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Abstract. This paper presents a novel feature set for visual tracking
that is derived from “oriented energies”. More specifically, energy mea-
sures are used to capture a target’s multiscale orientation structure across
both space and time, yielding a rich description of its spatiotemporal
characteristics. To illustrate utility with respect to a particular tracking
mechanism, we show how to instantiate oriented energy features effi-
ciently within the mean shift estimator. Empirical evaluations of the
resulting algorithm illustrate that it excels in certain important situa-
tions, such as tracking in clutter with multiple similarly colored objects
and environments with changing illumination. Many trackers fail when
presented with these types of challenging video sequences.

1 Introduction

Target tracking is a critically important aspect to a wide range of computer
vision applications, including surveillance, smart rooms, and human-computer
interfaces. Significant contributions have been made to the field, but no general-
purpose tracker has been found that can operate effectively in every real-world
setting [1]. Scenarios that are present in realistic sequences and challenge many
trackers include changes in illumination, small targets, and significant clutter.

In general, to facilitate accurate tracking, features must be selected that dis-
tinguish targets from the background and from one another, even while being
robust to photometric and geometric distortions. In response to these require-
ments, many different proposals have been made; here, representative examples
are provided. Perhaps the simplest approach is to make use of image intensity-
based templates for feature definition [2,3,4]. To provide robustness to photo-
metric distortions, consideration has been given to discrete features [5,6,7]. To
encompass object outlines, methods have emerged that use contours and sil-
houettes [8,9,10]. Other features (e.g., color, texture) have been derived on a
more regional basis [11,12,13]. Recovered motion also has been used in feature
definitions [14,15,16].

Limited attention has been given to the integrated analysis of both the spatial
and temporal domains when considering features for visual tracking. Potential
benefits of a more integrated approach include the ability to combine static
and dynamic target information in a natural fashion as well as simplicity of
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design and implementation. In response to this observation, the present paper
documents a novel feature set for visual tracking that uses energy measures to
capture a target’s multiscale, spatiotemporal orientation structure. A consider-
able body of research has emerged on the use of orientation selective filters in
the spatiotemporal domain for the purpose of analyzing motion [17,18,19]. How-
ever, it appears that no previous research has explored the use of multiscale,
spatiotemporal oriented energies that uniformly encompass space and time as
the basis for defining features in the service of visual tracking.

To illustrate the use of the proposed oriented energy feature set, we make use
of the mean shift tracking paradigm [13,20,21,22], a framework upon which these
features readily map. Although, the energy features are also applicable to alter-
native paradigms, e.g., those that preserve within target spatial relationships, as
the oriented energies are calculated locally.

In light of previous research, the main contributions of this paper are as
follows. (1) A novel oriented energy feature set is defined for visual tracking.
This representation captures the spatiotemporal characteristics of a target in an
integrated, compact fashion. (2) Oriented energy features are instantiated with
respect to the mean shift estimator. (3) The performance of the resulting system
is documented both qualitatively and quantitatively. Our algorithm outperforms
a color-based mean shift implementation in three common, real-world situations:
substantial clutter; multiple targets with similar color; and illumination changes.

2 Technical Approach

2.1 Oriented Energy Features

Oriented Energy Computation. Events in a video sequence will generate
diverse structures in the spatiotemporal domain. For instance, a textured, sta-
tionary object produces a much different signature in image space-time than if
the same object were moving. One method of capturing the spatiotemporal char-
acteristics of a video sequence is through the use of oriented energies [17]. These
energies are derived using the filter responses of orientation selective bandpass
filters when they are convolved with the spatiotemporal volume produced by a
video stream. Responses of filters that are oriented parallel to the image plane
are indicative of the spatial pattern of observed surfaces and objects (e.g., spatial
texture); whereas, orientations that extend into the temporal dimension capture
dynamic aspects (e.g., velocity and flicker).

The basis of our approach is that energies computed at orientations which span
the space-time domain can provide a rich description of a target for visual track-
ing. Here, multiscale processing is also important, as coarse scales capture gross
spatial pattern and overall target motion while finer scales capture detailed spa-
tial pattern and motion of individual parts (e.g., limbs). With regard to dynamic
aspects, simple motion is captured (orientation along a single spatiotemporal di-
agonal) as well as more complex phenomena, e.g., multiple juxtaposed motions
as limbs cross (multiple orientations in a spatiotemporal region). By encompass-
ing both spatial and temporal target characteristics in an integrated fashion,
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tracking is supported in the presence of significant clutter. Further, as detailed
below, such representations can be made invariant to local image contrast to
support tracking throughout substantial illumination changes.

For this work, filtering was performed using broadly tuned, steerable, separa-
ble filters based on the second derivative of a Gaussian, G2, and their correspond-
ing Hilbert transforms, H2 [23], with responses pointwise rectified (squared) and
summed. Filtering was executed across θ = (η, ξ) 3D orientations (η, ξ specify-
ing polar angles) and σ scales using a Gaussian pyramid formulation. Hence, a
measure of local energy, e, can be computed according to

e (x; θ, σ) = [G2 (θ, σ) ∗ I (x)]2 + [H2 (θ, σ) ∗ I (x)]2 , (1)

where x = (x, y, t) corresponds to spatiotemporal image coordinates, I is the
image sequence, and ∗ denotes convolution. This initial measure of local en-
ergy is dependent on image contrast. To attain a purer measure of the relative
contribution of the orientations irrespective of contrast, (1) is normalized as

ê (x; θ, σ) =
e (x; θ, σ)

∑
σ̃

∑
θ̃ e

(
x; θ̃, σ̃

)
+ ε

, (2)

where ε is a bias term to avoid instabilities when the energy content is small and
the summations in the denominator cover all scale and orientation combinations.
(In this paper, our convention is to superscript variables of summation with .̃)

For illustrative purposes, Fig. 1 displays a subset of the energies that are
computed for a single frame of a MERL traffic sequence [24]. Here, there is a
white car moving to the left near the center of the frame. Notice how the energy
channel that is tuned for leftward motion is very effective at distinguishing this
car from the static background. Consideration of the channel tuned for horizontal
structure shows how it captures the overall orientation structure of the white car.
In contrast, while the channel tuned for vertical textures captures the outline
of the crosswalks, it shows little response to the car, as it is largely devoid of
vertical structure at the scales considered. Finally, note how the energies become
more diffuse and capture more gross structure at the coarser scale.

Given that the tracking problem is being considered, the goal is to locate the
target’s position as precisely as possible. However, as seen in Fig. 1, the energies
computed at coarser scales are diffuse due to the downsampling/upsampling that
is employed in pyramid processing. Coarse energies are important because they
provide information regarding the target’s gross shape and motion, but a method
is required to improve their localization for accurate tracking. To that end, a set
of weights are applied to the normalized energies of (2) according to

Ê (x; θ, σ) = ê (x; θ, σ) b (x; θ) , (3)

where b are pixel-wise weighting factors for a particular orientation channel, θ.
The weighting factors for a specific orientation are computed by integrating the
energies across all scales and applying a threshold, Tθ, according to

b (x; θ) =
∑

σ̃

ê (x; θ, σ̃) > Tθ. (4)
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Fig. 1. Frame 29 of the MERL traffic video sequence with select corresponding en-
ergy channels. Finer and coarser scales are shown in rows two and three, resp. From
left to right, the energy channels roughly correspond to horizontal structure, vertical
structure, and leftward motion.

When computing the weights, summing across scales allows the better localized
fine scales to sharpen the coarse scales, while the coarse scales help to smooth
the responses of the fine scales. Furthermore, by calculating weights separately
for each orientation, we avoid being prejudiced toward any particular type of
oriented structure (e.g., static vs. dynamic).

Two significant advantages of the proposed oriented energy feature set must
be further highlighted. First, normalized energy, as defined by (1) and (2), cap-
tures local spatiotemporal structure at a particular orientation and scale with a
degree of robustness to scene illumination: By virtue of the bandpass filtering,
(1), invariance will be had to changes that are manifest in the image as additive
offsets to image brightness; by virtue of the normalization, (2), invariance will
be had to changes that are manifest in the image as multiplicative offsets. Sec-
ond, the calculation of the defined normalized oriented energies requires nothing
more than 3D separable convolution and pointwise nonlinear operations, and is
thereby amenable to compact, efficient implementation [25].

Histogram Representation. As defined, oriented energies provide local char-
acterization of image structure. Therefore, the energy measurements could be
used to provide pointwise descriptors for target tracking (e.g., in conjunction
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with spatial template-based matching). Alternatively, the pointwise measure-
ments can be aggregated over target support to provide region-based descrip-
tors (e.g., in conjunction with mean shift tracking). Here, we pursue the second
option and demonstrate the efficacy of the features as regional descriptors.

With an eye to mean shift tracking, we collapse the spatial information in
our initial energy measurements and represent the target as a histogram. Each
histogram bin corresponds to the weighted energy content of the target at a
particular scale and orientation. Specifically, the template histogram that defines
the target in the first frame is given by

q̂u = C

n∑

i=1

k
(
‖x∗

i ‖2) Ê (x∗
i ; φu) , (5)

where k is the profile of the tracking kernel, C is a normalization constant to
ensure the histogram sums to unity, x∗

i = (x∗, y∗) is a single target pixel at some
temporal instant, i ranges so that x∗

i covers the template support, and φu is the
scale and orientation combination which corresponds to bin u of the histogram.

When tracking a target, it may be necessary to evaluate several target candi-
dates for the current frame. Candidate histograms are defined as

p̂u (y) = Ch

nh∑

i=1

k

(∣
∣
∣
∣

∣
∣
∣
∣
y − x∗

i

h

∣
∣
∣
∣

∣
∣
∣
∣

2
)

Ê (x∗
i ; φu) , (6)

where y is the center of the target candidate’s tracking window, h is the band-
width of the tracking kernel and i ranges so that x∗

i covers the candidate support.
A sample energy histogram for the target region shown in Fig. 1 (represented

by the white box) is shown in Fig. 2. The bin corresponding most closely to
leftward motion at the finest scale (bin 5) has by far the most energy. The next
two high energy counts are found in bins 2 and 9 which are tuned to combinations
of dynamic and static structure, with an emphasis on leftward motion and spatial
orientation similar to that of the target. The overall horizontal structure of the
car is captured by the energy in bins 1 and 4. In contrast, bins 3 and 6, which
roughly represent static, vertical structure, do not have strong responses, given
the nature of the car target. The histogram also shows that the oriented energies
for the highest frequency structures have the strongest response, as the target is
fairly small and dominated by relatively finer scale structure.

2.2 Oriented Energy Features in the Mean Shift Framework

Target Position Estimation. Under the mean shift framework, tracking an
object involves locating the candidate position in the current frame that produces
the histogram that is most similar to the template. Thus, a measure of similarity
between two histograms is required. For histogram comparisons we utilize the
Bhattacharyya coefficient, the sample estimate of which can be computed using

ρ [p̂ (y) , q̂] =
m∑

u=1

√
p̂u (y) q̂u, (7)
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Fig. 2. Oriented energy histogram for the target region in Fig. 1

where p̂ (y) and q̂ are histograms with m bins apiece. Due to the definition of
the Bhattacharyya coefficient, in order to minimize the distance between two
histograms, (7) must be maximized with respect to the target position, y.

The Bhattacharyya coefficient can be maximized via mean shift iterations
[20]. The specific mean shift vector that can be used for this maximization is

ŷ1 =

⎡

⎢
⎢
⎣

∑nh

i=1 x∗
i wig

(∣
∣
∣
∣
∣
∣
ŷ0−x∗

i

h

∣
∣
∣
∣
∣
∣
2
)
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i=1 wig
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2
)

⎤

⎥
⎥
⎦ , where wi =

m∑

u=1

Ê (x∗
i ; φu)

√
q̂u

p̂u (ŷ0)
,(8)

g (x) = k′ (x) is the derivative of the tracking kernel profile, k, with respect to x,
and ŷ0 is the current target position. The Epanechnikov kernel has been shown
to be effective [20] and is the most commonly used kernel for mean shift tracking.

Thus, the position of the target in the current frame is estimated as follows.
Starting from the target’s position in the previous frame, the mean shift vector
is computed and the target candidate is moved to the position indicated by the
mean shift vector. These steps are repeated until convergence has been reached
or a fixed number of iterations have been executed.

Template and Scale Updates. When tracking an object through a long
video sequence, it is common that its characteristics will change. To combat
the changes a target may incur over time (e.g., due to alterations in velocity or
rotation), our tracker includes a simple template update mechanism defined as

q̂i+1 = απq̂i + (1 − α) (1 − π) p̂ (yi) , (9)

where α is a weighting factor to control the speed of the updates, q̂i is the tem-
plate at frame i, and π = ρ

[
p̂ (yi) , q̂i

]
is the Bhattacharyya coefficient between

the current template and the optimal candidate found in the ith frame. Empiri-
cally, α was set to 0.85. Following each application of (9), the resulting template
is renormalized and thereby remains consistent with our overall formulation. Ow-
ing to dependence on the Bhattacharyya coefficient, the template update rule
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indicates that if the template and the optimal candidate are well-matched, the
update to the template will be minimal.

The size of a target may change during a video sequence as well. Although
there are more effective methods of dealing with changes of object scale in the
mean shift framework [21,22], in the current implementation we employ a sim-
ple approach, similar to that taken in [20]. In particular, our system performs
mean shift optimization three times per frame using three different bandwidth
values, h. Unless stated otherwise, h values of ±5% are used. We obtain the new
bandwidth, hnew, by combining the best of the three bandwidths evaluated at
the current frame, hopt, with the previous target size, hprev, according to

hnew = γhopt + (1 − γ)hprev. (10)

Empirically, we set γ = 0.15.

3 Empirical Evaluation

The performance of the oriented energy-based mean shift tracker has been eval-
uated on an illustrative set of test sequences. For comparative purposes, a mean
shift tracker based on RGB color space was also developed and tested. Other
than the use of different histograms, the two trackers were identical. The color-
based tracker was implemented in a similar manner to [20], whereby each color
channel was quantized into 16 levels (yielding a histogram with 163 bins). In our
current implementation of the energy-based tracker, energies were computed
at 3 scales with 10 different spatiotemporal orientations per scale. Hence, the
energy-based histograms contained 30 bins. For the oriented energy feature set,
10 orientations were selected because they span the space of 3D orientations for
the highest order filters that we use (H2) [23]; in particular, the selected orien-
tations correspond to the normals to the faces of an icosahedron with antipodal
directions counted once, which provides a uniform tessellation of a sphere. For all
results in this paper, an Epanechnikov kernel, K, was used. The thresholds for
(4) were empirically set as 2.75× the mean energy for each orientation channel.
The color and energy-based trackers were hand-initialized with identical target
regions in the first frame of each video.

Figure 3 illustrates the effectiveness of oriented energy-based features in deal-
ing with illumination changes. An individual starts walking in a poorly lit area;

Fig. 3. Video sequence (x×y× t = 360×240×60) of a man walking through shadows.
From left to right, frames 4, 18, 31, and 55 are shown. Tracked regions are highlighted
with white boxes.
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Fig. 4. Video sequence (x × y × t = 360 × 240 × 50) of people walking through a room
with similar colored clothing. From left to right, frames 6, 18, 32, and 50 are shown.
Tracked regions are highlighted with white boxes.

Fig. 5. MERL traffic video sequence (x × y × t = 368 × 240 × 64) where a white car is
tracked as it travels through an intersection. From left to right frames 13, 24, 38, and
58 are shown. Tracked regions are highlighted with white boxes.

then, he travels into and out of the bright region as he walks across the room.
Using our proposed feature set, the tracker appeared to be relatively unaffected
by the changes in illumination. This robustness arises from the normalization
performed in (2). In comparison, our color-based mean shift tracker completely
lost track of the target after only a few frames, even when histograms created
using normalized RG-space [20] were utilized.

Figure 4 shows a case where two persons with similar colored clothing walk in
opposite directions and the individual starting on the right side is being tracked.
Despite the full occlusion that occurs for several frames, the tracker using en-
ergy features is capable of following the true target throughout the video. The
different texture patterns and velocities of the walkers were sufficient cues for
the energy-based tracker to achieve success, as the representation spans the spa-
tiotemporal domain. In comparison, our color-based tracker became distracted
by the other walker as the individuals have near-identical color distributions.

Figure 5 shows a real-life, grayscale video sequence of a cluttered traffic scene
that was obtained from MERL [24] (a portion also used in Fig. 1). As the figure
shows, our proposed system experiences some slight difficulty when tracking
the vehicle as it passes over the crosswalk (e.g. notice off-centered tracking in
frames 13 and 24). This performance decrease occurs because the lack of contrast
(essentially uniform white on white) between the car and the crosswalk yields
little energy for the involved portions of the car. Nevertheless, the tracker never
loses the target; indeed, the frames shown are representative of the worst case
performance in this video.

Our feature set was also successfully used when tracking people and vehicles
in videos obtained from the PETS2001 dataset [26]. Figure 6 shows an example
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Fig. 6. PETS2001 video sequence (x × y × t = 384 × 288 × 85) where a cyclist is being
tracked. From left to right frames 18, 32, and 73 are displayed. Tracked regions are
highlighted with white boxes.

Fig. 7. Video sequence (x × y × t = 360 × 240 × 100) showing an individual walking in
an erratic pattern. From left to right frames 22, 74, 86, and 100 are displayed. Tracked
regions are highlighted with white boxes.

of our results on this dataset where a cyclist is tracked. The tracker that utilizes
oriented energy features is successful despite the fact that the cyclist is partially
occluded by another individual near the beginning of the sequence. The results
on this data sequence are impressive given that the video accurately reflects
real-world surveillance settings where targets of interest are often small and of
low-resolution. In contrast, our implementation of the color-based mean shift
tracker drifted off the target after only a few frames.

In Fig. 7 an individual is shown walking erratically, making sudden changes
in direction and moving at a wide variety of speeds. Since the oriented energy
features encompass both spatial and temporal information, tracking of the tar-
get continues throughout each change in velocity. In particular, at instances
where the target motion changes radically, the spatially-based components of
the representation keep the tracker on target. Subsequently, template updates,
(9), incorporate changes to adapt the model for further tracking.

Figure 8 shows footage that one might obtain from overhead surveillance
cameras in public areas. The oriented energy-based tracker follows the target of
interest even though there are multiple similar walkers with little texture, cast
shadows, and complex reflectance effects, as the video was recorded through a
window. Using the oriented energy feature set, the target is not lost, even during
the partial occlusion. The tracker does lag behind the target for a few frames
immediately following the occlusion; however, it ultimately follows the correct
person. Indeed, frame 39 is representative of its worst-case performance for this
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Fig. 8. Video sequence (x × y × t = 320 × 240 × 70) showing multiple people in motion
that are similar in appearance. From left to right frames 9, 31, 39, and 59 are displayed.
Tracked regions are highlighted with white boxes.
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video. In comparison, our color-based implementation was only able to follow
the true target for approximately 30 frames.

Quantitative performance analysis was performed for the video sequences that
are publicly available — MERL and PETS2001. Specifically, Fig. 9 shows the
Bhattacharyya coefficient vs. frame number for these two sequences. The Bhat-
tacharyya coefficient is a measure of the system’s confidence in the target found
in each frame, with 1 being the largest possible value. For the MERL video, the
decreased level of performance at the crosswalks that was qualitatively observed
is also indicated quantitatively. In particular, Fig. 9 shows two slight decreases
in the Bhattacharyya coefficient at frames 12 and 58 — precisely the frames
when the vehicle is passing over the crosswalks. For the PETS video sequence,
the significant deviation the Bhattacharyya coefficient experiences is a result of
the partial occlusion of the cyclist by the walker (approximately frames 15 - 34).
The other, less substantial decreases are a result of the significant background
clutter (e.g., parked cars). Also of note is that an average of 3 mean shift itera-
tions were required to reach convergence for these two videos. Twenty iterations,
the maximum we allow, was observed only three times.

4 Summary

Spatiotemporal oriented energy features provide a rich, yet compact representa-
tion of a target’s characteristic structure across both space and time. In particular,
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by encompassing a range of orientations and scales, the proposed feature set pro-
vides a natural integration of the static (e.g., spatial texture) and dynamic (e.g.,
motion) aspects of a target. To illustrate their usefulness with respect to a particu-
lar tracking mechanism, we provide an instantiation with respect to the mean shift
estimator. In our experiments over a wide range of video sequences, the energy-
based tracker was considered to perform as well or better than an identical
algorithm that used color histograms. Of primary interest in our work were
surveillance-inspired video sequences that included challenges such as substantial
background clutter, targets that contained similar colors to other objects in the
scene, and changes in illumination. Tracking with the use of oriented energy fea-
tures was shown to be robust to these challenges.

Acknowledgments. Portions of this work were funded by an Ontario Graduate
Scholarship to K. Cannons and an NSERC Discovery Grant to R. Wildes.
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