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Abstract

This paper presents a qualitative analysis that re-
lates stable structures in visual motion fields to
properties of corresponding three-dimensional en-
vironments. Such an analysis is fundamental in
the development of methods for recovering use-
ful information from dynamic visual data with-
out the need for highly accurate and precise sens-
ing. Methodologically, the techniques of singu-
larity theory are used to describe the mapping
from image space to velocity space and to re-
late this mapping to the three-dimensional envi-
ronment. The specific results of this paper ad-
dress situations where an optical sensor is under-
going pure rotational or pure translational motion
through its environment. For the case of pure ro-
tational motion it is shown that the qualitative
structure of visual motion provides information
about the axes and relative magnitudes of rota-
tion. For the case of pure translational motion
it is shown that the qualitative structure of vi-
sual motion provides information about the shape
and orientation of viewed surfaces as well as infor-
mation about the translation itself. Further, the
temporal evolution of the visual motion field is de-
scribed. These results suggest that valuable infor-
mation regarding three-dimensional environmen-
tal structure and motion can be recovered from
qualitative consideration of visual motion fields.

Introduction

The visual motion field is the image projection of an
environment that is moving relative to an optical sen-
sor. As such, this field is a potentially rich source of
information about the environment as well as the rel-
ative motion between the environment and sensor. In
response to this possibility, this paper concentrates on
developing an understanding of the qualitative prop-
erties of the motion field and of its relationship to an
impinging visual world. In essence, this understanding
is based on an analysis of stable structures in tempo-
rally evolving visual motion fields. Structural stability

refers to properties that persist independently of minor
perturbations to the visual motion field. In practice,
this is of considerable importance as the visual motion
field is not directly recoverable from optical data. In-
stead, only a near relative, the optical flow, the appar-
ent motion of brightness patterns is recoverable (Horn
1986). Further, even obtaining good estimates of the
optical flow has proven to be fraught with numerical
difficulties. Happily, by concentrating on structurally
stable properties of the visual motion field one has a
rich source of information without reliance on highly
accurate and precise recovery of the-flow.

A great deal of research has focused on the inter-
pretation of visual motion; general reviews are avail-
able (e.g., Hildreth & Koch 1987). Most relevant for
current purposes are other qualitative analyses: The
visual motion field has been decomposed into primi-
tive fields to expose its underlying structure (Hoffman
1966; Koenderink & van Doorn 1975). The signifi-
cance of stationary points has been addressed (Verri
et al. 1989). Issues of uniqueness have received atten-
tion (Carlsson 1988). Interestingly, the bulk of these
studies have couched their analyses in the language of
dynamical systems theory (Hirsch & Smale 1974).

In contrast to prior work, this paper employs sin-
gularity theory (Arnold 1991) and its application to
vector fields (Thorndike et al. 1978) to uncover and
study information rich yet structurally stable proper-
ties of the flow. Presently, consideration is restricted to
cases of visual motion due to either pure rotational or
pure translational 3D motion. Specific contributions
of this research include: First, for pure rotational 3D
motion, it is shown that in principle qualitative con-
siderations allow for the recovery of the axis of angular
rotation, the direction of rotation and the ratio of the
magnitudes of angular and radial rotation. Second, for
pure translational 3D motion, it is shown that in prin-
ciple qualitative considerations allow for the recovery
of a description of viewed surface shape, information
about the direction of viewed surface gradient and in-
formation about the direction of angular translation.
Third, the temporal evolution of the visual motion field
is described in terms of smooth changes and a set of
three events marking more abrupt transitions.




Preliminary developments

For current purposes, it is useful to conceptualize of the
visual motion field as a vector mapping, f, assigning
to each point p = (z,y) in the source space, P, of
image positions a single velocity vector v = (u,v) in
the target space, V, of image velocities f : P — V or
v = f(p). It also is useful to introduce the Jacobian of
the velocity mapping

du du
J={ & & |. (1)
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Singular points of the mapping f : P — V are de-
fined to be points p where det(J) = 0. Points that are
not singular are said to be regular. In the plane, these
distinctions have simple geometric interpretations: A
small circle centered about a regular point in P will
be mapped to an ellipse in V. Correspondingly, at
each of these points there is a direction, a, that leads
to the maximal change in length as the circle deforms
into the ellipse. The magnitude of the determinant,
det(J), gives the ratio of corresponding areas in V and
P. However, at singular points the image ellipse de-
generates into a line segment; the ratio of areas is zero,
ie.,Ja=0.

The structurally stable singularities of any mapping
f: ®? — R? form lines (Whitney 1955). Structurally
stable properties are of interest as they are the proper-
ties that are robust to slight perturbations of the map-
ping, e.g., as due to varying observation conditions;
for a formal definition of structural stability see (Gol-
ubitsky & Guillemin 1973). In the source space, P,
the structurally stable lines of singularity are smooth
and are referred to as fold-lines. In the target space,
V, the images of the fold lines also are lines and are
called folds. However, along the fold-lines are special
points, called cusps, distinguished by tangency with
the a-trajectories. The image of these points in V ap-
pear as cusps along the folds. Since fold-lines and folds
as well as cusp points and cusps form stable structures
in a 2D to 2D mapping, they will serve as the focus in
the following structural analysis of the visual motion
field. Figure 1 illustrates the geometry of folds and
cusps in the velocity mapping.

Structural analysis of visual motion

Define a Cartesian coordinate system at the center
of an optical sensor with the Z-axis pointing along
the optical axis. Under perspective projection a 3D
point P = (X,Y,Z) is mapped to an image point
p = (£,%) = (z,vy), where appropriate scaling is
taken so that the focal length is unity. Let visual mo-
tion derive from a sensor moving through a static en-
vironment. (Alternatively, it could be assumed that a
fixed sensor observes a dynamic environment.) Take
the sensor’s translational velocity as T = (tz,%y,%:),
while its rotational velocity is Q@ = (wz,wy,w:). Then,
the equations of rigid body motion and perspective

P-space

Figure 1: The velocity mapping f can be thought of as
stretching and bending the source space of image po-
sitions, P, in three dimensions and then projecting it
into the target space of image velocities, V. P is folded
along fold-lines that project to folds. Cusp-points cor-
respond to pleats along the fold-lines that project to
cusps. :

projection, allow the image velocity, v = (u,v), of an
environmental point, P, to be written as

u= L(zt; —tz) + zyws — (2% + Dwy + yw: (2)
v=g(yt: —ty) + (¥° + Dwz — zywy — 20,

(Horn 1986). The visual motion field is an array of
velocities v, for an imaged 3D environment. Corre-
spondingly, the terms of the velocity Jacobian (1) can
be expanded as

g-}:(%l)(a:t,—t,)-l-%+yw,—2uyz
%: %% (zt; —tz) + 2wz +w,
2 =(&5) (yt: —ty) —wyy —w:

g%: =% (yt: —ty) + % + 2wy —wyz

(3)

Now, consider purely rotational 3D motion. The
governing conditions are T = 0, while =
(wz,wy,w:). In these situations the visual motion field
specializes to

U= wezy —wy(z? + 1) +w:y (4)
v=w(y? + 1) —wyzy —w.z

An illustration of a visual motion field due to 3D rota-
tion is shown in the left side of Figure 2. Under pure
3D rotation, the condition for singularity, det(J) = 0,
dictates that the expression

%332 + 2wy — dwowy 2y + Wew: T+ wyw Y + w? (5)

evaluates to zero. To understand the form of the singu-
larity in the source space, P, consider the discriminant
(Korn & Korn 1968) of the condition (5) viewed as a
conic section,

(—dwswy)® — 4(207)(23). (6)

Since the discriminant (6) is identically equal to zero,
the singular points are manifest in P as a parabola.
This parabola describes the fold line for the case of
pure rotational 3D motion.
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Figure 2: A visual motion field for rotation about the Z and Y a.xes (left). The fold-lines in the source space, P, of
image positions (middle). The corresponding folds with a cusp in the target space, V, of image velocities (right).

In order to facilitate further analysis, a new co-
ordinate system, (z’,3’) is now adopted so that the
parabola shaped fold-line is symmetric about the y/-
axis. Consideration of the related equations for the

rotation of coordinate axes shows that the y’-axis is

W) 5 R =
parallel to the direction m, ie., the direction .Of
the angular component of 3D rotation. Therefore, in
the (z’,y’) coordinate system 3D rotation is given as
Q= (w;_)w;':wi) == (0)(“:‘3 +W§)%,wz). The form of
the fold-line now can be given as

! I

Y = _QW_S":'E _ Y
i w’ it

z ¥y

(7)

From the equation for the fold-line in the (z’,y’) co-
ordinate system (7) a number of observations are im-
mediate: First, this parabola intercepts the y'-axis at

“: the ratio of radial to angular components of 3D

w1
rotation. Second, by computing the derivative with
respect to z it is seen that the parabola opens at the

I
rate —4%:, 4z’ times the inverse of the previous ra-
tio. Third, given the agreement in the signs of these
two ratios, the parabola always opens away from the
origin. An example fold-line parabola is illustrated in
the middle of Figure 2.

To study the locus of singularities in the target
space, V', the equation describing the fold-line in the
source space, P’, (7) can be substituted into the equa-
tions of the visual motion field (4) to yield

12 2 2
Wy T W,” W
(', v) = [ —3wl2? - L—F, L2?|. (8)
y u.l' wf
¥ z

This set of equations can be taken as a parametric rep-

resentation of the fold in V' with parameter z’. This
2 32

curve intercepts the u’-axis at —ﬁ;ﬁ:’-’—, the negative
of the ratio of the squared magnitudevof rotational mo-
tion to the angular component of rotational motion. As
z’ differs from zero the curve branches out symmetri-
cally from its u’-intercept, leaving a cusp in its wake.
The rate at which the fold opens can be determined

by (implicitly) computing the derivative g:—’, = —:—}z’

to see that the rate of opening (as a function of 2! )
is determined by minus the ratio of angular to radial

:;1

Y

rotation, -ET". An illustrative example fold with cusp

is shown on the right side of Figure 2.

At this point it is useful to review by noting the ways
that the singularities of the velocity mapping could be
used to make inferences about 3D rotational motion:
First, the appearance of the fold-lines as a parabola
with a single cusp-point could be taken as a signature
indicative of rotational 3D motion. Second, the axis of
angular rotation can be recovered as the axis of symme-
try of the fold-line parabola. Third, the distance of the
parabola from the origin as well as the rate of open-
ing of the parabolic fold-line and cusped fold are all
directly indicative of the relative magnitude of angular
and radial rotations. Finally, notice that the singu-
larities say nothing about 3D environmental structure.
This reflects the fact that instantaneous visual motion
due to purely rotational 3D motion is independent of
environmental layout.

Next, consider purely translational 3D motion. The
governing conditions are T = (¢, t,,t.) while = 0.
Correspondingly, the visual motion field specializes to

@9 = (Jat -~ 30t =) ©)

Illustrations of three different visual motion fields due
to 3D translation are shown in the first column of Fig-
ure 3. Under pure 3D translation, the condition for
singularity, det(J) = 0, dictates that the expression

2 ((22) o (G2 3)

(10)
evaluates to zero.

The translation-based singularity equation (10) in-
volves the translation as well as the shape and pose of
a surface of regard. To understand this matter con-
sider a surface described at each point by its local
tangent plane, then n; X + n,Y + n.Z = d, where
the (nz,ny,n;) are normals at points on the surface

(nsiny)
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(X,Y, Z). In this case, (3?' a_y) e e
Substitution into (10) then yields
t—y, 1) =)
t:

(nz,ny,n;) - (2z - :i,Qy—
z

This expression shows that the singularity condition
holds when the local surface normal is orthogonal to
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Figure 3: The left column shows visual motion fields for an observer approaching parabolic (top), elliptic (middle)
and hyperbolic (bottom) surfaces. The middle column shows the fold-lines in the source space, P, of image positions.
The right column shows the folds in the target space, V, of image velocities.

the view direction scaled by two and displaced by the
focus of expansion, t;1(tz,ty); the locus of singularity
is indicative of translation, surface shape and pose.

It is illustrative to consider in detail a particu-
lar set of examples: Let a surface be represented
as a Monge patch, (X,Y,Z2(X,Y)) with Z(X,Y) =
10 X2 + kY2 + .t:;;XY + pX + qY + r so that
L = 1BE=W _ kazy — 1k12% — Lroy?, through second-
order When this surface modei is made use of in the
singularity condition (10) it is found that the locus of
singularities in the source space, P, is a quartic in z
and y that can be written as the product of two conic
sections. However, one of these conic sections corre-
sponds to a degenerate situation where the underly-
ing 3D surface recedes to infinity. Along this contour
all the velocities map to a single point, (0,0). Conse-
quently, subsequent attention will be restricted to the
other conic section. To study this curve, it is conve-
nient to immediately adopt a new coordinate system,
(z',y'), by rotating the axes so as to eliminate the cross
terms in zy. Following this operation, the contour can
be written as

3K.7t,2'% + kyrt Y2 + 2(2p't; — Koril)z (11
+202qt; — kyrtl )y — 20/t +q't, +tz) =0 (1)

where it turns out that x; and x, are given by diago-
nalization of the coefficients of the quadratic terms in
the Monge patch representation of the surface. As a
point of departure on understanding the equation de-
scribing the singular points (11) suppose that there is

no angular component to translation, i.e., t; =t} =0,
and that the surface gradient vanishes at the orlgm
i.e., p' = ¢ = 0. Also, for ease of notation, primes will
be dropped for the rest of this section of the paper;
the fact that all calculations are being performed in
the (z’,y) coordinate system will be implicit. Under
these conditions, equation (11) evaluates to
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K22 + Kyy? = T (12)
Consideration of this simplified singularity condition
(12) shows that it describes an origin centered conic
section that is: an ellipse if sgn(x.) = sgn(xy), a hy-
perbola if sgn(kz) = —sgn(xy ) or parallel straight lines
if k2 = 0 or ky = 0, i.e., the curves are mdlcatlve
of Dupin’s Indicatrix for the underlying 3D surface Z.
Also, the major axis of the conic section is along the z-
axis if [|kz|| < ||%y]| or along the y-axis if [|&z|| > [|xy]|-
The second column of Figure 3 shows representative
examples.

What conclusions can be reached about the form of
the fold-lines under less restricted conditions? First,
suppose that the restriction against angular translation
is removed, i.e., T = (t,%y,%:). In this case, the form
of the fold-line (12) becomes

2 2 3442 4 42
18t +¢ t
o e + Ky SRl o P i = i
3t 3t. 27rtd
In words, the addition of angular motion does not
change the qualitative shape of the curve. However,




the size is adjusted and the center moves along the
axis of angular translation. Second, suppose that the
surface gradient is no longer required to vanish at the
origin. In this case, the fold-line equation can be writ-
ten as
2 2
N

3Ker

<2 (o5 ((2)°+ ()

This equation shows that a surface gradient also does
not change the qualitative shape of the fold-lines, al-
though the size is altered. The center of the curve
again moves in the direction specified by the surface
gradient, but as weighted by the surface curvatures k.
and ky. Finally, suppose that both angular translation
and non-vanishing gradient are both allowed. In this
case, the equation of the fold-line can be written as

2 2
S 2P ot 2 t |
i (:H' Bhar 3’*) ity (”""ﬁi‘r‘_ 3?"*) =5
2 2
(2ot oty 1)+ () + ()

As with the other cases, it is seen that the qualitative
shape of the contour remains the same. However, now
the contour’s center is displaced to a point that is the
vector sum of the centers for angular translation and
non-vanishing gradient.

To study the locus of singularities in the target
space, V, begin by again considering the restricted sit-
uation where there is no angular translation and the
surface gradient vanishes at the image origin. In this
case, the corresponding equation describing the fold-
line in the source space, P, (12) can be substituted
into the equations of the translational visual motion
field (9). This operation yields

1
2 R
G [ BT Bt (13)
3r r(27ky)2
This set of equations can be taken as a parametric
representation of the velocity with parameter z. The
shape of the corresponding fold in the target space is a
parabola, ellipse of hyperbola depending on the curva-
ture terms, Kz and Ky, in exactly the same way as did
the fold-lines in the source space; the folds are indica-
tive of Dupin’s Indicatrix as were the fold-lines. Three
examples of folds are shown in the third column of Fig-
ure 3. As in the source space, the addition of angular
translation and surface gradient causes the fold con-
ics to drift in position. However, unlike the fold-lines
. the folds slowly deform as they drift toward the target
space periphery.

Again, it is useful to review by explicitly noting sev-
eral ways that the singularities of the visual motion
field can be used to interpret 3D translational motion:
First, the shape of the fold-lines are indicative of the
qualitative 3D surface shape. For the particular case
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Figure 4: The swallowtail singularity describes the con-
dition when a fold sheet and rib intersect. The swal-
lowtail event occurs when a 7 slice contains this type
of intersection.

of quadratic surface patches, the fold-lines form an el-
lipse, hyperbola or a pair of parallel straight lines ac-
cording to whether the surface is locally elliptic, hy-
perbolic or parabolic in shape. This same signature is
apparent in the corresponding folds in the target space:
however, here they can be deformed by angular trans-
lation and surface gradient. Second, the major and
minor axes of the surface can be recovered from the
corresponding fold-line conic section major and minor
axes. Third, the directions of angular translation and
surface gradient are constrained by the off-set of the
fold-lines from the image origin.

Temporal evolution

In general, visual motion fields evolve in time. Cor-
respondingly, the patterns of the singular points, the
folds and cusps, vary with time. More precisely, con-
sider a family of flows, {f* : P — V},—o0 < U < 0.
parameterized by ¢, time. ¢ can be thought of as assign-
ing a particular time to each of the mappings in a given
series. Another way of looking at matters is given by
taking the family of functions f* in tandem to define a
single function g : R3 — R3 e, g: (2,9, ) — (u,v,7)
with the form (u,v,7) = (u(z,y,t),v(z,y,t),t). The
velocity map at any given time now corresponds to a
7 slice. In the (u,v, 7)-space, the folds define surfaces
called fold sheets; while, the cusps define lines in those
surfaces called ribs. Additionally, a third structure of
interest now presents itself, the swallowtail. A swal-
lowtail oceurs when a fold sheet and a rib intersect.
The canonical form for the swallowtail singularity is

(u,v,7) = (2* + 2%y + zt, y,1). (14)

Figure 4 illustrates the associated geometry. Of all el-
ementary singularities, only three, the fold, cusp and
swallowtail are stable with respect to general pertur-
bations to the time dependent flow (Golubitsky &
Guillemin 1973).

Typically, the stable structures of the visual motion
field evolve smoothly in time. Reference to the pre-
vious section’s discussion reveals much of what can be
expected. For pure rotational 3D motion: As the direc-
tion of angular rotation changes, the orientation of the
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Figure 5: The lips (left) and beak to beak (right) events can occur when a 7 slice is tangent to a rib.

fold-line parabola in the source space also changes as
does the corresponding fold in the target space. As the
ratio of angular to radial rotation changes, the fold-line
parabola opens and closes and moves toward and away
from the origin. Corresponding changes take place
with the rate of opening of the two arms of the fold
and the distance of the cusp from the origin. As time
passes the fold-line and fold sweep out surfaces; the
cusp creases the fold sheet with a rib. For pure trans-
lational 3D motion: As the observer moves toward or
away from a surface of regard the fold-lines and folds
expand and contract, without changing their charac-
teristic shape. With angular translation the contours
drift in spatial position. Again, surfaces are traced by
the smooth evolution of the fold-lines and folds.

In addition to the smooth evolution of the singular-
ities in time more abrupt change can occur. In par-
ticular, there are special points along the ribs, called
events, that demark more abrupt change and that de-
termine the overall temporal evolution. Strikingly,
there are only three distinct types of events for con-
cern in the analysis of vector fields (Thorndike et al.
1978). The first of these events is associated with the
swallowtail singularity (14). This event occurs when a
7 slice contains an intersection of a fold sheet with a
rib, see Figure 4. Two additional types of events can
occur when a 7 slice is tangent to a curved rib: (i) In
the lips event an initially structureless region becomes
tangent to a rib and subsequently gives rise to a dou-
bly cusped region. (ii) In the beak to beak event two
target space regions lose their identity as the event is
passed. Lips and beak to beak events are described by

respectively. Figure 5 illustrates these events.

Summary

Qualitative consideration of a visual motion field yields
information about the 3D geometry and motion of an
impinging environment. In this paper attention has fo-
cused on cases where an optical sensor undergoes pure
rotation or pure translation. For rotation, information
is available about the axes and relative magnitudes of
angular and radial rotation. For translation, informa-
tion is available about the shape and orientation of

visible surfaces as well as about the translation itself.
In either case, the structure of the flow typically evolves
smoothly in time. However, on occasion discrete events
occur that add greater richness to the structure.
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