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Abstract

Camera egomotion estimation is concerned with the recovery of a camera’s motion
(e.g., instantaneous translation and rotation) as it moves through its environment. It has
been demonstrated to be of both theoretical and practical interest. This paper documents a
novel algorithm for egomotion estimation based on binocularly matched spatiotemporal
oriented energy distributions. Basing the estimation on oriented energy measurements
makes it possible to recover egomotion without the need to establish temporal corre-
spondences or convert disparity into 3D world coordinates. The resulting algorithm has
been realized in software and evaluated quantitatively on a novel laboratory dataset with
groundtruth as well as qualitatively on both indoor and outdoor real-world datasets. Per-
formance is evaluated relative to comparable alternative algorithms and shown to exhibit
best overall performance.

1 Introduction

Egomotion estimation recovers the time varying motion of a platform, typically in terms of
instantaneous rotation and translation. Image-based egomotion estimation effects this recov-
ery on the basis of visual information as well as camera calibration and thereby addresses a
fundamental matter in visual information processing – how acquired imagery is related to an
optical system’s motion through the world. Successful egomotion estimation can provide vi-
tal input to a number of related processes, including 3D object modeling [30], Simultaneous
Localization and Mapping (SLAM) [2] and sensor platform odometry [37]. In turn, these
processes can contribute to larger systems, including mobile robots [6], vehicle guidance
[38] and augmented reality [3]. In short, there is no lack of motivation for the development
of approaches to camera-based egomotion estimation.

To estimate camera egomotion, monocular, binocular (stereo-based), or multiocular (more
than two cameras) algorithms have been widely studied. Generally, monocular and binocular
approaches are more popular, with binocular enjoying the advantage, shared with multioc-
ular, of being able to resolve the scale ambiguity between 3D scene structure and camera
translation (assuming appropriate calibration) that is inherent to monocular approaches [20].
Here, a brief survey of binocular approaches is provided, as they are most closely related to
the proposed approach. (See, e.g., [33] for a review of monocular approaches.)
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Many binocular approaches to egomotion estimation share a similar basic structure: Re-
cover disparity between binocular views and then recover rigid body motion parameters by
operating on disparity-based 3D point correspondences across time, as mediated by optical
flow or 2D feature tracking, e.g., [4, 19, 26, 28, 31, 39, 40]. Other research has affected the
recovery of egomotion in disparity space (e.g., [11, 12]), which avoids the need to convert
the stereo correspondences into 3D world space. Another class of approach estimates ego-
motion more directly from a binocular sequence (i.e., without explicit correspondences) by
considering image brightness derivatives [17], correlation surfaces [27] or trilinear bright-
ness constraints [36]. Finally, it is notable that binocular approaches have been developed
for the related area of visual odometry (e.g., [21, 22, 23, 25, 29]); although, this body of
research is more distant from present concerns, as it goes beyond instantaneous egomotion
estimation to consider temporal integration of such estimates and thereby obtain position and
attitude estimates at any given time along a trajectory.

The proposed approach to egomotion estimation uses spatiotemporal oriented energy
measurements that allow it to avoid converting stereo correspondences into explicit 3D,
(X ,Y,Z), world coordinates as well as avoid the need for explicit temporal correspondences.
Spatiotemporal oriented energy measurements have been used previously for a variety of
computer vision tasks; most closely related to current work are applications to optical flow
[1, 16, 18], tracking [9] as well as stereo disparity and 3D scene flow [34, 35].

In the light of previous research, the contributions of the current work are threefold. 1)
An analysis is presented that relates binocularly matched spatiotemporal oriented energies
(SOEs) to camera egomotion, as the camera traverses an otherwise rigid 3D environment.
It appears that this relationship has not been presented previously. 2) The formal analysis
is embodied in a novel algorithm for stereo-based egomotion estimation. 3) The algorithm
has been evaluated empirically in comparison to alternative state-of-the-art approaches. As
part of the evaluation, a new binocular video dataset is introduced that includes groundtruth
egomotion and is available to the community.

2 Technical approach
2.1 Spatiotemporal oriented energy

Binocularly matched, local measurements of spatiotemporal oriented energy (SOE) serve as
the data on which the developed approach to egomotion estimation operates. SOEs provide
an integrated way to capture spatial appearance and temporal characteristics of an image
sequence [34]; therefore, they have the potential to support recovery of egomotion via con-
sideration of temporal dynamics of spatial information as a function of egomotion.

For present purposes, local SOE measurements are recovered separately in the left and
right streams of the binocular video via convolution with a bank of Gaussian second deriva-
tive filters, G2(ŵ), and their Hilbert transforms, H2(ŵ), which are combined in quadrature
to yield energy measurements

E(I(x); ŵ) = [G2(ŵ)∗ I(x)]2 +[H2(ŵ)∗ I(x)]2 (1)

where I is an image, x=(x,y, t)> are spacetime image coordinates, the unit vector ŵ specifies
the 3D direction of the filter and ∗ is the convolution operator [14].

Most practical uses of energy filtering, (1), involve normalization to make responses
invariant to multiplicative bias and bring values to the uniform scale 0 to 1. The necessary
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operation is realized via pointwise division by the local sum of consort energies at a point

Ê(I(x); ŵ j) =
E(I(x); ŵ j)

∑
N
i E(I(x); ŵi)

, (2)

with N the number of orientations that span orientation space for the order of filter employed.
Indeed, the filter results can serve as a basis set from which energy at any other orientation
can be calculated via a weighted combination. Here, since 2nd-order Gaussian filters and
Hilbert transforms are used, N = 10 is required [14], with their orientations chosen to uni-
formly sample 3D orientation as the normals to the faces of an icosahedron with antipodal
directions identified. The result of this computation is that a set of N (normalized) SOEs are
available at each spacetime point, x, in both the left and right image sequences.

Finally, correspondences must be established between points in the left and right im-
age sequences. In general, any reliable algorithm for establishing binocular correspondence
could be applied on a framewise basis to the original image sequences [7]. Here, since SOEs
are available and previously have been shown useful for stereo video matching [34], that
matching approach is applied to establish the needed left-right correspondences.

2.2 Egomotion in visual spacetime
In this subsection, a novel parameterization of 3D directions, ŵ, in visual spacetime, (x,y, t),
is given in terms of camera egomotion parameters. The derivation begins by reviewing stan-
dard material on the visual motion field [20]. Let a Euclidean coordinate system, (X̂, Ŷ, Ẑ)>,
be defined at the projection centre of the left camera in a rectified binocular pair, with the
optical axis and stereo baselines along the Ẑ and X̂, axes, resp., and the Ŷ axis chosen to
complete a right-handed system. Under perspective projection, the image coordinates in the
left camera are given as xl = (x,y, t)> = (X/Z,Y/Z, t)>, with focal length set to unity for
conciseness. The coordinates of a corresponding point in the right camera are then given as
xr = (x+d,y, t)>, where d = B/Z is stereo disparity and B the stereo baseline.

Let egomotion of the camera be given in terms of instantaneous translational, T=(tx, ty, tz)>,
and rotational, Ω = (ωx,ωy,ωz)

>, velocities with respect the centre of projection. Corre-
spondingly, the 3D velocity of a point, P = (X ,Y,Z)>, relative to the camera is then

Ṗ =

 Ẋ
Ẏ
Ż

=−T−Ω×P =

 −tx−ωyZ +ωzY,
−ty−ωzX +ωxZ,
−tz−ωxY +ωyX ,

 (3)

with "dot notation" used to denote temporal derivatives. In the usual way, the visual motion
field, (u,v)>, which captures the perspective image projection of the relative 3D motion be-
tween a camera and 3D world, now can be parameterized in terms of egomotion parameters(

u(x;T,Ω)
v(x;T,Ω)

)
=

(
ẋ
ẏ

)
=

(
Ẋ
Z −X Ż

Z2
Ẏ
Z −Y Ż

Z2

)
=

( 1
Z (xtz− tx)+ωxxy−ωy(x2 +1)+ωzy
1
Z (ytz− ty)+ωx(y2 +1)−ωyxy−ωzx

)
.

(4)
Further, since binocular disparity, d, is assumed available, substituting 1

Z = d
B allows for an

expression that avoids explicit reference to the 3D world coordinate Z. Similarly, the visual
motion field at the corresponding point in the right view is given in terms of the temporal
derivative of (x+d,y)>, i.e., (ẋ+ ḋ, ẏ)> = (u+ ḋ,v)>, where

δd(x;T,Ω) = ḋ =−B
Ż
Z2 = d

(
1
Z

tz +ωxy−ωyx
)
= d

(
d
B

tz +ωxy−ωyx
)
, (5)
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with δd simply an alternate symbol for ḋ, analogous to the roles of u,v for ẋ, ẏ, resp., in (4).
Finally, image spacetime, (x,y, t)>, directions associated with visual motion field (u,v)>

at corresponding points across a binocular sequence is given in terms of unit vectors, v̂l and
v̂r, in the left and right imagery (resp.) and parameterized by egomotion parameters, T,Ω as

v̂l(x;T,Ω) = norm(u(x;T,Ω),v(x;T,Ω),1)> ,

v̂r(x;T,Ω) = norm(u(x;T,Ω)+δd(x;T,Ω),v(x;T,Ω),1)> ,
(6)

where norm() denotes normalization while u(x;T,Ω), v(x;T,Ω) and δd(x;T,Ω) are given
by their defining equations, (4) and (5).

2.3 Egomotion estimation
If a 3D, (x,y, t)>, spacetime direction, v̂, is associated with a 2D, (x,y)>, image flow, (u,v)>,
then it yields minimal energy across orientations, as brightness constancy assumes uniform
intensity along the flow direction. Thus, to solve for the appropriate direction, the basis set of
oriented energy measurements, (2), can be steered to the direction that yields minimal energy
response, as parameterized by the global egomotion parameters, T, Ω. Let oriented energy
measurements for corresponding points in left and right imagery be Ê l

(
Il(xl); v̂l(xl ;T,Ω)

)
and Êr (Ir(xr); v̂r(xr;T,Ω)) = Êr

(
Ir(xl +d); v̂r(xl +d;T,Ω)

)
, with d = (d,0,0)>, because

xl and xr binocularly correspond. Then matched energies at a point sum to

Estereo(Il(xl), Ir(xr);T,Ω) = Ê l
(

Il(xl); v̂l(xl ;T,Ω)
)
+ Êr

(
Ir(xl +d); v̂r(xl +d;T,Ω)

)
,

(7)
with Ê l and Êr given by (2) applied to the left, Il , and right, Ir, image streams, resp.

Within the developed framework, the solution to egomotion estimation can be stated as

argmin
T,Ω ∑

xl∈S
Estereo(Il(xl), Ir(xl +d);T,Ω) (8)

with S the set of image points considered in the estimation, as indexed to the left image.
Due to the nonlinear dependence of the objective function (8), on T and Ω, Gauss-Newton
refinement is employed to obtain the solution. While alternative optimization methods could
be employed [10], Gauss-Newton will be shown useful in the current text when empirical
results are presented in Sec. 3. For the sake of conciseness, let Gl = G2

(
v̂l(xl ;T,Ω)

)
∗

Il(xl) and Hl = H2
(
v̂l(xl ;T,Ω)

)
∗ Il(xl) and similarly for the right image stream, Ir. Then,

egomotion parameters are estimated in terms of the objective function, (8), residual

r(x;T,Ω) = (Gl ,Hl ,Gr,Hr)> (9)

and Jacobian (using subscripts to denote differentiation)

J(x;T,Ω) =


Gl

tx Gl
ty Gl

tz Gl
ωx Gl

ωy Gl
ωz

Hl
tx Hl

ty Hl
tz Hl

ωx Hl
ωy Hl

ωz

Gr
tx Gr

ty Gr
tz Gr

ωx Gr
ωy Gr

ωz

Hr
tx Hr

ty Hr
tz Hr

ωx Hr
ωy Hr

ωz

 (10)

which are stacked across all n points, xi, considered in the computation according to

ρ(T,Ω) =
(
r(x1;T,Ω)>, r(x2;T,Ω)>, . . . , r(xn;T,Ω)>

)>
,

J (T,Ω) =
(
J(x1;T,Ω)>, J(x2;T,Ω)>, . . . , J(xn;T,Ω)>

)> (11)
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so that iterative refinement proceeds according to(
T
Ω

)k+1

=

(
T
Ω

)k

−
(
J (T,Ω)>J (T,Ω)

)−1
J (T,Ω)>ρ(T,Ω), (12)

with k and k+1 successive iterations.

2.4 Salient feature selection
When dealing with real-world images, feature selection can play an important role. Restrict-
ing subsequent analysis to reliable features can greatly improve an algorithm’s robustness to
noise. Feature selection for the developed egomotion algorithm is based on the match score
map produced by the stereo matching algorithm used to provide input to the egomotion esti-
mator, e.g., [34], which is combined with a sampling strategy to ensure selected features are
reasonably distributed across the images and thereby ameliorate difficulties that arise when
global egomotion parameters are estimated based on spatially biased feature distributions.

To select points with reliable disparity estimates, local extrema of curvature of the match
score map (e.g., correlation surface) are employed. While a variety of approaches to feature
selection might be considered, match score curvature is known to provide reliable (if conser-
vative) indication of loci where stereo correspondence is good [13]. Curvature is calculated
as the 2nd spatial derivative of the map along the horizontal axis (assuming horizontally
aligned epipolar lines). Nonmax. suppression is used to select local extrema. To ensure the
selected points are well distributed across the image, the image is gridded spatially (currently
9×12) and within each grid cell a threshold on the local extrema is set adaptively such that
the number of points selected lie between specified min. and max. values. Example selected
features are shown in Fig. 1. Notice that selecting points where the stereo match is well
defined locally also finds well textured points that will yield correspondingly well defined
SOEs (1). Also, gridded adaptive thresholding yields features well distributed spatially.

2.5 Recapitulation
Given a temporal stream of calibrated and rectified binocular imagery, processing proceeds
as follows. 1) The left and right image sequences are independently filtered to extract point-
wise SOE measurements, (2). 2) Binocular disparity is estimated pointwise [34]. 3) Salient
feature points are extracted, Sec. 2.4. 4) The egomotion estimator is executed, (12). Egomo-
tion parameters are initialized identically to zero; estimation ends when the residual change
between iterations is below a threshold (10−6) or a maximum number of iterations (50) is
reached. To facilitate efficient processing with large capture range, the entire approach is
embedded in a coarse-to-fine refinement scheme [5] within Gaussian pyramids [8].

3 Empirical evaluation
The proposed approach to egomotion estimation (SOE) has been evaluated empirically on
three datasets. The first was acquired in a calibrated laboratory setting and includes groundtruth
egomotion [41]. This dataset consists of 7 videos capturing all different combinations of 3
degree-of-freedom (DOF) motion in a plane with systematic variation of velocities. Under
the current notation, the parameters are given as tx, tz, and ωy. These parameters are selected
as they capture an important practical situation (ground plane motion) and due to mechanical
constraints in the lab. The second and third datasets were captured in more naturalistic indoor
(an office) and outdoor (building exterior with foreground ground cover), resp. Both consist
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Figure 1: Examples of the images in various datasets. The images are from (left-to-right)
the laboratory, indoor and outdoor datasets. Selected features are marked as red plus signs,
with the spatial distribution grid also overlaid (see Sec. 2.4 for details). Their corresponding
disparity maps are presented on the second row, darker means closer.

of single video sequences emcompassing full 6 DOF egmotion. All imagery was captured
with the same binocular video camera with a 6 cm stereo baseline using 75 deg. horizon-
tal field of view lenses for capture at 1024× 768 spatial resolution and 30 frames/second.
Example (left) images for each dataset are shown in Fig. 1. Below each image are represen-
tative disparity maps as estimated by the employed spatiotemporal stereo matcher [34]. An
additional dataset [15] was not included in the evaluation as it focuses on visual odometry
and thereby lacks framewise egomotion groundtruth.

Two alternative egomotion algorithms are considered for comparison. The first, DC, is
selected as it is an alternative that, similar to the proposed SOE, works without explicit pro-
jection of disparity measurements into world, (X ,Y,Z)> space, and previously outperformed
such approaches [12]. This algorithm requires disparities that are matched across time. For
the sake of fair comparison, the same disparity measurements and feature point selection
used for the proposed approach also are used as input to DC. Temporal correspondences are
established using the Lucas-Kanade algorithm [24] as implemented in OpenCV [32], with
pyramids to increase capture range. The second algorithm (KGL) is selected as a state-of-
the-art algorithm for binocular-based egomotion estimation as applied to visual odometry
[22]. This algorithm makes uses its own techniques for matching between images. Code
for the second algorithm was downloaded from its authors’ website; code for the first was
developed by the present authors, as none appeared available elsewhere. Parameter values
for both algorithms were as suggested by their authors or as tuned for best performance on
present datasets.

For lab experiments, separate videos were captured for all combinations tx, tz and ωy with
speed increased in 15 steps for translation and rotation ranging 2.1− 90 cm/sec. and 0.9−
13.5 deg./sec., resp. Egomotion was realized by attaching the cameras to an automated high
precision 3 DOF motion control platform mounted on an optical bench, which also provided
groundtruth readings. The same scene was imaged throughout; see Fig. 1. The instantaneous
egomotion estimates of each algorithm were compared to groundtruth at 10 equally spaced
times across each video; mean and standard deviation of errors were calculated. Algorithms
estimated 6 DOF egomotion, even though only at most 3 were actuated.

Lab results are shown in Figs. 2 and 4. For the pure tx case, SOE exhibits smaller error
than the alternatives on the actuated tx, essentially 0 error on the Ω parameters and small error
on the nonactuated ty, tz. KGL also shows small errors, but tends to oscillate about 0. DC
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Figure 2: Results on laboratory dataset. Top-to-bottom are grouped error plots as actual
egomotion is purely tx, tz and ωy, resp. Subplots show error mean and standard deviation for
indicated parameters along the ordinate as speed increases along the abscissa. Blue, green
and red denote results for SOE (proposed), DC and KGL, resp. See text for details.

(a) (b)

Figure 3: Estimated egomotion parameter values vs. time for indoor (left) and outdoor (right)
datasets. Algorithm colour coding as in Fig. 2. See text for details.
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Figure 4: Results on laboratory dataset, part 2. Top-to-bottom are grouped error plots as
actual egomotion is tx&tz, tx&ωy, tz&ωy, tx&tz&ωy, resp. Format otherwise same as Fig. 2
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is weakest, with error increasing at higher speeds for tx,ωy and ωz. For the pure tz case, all
algorithms do well in yielding near 0 error for Ω. However, there are differences on T: SOE
and KGL show similar small errors on the nonactuated tx, ty, but SOE has better performance
on tz until at highest speeds it is equaled by KGL; DC shows error increasing with speed.
For pure ωy, all algorithms show small errors, but KGL again oscillates. For combined
tx, tz, SOE has smallest errors for all nonactuated parameters and tx. At lower speeds, it also
shows smallest errors for tz, but is equaled by KGL at higher speeds. KGL generally is
second smallest in error, but continues to oscillate. DC continues its trend of increased error
with speed. Combined tx,ωy shows SOE with smallest error on all parameters, KGL second
smallest (but still oscillating) and DC also with small errors, but larger than the alternatives.
Combined tz,ωy shows SOE with generally smallest error rates, KGL’s tendency to oscillate
about 0 error particularly pronounced (e.g. on ty, tz) and DC outperforming KGL, except on
tx and tz. Finally, combined tx, tz,ωy shows SOE with smallest error on all T parameters.
KGL achieves similar error to SOE on Ω and on tz at high speeds, but still is plagued by
oscillation, especially on T errors. DC performs somewhat better than KGL, except on tz.

Indoor and outdoor naturalistic datasets were captured with the stereo camera hand-
held. An attempt was made to move sequentially along each of the egomotion parameters,
in order tx, ty, tz,ωx,ωy,ωz, to yield 6 temporal epochs within a single video. Results are
shown in Fig. 3; vertical lines delineate the temporal epochs in each plot. Indoors, all al-
gorithms sequentially increase/decrease their estimates reasonably as the T parameters are
actuated/deactuated. For Ω, qualitatively correct estimates also are shown, as rotation is per-
formed about each axis first in one direction and then back. A similar pattern of results is
shown for outdoors. In both cases, all algorithms tend to show slight nonzero responses to
parameters that the camera operator attempted not to actuate. The Supp. Video confirms
there was slight motion along these axes, due to the difficulty of actuating one motion at
a time. Still, SOE shows more stable estimates across time in accord with the video than
the alternatives, especially in outdoors. See, e.g.KGL’s greater tendency to oscillate inap-
propriately about 0 for T during Ω actuation as well as variation in its T estimates during
T actuation and DC’s tendency to relatively pronounced responses to tz during Ω actuation,
whereas SOE tends to more consistent responses throughout. Further, when SOE deviates
from smoothness the Supp. Video suggests its estimates follow the actual egomotion (e.g. tz
responses during ty actuation indoors, where the operator inadvertently also actuated tz).

Overall, the results in comparison to groundtruth show that SOE exhibits best perfor-
mance. KGL is second best, but tends for its error rates to oscillate with increased velocity.
DC shows weakest performance, especially at higher speeds. These tendencies may under-
line the difficulty of establishing reliable temporal correspondences as egomotion (and hence
image displacement) increases, a challenge SOE avoids by not requiring correspondences
across time. Note, in particular, that DC employs the same disparity and feature selection
as SOE; so, differences along those lines do not account for their relative levels of perfor-
mance. Results on the natural imagery indicate that all algorithms perform qualitatively
correctly, with SOE showing somewhat more consistent estimates across time. Temporal
consistency may result from the benefits of using spatiotemporal orientation analysis, which
integrates more temporal information at a given instant (e.g. due to underlying filter support).

Finally, SOE run-time in unoptimized C++ executed on a 3.4GHz processor with 16GB
RAM is ≈ 84 ms./frame for 512× 384 images, beyond the time required for SOE filtering
and stereo matching. Significantly, previous research has shown that both SOE filtering and
stereo matching can be done in real-time, e.g., [34]. Thus, the overall approach has potential
for real-time applications.
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4 Conclusions
This paper has presented a novel algorithm for egomotion estimation based on binocularly
matched spatiotemporal oriented energy distributions (SOEs). Basing the estimation on ori-
ented energy measurements made it possible to recover egomotion without the need to estab-
lish temporal correspondences or convert disparity into 3D world coordinates. A key to these
developments was an analysis that explicitly parameterizes binocularly matched 3D orienta-
tion in visual spacetime, (x,y, t), in terms of egomotion parameters. In empirical evaluation,
it has been shown that the developed approach is competitive with and even exceeds the ac-
curacy of representative alternative algorithms. An interesting direction for future research
would be to embed the developed egomotion estimator in a system for visual odometry.
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