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a b s t r a c t

Detection of motion patterns in video data can be significantly simplified by abstracting away from pixel
intensity values towards representations that explicitly and compactly capture movement across space
and time. A novel representation that captures the spatiotemporal distributions of motion across regions
of interest, called the ‘‘Direction Map,” abstracts video data by assigning a two-dimensional vector, rep-
resentative of local direction of motion, to quantized regions in space-time. Methods are presented for
recovering direction maps from video, constructing direction map templates (defining target motion pat-
terns of interest) and comparing templates to newly acquired video (for pattern detection and localiza-
tion). These methods have been successfully implemented and tested (with real-time considerations) on
over 6300 frames across seven surveillance/traffic videos, detecting potential targets of interest as they
traverse the scene in specific ways. Results show an overall recognition rate of approximately 91% hits
vs 8% false positives.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

There is a need for systems to automatically detect motion pat-
terns of interest (e.g., potential ‘threats’) in surveillance and other
video to reduce the load on personnel, who simultaneously watch
numerous monitors. As an example: Interviews with surveillance
personnel at York University in Toronto have indicated that sur-
veillance requires a high degree of knowledge of the areas being
surveyed (both in the physical and image domain) as well as con-
stant awareness of what is happening at the current time in these
areas [1]. This knowledge is then applied to select which cameras
to attend to, using the limited number of video monitors available.
However, even with the most strategic ‘game plan’ of selecting
which cameras to survey, detecting every potentially threatening
incident as it happens is practically impossible due to the high ra-
tio of cameras to surveillance staff. As a result, a need arises for
intelligent surveillance systems to be developed.

Potential events of interest may include a group of people sud-
denly converging to or diverging from a point in a surveillance vi-
deo, someone entering through an exit, or, in the case of traffic
monitoring, a car making an illegal left turn; all of these encompass
global motion information (i.e., globally visible motion patterns cor-
responding to objects moving across different large-scale regions
of a surveyed area). As a result, it is advantageous to develop an
ll rights reserved.
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algorithm to detect such global motion patterns. An intelligent sys-
tem must be able to run on multiple cameras simultaneously and
detect potentially threatening activity. Security staff should be
notified of such an incident (with video footage) within a reason-
able amount of time; the system should also log the incident for la-
ter retrieval by authorities, if necessary.

Consider the aforementioned car making a left turn. As humans,
we recognize the car as making a left turn, simply by watching the
car as it moves forward, towards the center of the intersection, and
then left into the lane where the car is turning. For a computer, it is
hypothesized that even a coarse representation of motion is suffi-
cient to detect such an event; one such representation is the pro-
posed direction map used for capturing global motion patterns.

Global motion patterns can be mapped onto spatiotemporal
direction maps containing a coarse representation of motion de-
scribed in terms of local dominant directions of motion (i.e., the
direction that best accounts for the aggregate movement in a local-
ized spatiotemporal region; this terminology is used as each point
in space-time potentially has a direction of motion; therefore, each
region has a dominant direction). For example, a car making a left
turn at an intersection can be mapped to a series of regions in
space-time with localized directions pointing towards the center
of the intersection, and as time progresses, towards the lane into
which the car is turning (see Fig. 1). Algorithms using direction
maps eliminate the need for explicit tracking and/or segmentation
and therefore eliminate an unnecessary layer of complexity that
can potentially result in errors. Such a tracking and segmenta-
tion-free algorithm to detect user-defined motion patterns is pro-
posed in the current work. It is hypothesized that video
containing motion can be translated into direction maps by the
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Fig. 1. A direction map representing a car making a left turn. At first, motion (signified by small arrows) is directed forward from the left-turn lane, as time progresses
(represented by additional images in the figure), the arrows point towards the destination. The time course is shown from left to right, top to bottom.
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use of spatiotemporal analysis to be compared with hand-made
templates of motion patterns for detection.

1.2. Related research

Extensive research has been performed in image motion analy-
sis [2,3]; however, research considered in this discussion will be
limited to previous work in detection of motion patterns most clo-
sely related to the proposed approach. Such research can generally
be classified into two main categories: (a) tracking and segmenting
of objects/people and (b) detection of behavior-based events.

With respect to tracking and segmentation, the majority of
algorithms make use of background subtraction [4–9]; others in-
clude the use of optical flow [10–12]; other various methods are
proposed [13–16], including, for example, a multi-model system
that fits the best model for any given frame [14].

Traditional work in background subtraction relied on manual
initialization and had little, if any, ability to adapt to irrelevant
changes, e.g., [17]. One straightforward way to increase robustness
is to reconstruct the background by using a temporal median filter;
however, it was found that performance was low in scenes with
lighting intensity changes [4,9]. A slightly more complex method
of background modeling was employed in the W4 system [5,18].
This system keeps track of various parameters extracted from
intensity values that are then used to create a threshold needed
to segment the foreground pixels. The system makes use of mor-
phological techniques (erosion and dilation) in an attempt to com-
pensate for changes in lighting. This work has an advantage that it
makes use of basic shape analysis in order to continue tracking ob-
jects during and after occlusion. Other useful additions to this
tracking system include a heuristic model to process splitting
and merging of tracked regions, as well as a basic ability to track
the main body parts. Extensions to this system have been made
to track multiple people ‘‘before, during and after occlusions” [6],
and to determine whether people are carrying objects - that can
be separately tracked [7]. A discussion of the combination of these
works is in [8]. Further extensions to this line of research in back-
ground modeling include shadow suppression by exploiting sepa-
rable RGB channels during segmentation [13]. Another approach
that has shown success in modeling complex backgrounds is to
make use of adaptive mixture models [19].

A number of techniques have been developed that rely on opti-
cal flow recovery. Vehicular traffic has been tracked in two dimen-
sions by using optical flow and predictions of displacement rate
[10]. An extension to this approach has made use of three-dimen-
sional models by considering parameters of the camera, vehicles,
lanes, the three-dimensional scene, illumination and motion [11].
Unfortunately, in order for a vehicle to be tracked, it must be com-
pletely un-occluded for a period of time. In a rather different ap-
proach, optical flow is computed between a video mosaic
reference image and a current image of interest to track multiple
objects on a moving background as acquired from an airborne plat-
form [12]. Optical flow-based techniques also have been applied to
the tracking and interpretation of moving people. For example,
individuals have been distinguished by their gait on the basis of
extracting dense optical flow, followed by conversion to scale inde-
pendent scalar features via moment weighting. Thereafter, the spa-
tial distribution and analysis of periodic structure results from
consideration of the time series of scalar descriptors [20].

Other approaches to tracking and segmentation include a sys-
tem for automatic tracking of abandoned objects [16] as well as
carried objects [7,13]. Still other research has been particularly
concerned with detection of people, e.g., through training of a sup-
port vector machine on multiscale, spatial-based wavelet features
recovered from several adjacent video frames [21]. Alternatively,
pedestrian detection has been accomplished through the use of
AdaBoost [22] defined templates operating with spatial and tem-
poral support across consecutive video frames [23]. Finally, various
approaches have been applied to modeling and extracting individ-
ual motion components from complex imagery. The probability
that a pixel has changed due to motion has been modeled in terms
of the rate of change in video RGB values [15]. A motion tracking
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and segmentation system has been developed that dynamically fits
various motion segmentation models to input video data by con-
stantly calculating which of the models has the least error for cur-
rent data [14]. Also considered has been the use of statistical
analysis of the spatiotemporal gradient tensor to cluster back-
ground motion in video into a set of flow fields that capture dom-
inant patterns of motion [24].

Review of literature discussing tracking and segmentation of
objects shows a wide range of approaches, including some that
are implemented for very specific tasks. Although an essential
component in surveillance systems, tracking and segmentation
alone are not sufficient for real-world security systems. To comple-
ment these systems, behavior and event detection also are neces-
sary. A brief review of behavior and event detection literature
follows.

Behavior and event recognition systems can be categorized fur-
ther into those that incorporate a state-based system of individual
motion or interactions between objects [12,25–31], those that are
based on statistical approaches [32–44] and other approaches that
employ appearance models and various projection techniques (e.g.,
Eigenspace) [45–50].

State-based behavior and event recognition systems include
those that describe behavior in terms of a system that detects a
series of states of interactions between objects being tracked
[29]. A language is created based on events such as ‘moves close
to,’ ‘moves away from,’ ‘standing,’ ‘running,’ etc. The authors de-
scribe a few behaviors of interest; however, the paper does not
clearly describe how each event is detected. The tracking system
is described in somewhat more detail in a related paper [30]. An
extension dealing with implementing behavior recognition across
multiple cameras as well as detection of groups also has been de-
scribed [25]. Similar behavior recognition is discussed in an ap-
proach that computes object properties such as height, width,
speed, motion direction and the distance to a reference object as
well as motion trajectories to be potentially used in a multi-state
system to detect events [12]. Finally, a class of ‘atomic’ activities
for human body part movement has been defined as movements
that are structurally similar over the range of performers and
can be mapped onto a finite temporal window (i.e., non-periodic)
[31]. The system, which recovers information based on principal
component analysis, assumes initial segmentation of the body
into parts that are tracked via the use of parameterized optical
flow.

Statistical approaches have been key to a variety of behavior
and event recognition systems. Interaction states between tracked
objects (similar to those considered elsewhere, e.g., [29]) have
been detected using a Bayesian network [38]. Anomalies in behav-
ior of people and traffic have been detected and predicted based on
hidden Markov models (HMMs) of optical flow fields [33,34]. A
system has been developed for classifying traffic by generating
probability mass functions from tracking data that is classified into
motion patterns through the use of binary trees [43]. Atypical
movements have been recognized by applying probability density
functions of motion trajectories to a neural network in order to ob-
tain a model of expected traffic motion patterns [39]. A method of
analyzing traffic behavior based on ‘qualitative reasoning and sta-
tistical analysis of video input’ has been proposed [37]. In that
work, a system is described that defines dynamic ‘equi-temporal’
regions based on temporal paths and spatial regions; this temporal
path and region data is used to detect events such as cars passing
each other as well as statistical anomalies to previous training
data. Finally, preliminary results on a system for detection of local
patterns of behavior have been presented that build on previous
basic work in spatiotemporal analysis [51] as well as behavior rec-
ognition [45]. This system attempts to detect motion-based behav-
iors within a fixed region of the screen [35]. Two approaches were
tested, one that is histogram-based and another based on HMMs;
their histogram-based approach resulted in a very low detection
rate while the HMM-based approach did recognize most of the
events presented with a relatively low number of misclassifica-
tions. It appears that there was an assumption that each video se-
quence contained a known event, and that no control data was
used in evaluation.

A variety of additional methods have been documented for
behavior and event recognition, including the following. A system
has been developed to provide information from traffic scenes such
as stalled vehicles, vehicle counts and some lane changes; this was
based on an estimated shape model of cars used for segmentation
that was then tracked [46]. A system has been developed for clas-
sifying and counting vehicles as well as estimating their speed
based on appearance models of the vehicles [50]. Neural networks
have been used to model spatiotemporal behavior patterns of ob-
jects to predict future behavior [48]. A universal eigenspace, made
up of images ‘‘of every possible kind of human behavior” to detect
behaviors (really body positions), has been developed [47]; this
work leverages previous work on building eigenspace recognition
models from examples [52]. Human movement detection has been
cast in terms of templates based on motion-energy images and
motion-history images to detect certain local/individual human
motions; unfortunately, it heavily relies on the assumptions that
there is only one object segregated as moving, there is no occlusion
and that the background is relatively static [45]. Finally, some ap-
proaches are distinguished by making very limited use of a priori
knowledge of the imaged scene and event. For example, a distance
measure has been proposed for comparing scenes by looking at
temporal textures at multiple levels of a Gaussian pyramid that
is blurred and subsampled in time only [49]. The authors note that
while it is advantageous to do this type of event comparison/detec-
tion, the accuracy is significantly lower than event detection with a
priori knowledge.

Similar to the tracking literature, the event recognition litera-
ture provides a wide variety of approaches for a broad range of
applications. While some papers discuss the detection of a few very
specific events with predefined context information, others are
very general and, in theory, are capable of comparing events with-
out a priori knowledge (yet yielded a lower accuracy rate). Behav-
ior and event detection systems discussed here can be classified as
those that search for statistical anomalies, those that are trained to
classify patterns of motion, and those looking for specific prede-
fined threats. The current work falls into the latter category.

Overall, research on motion analysis for surveillance systems
appears to lack work on detection of specific events of interest
(e.g., potential ‘threats’) incorporating global motion information.
Systems that track individual objects or interactions discard con-
textual information that can be used to identify relevant events.
In addition, research focusing on the detection of specific events
uses tracking and/or segmentation, introducing an unnecessary
layer of complexity, potentially resulting in errors.

In light of previous research, contributions of the current effort
are as follows. (i) Direction maps, based on spatiotemporal distri-
butions of local dominant directions, are proposed for capturing
motion patterns. This representation makes it possible to capture
both local and global patterns of interest without the need for ex-
plicit segmentation or tracking. Methods for (ii) recovering direc-
tion maps from video, (iii) constructing templates for target
patterns of interest and (iv) comparing templates to video have
been algorithmically defined, implemented and tested. (v) In
empirical evaluation, involving over 6300 frames from seven video
clips that depicted 141 events of interest as well as control events,
recognition was observed at approximately 91% hits with 8% false
positives. A description of an earlier version of this work appears in
[53].
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1.3. Paper outline

This paper consists of four main sections. Section 1 motivates
the research and briefly outlines previous related work. Section 2
provides a technical explanation of how the developed system
works. Section 3 details the experimental evaluation of the system.
Section 4 provides a brief summary of and conclusions drawn from
the work. Finally, a pair of appendices provide additional details
regarding motion analysis and template examples.

2. Technical approach

2.1. Overview

The first central hypothesis of this work is that interesting patterns
of motion (e.g., with respect to video surveillance applications) can
be defined over vector fields that capture image displacement as a
function of time. Such vector fields capture not only local motion
(through the locally defined vectors), but also global motion pat-
terns (through the spatiotemporal distribution of vectors) that serve
to provide context. In this regard, we define global motion as motion
in the two-dimensional image plane that captures the displacement
of large-scale patches of interest across regions of a spatial grid as a
function of time. The displacement can be characterized by vector
fields that represent interactions between multiple motion paths
or between motion paths and the scene structure.

Although useful information can be obtained from a continu-
ously defined field of velocities, small deviations from the ideal
due to low signal-to-noise ratio (e.g., arising from the interaction
of small magnitude target motions with distractor motions, estima-
tion errors, sensor noise, etc.) can inappropriately penalize compar-
isons between newly acquired data and predefined patterns of
interest. In response to these observations, the second central
hypothesis of this work is that usable, compact representations of
motion patterns can result from coarse quantization of the video,
in space-time, into discrete regions. Within each region, local dom-
inant direction of motion is calculated and stored. The resulting rep-
resentation, recovered from the projection of three-dimensional
scene motion onto the image plane, is referred to as a Direction
Map (an example is shown in Fig. 1). This leads to the third central
hypothesis which is that Template Direction Maps representing events
of interest can be created and matched with direction maps recov-
ered from video data (Fig. 1 is actually a Template Direction Map).

In the remainder of this section, details of the approach are de-
scribed: First, recovery of directional energy is presented as a way
to estimate local dominant direction of motion. Second, direction
maps are formally defined in terms of locally dominant directions,
including methods for recovery from video, hand construction of
target templates and comparison of videos containing events of
interest to predefined templates. Finally, the main ideas are reca-
pitulated from a system point of view.

2.2. Directional energies and image motion

Fundamental to the proposed calculation of local dominant
direction is the notion that motion, as visible in the image domain
(i.e., on a monitor), can be viewed as orientation in visual space–
time (x�y�t space) [54,51,55]. For example, if each two-dimen-
sional image is treated as a sheet that is stacked up into a three-
dimensional spatiotemporal cube, a slice of this cube orthogonal
to the x�y plane (for example, an x�t plane, with t downward),
would show leftward motion as a diagonal line starting at the top
right and moving towards the bottom left (see Fig. 2). The orienta-
tion of the line in this x�t slice would correspond to the image veloc-
ity. Consideration of motion as orientation in space-time is the basis
of the dominant direction detection used in the current work. For
the duration of this work, reference to motion, and direction of mo-
tion, shall refer to motion, as visible in the image domain.

Given the concern with directions of motion, spatiotemporal
energy is recovered by convolving oriented, three-dimensional sec-
ond derivative Gaussian filters, Gða;b;cÞ2 , and their Hilbert transforms,
Hða;b;cÞ2 , with the video [56,57], followed by rectification via point-
wise squaring, summation and square root (to convert the output
of oriented filtering to an energy representation where larger val-
ues are indicative of greater orientation strength). In particular,
directional energy, E(a,b,c)(x,y, t), with respect to three-dimensional
direction cosines, (a,b,c), is given as:

Eða;b;cÞðx;y;tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGða;b;cÞ2 ðx;y;tÞ� Iðx;y;tÞÞ2þðHða;b;cÞ2 ðx;y;tÞ� Iðx;y;tÞÞ2

q
:

ð1Þ

For each filtered orientation, (a,b,c), the output is further low-
pass filtered with a three-dimensional Gaussian filter, G(x,y, t;r),
with r as the standard deviation of the Gaussian. This final filtering
removes unwanted interference effects that appear as high fre-
quency noise in the output. The low-pass filtered energy is denoted
as ~Eða;b;cÞðx; y; tÞ ¼ G � Eða;b;cÞðx; y; tÞ in the following presentation.

Since second-order derivative filters are employed, filtering is
performed along six different directions, as six directions spans
the space of three-dimensional orientation for second-order
Gaussian derivatives [56,57]. To equally space the basis directions
in three-space, the direction vectors, (a,b,c), are taken as the nor-
mals to the faces of a dodecahedron [58], with antipodal directions
identified. The dodecahedron is oriented in three-space so that
(a,b,c), take the following values.

n̂1 ¼ cða;0; bÞT;
n̂2 ¼ cð�a;0; bÞT;
n̂3 ¼ cðb; a;0ÞT;
n̂4 ¼ cðb;�a; bÞT;
n̂5 ¼ cð0; b; aÞT;
n̂6 ¼ cð0; b;�aÞT;

ð2Þ

with

a ¼ 2;

b ¼ 1þ
ffiffiffi
5
p� �

;

c ¼ 10þ 2
ffiffiffi
5
p� ��1

2
:

ð3Þ

Given oriented energies computed along the specified direc-
tions, (2), it is a straightforward matter to recover the locally dom-
inant three-dimensional orientation for a region of interest in
visual space–time, (x,y, t) [59]. Further, for a temporal period of
interest, the corresponding image velocity, v = (u,v)T can be recov-
ered by projecting the orientation vector onto the image plane.
While applicable methods are well known, details of a particular
technique that is used in conjunction with the present work [59]
are, for the sake of keeping the current presentation self-contained,
outlined in Appendix A. In essence: The recovered energies along
the spanning set of directions are used to construct the local
covariance matrix; the eigenvalue/eigenvector structure of this
matrix reveals the locally dominant orientation in three-dimen-
sions; projection of the three-dimensional dominant direction into
the image plane yields image velocity, v.

2.3. Direction maps

2.3.1. Basic definitions
A direction map is defined as a three-dimensional array,

Dðx; y; tÞ, with x, y, t corresponding to quantized horizontal, vertical



Fig. 2. Motion as orientation in space-time. Four frames of a video with a man walking towards the left (top). An expanded x�t slice from the video (bottom).
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and temporal dimensions, respectively. Quantization of visual
space–time adds robustness, as the representation, recovery and
matching of templates for events of interest becomes less sensitive
to precise spatiotemporal locations. This is significant, as in real-
world surveillance scenarios, anticipated low signal-to-noise ratios
(e.g., due to interaction of small target motions with distractors,
small support targets, poor illumination, etc.) make it beneficial
to abstract from precise estimates of location to a coarser represen-
tation. Each element (cell) of the direction map contains a direction
of motion, v̂ ¼ v=kvk or a symbol for no motion, (0,0), for the case
where the locally recovered magnitude of motion, kvk, does not ex-
ceed a motion detection threshold, s. The estimate of image mo-
Fig. 3. An outline of the
tion, v, for each cell’s direction is recovered as specified in
Section 2.2, with the input to the estimation the set of oriented
energies, ~Eða;b;cÞðx; y; tÞ, with each energy summed over the cell’s
spatiotemporal video support.

In general, cell quantization (QX, QY and QT for horizontal, verti-
cal and temporal dimensions, respectively) is scenario dependent.
Spatial units of quantization are chosen (by the user) so that result-
ing cells are not significantly larger than the expected image size of
monitored objects. For example, in traffic scenes, if the expected
car size is approximately 20 � 20 pixels, QX and QY should not be
set much larger than 20 � 20 (i.e., the majority of a region should
contain motion for a single object). The temporal unit of quantiza-
technical approach.



Fig. 5. Floor plan of scene in Video 1. Gray region corresponds to the approximate
region visible by the surveillance camera.
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tion, QT, is determined by the maximum expected speed of objects
of interest as well as the input frame rate. For example, if one ex-
pects a car to make a left turn in no less than 24 frames of video,
and each individual component of the turn (i.e., the move into
the intersection, or the beginning of the turn, etc.) would take
approximately six frames, one would set QT to be 6. In order to take
into account motion that may have begun or ended slightly outside
the boundaries of a particular element in the direction map, the
elements are defined to have slight overlap with their spatiotem-
poral neighbors. Specific spatiotemporal quantization rates used
in evaluation of the described approach are specified in Section 3.

The importance of template representation in a manner that is
robust to small template shifts relative to the image is widely rec-
ognized. In the present work, such robustness is achieved through
the use of coarse quantization in space and time as well as the use
of overlapping support of adjacent template cells. This approach is
somewhat reminiscent of the use of histograms of local image
intensity gradients accumulated about some central keypoint fol-
lowed by interpolation across histogram bins used in SIFT repre-
sentation [60]. In the present case, we found through initial
empirical investigation that better results were had by directly
computing a single dominant direction of motion over a quantized
cell (as described in Appendix A) rather than via combination of
multiple purely local estimates within a cell.

2.3.2. Direction map templates
Similar to the recovery of direction maps from input video, tem-

plate direction maps can be specified to define target patterns of
interest. In general, ‘interesting’ target patterns of motion, whether
for surveillance or otherwise, are application specific (i.e., an activ-
ity considered threatening in one scenario might not be in an-
other). Currently, templates are specified by a human operator
through a user interface that supports manual specification of
spatial and temporal pattern extent (i.e., spatial coverage and tem-
poral duration) as well as quantization rates. Resulting spatiotem-
poral cells are then populated with relevant directions plus no
motion, as consistent with the definition of direction maps. Also al-
lowed is the specification of a don’t care flag (represented by the
null set, ;) for spatiotemporal regions that are of no interest. Tem-
plate direction maps are created via a GUI tool called ‘DirMapEdit’
(see Appendix C in [1]). DirMapEdit allows the creation of any of
the template direction maps previously discussed and is also capa-
ble of viewing output direction maps created from real video. A
match threshold, l, in units of directional distance (discussed be-
low), is then assigned for each template. An example direction
map template, shown as a vector plot overlaid on a frame of an
applicable video, is shown in Fig. 1. Additional examples of tem-
plate direction maps are presented in Appendix B.

To help achieve a high hit rate, it is important, when creating
templates, to capture only the portion of the motion pattern that
is intrinsic to the event itself; however, keeping some preceding
motion (i.e., moving forward before making a left turn) and suc-
ceeding motion may be required to prevent false positives. In some
Fig. 4. Three frames
cases, the creation of an optimal template direction map can be a
tedious and repetitive task; in others, such a template can be
achieved in a matter of seconds. There are a few factors that deter-
mine how easy it will be to create an accurate direction map tem-
plate, they include: uniqueness of the motion pattern to be
detected, the degree of freedom of motion enjoyed by moving ob-
jects that are surveyed (i.e., whether they are constrained to lanes
or narrow pathways), camera angle and placement, variations in
size and speed of objects as well as the input frame rate. The sen-
sitivity of the templates are determined by the size of moving ob-
jects relative to the spatial quantization (QX and QY) and a user-
defined threshold. Development of more automated methods for
template generation (e.g., based on learning techniques) is a sub-
ject for future research. The present research is focused on estab-
lishing the basic efficacy of the proposed approach to
representing and matching video surveillance events.

2.3.3. Comparing template and recovered direction maps
To detect a pattern of interest (as defined by a direction map

template) in a video (as abstracted to a recovered direction map),
it is necessary to define a measure of the distance (i.e., directional
distance) between a template at a specific spatiotemporal position
(i.e., offset) with respect to a recovered direction map. Let Tðx; y; tÞ
and Rðx; y; tÞ be template and recovered direction maps, respec-
tively. Let u, v, w be offsets within R at which a comparison is per-
formed. Distance between two corresponding cells in the template
and recovered maps (x,y, t) and (x + u, y + v, t + w) is defined to cap-
ture the following considerations. First, the distance between two
directions is defined as their angular difference, with a maximum
of 180, for opposite directions. Second, the distance between no
motion and any motion is defined as 90 (half of the maximum dis-
from Video 1.
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tance); the distance between no motion and no motion is 0. Third,
the distance between don’t care, ;, and anything is 0. Formally,
let R̂ ¼ Rðxþ u; yþ v ; t þwÞ and T̂ ¼Tðx; y; tÞ, then distance is
given as

dðR̂; T̂Þ ¼ 0; ½T̂ ¼ ;� _ ½R̂ ¼ T̂ ¼ ð0;0Þ�;
k arccosðR̂ � T̂Þk; otherwise:

(
ð4Þ

Notice that since no motion is represented as (0,0), the desired
result of 90 is achieved when its distance is calculated with respect
to any other direction. The distance for an entire template, T, at a
specific offset, (u,v,w), with respect to R is taken as the sum of the
distances between individual corresponding cells, i.e.,

DistanceðR;TÞ ¼
X

ðx;y;tÞ2T
dðR̂; T̂Þ: ð5Þ

A map containing distance measures for all possible offsets
u,v and w can be created by calculating the distance given in
Eq. (5) for all values of u, v and for existing values of w in time
(in the case where the x, y dimensions of the template and the
Fig. 6. Three frames

Fig. 7. Hits and false positives varying levels
recovered direction map are the same, the variables u, v are ig-
nored). A lower distance measure corresponds to greater similar-
ity between the two direction maps. A match between T and R

at position (u,v,w) is defined whenever DistanceðR;TÞ is less
than the user-defined match threshold, l. Thresholds are scaled
on a template-by-template basis to account for differences in
spatiotemporal support.

Additional flexibility for matching events is obtained by allow-
ing for templates to stretch in space and time, corresponding to
variations in size and speed of interesting events. For spatial size
invariance, the template direction map is scaled in the x and y
dimensions by an additional parameter, j; for speed invariance,
the template direction map is scaled in the t dimension by the
parameter k. Formally, a multi-dimensional map containing dis-
tance measures for the offsets u, v, w and scales j, k can be created
by calculating the following equation for all possible offsets and
scales:

DistanceðR;TÞ ¼
X

ðx;y;tÞ2T
dð eR; T̂Þ; ð6Þ
from Video 2.

of noise. Video 1 (top), Video 2 (bottom).



Fig. 8. Hits and false positives varying levels of contrast. Video 1 (top), Video 2 (bottom).

Fig. 9. Hits vs false positives varying motion thresholds (ROC) — Video 1 (top), Video 2 (bottom).
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Table 1
Results for Video 3 (left) and Video 4 (right).

Hits 18 Hits 7
Misses 3 Misses 1
False positives 4 False positives 3

J.M. Gryn et al. / Computer Vision and Image Understanding 113 (2009) 291–307 299
where eR ¼ Rðjxþ u;jyþ v; kt þwÞ.
Correspondingly, locations u, v, w and scales j, k, where

DistanceðR;TÞ is below the match threshold, l, are taken to be
indicative of patterns of interest.

2.4. Recapitulation

A summary of the processing described in this section is pro-
vided by Fig. 3. Input video data is first preprocessed via Gaussian
blur and subsampling to reduce the sheer quantity of data to be
considered. It is then filtered with three-dimensional Gaussian,
second derivative filters and their Hilbert transforms along a basis
set of directions, (2). The resulting filter outputs are combined in
quadrature to yield a set of directional energies, (1). This output
is then passed through a Gaussian filter to remove unwanted high
frequency noise. Direction of image motion (or no motion) is then
calculated for each region of the spatiotemporal data (A.3); the re-
sult is a Direction Map. Template Direction Maps (as discussed in
2.3.2) are then compared against the recovered direction map
using the algorithm in Section 2.3.3. If a match is found, presence
of an ‘interesting’ event is noted.

Due to the potentially non-trivial length of a video, special con-
sideration has been given to implementing processing so that oper-
ation can proceed with bounded memory and time. This is
achieved by buffering input video with a sliding window. The buf-
Fig. 10. One frame of Video 1 with 0%, 6%, 20%, 40%, 50% a
fer can constantly accept and process new data as it becomes avail-
able and not worry about memory use continually increasing.
Temporal quantization, QT, the filter kernel width and the temporal
subsample factor are taken into consideration when determining
the buffer size. Significantly, all of the actual image processing in-
volved in direction map recovery from video and comparison to
stored event templates involves only straightforward, local opera-
tions (e.g., separable filtering, linear algebraic calculations and
pointwise non-linearities).

3. Empirical evaluation

3.1. Experimental design

Seven video image sequences have been captured from various
scenarios corresponding to scenes that include motion patterns of
interest as well as control (uninteresting) motion. These videos
nd 60% added shot noise (left to right, top to bottom).



Fig. 11. Three frames from Video 5.

Table 2
Results for Video 5.

Hits 11
Misses 0
False positives 0

Table 3
Results for Video 6 (left) and Video 7 (right).

Hits 36 Hits 23
Misses 2 Misses 5
False positives 1 False positives 2
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have been digitized at a spatial sampling of 320 � 240 (and
368 � 240 in the case of Video 2) at 8 bits-per-pixel grayscale.
For each video, direction map templates were manually created
for each event of interest, as described in Section 2.3.2. Spatiotem-
poral coordinates were recorded for each actual occurrence of an
event of interest to serve as ground truth detection data. Each vi-
deo is then sent through the system for matching with a current
average unoptimized execution rate of 2 fps in Linux on a
3.6 GHz Xeon processor for videos with a resolution of 320 � 240.

For two videos, a detailed analysis is presented including the
detection accuracy with varying levels of shot noise, contrast and
motion threshold, s, (defined in Section 2.3.1). Other variables
(e.g., quantization, blur kernel width, multiple frame rates and
overlap buffer size) could have been systematically manipulated
to further evaluate the system performance; however, noise, con-
trast and motion threshold were considered the most significant.
For the remaining videos, overall hit and false positive rates were
recorded.

The decision to use shot noise as opposed to, e.g., additive
Gaussian noise, is due to the fact that shot noise is more represen-
tative of noise anticipated in real-world surveillance video. (As sur-
veillance cameras are either wireless or have lengthy cables, they
are particularly susceptible to this kind of noise from spurious
electromagnetic pulses due to motors and appliances near the
Fig. 12. Three frames from Video
transmission path [61]). The corruption algorithm used is as fol-
lows: For n% noise, in each frame of video, a random n% of the pix-
els have their values replaced by noise from a uniform distribution
over all legal gray-level values. Contrast (considered here as the
dynamic range between the maximum and minimum gray-level
values) is manipulated by multiplying each pixel by the new con-
trast value.

In all examples, unless otherwise specified, a default motion
threshold of s = 0.15 and quantizations of QT = 6 (frames) and
QX = QY = 20 (pixels) were used; all numerical values are with re-
spect to the input video resolution. Almost all objects to be de-
tected in our experiments had image dimensions of at least
25 � 25 pixels. These parameter values were selected based on
preliminary experimentation.

3.2. Detailed examples

Two videos are analyzed here in detail; Video 1 was taken, by
the first author, from the second floor of a building overlooking a
hallway on the first floor; it contains 24 events of interest in
approximately 550 frames, Fig. 4 displays three frames of this vi-
deo and Fig. 5 shows a map of the area. There are four main en-
trances to this hallway, one at each side of the screen. Twelve
templates were created corresponding to entrances and exits from
6 (top) and Video 7 (bottom).
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each side of the screen as well as an additional template corre-
sponding to a group of people converging at one point (convergent
crowding). A subset of some of the template direction maps can be
found in Appendix B, Figs. 17–20.

Video 2, as shown in Fig. 6, was taken from a window of a build-
ing, overlooking a four-way intersection in Cambridge, MA, and
was taken by Brand and Kettnaker (used in [34]). The video con-
tains 11 events of interest in approximately 1520 frames, Fig. 6 dis-
plays three frames of this video. Templates were created for four
motion patterns, corresponding to a right turn going eastbound
(it is assumed that north is at the top of the video), a right turn
Fig. 13. Subject enters from bottom at an angle. This example demonstrates the need f
motion patterns.

Fig. 14. Example false positive. Subject walks towards right cor
going westbound, a right turn going northbound and a left turn
going westbound (as depicted in Fig. 1).

Overview charts of the results for Videos 1 and 2 are provided in
Figs. 7–9.

From the initial analysis of the unmodified Video 1, containing
24 events of interest and much control data (e.g., various pedes-
trian motions not corresponding to any constructed template), 22
events were correctly detected plus two false positives; this gives
a 91.67% hit rate, and 7.69% false positive rate.

Analysis of Video 2, unmodified, with 11 events of interest gave
a 100% hit rate and a 0% false positive rate. It is believed that the
or multiple templates in such scenarios where one event can occur with different

ridor and then walks away as if she is leaving the corridor.
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constraint on motion given by the traffic lanes, resulted in the high
accuracy.

As noise was progressively added to Video 1, the number of hits
saw an initial decrement at 6% noise, thereafter, the number of hits
did not significantly decrease until shot noise surpassed 50% (sig-
nificantly higher than typical real-world noise levels; see, e.g.,
Fig. 10). Further, the number of false positives did not significantly
increase. See Fig. 7 for the hits & false positives vs noise chart.
Fig. 15. Example false positive. Subjects walk into scene with intense back

Fig. 16. Error in estimated image motion direction as a function of speed. The abscissa sh
1.0 and half-unit sampling thereafter. The ordinate shows mean error of recovered direc
imagery corresponded to a translating white noise pattern, (x,y, t) = (128,128,128), over w
of the paper.
Addition of noise to Video 2 had no effect on the number
of hits until 30% noise was reached, while the number of
false positives saw an increment at 20% noise, which subse-
quently reduced and leveled off at higher noise levels (see
Fig. 7).

Contrast was systematically reduced to 10% in both videos and
detection results show that there was almost no consequence of
contrast reduction in either video (see Fig. 8).
ground lighting casting shadows appearing as an Exit at Bottom event.

ows speed from 0 to 7 pixels/frame, with explicit sampling at 0.1, 0.15, 0.2, 0.25, 0.5,
tion in degrees. Bars demark one standard deviation from the mean. The input test
hich motion estimates were recovered in regions of support used in the main body
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For both videos, the motion threshold, s, was varied from 0.1
to 0.3 (in increments of 0.05). It was found, as expected, that in
both videos, a lower value of s corresponded to a higher hit
rate and a higher false positive rate; while a higher value of
s corresponded to a lower hit rate and lower false positive rate
(see Fig. 9). In both videos a threshold of 0.15 yielded best per-
formance from a receiver operating characteristic (ROC)
perspective.
Fig. 17. A direction map template representing a person exiting at right corridor (for Vi
towards the right corridor; the next frame is a continuation with an additional arrow
template; finally, in the third frame, the entrance to the corridor is completed.

Fig. 18. A direction map template representing a person entering scene from the top (fo
motion as people enter the scene from the top doors or corridor.
3.3. Additional videos

Videos 3 and 4 were taken from the same scene as Video 1 (see
Fig. 4). Video 3 contained 21 events of interest and Video 4 con-
tained eight. Results are shown in Table 1 and are comparable to
the results for Video 1.

Video 5 depicts a relatively narrow hallway with a secure
door on the left side; the events of interest contained entrances
deos 1, 3 and 4). In the first frame (left-to-right, top-to-bottom), motion is directed
pointing up-right towards the corridor allowing for a subject to enter later in the

r Videos 1, 3 and 4). Each frame (left-to-right, top-to-bottom) progressively shows
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and exits through the secure door to and from the top and bot-
tom of the screen as well as entrances and exits into the hallway
from the top and the bottom. Three frames of this video are dis-
played in Fig. 11 and results are shown in Table 2. In this video,
there were 11 possible events to detect; it should be noted that
all subjects in this particular video have been classified as of
interest, as a result, there was no control data (uninteresting
motion) for this scene.

Videos 6 and 7 have been taken from a real traffic surveillance
camera overlooking a pair of intersections (courtesy of the Depart-
ment of Traffic Management in Bellevue, Washington). In Video 6,
taken at around sunset, at the beginning it was light and ap-
Fig. 19. A direction map template representing a person entering scene from the
bottom at a rightward angle (for Videos 1, 3 and 4). This template is intended to be
compared systematically across all imaged horizontal positions. The three frames
(left-to-right) progressively show motion as a person might enter the scene from
the bottom at a rightward angle.

Fig. 20. A direction map template representing crowding (for Videos 1, 3 and 4). This te
vertical positions as well as at multiple scales. The four frames (left-to-right, top-to-bot
proaches dusk by the end; in Video 7, taken at dusk, at the begin-
ning it was somewhat dark and it became night by the end. Three
frames of each video are shown in Fig. 12 and results are shown in
Table 3. Video 6 contained 38 possible events of interest and Video
7 contained 28 events of interest; these events correspond to right
and left turns at the intersections nearest to the camera. A direc-
tion map template for a car making a right turn going southbound
can be found in Fig. 21.

3.4. Discussion

Over all experiments conducted, without artificial corruption,
141 possible events were tested for matches; there were 128
matches and 12 false positives, giving an overall hit rate of
90.78% and a false positive rate of 7.8%. It should be noted that
in all but one of the experiments, there was a high amount of ‘unin-
teresting’ control data to potentially increase the rate of false pos-
itives; however, this remained low. Further, artificial manipulation
of noise and contrast showed that the system is interestingly ro-
bust to such corruption. Significantly, those results were attained
with a single motion threshold (s = 0.15); systematic manipulation
of this variable in two detailed examples illustrated its effect on
performance.

In some cases, two templates were needed to correctly de-
tect an event of interest, this was motivated by the difficulty
in classifying certain motions by a single global motion pattern.
For example, a possible Enter from Bottom template in Videos 1,
3 and 4 could be defined as motion that proceeds upwards into
the visible scene; this would not account for those entering
from below at a diagonal. See Fig. 13 for example imagery,
and Fig. 19 for an example of one of the two Enter from Bottom
templates used. Two potential solutions to this problem are: (i)
create multiple templates for such scenarios (as chosen for Vid-
eos 1, 3 and 4), (ii) constrain the environment with ribbon
fences (e.g., as used for lineups at a bank) to restrict such
‘unexpected’ motion (note that accuracy was significantly high-
mplate is intended to be compared systematically across all imaged horizontal and
tom) progressively show motion as it converges at a point in the scene.



Fig. 21. A direction map template (for Videos 6 and 7) Representing a car making a right turn going southbound. The four frames (left-to-right, top-to-bottom) progressively
show motion as a car enters the vertical road (from the west), and turns right, moving southbound.
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er in videos where moving objects were more constrained, i.e.,
Videos 2, 5, 6 and 7). Creating a single template with a broader
scope and a higher match threshold is generally not recom-
mended as this will result in a higher number of false positives
in most scenarios.

In Videos 6 and 7, it is clear that since the camera was placed on
an angle monitoring two separate intersections, cars further to the
north appeared significantly smaller than those closer to the cam-
era resulting in a lower hit rate.

Consideration of false positives detected suggests that the
majority of false positives are due to motions that appear to
move according to the template, but are generally unexpected
for the scene. Examples include a subject walking near the right
corridor (in Video 1) before turning around as if she is walking
out of it (see Fig. 14), or inordinately long shadows of people
walking against strong backlighting that appear as if the subjects
are walking out of the region (see Fig. 15). Other false positives
were caused by shadows or car headlights. Suggestions to reduce
the number of false positives include (i) adjustment to the cam-
era placement and angle to decrease the imaging of superfluous
motion, (ii) environmental constraints (e.g., ribbon fences), (iii)
additional lighting to attempt to minimize the contrast of shad-
ows and the projections of headlights or (iv) modification to
templates to include no motion regions following the expected
motion.

Spatial quantization of the direction maps are believed to be the
primary cause for the robustness to unusually high amounts of
noise. Additional contributing factors to the stability to noise in-
clude, for example, in Video 1, the relatively small region size
(QX � QY), relative to the size of people in the scene, as well as,
for example, the scene structure in Video 2, where cars have a ten-
dency to stay within their lanes. The high degree of robustness to
contrast (e.g., synthetic contrast manipulation) and lighting varia-
tion (e.g., daytime to nighttime in Videos 6 and 7) is due primarily
to the method for computing direction of motion. In particular,
reliance on the relative magnitudes of the eigenvalues (and their
eigenvectors) to compute local motion is highly robust to contrast
variation that does not corrupt local orientation structure in the
spatiotemporal domain.

On the whole, large variations in contrast as well as lighting
(i.e., day to night) proved to be of little significance to the system
as the method for calculating dominant direction had taken ac-
count of these factors. Further, the system showed a resilience to
high levels of noise. It also has been found that a motion threshold,
s, of approximately 0.15, leads to a uniformly strong performance
from an ROC perspective [62], regardless of tested scene structure
or lighting conditions. Results of all the experiments are promising
and suggest that a direction map based system can be used to de-
tect global motion events of interest with a high degree of
robustness.

4. Summary and conclusions

A novel approach to the simultaneous detection and classi-
fication of motion patterns, as depicted in video, has been pre-
sented. Key to the approach are direction maps, which capture
the spatiotemporal distribution of local dominant directions of
motion across a video. The recovery of direction maps from in-
put video involves oriented bandpass spatiotemporal filtering
and coarse quantization of space and time. The resulting direc-
tion maps emphasize local and global motion information
across both space and time without the need for explicit seg-
mentation or tracking. Templates, based on this direction
map representation, can also be manually defined by the user
to capture application-specific patterns of interest. These tem-
plates can then be compared to direction maps recovered from
processed video using a simple distance calculation, which is
used to quantify the similarity of motion patterns and thereby
detect target motion patterns in a video. The approach has
been evaluated in application to the detection of user-defined
patterns of interest in surveillance and traffic videos. Seven
videos, encompassing a wide range of variability (scene struc-
ture, indoor/outdoor settings, illumination, targets of interest,
noise and contrast), have been considered. The results suggest
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the applicability of the approach to real-world scenarios of
interest.
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Appendix A. Recovery of image velocity from oriented energy
measurements

Given a set of oriented energy measurements at a spanning
set of directions for a given dimension, it is possible to recover
an estimate of the locally dominant orientation. For the case of
three-dimensional space–time imagery (x�y�t) it is further pos-
sible to interpret recovered orientation as image velocity. De-
tailed derivation and discussion of the method is available
[59]; here, for the sake of making the present paper self-con-
tained, the approach is described briefly. Other examples of re-
search that has exploited spatiotemporal filtering to recover
image velocity include a non-linear regression technique operat-
ing over three-dimensional Gabor filter outputs across a wider
range of orientations and scales [63] and an approach that con-
centrates on zero-crossing analysis of three-dimensional Lapla-
cian filtering with an emphasis on depth recovery [64];
additional examples can be found in reviews of image motion
analysis (see, e.g., [2]).

Let the energy measurements arising from filtering along direc-
tion n̂k, as specified in the spanning set (2), be qk. For a spatiotem-
poral region of support over which three-dimensional dominant
orientation is to be computed, construct a 3 � 3 matrix of the fol-
lowing form

T ¼
X6

k¼1

qkMk; ðA:1Þ

where

Mk ¼ an̂kn̂T
k � bI; ðA:2Þ

with the dyadic product n̂kn̂T
k establishing the frame implied by ori-

entation n̂k, I the 3 � 3 identity matrix and a ¼ 5
4, b ¼ 1

4 numerical
constants. In essence, T, captures the covariance structure of the
support region.

The dominant orientation over the spatiotemporal region of
support is specified by the eigenvector, ês, corresponding to the
smallest eigenvalue of T, provided the region contains adequate
structure. To interpret ês, in terms of image velocity, v, the eigen-
vector must be projected onto the image plane: Let n̂x and n̂y be
unit vectors defining the image plane, while t̂ is the unit vector
along the temporal direction. Image velocity is then recovered as

v ¼ exn̂x þ eyn̂y

� �.
et ; ðA:3Þ

where ex, ey and et are the projections of ês on n̂x; n̂y and t̂, respec-
tively, i.e.,

ex ¼ ês � n̂x;

ey ¼ ês � n̂y;

et ¼ ês � t̂:
ðA:4Þ

Empirical evaluation of the described algorithm for estimating
three-dimensional orientation (and subsequently image velocity,
for the case of spatiotemporal imagery) shows that it is able to pro-
vide accurate and precise estimates, even in the presence of chal-
lenging signal-to-noise ratios [65,59]. With respect to the
particular implementation used in the present work, Fig. 16 shows
the accuracy of estimated image motion direction as a function of
speed for the case of a translating white noise pattern; it is seen
that negligible bias and small variance is had across a range of
speeds, 0.1–7 pixels/frame.

Appendix B. Direction map template examples

In the empirical evaluation of the described approach, a total of
35 direction map templates are employed. These can be coarsely
categorized as (but not necessarily limited to) capturing turns of
various directions, motion along particular directions, entrances,
exits and converging/diverging motion for a pair or larger groups
of individuals. Fig. 1 already introduced an example of a left-turn
template. While space precludes an exhaustive presentation of
all templates employed, additional example direction map tem-
plates are shown in Figs. 17–21. Notice that some templates are
tied to specific spatial locations (e.g., a turn at a specific traffic
intersection); these templates are depicted overlaid on the corre-
sponding imagery. Other templates are allowed to be centered at
arbitrary spatial positions (e.g., to detect a converging crowd any-
where in an image); those templates are depicted overlaid on a
uniform background.
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