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Abstract. This paper presents a novel pixelwise representation for vi-
sual tracking that models both the spatial structure and dynamics of a
target in a unified fashion. The representation is derived from spatiotem-
poral energy measurements that capture underlying local spacetime ori-
entation structure at multiple scales. For interframe motion estimation,
the feature representation is instantiated within a pixelwise template
warping framework; thus, the spatial arrangement of the pixelwise en-
ergy measurements remains intact. The proposed target representation
is extremely rich, including appearance and motion information as well
as information about how these descriptors are spatially arranged. Qual-
itative and quantitative empirical evaluation on challenging sequences
demonstrates that the resulting tracker outperforms several alternative
state-of-the-art systems.

1 Introduction

Tracking of objects in image sequences is a well-studied problem in computer
vision that has seen numerous advances over the past thirty years. There are
several direct applications of “following a target” (e.g., surveillance and active
camera systems); furthermore, many computer vision problems rely on visual
trackers as an initial stage of processing (e.g., activity and object recognition).
Between the direct applications of target tracking and the evolution of visual
tracking into a basic stage for subsequent processing, there is no shortage of
motivation for the development of robust visual trackers.

Even given this strong motivation, to date a general purpose visual tracker
that operates robustly across all real-world settings has not emerged. One key
challenge for visual trackers is illumination effects. Under the use of many pop-
ular representations (e.g., colour), the features’ appearance changes drastically
depending on the lighting conditions. A second challenge for visual trackers is
clutter. As the amount of scene clutter increases, so to does the chance that
the tracker will be distracted away from the true target by other “interesting”
scene objects (i.e., objects with similar feature characteristics). Finally, trackers
often experience errors when the target exhibits sudden changes in appearance
or velocity that violate the underlying assumptions of the system’s models.
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In this work, it is proposed that the choice of representation is key to meeting
the above challenges. A representation that is invariant to illumination changes
will be better able to track through significant lighting effects. A feature set that
provides a rich characterization will be less likely to confound the true target
with other scene objects. Finally, a rich representation allows for greater tracker
resilience to sudden changes in appearance or velocity because as one component
of the representation experiences a fast change, other components may remain
more consistent. In the current approach, a pixelwise spatiotemporal oriented
energy representation is employed. This representation uniformly captures both
the spatial and dynamic properties of the target for a rich characterization, with
robustness to illumination and amenability to on-line updating.

Visual trackers can be coarsely divided into three general categories: (i) dis-
crete feature trackers (ii) contour-based trackers, and (iii) region-based trackers
[9]. Since the present contribution falls into the region-tracker category, only
the most relevant works in this class will be reviewed. Some region trackers
isolate moving regions of interest by performing background subtraction and
subsequent data association between the detected foreground “blobs” [30,27,28].
Another subclass of region trackers collapses the spatial information across the
target support and uses a histogram representation of the target during tracking
[11,16,5,10]. The work in [10] presents the most relevant histogram tracker to
the current approach because both share a similar energy-based feature set. A
final subcategory of region-based trackers retains spatial organization within the
tracked area by using (dense) pixelwise feature measurements. Various feature
measurements have been considered [25,13,20,23]. Further, several approaches
have been developed for updating/adapting the target representation on-line
[19,20,23,3]. This final subcategory of region trackers is of relevance to the present
work, as it maintains a representation of dense pixelwise feature measurements
with a parameterized model of target motion.

Throughout all categories of trackers, a relatively under-researched topic is
that of identifying an effective representation that models both the spatial and
dynamic properties of a target in a uniform fashion. While some tracking-related
research has sought to combine spatial and motion-based features (e.g., [7,24]),
the two different classes of features are derived separately from the image se-
quence, which has potential for making subsequent integration challenging. A
single exception is the tracker noted above that derived its features from spa-
tiotemporal oriented energy measurements, albeit ultimately collapsing across
spatial support [10], making it more susceptible to clutter (e.g., background and
foreground share similar overall feature statistics, yet would be distinguished by
spatial layout) and “blind” to more complex motions (e.g., rotation).

In light of previous research, the main contributions of the present paper
are as follows. (i) A novel oriented energy representation that retains the spa-
tial organization of the target is developed for visual tracking. Although sim-
ilar oriented energy features have been used before in visual trackers [10] and
other areas of image sequence processing (e.g., [2,15,29,26,12,31]), it appears
that these features have never been deployed in a pixelwise fashion to form the
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fundamental features for tracking. (ii) A method is derived for instantiating this
representation within a parametric flow estimation tracking algorithm. (iii) The
discriminative power of the pixelwise oriented energy representation is demon-
strated via a direct comparison against other commonly-used features. (iv) The
overall tracking implementation is demonstrated to perform better than sev-
eral state-of-the-art algorithms on a set of challenging video sequences during
extensive qualitative and quantitative comparisons.

2 Technical Approach

2.1 Features: Spatiotemporal Oriented Energies

Video sequences induce very different orientation patterns in image spacetime
depending on their contents. For instance, a textured, stationary object yields
a much different orientation signature than if the very same object were under-
going translational motion. An efficient framework for analyzing spatiotemporal
information can be realized through the use of 3D, (x, y, t), oriented energies
[2]. These energies are derived from the filter responses of orientation selective
bandpass filters that are applied to the spatiotemporal volume representation of
a video stream. A chief attribute of an oriented energy representation is its abil-
ity to encompass both spatial and dynamic aspects of visual spacetime, strictly
through the analysis of 3D orientation. Consideration of spatial patterns (e.g.,
image textures) is performed when the filters are applied within the image plane.
Dynamic attributes of the scene (e.g., velocity and flicker) are analyzed by fil-
tering at orientations that extend into the temporal dimension.

The aforementioned energies are well-suited to form the feature representation
in visual tracking applications for four significant reasons. (i) A rich description
of the target is attained due to the fact that oriented energies encompass both
target appearance and dynamics. This richness allows for a tracker that is more
robust to clutter both in the form of background static structures and other
moving targets in the scene. (ii) The oriented energies are robust to illumination
changes. By construction, the proposed feature set provides invariance to both
additive and multiplicative image intensity changes. (iii) The energies can be
computed at multiple scales, allowing for a multiscale analysis of the target at-
tributes. Finer scales provide information regarding motion of individual target
parts (e.g., limbs) and detailed spatial textures (e.g., facial expressions, clothing
logos). In a complementary fashion, coarser scales provide information regard-
ing the overall target velocity and its gross shape. (iv) The representation is
efficiently implemented via linear and pixelwise non-linear operations [14], with
amenability to real-time realizations on GPUs [31].

The desired oriented energies are realized using broadly tuned 3D Gaussian
second derivative filters, G2 (θ, γ), and their Hilbert transforms, H2 (θ, γ), where
θ specifies the 3D direction of the filter axis of symmetry, and γ indicates the
scale within a Gaussian pyramid [14]. To attain an initial measure of energy, the
filter responses are pixelwise rectified (squared) and summed according to

E (x; θ, γ) = [G2 (θ, γ) ∗ I (x)]2 + [H2 (θ, γ) ∗ I (x)]2 , (1)
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Input Video Frames

Spatiotemporal Oriented Energy Decomposition

Interframe Motion Estimation

Fig. 1. Overview of visual tracking approach. (top) Two frames from a video where a
book is being tracked. The left image is the first frame with a crop box defining the
target’s initial location. The right image is a subsequent frame where the target must
be localized. (middle) Spacetime oriented filters decompose the input into a series
of channels capturing spatiotemporal orientation; left-to-right the channels for each
frame correspond roughly to horizontal static structure, rightward and leftward motion.
(bottom) Interframe motion is computed using the oriented energy decomposition.

where x = (x, y, t) are spatiotemporal image coordinates, I is an image, and ∗
denotes the convolution operator. It is the bandpass nature of the G2 and H2

filters during the computation of (1) that leads to the energies’ invariance to
additive image intensity variations.

The initial definition of local energy measurements, (1), is dependent on image
contrast (i.e., it will increase monotonically with contrast). To obtain a purer
measure of the relative contribution of orientations irrespective of image contrast,
pixelwise normalization is performed,

Ê (x; θ, γ) =
E (x; θ, γ)

∑
γ̃

∑
θ̃ E

(
x; θ̃, γ̃

)
+ ε

, (2)

where ε is a constant introduced as a noise floor and to avoid numerical insta-
bilities when the overall energy content is small. Additionally, the summations,
(2), consider all scales and orientations at which filtering is performed (here, the
convention is to use˜for variables of summation). The representation’s invariance
to multiplicative intensity changes is a direct result of this normalization, (2).

2.2 Target Representation

Depending on the tracking architecture being employed, pixelwise energy mea-
surements, (2), can be manipulated to define various target representations (e.g.,
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collapsed to form an energy histogram, parameterized by orientation and scale
[10]). The present approach retains the target’s spatial organization by defining
the representation in terms of a pixelwise template for tracking based on para-
metric registration of the template to the image across a sequence [21,4,6]. In
particular, the template is initially defined as

T (x, y, θ, γ) = Ê (x, y, t0; θ, γ) (3)

for energies measured at some start time, t0, and spatial support, (x, y), over
some suitably specified region. Thus, the template is indexed spatially by posi-
tion, (x, y), and at each position it provides a set of θ × γ energy measurements
that indicate the relative presence or absence of spacetime orientations. It will
be shown in Sec. 3 that retaining pixelwise organization leads to significantly
better performance than collapsing over target support, as in [10].

As an illustrative example, Fig. 1 shows a sample oriented energy decompo-
sition where a book is moving to the left in front of a cluttered background.
Consideration of the first channel shows that it responds strongly to horizontal
static structures both on the book and in the background. The second channel
corresponds roughly to rightward motion and as such, results in negligible energy
across the entire image frame. Significantly, note how the third channel tuned
roughly to leftward motion yields strong energy responses on the book and small
responses elsewhere, effectively differentiating between target and background.

Finally, note that the target representation, (3), is in contrast to standard
template tracking-based systems that typically only utilize a single channel of
intensity features during estimation [4,6]. Further, even previous approaches that
have considered multiple measurements/pixel make use of only spatially derived
features (e.g., [20]), which will be shown in Sec. 3 to significantly limit perfor-
mance in comparison to the current approach.

2.3 Robust Motion Estimation

Tracking using a pixelwise template approach consists of matching the template,
T , to the current frame of the sequence so as to estimate and compensate for
the interframe motion of the target. In the present approach, both the template,
T , and the image frame, I, are represented in terms of oriented energy mea-
surements, (2). To illustrate the efficacy of this representation, an affine motion
model is used to capture target interframe motion, as applicable when the tar-
get depth variation is small relative to the camera-to-target distance [25,22,23].
Further, the optical flow constraint equation (OFCE) [17] is used to formulate
a match measure between features (oriented energies) that are aligned by the
motion model. Under a parametric model, the OFCE can be written as

∇�Êu (a) + Êt = 0 , (4)

where ∇�Ê =
(
Êx, Êy

)
are the first-order spatial derivatives of the image

energy measurements, (2), for some specific orientation, θ, and scale, γ, Êt is
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the first order temporal derivative, u = (u, v)� is the flow vector, and a =
(a0, a1, . . . a5)

� are the six affine motion parameters for the local region. The
affine motion model is explicitly defined as

u (x, y;a) = (a0 + a1x + a2y, a3 + a4x + a5y)� . (5)

The affine parameters, a, are estimated by minimizing the error in the constraint
equation, (4), summed over the target support. Significantly, in the present ap-
proach the target representation spans not just a single image plane, but multiple
feature channels (orientations and scales) of spatiotemporal oriented energies. As
a result, the error minimization is performed across the target support and over
all feature channels. To measure deviation from the optical flow constraint, a
robust error metric, ρ(η, σ), is utilized [6]. The robust metric is beneficial for
occlusion events, imprecise target delineations that include background pixels,
and target motion that deviates from the affine motion model (e.g., non-rigid,
articulated motion). With the above considerations in mind, the affine motion
parameters, defining the interframe target motion, are taken as

argmin
a

∑

x̃

∑

θ̃

∑

γ̃

ρ
[
∇�Ê

(
x̃, ỹ, t; θ̃, γ̃

)
u (a) + Êt

(
x̃, ỹ, t; θ̃, γ̃

)
, σ

]
, (6)

where summations are across target support, x̃ = (x̃, ỹ), as well as all feature
channel orientations, θ̃, and scales, γ̃. In the present implementation, the Geman-
McClure error metric [18] is utilized with σ the robust metric width, as suggested
in [6]. The minimization to yield the motion estimate, (6), is performed using a
gradient descent procedure [6]. To increase the capture range of the tracker, the
minimization process is performed in a coarse-to-fine fashion [4,6].

The affine parameters estimated using (6) bring the target template into align-
ment with the closest matching local set of oriented energy features that are de-
rived from the current image frame. At the conclusion of processing each frame,
the position of the target is updated via the affine motion estimates, a, forming
a track of the target across the video sequence. After target positional updating
has been completed, the next video frame is obtained and the motion estimation
process between the template and the new image data is performed. This process
is repeated until the end of the video is reached.

2.4 Template Adaptation

Tracking algorithms require a means of ensuring that the internal target rep-
resentation (i.e., the template) remains up-to-date with the true target charac-
teristics in the current frame, especially when tracking over long sequences. For
the proposed tracker, template adaptation is necessary to ensure that changes
in target appearance (e.g., target rotation, addition/removal of clothing ac-
cessories, changing facial expression) and dynamics (e.g., speeding up, slowing
down, changing direction) are accurately represented by the current template.
In the present implementation, a simple template update scheme is utilized that
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computes a weighted combination of the aligned, optimal candidate oriented
energy image features in the current frame, Ci, and the previous template

T i+1 (x, θ, γ) = αT i (x, θ, γ) + (1 − α) Ci (x, θ, γ) , (7)

where α is a constant adaptation parameter controlling the rate of the updates
(c.f., [19]). Although this update mechanism is far from the state-of-the-art in
adaptation [20,23,3], the implementation achieves competitive results due to the
overall strength of the pixelwise oriented energy feature set.

To summarize, Fig. 1 provides an overview of the entire system.

3 Empirical Evaluation

Three experiments were performed on the resulting system to assess its ability to
track affine deformations, determine the power of the pixelwise spatiotemporal
oriented energy representation, and compare its performance against alternative
trackers. For all three experiments, unless otherwise stated, the following pa-
rameters were used. For the representation, 10 orientations were selected as they
span the space of 3D orientations for the highest order filters that were used
(i.e., H2). The particular orientations selected were the normals to the faces of
an icosahedron, as they evenly sample the sphere. Energies were computed at
a single scale, corresponding to direct application of the oriented filters to the
input imagery. For motion estimation, coarse-to-fine processing operated over 4
levels of a Gaussian pyramid built on top of the oriented energy measurements.
Templates were hand initialized and updated with α ≈ 0.9. Video results for all
experiments are available in supplemental material and online [1].

Experiment 1: Tracking affine deformations. This experiment illustrates
the ability of the proposed system to estimate a wide range of affine motions
when tracking a planar target (book) against a similarly complicated texture
background; see Fig. 2. The target undergoes severe deformations including sig-
nificant rotation, shearing, and scaling. While other feature representations (e.g.,
pixel intensities) also might perform well in these cases, the experiment docu-
ments that the spatiotemporal oriented energy approach, in particular, succeeds
when experiencing affine deformations and that the motion estimator itself is
capable of achieving excellent performance.

It is seen that the system accurately tracks the book throughout all tested
cases. Performance decreases slightly when the book undergoes significant rota-
tion. This drop is not alarming because part of the oriented energy representation
encompasses the spatial orientation of the target, which is clearly changing dur-
ing a rotation. Despite this “appearance change” (under the proposed feature
representation), success is had for three reasons. (i) Template updates adjust
the internal template representation to more accurately represent the target in
the current frame. (ii) The filters used in computing the oriented energies (G2

and H2) are broadly tuned and allow for inexact matches. (iii) The tracker
can utilize other aspects of the rich representation (e.g., motion) that remain
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40 140 240 340

10 80 140 190

10 120 220 310

Fig. 2. Tracking through affine deformations. (row 1) Translation and subsequent ro-
tation as the book rotates in plane over 90◦. (row 2) Shearing as book rotates sig-
nificantly out-of-plane. (row 3) Scaling as book moves toward camera. Orange box
indicates tracked target.

relatively constant throughout the rotation. It is expected that if a more elabo-
rate template update scheme were used, the results could be further improved.

Experiment 2: Feature set comparison. This experiment provides a com-
parison between the proposed spatiotemporal oriented energy features and two
alternatives. In all cases, the motion estimation and template updates are iden-
tical (i.e., according to Sections 2.3 and 2.4). The single differentiating factor is
the feature set. In the first system, pixelwise spatiotemporal oriented energies
were used (10 orientations, as above) while the second tracker simply employed
pixelwise raw image intensities. The third feature representation was purely spa-
tial oriented energies, computed at four orientations (0◦, 45◦, 90◦, and 135◦), so
as to span the space of 2D orientations for the highest order filters.

Five difficult, publicly available video sequences were used to demonstrate the
points of this experiment. All five videos with ground truth can be downloaded
[1,3]. The videos are documented in Table 1; results are shown in Fig. 3. To

Table 1. Experiments 2 and 3 video documentation. See Figs. 3 and 4 for images.

Occluded Face 2 [3]: Facial target. In plane target rotation. Cluttered background.
Appearance change via addition of hat. Significant occlusion by book and hat.

Sylvester [23]: Hand-held stuffed animal target. Fast erratic motion, including
out-of-plane rotation/shear. Illumination change across trajectory.

Tiger 2 [3]: Hand-held stuffed animal target. Small target with fast erratic motion.
Cluttered background/foreground. Occlusion as target moves amongst leaves.

Ming [23]: Facial target. Variable facial expression. Fast motion. Significant
illumination change across trajectory.

Pop Machines [original]: Similar appearing targets with crossing trajectories. Low
quality surveillance video. Harsh lighting. Full occlusion from central pillar.
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145 260 400 665

300 445 580 1009

16 59 85 355

230 727 1090 1467

6 1313 3434 57

Fig. 3. Feature comparisons. Frame numbers are shown in the top left corner of each
image. Top-to-bottom by row, shown are Occluded Face 2, Sylvester, Tiger 2, Ming,
and Pop Machines of Table 1. Orange, purple, and green boxes are for spatiotemporal
oriented, purely spatial oriented, and raw intensity features, resp.

ensure fair comparison with previous literature, the initial tracking boxes were
set to the ground truth coordinates for the selected start frames, where available.
For Pop Machines, trackers were initialized at the onset of each target’s motion.

This second experiment clearly illustrates the fact that the choice of feature
representation is critical in overcoming certain challenges in tracking including,
illumination changes, clutter, appearance changes, and multiple targets with
similar appearance. With reference to Fig. 3, illumination changes are problem-
atic for the pure intensity features, as can be seen in the results from the Ming
(Frames 727 and 1090) and Sylvester (Frame 445) sequences. Bandpass filter-
ing, (1), and normalization, (2), allows both energy-based approaches to track,
relatively unaffected, through these illumination variations. The Occluded Face
2 (Frame 400) and Tiger 2 (Frames 59 and 85) videos demonstrate that the
purely spatially-based features (both raw intensity and orientation) can easily
be distracted by complicated cluttered scenery, especially when the target un-
dergoes a slight change in appearance (e.g., rotation of head, partial occlusion by
foliage, motion blur). The addition of motion information in the spatiotemporal
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approach provides added discriminative power to avoid being trapped by clutter.
Appearance changes caused by out of plane rotations in Sylvester (Frame 580)
and the addition of a hat in Occluded Face 2 (Frame 665) are also problematic for
the raw intensity features and the spatial oriented energies; however, motion in-
formation allows the spatiotemporal approach to succeed during the appearance
changes. Notice also that when the motion changes rapidly (Sylvester, Tiger 2),
the spatiotemporal approach can still maintain track, as the spatial component
of the representation remains stable while the motion component adapts via up-
date, (7). Finally, in Pop Machines the spatiotemporal energy representation is
able to achieve success where the alternatives at least partially lose track of both
targets. In this case, motion information is critical in distinguishing the targets,
given their similar appearance. Success is had with the proposed approach even
as the targets cross paths and with the pillar providing further occlusion.

Experiment 3: Comparison against alternative trackers. In this exper-
iment, analyses are conducted that show the proposed spatiotemporal oriented
energy tracker (SOE) meets or exceeds the performance of several alterna-
tive strong trackers. The trackers considered are the multiple instance learn-
ing tracker (MIL) [3], the incremental visual tracker (IVT) [23], and a tracker
that uses a similar oriented energy representation, but that is spatially collapsed
across target support to fit within the mean shift framework (MS) [10]. The
parameters for the competing algorithms were assigned values that were recom-
mended by the authors or those that provided superior results. The videos used
for this experiment are the same ones used in Exp. 2.

Figure 4 shows qualitative tracker results. For Occluded Face 2, SOE and IVT
provide very similar qualitative results; whereas, MIL becomes poorly localized
during the later stages of the video. The collapsing of spatial arrangement infor-
mation in conjunction with a loose initial target window limits the performance of
MS, as it is distracted onto the background. Also problematic for MIL and MS
is that they only estimate translation, while the target rotates. In Sylvester, IVT
experiences a complete failure when the target suddenly rotates toward the cam-
era (rapid appearance change). MIL follows the target throughout the entire se-
quence, but at times the lighting and appearance changes (caused by out-of-plane
rotations) move the tracking window partially off-target. MS also tracks the tar-
get throughout the sequence, but allows its target window to grow gradually too
large due to a relatively unstructured background and no notion of target spatial
organization. SOE performs best due to the robustness of its features to illumina-
tion changes and their ability to capitalize on motion information when appear-
ance varies rapidly. In Tiger 2, SOE struggles somewhat relative to MIL. Here,
the small target combined with rapid motion makes it difficult for the employed
coarse-to-fine, gradient-basedmotion estimator to obtain accurate updates. These
challenges make this sequence favorable to trackers that make use of a “spotting
approach” (e.g., MIL). The result for SOE is that it lags behind during the fastest
motions; although, it “catches-up” throughout. With Ming, SOE and IVT pro-
vide accurate tracks that are qualitatively very similar. MIL cannot handle the
large scale changes that the target undergoes throughout this video and as such,
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often ends up only tracking a fraction of the target. MS again follows the target
but with a tracking window that grows too large. Finally, in Pop Machines, since
the two individuals within the scene look very similar and walk closely to one an-
other, MIL has difficulty distinguishing between them. For much of the video se-
quence, both of the MIL tracking windows are following the same individual. On
the other hand, MS and IVT cannot surmount the full occlusions caused by the
foreground pillar. Only SOE’s feature representation, which encompasses target
dynamics and spatial organization, is capable of distinguishing between the tar-
gets and tracking them both to the conclusion of the video.

In comparing the performance of the proposed SOE to the previous approach
that made use of spatiotemporal oriented energy features for tracking, MS, the
benefits of maintaining spatial organization (as provided by SOE, but not MS)
are well documented. MS shows a tendency to drift onto non-target locations
that share similar feature characteristics with the target when they are collapsed
across support regions (e.g., occluding book in Occluded Face 2, backgrounds in
Ming and Sylvester). In contrast, SOE does not exhibit these problems, as it
maintains the spatial organization of the features via its pixelwise representation
and the targets are distinguished from the non-target locations on that basis.

Figure 5 shows quantitative error plots for the trackers considered. Since MIL
is stochastic, it was run 5 times and its errors averaged [3]. Ground truth for
Occluded Face 2, Sylvester and Tiger 2 were available previously [3]; ground
truth was manually obtained for the Ming and Pop Machines videos. The plots
largely corroborate the points that were observed qualitatively. For instance,
the minor failure of MIL near the end of Occluded Face 2 is indicated by the
rapid increase in error. Also in Occluded Face 2, a transient increase in error
(Frames 400 — 600) can be observed for SOE and IVT as they accurately
track the target’s rotation whereas the ground truth is provided more coarsely
as target translation [3]. Similarly, the complete failure of IVT near frame 700 of
Sylvester is readily seen. Also, the tendency of SOE to lag and recover in Tiger
2 is captured in the up/down trace of its error curve, even as it remains generally
below that of IVT and MS, albeit above MIL. For Ming, the excellent tracks
provided by SOE and IVT are visible. It can also be seen that MS experiences
a sudden failure as it partially moves off the target near the beginning of the
sequence. However, MS eventually re-centers itself and provides centers of mass
comparable to MIL. In the plots for Pop Machines, the upward ramps for IVT,
MIL, and MS show how the errors slowly increase when the tracking windows
fall off of a target as it continues to move progressively away. In contrast, SOE
enjoys a relatively low error throughout for both targets.

To summarize the quantitative plots in Fig. 5, the center of mass pixel distance
error was averaged across all frames, yielding the summary statistics in Table 2.
Although the proposed SOE does not attain the best performance for every
video, it is best in three cases (with one tie) and second best in the remaining
two cases (trailing the best by only 3 pixels in one case). IVT also scores two
top places, in one case tied with, and in the other only slightly better than SOE.
Further, all trackers except SOE experience at least one complete failure where
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260 421 621 721

241 581 621 891

17 217 338 355

315 725 925 1101

5 1515 3434 55

Fig. 4. Comparison to alternative trackers. Top-to-bottom as in Fig. 3. Orange, green,
purple, and teal show results for proposed SOE, IVT, MIL, and MS trackers, resp.

the tracking window falls off target and does not re-establish a track before the
end of the sequence. Overall, these results argue for the superior performance of
SOE in comparison to the alternatives considered.

4 Discussion and Summary

The main contribution of the presented approach to visual tracking is the in-
troduction of a novel target representation in terms of pixelwise spatiotemporal
oriented energies. This representation uniformly captures both the spatial and
temporal characteristics of a target with robustness to illumination to yield an
uncommonly rich feature set, supporting tracking through appearance and il-
lumination changes, erratic motion, complicated backgrounds and occlusions.
A limitation of the current approach is its lack of explicit modeling of back-
ground motion, e.g., as encountered with an active camera, which may make
the temporal components of the target features less distinctive compared to the
background. In future work, various approaches can improve the system in this
regard (e.g., background stabilization [8] and automatic selection of a subset of
spatiotemporal features distinguishing the target vs. the background [11]).



Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy 523

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

180

Frame

E
rr

or

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

350

400

Frame

E
rr

or

0 50 100 150 200 250 300 350 400
0

50

100

150

Frame

E
rr

or

0 500 1000 1500
0

10

20

30

40

50

60

70

Frame

E
rr

or

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

Frame

E
rr

or

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

Frame

E
rr

or

Fig. 5. Quantitative results for Experiment 3. Each plot shows the Euclidean pixel
error between the ground truth and tracker center of mass. Row 1, left-to-right, results
for Occluded Face 2, Sylvester, Tiger 2, and Ming. Row 2, left-to-right, Pop Machines
target 1 (starting on right) and target 2 (starting on left).

Table 2. Summary of quantitative results. Values listed are pixel distance errors for
the center of mass points. Green and red show best and second best performance, resp.

Algorithm Occluded Face 2 Sylvester Tiger 2 Ming Pop Machines

SOE (proposed) 9 8 22 3 13
IVT 6 92 39 3 49
MIL 19 13 11 19 26
MS 75 19 40 29 76

The proposed approach has been realized in a software system for visual track-
ing that uses robust, parametric motion estimation to capture frame-to-frame
target motion. Evaluation of the system on a realistic set of videos confirms the
approach’s ability to surmount significant tracking challenges (multiple targets,
illumination and appearance variation, fast/erratic motion, clutter and occlu-
sion) relative to a variety of alternative state-of-the-art trackers.
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