
two candidates. In terms of execution speed, the tracking speed
using a Pentium 4 2.1 GHz processor and unoptimized C code
was 8 frames/s; the time consumed by all other components was
negligible.

3.3. Discussion

Overall, the results demonstrate the ability of our algorithm to
recognize correctly the 14 rigid gesture movements that comprise
the single-handed movement phonemes of ASL, even while hand
location and shape vary widely. This ability to decouple the prim-
itive components of gestures is key to our overall framework, as
complex gestures are analyzed in terms of their linguistically de-
fined constituent elements. Furthermore, the results provide cre-
dence to our hypothesis that the idealized modeling of the hand
movements (described in Section 2.2) if not always exact in prac-
tice, provides both a sufficiently discriminative and also extract-
able (from real video sequences) feature set such that real
movement executions can be classified.

A current limitation is the automated initial localization pro-
cess. The majority of the failed localization cases were attributed
to gross head movements, the remaining localization problems

occurred with users gesturing with bare arms (although most bare
arm cases were localized properly) and users wearing skin toned
clothing. A review of the literature finds that most other related
work has simplified the initial localization problem through man-
ual segmentation [3,69,70], restricting the colours in the scene
[35,38,39], restricting the type of clothing worn (i.e., long sleeved
shirts) [35,38,39], having users hold markers [22], using a priori
knowledge of initial gesture pose [23,71], and using multiple, spe-
cially configured cameras [3] or magnetic trackers [3,14,26,36]. In
our study, we make no assumptions along these lines; neverthe-
less, our results are competitive with those reported elsewhere.

Beyond initialization, four failed tracking cases occurred related
to frame-to-frame displacement beyond the capture range of our
affine motion estimator. Tracking drift has not been a significant
factor during our experiments. This is due to the use of skin colour
and change detection masks to define the region of support as well
as a robust motion estimator to reject outliers. Possible solutions to
tracking failure include: the use of a higher frame rate camera to
decrease interframe motion and use of a motion estimator with a
larger capture range (e.g., consideration of a correlation-based,
rather than gradient-based method).

Given acceptable tracking, problems in the classification per se
arose from non-intentional but significant motions accompanying
the intended movement. For instance, when conducting the “away
signer” movement, some of the subjects, would rotate the palm of
their hand about the camera axis as they were moving their hand
forward. Systematic analysis of such cases may make it possible to
improve our feature signatures to encompass such variations.
Further improvements in recognition may be found by integrating
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Table 4

Gesture movement recognition results

Circular

0/0
0/0
0/0
0/0
0/3
0/0
0/0
0/0
8/0
0/0
0/0

Nod
0/0
0/0
0/0
0/0
3/3
0/3
4/0
0/0
0/3
3/3
0/2
0/5

Twist wrist

0/5
0/0
0/3
0/0
0/0

Pronate

0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

Supinate

0/0
0/2
0/0
0/0
0/0
0/0
0/3
0/0
0/0

To and fro

0/3
0/7
0/0

Away signer

0/0
0/0
0/0
0/0
0/0
0/0
0/0

Toward signer

0/0
0/0
0/0
0/0
0/0
0/0

Side to side

0/0

Leftward

0/0
0/0
0/0
0/0

Rightward

0/0
0/0
0/0

Up and down

0/0
0/0

Downward
0/0

Upward
100/92
0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

Upward

0/ 0
0/3

100/91
0/0
0/0
0/0
0/0
0/0
2/0
0/3
0/0
0/0
0/0
6/0
0/0

Downward

100/95
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

Up and down
Rightward
Leftward

0/4
0/0

100/92
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

0/10
0/0
0/0
0/3

97/85
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

0/11
0/3
0/0
0/6
0/3
0/0

100/ 86
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

Side to side
Toward signer

Away signer

96/93
0/0
0/3
0/0
0/0
0/0
3/0
0/0

98/97
0/0
0/0
0/0
0/0
0/0
0/0

92/84
0/0
0/0
0/2
6/3
0/0

To and fro

K.G.

97/95

Supinate

Pronate
Twist wrist

100/98
0/0
0/0
0/0
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100/90

0/3
0/0

0/2
0/0
0/2

0/0

84/93
0/7

Nod

100/91

Circular

The axes of the table represent the actual input gesture (vertical) vs. the classification result (horizontal). Each cell (i, j) in the table holds the percentage of test cases that were actually i but classified as j for both manually

initialized localized trials (left) and automated initialized localized trials (right) (i.e., manual/automated). The diagonal (i,j) (highlighted in bold) represents the percentage of the correctly classified gestures.

domain specific knowledge into the classification stage (e.g., fre-
quency counts of phonemes in ASL).

4. Summary

We have presented a novel approach to vision-based gesture
recognition; the described work particularly concentrates on the
representation and recognition of isolated movement phonemes
of ASL. Our general approach is based on two key concepts. First,
we exploit linguistic theory to represent complex gestures in terms
of their primitive components. By working with a finite set of prim-
itives, which can be combined in a wide variety of ways, our ap-
proach has the potential to deal with a large vocabulary of
gestures (e.g., American sign language). Second, we analytically de-
fine distinctive signatures for the primitive components that can
be recovered from image sequences captured by a single uncali-
brated camera. The proposed set of distinctive signatures were ar-
rived at by analyzing the ideal mappings between the phonemic
movements and the kinematic description of the visual motion
field on the image plane. This is in contrast to most approaches
presented in the literature that use machine learning techniques
to instantiate models based on training data. By working with sig-
natures that can be recovered without special purpose equipment,
our approach has the potential for use in a wide range of human
computer interfaces. Using American sign language (ASL) as a test
bed application, we have developed an algorithm for the recogni-
tion of the primitive movements (movement phonemes) from
which ASL symbols are built. The algorithm recovers kinematic fea-
tures from a single input video sequence, based on an affine
decomposition of the apparent motion(s) across the sequence.
The recovered feature values affect movement signatures that are
used in a nearest neighbour recognition system. The evaluation
of our algorithm showed strong performance on a significant num-
ber of test sequences, 592 video sequences in total, which demon-
strates its applicability to the analysis of complex gesture videos.
Finally, given the descriptive power of the phonemic decomposi-
tion and the demonstrated ability to resolve such from image se-
quences, in future work we intend to use our approach as a
building block for the analysis of streams of lexical gestures.
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Appendix. Tracking

In this appendix we provide additional details of the tracker
that we use to generate the empirical results described in Section
3 of this paper.

Let I(X, t) represent the image brightness at position X = (x,y)"
and time t. Using the brightness constancy constraint [49], the
interframe motion, G(X) = (u(X),v(X))', is defined as

I(X,t) = I(X —d(X),t — 1) (A-1)
We employ an affine model to describe the motion
U(x,y) = o + 41X + azy, V(X,y) = a3 + a4X + dsY. (A-2)

The affine model is used for two main reasons. First, as demon-
strated in Section 2.2, a unique mapping between Stokoe’s qualita-
tive description of the movement of the hand in the world and the
first-order kinematic decomposition of the corresponding visual
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motion fields exists. Second, over the small angular extent that
encompasses the hand at comfortable signing distances from a
camera, small movements can be approximated with an affine
model.

To affect the recovery of the affine parameters we make use of a
robust, hierarchical, gradient-based motion estimator [67] operat-
ing over a Gaussian pyramid [72]. The hierarchical nature of the
estimator allows us to handle significant magnitude image dis-
placements with computational efficiency even while avoiding lo-
cal minima. This estimator is applied to skin colour defined regions
of interest in a pair of images under consideration. We use skin col-
our to restrict consideration to image data that arises from the
hand; such regions are extracted using a Bayesian classifier [68].
As a further level of robustness, we restrict consideration to points
that experience a significant change in intensity (i.e. dI/dt). For
robustness in motion estimation, we make use of an M-estimator
[73] (e.g., as opposed to a more standard least-squares approach,
cf.,, [55]) to allow for operation in the presence of outlying data
in the form of non-hand pixels due to skin colour oversegmenta-
tion, pixels that grossly violate the affine approximation as well
as points that violate brightness constancy. The particular error
norm used is the Geman-McClure [73].

The motion estimator is applied to adjacent frames across an
image sequence. Upon recovering the motion between the first pair
of frames, the analysis window is moved based on the affine
parameters found (initialized identically to zero at the first frame),
the affine parameters are used as the initial parameters for the mo-
tion estimation of the next pair of images and the motion estima-
tion process is repeated. When the motion estimator reaches the
end of the image sequence, six time series, each representing an af-
fine parameter over the length of the sequence, are realized.
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