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Abstract
This paper addresses the challenge of recognizing dy-

namic textures based on their observed visual dynamics.
Typically, the term dynamic texture is used with reference
to image sequences of various natural processes that ex-
hibit stochastic dynamics (e.g., smoke, water and wind-
blown vegetation); although, it applies equally well to im-
ages of simpler dynamics when analyzed in terms of ag-
gregate region properties (e.g., uniform motion of elements
in traffic video). In this paper, a novel approach to dy-
namic texture representation and an associated recogni-
tion method are proposed. The approach pursued here
recognizes dynamic textures based on matching distribu-
tions (histograms) of spacetime orientation structure. Em-
pirical evaluation on a standard database with controls to
remove the effects of identical viewpoint demonstrates that
the proposed approach achieves superior performance over
alternative state-of-the-art methods.

1. Introduction
1.1. Motivation

A readily observable set of visual phenomena encoun-

tered in the natural world are dynamic patterns that are due

to the temporal variation (e.g., movement) of a large num-

ber of individual elements. Several examples are depicted

in Fig. 1. Such patterns primarily are characterized by the

aggregate dynamic properties of elements or local measure-

ments taken over a region of spatiotemporal support, rather

than in terms of the dynamics of individual constituents.

In the computer vision literature, these patterns have ap-

peared collectively under various names, including, turbu-

lent flow/motion [24], temporal textures [28], time-varying

textures [2], dynamic textures [31], and textured motion

[38]; the term dynamic texture will be used herein. Most

typically, the term “dynamic texture” has been used with

reference to images of natural processes that exhibit sto-

chastic dynamics (e.g., fire, turbulent water and windblown

Figure 1. Examples of dynamic textures in the real world. (left-

to-right, top-to-bottom) Forest fire, flock of birds in flight, water,

crowd of people running, waterfall and vehicular traffic.

vegetation); however, it can apply equally well to simpler

phenomena when analyzed in terms of aggregate regional

properties (e.g., orderly pedestrian crowds and vehicular

traffic).

The ability to recognize dynamic textures based on vi-

sual processing is of significance to a number of applica-

tions, including, video indexing/retrieval, surveillance and

environmental monitoring where they can serve as keys,

isolate background clutter (e.g., fluttering vegetation) from

activities of interest and detect various critical conditions

(e.g., fires), respectively.

The goal of the present work is the development of a uni-

fied approach to representing and recognizing a diverse set

of dynamic textures with robustness to viewpoint and ability

to encompass recognition in terms of semantic categories

(e.g., recognition of fluttering vegetation without being tied

to a specific view of a specific bush). Toward that end, an

approach is developed that is based solely on observed dy-

namics (i.e., excluding purely spatial appearance).

For present purposes, local spatiotemporal orientation is

of fundamental descriptive power, as it captures the first-

order correlation structure of the data irrespective of its ori-

gin (i.e., irrespective of the underlying visual phenomena),

even while distinguishing a wide range of dynamic patterns



of interest (e.g., single motion, multiple motions and scin-

tillation). Correspondingly, each dynamic texture will be

associated with a distribution (histogram) of measurements

that indicates the relative presence of a particular set of 3D

orientations in visual spacetime, (x, y, t), as measured by a

bank of spatiotemporal filters, and recognition will be per-

formed by matching such distributions. Interestingly, the

distribution of oriented spacetime structure has been shown

to be an important discriminating factor in human percep-

tion studies of dynamic textures [41, 42].

1.2. Related work

Over the past three decades various representations have

been directed at characterizing dynamic textures for the pur-

pose of recognition [11]. In this section, several representa-

tive strands of research are reviewed.

One strand of research explores physics-based ap-

proaches (e.g., [25]). These methods derive models for spe-

cific dynamic textures (e.g., water [25]) based on a first-

principles analysis of the generating process. With the

model recovered from input imagery, the underlying model

parameters can be used to drive inference. Beyond compu-

tational issues, the main disadvantage of this class of ap-

proaches is that the derived models are highly focused on

specific dynamic textures, and thus lack generalization to

larger classes of dynamic textures.

Motivated by spatial texture-related research, an early

approach to uniform analysis of a diverse set of dynamic

textures was based on extracting first- and second-order sta-

tistics of motion flow field-based features, assumed to be

captured by estimated normal flow [28]. This work was

followed-up by numerous proposed variations of normal

flow (e.g., [6]) and optical flow-based features (e.g., [27]).

There are two main drawbacks related to this strand of re-

search. First, normal flow is highly correlated with dynamic

texture spatial appearance [29]. Thus, in contrast to the goal

of the present paper, recognition is highly tuned to a partic-

ular spatial appearance. Second, optical flow and its normal

flow component are predicated on assumptions like bright-

ness constancy and local smoothness, which are generally

difficult to justify in the context of dynamic textures.

A recent trend in dynamic texture research is the use

of statistical generative models to jointly model the spa-

tial appearance and dynamics of a pattern. Recognition

is realized by comparing the similarity between the un-

derlying model parameters. Several variants of this ap-

proach have appeared, including: autoregressive (AR) mod-

els [34, 16, 19, 38] and multi-resolution schemes [24, 2]. By

far the most popular of these approaches for recognition is

the joint photometric-dynamic, AR-based Linear Dynamic

System (LDS) model, proposed in [16], which has formed

the basis for several recognition schemes [31, 9, 43, 37].

Although impressive recognition rates have been reported

(∼90%), most previous efforts have limited experimenta-

tion to cases where the dynamic texture samples are taken

from the exact same viewpoint. As a result, much of the per-

formance is highly tied to the spatial appearance rather than

the underlying dynamics [9, 43]. In a few variants, the cited

approaches have considered only the dynamics portion of

the LDS model for recognition [9, 43]. Significantly, a com-

parative study of many of the proposed approaches showed

that when applied to image sequences with non-overlapping

views of the same scene (“shift-invariant” recognition), all

yield significantly lower recognition rates (∼20%), whether

using joint spatial/dynamic or only the dynamic portion of

the LDS model [43].

Spatiotemporal oriented energy filters serve in defining

the representation employed in the current work. Previous

efforts have used similar operators in the analysis of image

sequences for various purposes, e.g., optical flow estimation

[23, 32, 22], activity recognition [12, 15], low-level pattern

categorization [40], tracking [8], spacetime stereo [33] and

spacetime grouping [14]. Significantly, it appears that no

previous work has used the filter outputs to support dynamic

texture recognition, as shown here.

1.3. Contributions

In the light of previous research, the major contributions

of the present work are as follows. (i) A unified approach

to representing and recognizing dynamic textures is pro-

posed based on their underlying dynamics and thereby en-

ables recognition that is viewpoint robust. Other than [43],

there is no previous work addressing view- or shift-invariant

dynamic texture recognition based solely on the observed

dynamics of the scene. (ii) A particular spacetime filtering

formulation is developed for measuring spatiotemporal ori-

ented energy and is used for classifying dynamic textures.

While spacetime filters have been used before for analyzing

image sequences, they have not been applied to the recog-

nition of dynamic textures in the manner proposed. (iii)

Empirical evaluation on a standard dynamic texture data-

base, using non-overlapping viewpoints, demonstrates that

the proposed approach achieves superior performance over

state-of-the-art methods.

2. Technical approach

There are two key parts to the proposed approach to dy-

namic texture recognition: First, a representation based on

a distribution of spatiotemporal oriented energies; second,

a match measure between any two samples under consider-

ation. This section begins by motivating the significance of

visual spacetime orientation in the context of dynamic tex-

ture analysis. Subsequently, the particulars of the proposed

representation and match measure are detailed.
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Figure 2. Range of spacetime oriented structure. The bottom and

top rows of images depict prototypical patterns of dynamic struc-

ture in the spacetime and frequency domains, respectively. The

horizontal axis indicates the amount of spacetime oriented struc-

ture superimposed in a pattern, with increasing amounts given

along the rightward direction.

2.1. Orientation in visual spacetime

The local orientation (or lack thereof) of a pattern is a

salient characteristic. Figure 2 illustrates the significance of

this structure in terms of describing the range of dynamic

patterns in image sequence data (cf. [40]). The horizontal

axis indicates the amount of spacetime oriented structure

superimposed in a pattern, with increasing amounts given

along the rightward direction. The bottom and top rows

of images depict prototypical patterns of dynamic structure

in the spacetime and frequency domains, respectively. The

presence of a single spacetime orientation corresponds to

image velocity [18, 1, 39, 23, 32]; static patterns corre-

spond to the special case of zero velocity. In the frequency

domain, the energy of these patterns correspond to a plane

through the origin, with the planar surface slant indicative

of velocity. To the left of the motion pattern reside two de-

generate cases corresponding to spacetime orientation that

is partially specified (the aperture problem and pure tempo-

ral luminance flicker) and completely unspecified (unstruc-

tured). In the frequency domain, the energy of the the par-

tially specified case corresponds to a line through the origin;

in the special case of flicker, the line lies strictly along the

temporal frequency axis. In the limit, a region can totally

lack any spatiotemporal contrast (unstructured case) and the

frequency domain correlate is isolated in the low-frequency

portion of the spectrum.

Starting again from a motion pattern and superimpos-

ing an additional spacetime orientation yields a semi-

transparency pattern [20]. Here, two spacetime orientations

dominate the pattern description. In the frequency domain,

the energy corresponds to two planes, each representative

of its respective spacetime orientation. Continuing the su-

perposition process to the limit, yields the special case of

scintillation (e.g., “television snow”), where no discernable

orientation dominates the local region; nevertheless, signifi-

cant spatiotemporal contrast is present. In the frequency do-

main, the energy of this pattern corresponds to an isotropic

response throughout. In between the cases of two-motion

transparency and scintillation lie various complicated phe-

nomena that arise as multiple spacetime oriented structures

(e.g., motions) are composited. Occurrences in the world

that give arise to such visual phenomena include those gov-

erned by turbulence and other stochastic processes (e.g., dy-

namic water, windblown vegetation, smoke and fire).

As illustrated above, the local spacetime orientation of a

visual pattern captures significant, meaningful aspects of its

dynamic structure; therefore, a spatiotemporal oriented de-

composition of an input pattern is an appropriate basis for

local representation. By extension, aggregated measures of

orientation over a region of visual spacetime may be of use

in characterizing the region’s dynamic texture for recogni-

tion. Interestingly, distributions of spatially oriented mea-

surements have played a prominent role in the analysis of

static visual texture (see, e.g., [4] for review); however, it

appears that the present paper documents the first applica-

tion of such an approach to dynamic visual texture.

2.2. Representation: Distributed spacetime orien-
tation

The desired spacetime orientation decomposition is re-

alized using broadly tuned 3D Gaussian third derivative fil-

ters, G3θ̂
(x, y, t), with the unit vector θ̂ capturing the 3D

direction of the filter symmetry axis. The responses of the

image data to this filter are pointwise rectified (squared) and

integrated (summed) over a spacetime region, Ω, that covers

the entire dynamic texture sample under analysis, to yield

the following energy measurement for the region

Eθ̂ =
∑

(x,y,t)∈Ω

(G3θ̂
∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗ con-

volution. Notice that while the employed Gaussian deriv-

ative filter is phase-sensitive, summation over the support

region ameliorates this sensitivity to yield a measurement

of signal energy at orientation θ. More specifically, this fol-

lows from Parseval’s theorem [7] that specifies the phase-

independent signal energy in the frequency passband of the

Gaussian derivative:

Eθ̂ ∝
∑

(k,ωt)

|F{G3θ̂
∗ I}(k, ωt)|2, (2)

where k = (ωx, ωy)� denotes the spatial frequency vector,

ωt the temporal frequency and F the Fourier transform1.

Each oriented energy measurement, (1), is confounded

with spatial orientation. Consequently, in cases where the

spatial structure varies widely about an otherwise coherent

dynamic region (e.g., single motion across a region with

varying spatial texture), the responses of the ensemble of

oriented energies will reflect this behaviour and thereby

1Strictly, Parseval’s theorem is stated with infinite frequency domain

support on summation.



are spatial appearance dependent; whereas, a description of

pure pattern dynamics is sought. To remove this difficulty,

the spatial orientation component is discounted by “mar-

ginalization” of this attribute, as follows.

In general, a pattern exhibiting a single spacetime ori-

entation (e.g., image velocity) manifests itself as a plane

through the origin in the frequency domain [39]. Corre-

spondingly, summation across a set of x-y-t-oriented en-

ergy measurements consistent with a single frequency do-

main plane through the origin is indicative of energy along

the associated spacetime orientation, independent of purely

spatial orientation. Since Gaussian derivative filters of order

N = 3 are used in the oriented filtering, (1), it is appropriate

to consider N +1 = 4 equally spaced directions along each

frequency domain plane of interest, as N + 1 directions are

needed to span orientation in a plane with Gaussian deriva-

tive filters of order N [21]. Let each plane be parameterized

in terms of its unit normal, n̂; a set of equally spaced N +1
directions within the plane are given as

θ̂i = cos
(

2πi

N + 1

)
θ̂a(n̂)+sin

(
2πi

N + 1

)
θ̂b(n̂), 0 ≤ i ≤ N,

(3)

with

θ̂a(n̂) = n̂ × êx/‖n̂ × êx‖ θ̂b(n̂) = n̂ × θ̂a(n̂) (4)

where êx denotes the unit vector along the ωx-axis2.

Now, energy along a frequency domain plane with nor-

mal n̂ and spatial orientation discounted through marginal-

ization, is given by summation across the set of measure-

ments, Eθ̂i
, as

Ẽn̂ =
N∑

i=0

Eθ̂i
, (5)

with θ̂i one of N + 1 = 4 specified directions, (3), and

each Eθ̂i
calculated via the oriented energy filtering, (1).

In the present implementation, 27 different spacetime ori-

entations, as specified by n̂, are made explicit, correspond-

ing to static (no motion/orientation orthogonal to the im-

age plane), slow (half pixel/frame movement), medium (one

pixel/frame movement) and fast (two pixel/frame move-

ment) motion in the directions leftward, rightward, upward,

downward and diagonal, and flicker/infinite vertical and

horizontal motion (orientation orthogonal to the temporal

axis); although, due to the relatively broad tuning of the

filters employed, responses arise to a range of orientations

about the peak tunings.

Finally, the marginalized energy measurements, (5), are

confounded by the local contrast of the signal and as a result

increase monotonically with contrast. This makes it impos-

sible to determine whether a high response for a particular

spacetime orientation is indicative of its presence or is in-

2Depending on the spacetime orientation sought, êx can be replaced

with another axis to avoid the case of an undefined vector.

deed a low match that yields a high response due to signif-

icant contrast in the signal. To arrive at a purer measure of

spacetime orientation, the energy measures are normalized

by the sum of consort planar energy responses,

Ên̂i
= Ẽn̂i

/

( M∑
j=1

Ẽn̂j
+ ε

)
, (6)

where M denotes the number of spacetime orientations con-

sidered and ε is a constant introduced as a noise floor. Con-

ceptually, (1) - (6) can be thought of as taking an image

sequence, I(x, y, t), and carving its power spectrum into a

set of planes, with each plane corresponding to a particular

spacetime orientation, to provide a relative indication of the

presence of structure along each plane.

The constructed representation enjoys a number of at-

tributes that are worth emphasizing. First, owing to the

bandpass nature of the Gaussian derivative filters (1), the

representation is invariant to additive photometric bias in

the input signal. Second, owing to the divisive normaliza-

tion (6), the representation is invariant to multiplicative pho-

tometric bias. Third, owing to the marginalization (5), the

representation is invariant to changes in appearance mani-

fest as spatial orientation variation. Overall, these three in-

variances allow abstractions to be robust to pattern changes

that do not correspond to dynamic pattern variation, even

while making explicit local orientation structure that arises

with temporal variation (motion, flicker, etc.). Fourth, the

representation is efficiently realized via linear (separable

convolution, pointwise addition) and pointwise non-linear

(squaring, division) operations; thus, efficient computations

are realized [13].

Overall, each of the normalized oriented energies can be

viewed as expressing the evidence for the presence of a par-

ticular, spacetime oriented structure. Taken as an ensem-

ble (distribution), they provide the relative contribution of

each spacetime orientation in the decomposition of the dy-

namic texture signal under consideration. Previously, a sim-

ilar representation was presented with application to video

segmentation [14]. In that earlier effort energy was defined

locally; whereas, here it is taken as a regional measurement.

2.3. Recognition: Spacetime orientation distribu-
tion similarity

An ensemble of (normalized) energy measurements,

Ên̂i
, is taken as a distribution with spatiotemporal orien-

tation, n̂i, as variable. (In practice, these measurements are

maintained as histograms.) Given the spacetime oriented

energy distributions of an input query and database with

entries represented in like fashion, the final step of the ap-

proach is recognition. In general, to compare two distribu-

tions, denoted x and y, there are several standard similarity

measures in the literature that can be used. In evaluation,

the following measures were considered. (In the following,



Figure 3. Sample frames from the UCLA dynamic texture database

used for evaluation.

individual entries in the employed histogram representation

of the distributions are specified via subscripting, e.g., xi,

and summations are taken across all bins.)

Minkowski-Form distance [17]:

dLp(x,y) =
(∑

i

|xi − yi|p
)1/p

(7)

Bhattacharyya coefficient (similarity on hyper-sphere) [5]:

sB(x,y) =
∑

i

√
xiyi (8)

Earth Mover’s Distance (EMD) [30]:

dEMD(x,y) =
∑

i

∑
j

ci,jfi,j (9)

where fi,j , is the set of flows that minimizes the overall

distance, (9), subject to the following set of constraints,∑
i

fi,j = yj ,
∑

j

fi,j = xi, and fi,j ≥ 0. (10)

To complete the definition of the EMD, the ground distance,

ci,j , between histogram bins must be defined. In the em-

pirical evaluation, L1 (Manhattan) and L2 (Euclidean) dis-

tances, (7), were applied to the spacetime orientation space.

The flow values are determined by solving a linear program-

ming problem.

Finally, for any given distance measure, a method must

be defined to determine the classification of a given probe

relative to the database entries. In order to make the re-

sults between the proposed approach and the various recog-

nition results reported elsewhere [43] comparable, the same

Nearest-Neighbour (NN) classifier [17] was used in the ex-

periments to be presented. Although not state-of-the-art,

the NN classifier has been shown to yield competitive re-

sults relative to the state-of-the-art Support Vector Machine

(SVM) classifier [35] for dynamic texture classification [10]

and thus provides a useful lower-bound on performance.

3. Empirical evaluation

3.1. Database

For the purpose of evaluating the proposed approach,

recognition performance was tested on the standard UCLA
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Figure 4. UCLA database recognition results. (top) Viewpoint spe-

cific results. Previous state-of-the-art result is denoted by Martin

as reported in [31]; this result is based on a NN classifier, SVM

classifier-based results, as reported in [10], are slightly higher. All

other results correspond to the proposed representational approach

under various distance measures. (bottom) Shift-invariant results.

The Martin, cepstral univariate, Chernoff and KL divergence re-

sults are taken from [43]. All other results correspond to the pro-

posed representational approach under various distance measures.

Previous reports [31, 43] do not provide results for matching be-

yond top 1.

dynamic texture database [31]. The database is comprised

of 50 dynamic texture scenes, including, boiling water, fire,

fountains, rippling water and windblown vegetation. Each

scene is given in terms of four greyscale image sequences;

for each scene, all four example sequences are captured

with the same viewing parameters (e.g., identical view-

point). In total there are 200 sequences. Each sequence con-

sists of 75 frames of size 110×160. Figure 3 shows sample

frames from the data set. The remainder of this section doc-

uments three recognition experiments that were conducted

to evaluate the performance of the proposed approach on

the UCLA database.

3.2. Viewpoint specific recognition

The first experiment largely followed the standard proto-

col set forth in conjunction with the original investigation of

the UCLA database [31]. The only difference is that unlike

[31], where careful manual (spatial) cropping was necessary

to reduce computational load in processing, such issues are

not a concern in the proposed approach and thus cropping

was avoided altogether. (Note that the actual windows used

in the original experiments [31] were not reported other than

to say that they were selected to, “include key statistical and

dynamic features”.) As in [31], a correct detection for a

given dynamic texture sequence was defined as having one

of the three other dynamic texture sequences of its scene as

its nearest-neighbour. Thus, the recognition that is tested

is viewpoint specific in that the correct answer arises as a

match between two acquired sequences of the same scene

from the same view.

Results are presented in Fig. 4 (top). The highest recog-

nition rate achieved using the proposed spacetime oriented



energy approach to representing dynamic texture was 81%
with the L1 and Bhattacharyya measures. Considering the

closest five matches, classification improved to 92.5%. Al-

though, below the state-of-the-art NN benchmark of 89.5%
using cropped input imagery [31] (and higher rate reported

using a SVM classifier, 97.5% [10], again with cropped in-

put), the current results are quite competitive given that the

benchmark setting AR-LDS approaches are based on a joint

photometric-dynamic model, with the photometric portion

playing a pivotal role [9, 43]3; whereas, the proposed ap-

proach focuses strictly on pattern dynamics due to the spa-

tial appearance marginalization step in the construction of

the representation, (5). In subsequent experiments, it will

be shown that there are distinct advantages to eschewing

the purely spatial appearance attributes as one moves be-

yond viewpoint specific recognition.

3.3. Shift-invariant recognition

To remove the effect of identical viewpoint, and thus the

appearance bias in the database, it was proposed that each

sequence in the database be cropped into non-overlapping

pairs, with subsequent comparisons only performed be-

tween different crop locations [43]. Recognition rates under

this evaluation protocol showed dramatic reduction in the

state-of-the-art LDS-based approaches from approximately

90% to 15% [43]; chance performance was ∼1%. Further,

introduction of several novel distance measures yielded

slightly improved recognition rates of ∼20% [43]. Restrict-

ing comparisons to between non-overlapping portions of the

original image sequence data tests shift-invariant recogni-

tion in that the “view” between instances is spatially shifted.

As a practical point, shift-invariant recognition arguably is

of more importance than viewpoint specific, as real-world

imaging scenarios are unlikely to capture a scene from ex-

actly the same view across two different acquisitions.

The second experiment reported here closely follows

previous shift-invariant experiments using the UCLA data-

base, as described above [43]. Each sequence was spatially

partitioned into left and right halves (window pairs), with

a few exceptions. (In contrast, [43] manually cropped se-

quences into 48 × 48 subsequences; again, the location

of the crop windows were not reported.) The exceptions

arise as several of the imaged dynamic textures are not spa-

tially stationary; therefore, the cropping regimen described

above would result in left and right views of different dy-

namic textures for these cases. For instance, in several of

the fire and candle samples, one view would capture a sta-

3Given that the image sequences of each scene in the UCLA database

were captured from the exact same viewpoint and that the scenes are vi-

sually distinctive based on image stills alone, it has been conjectured that

much of the early reported recognition performance was driven mainly by

spatial appearance [9]. Subsequently, this conjecture was supported by

showing that using the mean frame of each sequence in combination with

a NN classifier yielded a 60% classification rate [43].

input nearest match

plant-m-mid plant-n-mid

sea-e-near sea-a-mid

candle fire

wfalls-b-near wfalls-c-near
Figure 5. Examples of several misclassifications from the shift-

invariant recognition experiment. From a semantic perspective,

the inputs and their respective nearest match are equivalent. The

text below each figure, indicating the dynamic texture scene, refers

to the filename prefix used in the UCLA database.

tic background, while the other would capture the flame.

Previous shift-invariant experiments elected to neglect these

cases, resulting in a total of 39 scenes [43]. In the present

evaluation, all cases in the database were retained with

special manual cropping introduced to the non-stationary

cases to include their key dynamic features; documenta-

tion of crop windows is available at: www.cse.yorku.
ca/vision/research/spacetime-texture. (In

experimentation, it was found that dropping these special

cases entirely had negligible impact on the overall result.)

Overall, the current experimental design yielded a total

of 400 sequences, as each of the original 200 sequences

were divided into two non-overlapping portions (views).

Comparisons were performed only between different views.

A correct detection for a given dynamic texture sequence

was defined as having one of the four dynamic texture se-

quences from the other views of its scene as its nearest-

neighbour.

The results for the second experiment are presented in

Fig. 4 (bottom). In this scenario the proposed approach

achieved a 42.3% classification rate, significantly outper-

forming the the best result of 20% reported in [43]. Con-



sidering the closest five matches, classification improved to

∼60%. This strong performance owes to the proposed spa-

tiotemporal oriented energy representation’s ability to cap-

ture dynamic properties of visual spacetime without being

tied to the specifics of spatial appearance.

Interestingly, close inspection of the results shows that

many of the misclassifications for the proposed approach

arise between different scenes of semantically the same ma-

terial, especially from the perspective of visual dynamics.

Figure 5 shows several illustrative cases. For example, the

most common “confusion” arises from strong matches be-

tween two different scenes of fluttering vegetation. Indeed,

vegetation dominates the database and consequently has a

great impact on the overall classification rate.

Finally, recall that the results in [43] used carefully cho-

sen windows of spatial size 48×48; whereas, the results re-

ported here for the proposed approach are based on simply

splitting the full size dynamic textures in half. To control

against the impact of additional spatiotemporal support, the

proposed approach was also evaluated on cropped windows

of similar size to [43]; there was negligible impact on the

recognition results.

3.4. Semantic category recognition

Examining the UCLA database, one finds that many of

the scenes (50 in total) are capturing semantically equiva-

lent categories. As examples, different scenes of fluttering

vegetation share fundamental dynamic texture similarities,

as do different scenes of water waves vs. fire, etc; indeed,

these similarities are readily apparent during visual inspec-

tion of the database as well as the shift-invariant confusions

shown in Fig. 5. In contrast, the usual experimental use

of the UCLA database relies on distinctions made on the

basis of particular scenes, emphasizing their spatial appear-

ance attributes (e.g., flower-c vs. plant-c vs. plant-s) and the

video capture viewpoint (i.e., near, medium and far). This

parceling of the database overlooks the fact that there are

fundamental similarities between different scenes and views

of the same semantic category.

In response to the observations above, the final reported

experiment reorganizes the database into the following se-

mantic categories (reorganization done by authors, original

scenes designated by filename prefix and the total number

of sequences given in parentheses): flames (16) candle and

fire, all instances depict flames; fountain (8) fountain-c, de-

picts spurting spray style fountain; smoke (8) smoke; (wa-
ter) turbulence (40) boiling and water, all depict turbulent

dynamics; (water) waves (24) sea, all depict wave dynam-

ics; waterfalls (64) fountain-a, fountain-b and wfalls, foun-

tains that show water flowing down walls thereby similar

to waterfalls and hence grouped together; (windblown) veg-
etation (240) flower and plant, all depict fluttering vegeta-

tion. Although alternative categorical organizations might

Classified

fla
m

es

fo
un

ta
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A
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l

flames (total 16) 12 1 2 1

fountain (8) 8
smoke (8) 2 6

turbulence (40) 34 6

waves (24) 24
waterfall (64) 2 51 11

vegetation (240) 3 1 2 234

Table 1. Confusion matrix for seven semantic categories.

be considered, the present one is reasonably consistent with

the semantics of the depicted patterns. Evaluation on this

data set was conducted using the same procedure outlined

for the shift-invariant experiment (Sec. 3.3) to yield seman-
tic category recognition.

The semantic category recognition results are shown as

a confusion table in Table 1. The overall classification rate

in this scenario is 92.3%. As with the previous experi-

ment, inspection of the confusions reveals that they typi-

cally are consistent with their apparent dynamic similari-

ties (e.g., waterfall and turbulence confusions, smoke and

flames confusions). These results provide strong evidence

that the proposed approach is extracting information rele-

vant for delineating dynamic textures along semantically

meaningful lines; moreover, that such distinctions can be

made based on dynamic information without inclusion of

spatial appearance.

4. Discussion and summary
The main contribution of the presented research is the

representation of visual spacetime via spatiotemporal ori-

entation distributions for the purpose of recognizing dy-

namic textures. It has been shown that this tack yields a

strong approach to shift-invariant and semantic category-

based recognition of dynamic textures. Although the appli-

cation of spacetime orientation analysis is well documented

in the literature for patterns readily characterized as sin-

gle motion [18, 1, 39, 23, 32] and semi-transparent motion

[20, 32, 44, 3], its application to analyzing more compli-

cated phenomena as manifest in dynamic texture patterns,

where dominant oriented structure can break down, has re-

ceived no previous attention.

In this contribution, the dynamic portion of a given tex-

ture pattern has been factored out from the purely spatial

appearance portion for subsequent recognition. In con-

trast, LDS-based recognition approaches generally have

considered the spatial appearance and dynamic components

jointly, which appears to limit performance in significant

ways (e.g., weak performance on shift-invariant recognition

relative to the proposed approach). The spatial appearance

component of these methods is based primarily on a Princi-

pal Components Analysis (PCA) that does not represent the



current state-of-the-art (e.g., [36]). These observations mo-

tivate the future investigation of combining a state-of-the-

art appearance-based scheme with the proposed approach

to recognizing pattern dynamics.

Although the proposed representation has been pre-

sented in terms of oriented filters at a single spatiotempo-

ral scale (i.e., radial frequency), it is an obvious candidate

for multi-scale treatment [26]. This extension may serve

to support finer categorical distinctions due to characteristic

signatures manifesting across scale.

In summary, this paper has presented a unified approach

to representing and recognizing dynamic textures based on

the underlying pattern dynamics. The approach is based on

a distributed characterization of visual spacetime in terms

of 3D, (x, y, t), spatiotemporal orientation. Empirical eval-

uation on a standard database with controls to remove the

effects of identical viewpoint shows that the proposed ap-

proach achieves superior performance over state-of-the-art

methods.
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