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Abstract. We introduce a new large scale dynamic texture dataset.
With over 10,000 videos, our Dynamic Texture DataBase (DTDB) is two
orders of magnitude larger than any previously available dynamic tex-
ture dataset. DTDB comes with two complementary organizations, one
based on dynamics independent of spatial appearance and one based on
spatial appearance independent of dynamics. The complementary orga-
nizations allow for uniquely insightful experiments regarding the abilities
of major classes of spatiotemporal ConvNet architectures to exploit ap-
pearance vs. dynamic information. We also present a new two-stream
ConvNet that provides an alternative to the standard optical-flow-based
motion stream to broaden the range of dynamic patterns that can be
encompassed. The resulting motion stream is shown to outperform the
traditional optical flow stream by considerable margins. Finally, the util-
ity of DTDB as a pretraining substrate is demonstrated via transfer
learning on a different dynamic texture dataset as well as the companion
task of dynamic scene recognition resulting in a new state-of-the-art.

1 Introduction

Visual texture, be it static or dynamic, is an important scene characteristic that
provides vital information for segmentation into coherent regions and identifica-
tion of material properties. Moreover, it can support subsequent operations in-
volving background modeling, change detection and indexing. Correspondingly,
much research has addressed static texture analysis for single images (e.g. [21,
6, 5, 36, 35]). In comparison, research concerned with dynamic texture analysis
from temporal image streams (e.g. video) has been limited (e.g. [15, 26, 38, 27]).

The relative state of dynamic vs. static texture research is unsatisfying be-
cause the former is as prevalent in the real world as the latter and it provides
similar descriptive power. Many commonly encountered patterns are better de-
scribed by global dynamics of the signal rather than individual constituent ele-
ments. For example, it is more perspicuous to describe the global motion of the
leaves on a tree as windblown foliage rather than in terms of individual leaf mo-
tion. Further, given the onslaught of video available via on-line and other sources,
applications of dynamic texture analysis may eclipse those of static texture.

Dynamic texture research is hindered by a number of factors. A major issue
is lack of clarity on what constitutes a dynamic texture. Typically, dynamic tex-
tures are defined as temporal sequences exhibiting certain temporal statistics or
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stationary properties in time [30]. In practice, however, the term dynamic tex-
ture is usually used to describe the case of image sequences exhibiting stochastic
dynamics (e.g. turbulent water and windblown vegetation). This observation is
evidenced by the dominance of such textures in the UCLA [30] and DynTex [24]
datasets. A more compelling definition describes dynamic texture as any tempo-
ral sequence that can be characterized by the same aggregate dynamic properties
across its support region [8]. Hence, the dominant dynamic textures in UCLA
and DynTex are the subclass of textures that exhibit stochastic motion. Another
concern with definitions applied in extant datasets is that the classes are usually
determined by appearance, which defeats the purpose of studying the dynamics
of these textures. The only dataset that stands out in this regard is YUVL [8],
wherein classes were defined explicitly in terms of pattern dynamics.

The other major limiting factors in the study of dynamic textures are lack
of size and diversity in extant datasets. Table 1 documents the benchmarks
used in dynamic texture recognition. It is apparent that these datasets are small
compared to what is available for static texture (e.g. [5, 7, 23]). Further, limited
diversity is apparent, e.g. in cases where the number of sequences is greater
than the number videos, multiple sequences were generated as clips from single
videos. Diversity also is limited by different classes sometimes being derived from
slightly different views of the same physical phenomenon. Moreover, diversity is
limited in variations that have a small number of classes. Finally, it is notable
that all current dynamic texture datasets are performance saturated [15].

Table 1. Comparison of the new DTDB dataset with other dynamic texture datasets

Dataset DynTex [24] UCLA [30] YUVL [8] DTDB (Ours)

Dataset Variations Alpha [11] Beta [11] Gamma [11] 35 [40] ++ [14] 50 [30] 9 [14] 8 [28] 7 [9] SIR [9] 1 [8] 2 [8] 3 [15] Appearance Dynamics

#Videos 60 162 264 35 345 50 50 50 50 50 610 509 610 >9K >10K

#Sequences 60 162 264 350 3600 200 200 92 400 400 610 509 610 >9K >10K

#Frames >140K >397K >553K >8K >17K 15K 15K >6K 15K 15K >65K >55K >65K >3.1 million >3.4 million

#Classes 3 10 10 35 36 50 9 8 7 50 5 6 8 45 18

Over the past few years, increasingly larger sized datasets (e.g. [29, 41, 18])
have driven progress in computer vision, especially as they support training of
powerful ConvNets (e.g. [19, 32, 16]). For video based recognition, action recog-
nition is the most heavily researched task and the availability of large scale
datasets (e.g. UCF-101 [33] and the more recent Kinetics [3]) play a significant
role in the progress being made. Therefore, large scale dynamic texture datasets
are of particular interest to support use of ConvNets in this domain.

In response to the above noted state of affairs, we make the following con-
tributions. 1) We present a new large scale dynamic texture dataset that is
two orders of magnitude larger than any available. At over 10,000 videos, it is
comparable in size to UCF-101 that has played a major role in advances to ac-
tion recognition. 2) We provide two complementary organizations of the dataset.
The first groups videos based on their dynamics irrespective of their static (sin-
gle frame) appearance. The second groups videos purely based on their visual
appearance. For example, in addition to describing a sequence as containing
car traffic, we complement the description with dynamic information that al-
lows making the distinction between smooth and chaotic car traffic. Figure 1
shows frames from the large spectrum of videos present in the dataset and il-



DTDB for ConvNet Understanding 3

lustrates how videos are assigned to different classes depending on the grouping
criterion (i.e. dynamics vs. appearance). 3) We use the new dataset to explore
the representational power of different spatiotemporal ConvNet architectures. In
particular, we examine the relative abilities of architectures that directly apply
3D filtering to input videos [34, 15] vs. two-stream architectures that explicitly
separate appearance and motion information [31, 12]. The two complementary
organizations of the same dataset allow for uniquely insightful experiments re-
garding the capabilities of the algorithms to exploit appearance vs. dynamic
information. 4) We propose a novel two-stream architecture that yields superior
performance to more standard two-stream approaches on the dynamic texture
recognition task. 5) We demonstrate that our new dataset is rich enough to
support transfer learning to a different dynamic texture dataset, YUVL [8], and
to a different task, dynamic scene recognition [13], where we establish a new
state-of-the-art. Our novel Dynamic Texture DataBase (DTDB) is available at
http://vision.eecs.yorku.ca/research/dtdb/.

Appearance based organization
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Fig. 1. (Left) Sample frames from the proposed Dynamic Texture DataBase (DTDB)
and their assigned categories in both the dynamics and appearance based organiza-
tions. (Right) Thumbnail examples of the different appearance based dynamic tex-
tures present in the new DTDB dataset. See supplemental material for videos.

2 Dynamic Texture DataBase (DTDB)

The new dataset, Dynamic Texture DataBase (DTDB), constitutes the largest
dynamic texture dataset available with > 10,000 videos and ≈ 3.5 million
frames. As noted above, the dataset is organized in two different ways with
18 dynamics based categories and 45 appearance based categories. Table 1 com-
pares our dataset with previous dynamic texture benchmarks showing the sig-
nificant improvements compared to alternatives. The videos are collected from
various sources, including the web and various handheld cameras that we em-
ployed, which helps ensure diversity and large intra-class variations. Figure 1
provides thumbnail examples from the entire dataset. Corresponding videos and
descriptions are provided in the supplemental material.

Dynamic Category Specification. The dataset was created with the main
goal of building a true dynamic texture dataset where sequences exhibiting sim-
ilar dynamic behaviors are grouped together irrespective of their appearance.
Previous work provided a principled approach to defining five coarse dynamic
texture categories based on the number of spatiotemporal orientations present
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in a sequence [8], as given in the left column of Table 2. We use that enumera-
tion as a point departure, but subdivide the original categories to yield a much
larger set of 18 categories, as given in the middle column of Table 2. Note that
the original categories are subdivided in a way that accounts for increased vari-
ance about the prescribed orientation distributions in the original classes. For
example, patterns falling under dominant orientation (i.e. sequences dominated
by a single spacetime orientation) were split into five sub-categories: (1) Single
Rigid Objects, (2) Multiple Rigid Objects, (3) Smooth Non-Rigid Objects, (4)
Turbulent Non-Rigid Objects and (5) Pluming Non-Rigid Objects, all exhibiting
motion along a dominant direction, albeit with increasing variance (c.f. [20]); see
Fig. 2. At an extreme, the original category Isotropic does not permit further
subdivision based on increased variance about its defining orientations, because
although it may have significant spatiotemporal contrast, it lacks in discern-
able orientation(s), i.e. it exhibits isotropic pattern structure. See supplemental
material for video examples of all categories, with accompanying discussion.
Table 2. Dynamics based categories in the DTDB dataset. A total of 18 different
categories are defined by making finer distinctions in the spectrum of dynamic textures
proposed originally in [8]. Subdivisions of the original categories occur according to
increased variance (indicated by arrow directions) about the orientations specified to
define the original categories; see text for details. The supplement provides videos.

Original YUVL categories DTDB categories

Name/Description Name/Description Example sources

Underconstrained spacetime orientation ↓
Aperture Problem conveyor belt, barber pole

Blinking blinking lights, lightning
Flicker fire, shimmering steam

Dominant spacetime orientation ↓

Single Rigid Object train, plane
Multiple Rigid Objects smooth traffic, smooth crowd

Smooth Non-Rigid Objects faucet water, shower water
Turbulent Non-Rigid Objects geyser, fountain
Pluming Non-Rigid Objects avalanche, landslide

Multi-dominant spacetime orientation ↓

Rotary Top-View fan, whirlpool from top
Rotary Side-View tornado, whirlpool from side

Transparency translucent surfaces, chain link fence vs. background
Pluming smoke, clouds

Explosion fireworks, bombs
Chaotic swarming insects, chaotic traffic

Heterogeneous spacetime orientation ↓
Waves wavy water, waving flags

Turbulence boiling liquid, bubbles
Stochastic windblown leaves, flowers

Isotropic ↓ Scintillation TV noise, scintillating water

Dominant Motion

Single Rigid Object Multiple Objects Smooth Non-Rigid Turbulent Non-Rigid Pluming Non-Rigid

Fig. 2. (Left) Example of the finer distinctions we make within dynamic textures
falling under the broad dominant motion category. Note the increased level of com-
plexity in the dynamics from left to right. (Right) Keywords wordle. Bigger font size
of a word indicates higher frequency of the keyword resulting in videos in the dataset.

Keywords and Appearance Categories. For each category, we brain-
stormed a list of scenes, objects and natural phenomena that could contain or
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exhibit the desired dynamic behavior and used their names as keywords for sub-
sequent web search. To obtain a large scale dataset, an extensive list of English
keywords were generated and augmented with their translations to various lan-
guages: Russian, French, German and Mandarin. A visualization of the generated
keywords and their frequency of occurrence across all categories is represented
as a wordle [2] in Fig. 2. To specify appearance catergories, we selected 45 of
the keywords, which taken together covered all the dynamics categories. This
approach was possible, since on-line tags for videos are largely based on appear-
ance. The resulting appearance categories are given as sub-captions in Fig. 1.

Video Collection. The generated keywords were used to crawl videos from
YouTube [39], Pond5 [25] and VideoHive [37]. In doing so, it was useful to specif-
ically crawl playlists. Since playlists are created by human users or generated by
machine learning algorithms, their videos share similar tags and topics; there-
fore, the videos crawled from playlists were typically highly correlated and had a
high probability of containing the dynamic texture of interest. Finally, the links
(URLs) gathered using the keywords were cleaned to remove duplicates.

Annotation. Annotation served to verify via human inspection the cate-
gories present in each crawled video link. This task was the main bottleneck of
the collection process and required multiple annotators for good results. Since
the annotation required labeling the videos according to dynamics while ignoring
appearance and vice versa, it demanded specialist background and did not lend
itself well to tools such as Mechanical Turk [1]. Therefore, two annotators with
computer vision background were hired and trained for this task.

Annotation employed a custom web-based tool allowing the user to view each
video according to its web link and assign it the following attributes: a dynamics-
based label (according to the 18 categories defined in Table 2), an appearance-
based label (according to the 45 categories defined in Fig. 1) and start/end
times of the pattern in the video. Each video was separately reviewed by both
annotators. When the two main annotators disagreed, a third annotator (also
with computer vision background) attempted to resolve matters with consensus
and if that was not possible the link was deleted. Following the annotations, the
specified portions of all videos were downloaded with their labels.

Dataset Cleaning. For a clean dynamic texture dataset, we chose that
the target texture should occupy at least 90% of the spatial support of the
video and all of the temporal support. Since such requirements are hard to
meet with videos acquired in the wild and posted on the web, annotators were
instructed to accept videos even if they did not strictly meet this requirement.
In a subsequent step, the downloaded videos were visually inspected again and
spatially cropped so that the resulting sequences had at least 90% of their spatial
support occupied by the target dynamic texture. To ensure the cropping did
not severely compromise the overall size of the texture sample, any video whose
cropped spatial dimensions were less than 224×224 was deleted from the dataset.
The individuals who did the initial annotations also did the cleaning.

This final cleaning process resulted in slightly over 9000 clean sequences.
To obtain an even larger dataset, it was augmented in two ways. First, rele-
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vant videos from the earlier DynTex [24] and UCLA [30] datasets were selected
(but none from YUVL [8]), while avoiding duplicates; second, several volunteers
contributed videos that they recorded (e.g. with handheld cameras). These ad-
ditions resulted in the final dataset containing 10,020 sequences with various
spatial supports and temporal durations (5-10 seconds).

Dynamics and Appearance Based Organization. All the 10,020 se-
quences were used in the dynamics based organization with an average number
of videos per category of 556±153. However, because the main focus during data
collection was dynamics, it was noticed that not all appearance based video tags
generated enough appearance based sequences. Therefore, to keep the dataset
balanced in the appearance organization as well, any category containing less
than 100 sequences was ignored in the appearance based organization. This pro-
cess led to an appearance based dataset containing a total 9206 videos divided
into 45 different classes with an average number of videos per category of 205±95.

3 Spatiotemporal ConvNets

There are largely two complementary approaches to realizing spatiotemporal
ConvNets. The first works directly with input temporal image streams (i.e.
video), e.g. [17, 18, 34]. The second takes a two-stream approach, wherein the
image information is processed in parallel pathways, one for appearance (RGB
images) and one for motion (optical flow), e.g. [31, 22, 12]. For the sake of our
comparisons, we consider a straightforward exemplar of each class that previ-
ously has shown strong performance in spatiotemporal image understanding. In
particular, we use C3D [34] as an example of working directly with input video
and Simonyan and Zisserman Two-Stream [31] as an example of splitting ap-
pearance and motion at the input. We also consider two additional networks: A
novel two-stream architecture that is designed to overcome limitations of optical
flow in capturing dynamic textures and a learning-free architecture that works
directly on video input and recently has shown state-of-the-art performance on
dynamic texture recognition with previously available datasets [15]. Importantly,
in selecting this set of four ConvNet architectures to compare, we are not seeking
to compare details of the wide variety of instantiations of the two broad classes
considered, but more fundamentally to understand the relative power of the sin-
gle and two-stream approaches. In the remainder of this section we briefly outline
each algorithm compared; additional details are in the supplemental material.

C3D. C3D [34] works with temporal streams of RGB images. It operates
on these images via multilayer application of learned 3D, (x, y, t), convolutional
filters. It thereby provides a fairly straightforward generalization of standard 2D
ConvNet processing to image spacetime. This generalization entails a great in-
crease in the number of parameters to be learned, which is compensated for by
using very limited spacetime support at all layers (3×3×3 convolutions). Consid-
eration of this type of ConvNet allows for evaluation of the ability of integrated
spacetime filtering to capture both appearance and dynamics information.

Two-stream. The standard Two-Stream architecture [31] operates in two
parallel pathways, one for processing appearance and the other for motion. Input
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to the appearance pathway are RGB images; input to the motion path are stacks
of optical flow fields. Essentially, each stream is processed separately with fairly
standard 2D ConvNet architectures. Separate classification is performed by each
pathway, with late fusion used to achieve the final result. Consideration of this
type of ConvNet allows evaluation of the two streams to separate appearance
and dynamics information for understanding spatiotemporal content.

MSOE-two-stream. Optical flow is known to be a poor representation
for many dynamic textures, especially those exhibiting decidedly non-smooth
and/or stochastic characteristics [10, 8]. Such textures are hard for optical flow
to capture as they violate the assumptions of brightness constancy and local
smoothness that are inherent in most flow estimators. Examples include common
real-world patterns shown by wind blown foliage, turbulent flow and complex
lighting effects (e.g. specularities on water). Thus, various alternative approaches
have been used for dynamic texture analysis in lieu of optical flow [4].

A particularly interesting alternative to optical flow in the present context is
appearance Marginalized Spatiotemporal Oriented Energy (MSOE) filtering [8].
This approach applies 3D, (x, y, t), oriented filters to a video stream and thereby
fits naturally in a convolutional architecture. Also, its appearance marginaliza-
tion abstracts from purely spatial appearance to dynamic information in its
output and thereby provides a natural input to a motion-based pathway. Cor-
respondingly, as a novel two-stream architecture, we replace input optical flow
stacks in the motion stream with stacks of MSOE filtering results. Otherwise, the
two-stream architecture is the same, including use of RGB frames to capture ap-
pearance. Our hypothesis is that the resulting architecture, MSOE-two-stream,
will be able to capture a wider range of dynamics in comparison to what can be
captured by optical flow, while maintaining the ability to capture appearance.

SOE-Net. SOE-Net [15] is a learning-free spatiotemporal ConvNet that op-
erates by applying 3D oriented filtering directly to input temporal image se-
quences. It relies on a vocabulary of theoretically motivated, analytically defined
filtering operations that are cascaded across the network layers via a recurrent
connection to yield a hierarchical representation of input data. Previously, this
network was applied to dynamic texture recognition with success. This network
allows for consideration of a complimentary approach to that of C3D in the study
of how direct 3D spatiotemporal filtering can serve to jointly capture appearance
and dynamics. Also, it serves to judge the level of challenge given by the new
DTDB dataset in the face of a known strong approach to dynamic texture.

4 Empirical Evaluation

The goals of the proposed dataset in its two organizations are two fold. First,
it can be used to help better understand strengths and weaknesses of learning
based spatiotemporal ConvNets and thereby guide decisions in the choice of ar-
chitecture depending on the task at hand. Second, it can serve as a training
substrate to advance research on dynamic texture recognition, in particular, and
an initialization for other related tasks, in general. Correspondingly, from an
algorithmic perspective, our empirical evaluation aims at answering the follow-
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ing questions: 1) Are spatiotemporal ConvNets able to disentangle appearance
and dynamics information? 2) What are the relative strengths and weaknesses of
popular architectures in doing so? 3) What representations of the input data are
best suited for learning strong representations of image dynamics? In comple-
ment, we also address questions from the dataset’s perspective. 1) Does the new
dataset provide sufficient challenges to drive future developments in spatiotem-
poral image analysis? 2) Can the dataset be beneficial for transfer learning to
related tasks? And if so: 3) What organization of the dataset is more suitable in
transfer learning? 4) Can finetuning on our dataset boost the state-of-the-art on
related tasks even while using standard spatiotemporal ConvNet architectures?

4.1 What Are Spatiotemporal ConvNets Better at Learning?
Appearance vs. Dynamics

Experimental Protocol. For training purposes each organization of the dataset
is split randomly into training and test sets with 70% of the videos from each
category used for training and the rest for testing. The C3D [34] and standard
two-stream [31] architectures are trained following the protocols given in their
original papers. The novel MSOE-two-stream is trained analogously to the stan-
dard two-stream, taking into account the changes in the motion stream input (i.e.
MSOE rather than optical flow). For a fair comparison of the relative capabilities
of spatiotemporal ConvNets in capitalizing on both motion and appearance, all
networks are trained from scratch on DTDB to avoid any counfounding variables
(e.g. as would arise from using the available models of C3D and two-stream as
pretrained on different datasets). Training details can be found in the supple-
mental material. No training is associated with SOE-Net, as all its parameters
are specified by design. At test time, the held out test set is used and the re-
ported results are obtained from the softmax scores of each network. Note that
we compare recognition performance for each organization separately; it does
not make sense in the present context to train on one organization and test on
the other since the categories are different. (We do however report related trans-
fer learning experiments in Secs. 4.2 and 4.3. The experiments of Sec. 4.3 also
consider pretrained versions of the C3D and two-stream architectures.)

Table 3. Recognition accuracy of all the evaluated networks using both organizations
of the new Dynamic Texture DataBase

DTDB-Dynamics DTDB-Appearance

C3D [34] 74.9 75.5

RGB Stream [31] 76.4 76.1

Flow Stream [31] 72.6 64.8

MSOE Stream 80.1 72.2

MSOE-two-stream 84.0 80.0

SOE-Net [15] 86.8 79.0

Results. Table 3 provides a detailed comparison of all the evaluated Net-
works. To begin, we consider the relative performance of the various architectures
on the dynamics-based organization. Of the learning-based approaches (i.e. all
but SOE-Net), it is striking that RGB stream outperforms the Flow stream as
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well as C3D, even though the latter two are designed to capitalize on motion
information. A close inspection of the confusion matrices (Fig. 3) sheds light on
this situation. It is seen that the networks are particularly hampered when sim-
ilar appearances are present across different dynamics categories as evidenced
by the two most confused classes (i.e. Chaotic motion and Dominant Multi-
ple Rigid Objects). These two categories were specifically constructed to have
this potential source of appearance-based confusion to investigate an algorithm’s
ability to abstract from appearance to model dynamics; see Fig. 1 and accom-
panying videos in the supplemental material. Also of note is performance on the
categories that are most strongly defined in terms of their dynamics and show
little distinctive structure in single frames (e.g. Scintillation and motion Trans-
parency). The confusions experienced by C3D and the Flow stream indicate that
those approaches have poor ability to learn the appropriate abstractions. Indeed,
the performance of the Flow stream is seen to be the weakest of all. The likely
reason for the poor Flow stream performance is that its input, optical flow, is
not able to capture the underlying dynamics in the videos because they violate
standard optical flow assumptions of brightness constancy and local smoothness.

C3D RGB Stream Flow Stream MSOE Stream SOE-Net

Fig. 3. Confusion matrices of all the compared ConvNet architectures on the dynamics
based organization of the new DTDB

C3D RGB Stream Flow Stream MSOE Stream SOE-Net

Fig. 4. Confusion matrices of all compared ConvNet architectures on the appearance
based organization of the new DTDB

These points are underlined by noting that MSOE stream has the best per-
formance compared to the other individual streams, with increased performance
margin ranging from ≈4-8%. Based on this result, to judge the two-stream ben-
efit we fuse the appearance (RGB) stream with MSOE stream to yield MSOE-
two-stream as the overall top performer among the learning-based approaches.
Importantly, recall that the MSOE input representation was defined to overcome
the limitations of optical flow as a general purpose input representation for learn-
ing dynamics. These results speak decisively in favour of MSOE filtering as a
powerful input to dynamics-based learning: It leads to performance that is as
good as optical flow for categories that adhere to optical flow assumptions, but
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extends performance to cases where optical flow fails. Finally, it is interesting to
note that the previous top dynamic texture recognition algorithm, hand-crafted
SOE-Net, is the best overall performer on the dynamics organization, showing
that there remains discriminatory information to be learned from this dataset.

Turning attention to the appearance based results reveals the complemen-
tarity between the proposed dynamics and appearance based organizations. In
this case, since the dataset is dominated by appearance, the best performer is
the RGB stream that is designed to learn appearance information. Interestingly,
C3D’s performance, similar to the RGB stream, is on par for the two organi-
zations although C3D performs slightly better on the appearance organization.
This result suggests that C3D’s recognition is mainly driven by similarities in
appearance in both organizations and it appears relatively weak at capturing
dynamics. This limitation may be attributed to the extremely small support of
C3D’s kernels (i.e. 3 × 3 × 3). Also, as expected, the performance of the Flow
and MSOE streams degrade on the appearance based organization, as they are
designed to capture dynamics-based features. However, even on the appearance
based organization, MSOE stream outperforms its Flow counterpart by a sizable
margin. Here inspection of the confusion matrices (Fig. 4), reveals that C3D and
the RGB stream tend to make similar confusions, which confirms the tendency
of C3D to capitalize on appearance. Also, it is seen that the Flow and MSOE
streams tend to confuse categories that exhibit the same dynamics (e.g. classes
with stochastic motion such as Flower, Foliage and Naked trees), which explains
the degraded performance of these two streams. Notably, MSOE streams incurs
less confusions, which demonstrates the ability of MSOE filters to better capture
fine grained differences. Also, once again MSOE-two-stream is the best performer
among the learning based approaches and in this case it is better than SOE-Net.

Conclusions. Overall, the results on both organizations of the dataset lead
to two main conclusions. First, comparison of the different architectures reveal
that two-stream networks are better able to disentangle motion from appearance
information for the learning-based architectures. This fact is particularly clear
from the inversion of performance between the RGB and MSOE streams depend-
ing on whether the networks are trained to recognize dynamics or appearance,
as well as the degraded performance of both the Flow and MSOE streams when
asked to recognize sequences based on their appearance. Second, closer inspec-
tion of the confusion matrices show that optical flow fails on most categories
where the sequences break the fundamental optical flow assumptions of bright-
ness constancy and local smoothness (e.g. Turbulent motion, Transparency and
Scintillation). In contrast, the MSOE stream performs well on such categories
as well as others that are relatively easy for the Flow stream. The overall supe-
riority of MSOE reflects in its higher performance, compared to flow, on both
organizations of the dataset. These results challenge the common practice of us-
ing flow as the default representation of input data for motion stream training
and should be taken into account in design of future spatiotemporal ConvNets.

Additionally, it is significant to note that a ConvNet that does not rely
on learning, SOE-Net, has the best performance on the dynamics organization



DTDB for ConvNet Understanding 11

and is approximately tied for best on the appearance organization. These results
suggests the continued value of DTDB, as there is more for future learning-based
approaches to glean from its data.

4.2 Which Organization of DTDB Is Suitable in Transfer Learning?

Experimental Protocol. Transfer learning is considered with respect to a dif-
ferent dynamic texture dataset and a different task, dynamic scene recognition.
The YUVL dataset [8] is used for the dynamic texture experiment. Before the
new DTDB, YUVL was the largest dynamic texture dataset with a total of
610 sequences and it is chosen as a representative of a dataset with categories
mostly dominated by the dynamics of its sequences. It provides 3 different dy-
namics based organizations, YUVL-1, YUVL-2 and YUVL-3 with 5, 6 and 8
classes (resp.) that make various dynamics based distinctions; see [8, 15]. For
the dynamic scene experiment, we use the YUP++ dataset [13]. YUP++ is
the largest dynamic scenes dataset with 1200 sequences in total divided into 20
classes; however, in this case the categories are mostly dominated by differences
in appearance. Notably, YUP++ provides a balanced distribution of sequences
with and without camera motion, which allows for an evaluation of the various
trained networks in terms of their ability to abstract scene dynamics from cam-
era motion. Once again, for fair comparison, the various architectures trained
from scratch on DTDB are used in this experiment because the goal is not to
establish new state-of-the-art on either YUVL or YUP++. Instead, the goal is
to show the value of the two organizations of the dataset and highlight the im-
portance of adapting the training data to the application. The conclusions of
this experiment are used next, in Sec 4.3, as a basis to finetune the architectures
under considerations using the appropriate version of DTDB.

For both the dynamic texture and dynamic scenes cases, we consider the
relative benefits of training on the appearance vs. dynamics organizations of
DTDB. We also compare to training using UCF-101 as a representative of a
similar scale dataset but that is designed for the rather different task of action
recognition. Since the evaluation datasets (i.e. YUVL and YUP++) are too
small to support finetuning, we instead extract features from the last layers
of the networks as trained under DTDB or UCF-101 and use those features for
recognition (as done previously under similar constraints of small target datasets,
e.g. [34]). A preliminary evaluation comparing the features extracted from the
last pooling layer, fc6 and fc7, of the various networks used, showed that there
is always a decrement in performance going from fc6 to fc7 on both datasets and
out of 48 comparison points the performance of features extracted from the last
pooling layer was better 75% of the time. Hence, results reported in the following
rely on features extracted from the last pool layer of all used networks.

For recognition, extracted features are used with a linear SVM classifier using
the standard leave-one-out protocol usually used with these datasets [8, 27, 15].

Results. We begin by considering results of transfer learning applied to the
YUVL dataset, summarized in Table 4 (Left). Here, it is important to empha-
size that YUVL categories are defined in terms of texture dynamics, rather than
appearance. Correspondingly, we find that for every architecture the best per-
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formance is attained via pretraining on the DTDB dynamics-based organization
as opposed to the appearance-based organization or UCF-101 pretraining. These
results clearly support the importance of training for a dynamics-based task on
dynamics-based data. Notably, MSOE stream, and its complementary MSOE-
two-stream approach, with dynamics training show the strongest performance
on this task, which provides further support for MSOE filtering as the basis for
input to the motion stream of a two-stream architecture.

Table 4. Performance of spatiotemporal ConvNets, trained using both organizations
of DTDB, (Left) on the various breakdowns of the YUVL dataset [8] and (Right) on
the Static and Moving camera portions of YUP++ and the entire YUP++ [13]

YUVL-1 YUVL-2 YUVL-3

UCF-101
based
training

C3D 61.4 65.4 55.7
RGB Stream 63.6 72.8 60.0
Flow Stream 84.8 87.3 81.7

MSOE Stream 80.0 80.2 74.4
MSOE-two-stream 80.8 84.5 78.8

Dynamics
based
training

C3D 83.3 86.4 83.4
RGB Stream 68.1 75.4 65.0
Flow Stream 87.7 86.9 83.1

MSOE Stream 89.2 89.3 84.8
MSOE-two-stream 90.7 91.4 87.6

Appearance
based
training

C3D 82.2 85.4 80.9
RGB Stream 67.6 72.8 64.3
Flow Stream 86.7 85.7 81.3

MSOE Stream 87.7 87.3 83.6
MSOE-two-stream 89.8 90.2 86.7

YUP++(S)YUP++(M) YUP++

UCF-101
based
training

C3D 62.5 55.8 58.3
RGB Stream 64.9 54.4 63.5
Flow Stream 83.6 51.9 68.9

MSOE Stream 74.3 52.7 62.0
MSOE-two-stream 80.1 66.6 74.6

Dynamics
based
training

C3D 84.3 71.8 76.5
RGB Stream 81.8 73.7 78.3
Flow Stream 89.3 64.7 76.8

MSOE Stream 90.0 67.5 78.4
MSOE-two-stream 93.3 81.5 87.7

Appearance
based
training

C3D 85.0 73.7 78.1
RGB Stream 82.0 76.2 79.9
Flow Stream 90.6 65.8 77.0

MSOE Stream 91.0 69.5 79.1
MSOE-two-stream 94.7 83.2 89.6

Comparison is now made on the closely related task of dynamic scene recog-
nition. As previously mentioned, although YUP++ is a dynamic scenes datasets
its various classes are still largely dominated by differences in appearance. This
dominance of appearance is well reflected in the results shown in Table 4 (Right).
As opposed to the observations made on the previous task, here networks ben-
efited more from an appearance-based training to various extents with the ad-
vantage over UCF-101 pretraining being particularly striking. In agreement with
findings on the YUVL dataset and in Section 4.1, the RGB stream trained on
appearance is the overall best performing individual stream on this appearance
dominated dataset. Comparatively, MSOE stream performed surprisingly well
on the static camera portion of the dataset, where it even outperformed RGB
stream. This result suggests that the MSOE stream is able to capitalize on both
dynamics and appearance information in absence of distracting camera motion.
In complement, MSOE-two-stream trained on appearance gives the overall best
performance and even outperforms previous state-of-the-art on YUP++ [13].

Notably, all networks incur a non-negligible performance decrement in the
presence of camera motion, with RGB being strongest in the presence of camera
motion and Flow suffering the most. Apparently, the image dynamics resulting
from camera motion dominate those from the scene intrinsics and in such cases
it is best to concentrate the representation on the appearance.

Conclusions. The evaluation in this section proved the expected benefits of
the proposed dataset over reliance on other available large scale datasets that
are not necessarily related to the end application (e.g. use of action recognition
datasets, i.e. UCF-101 [33] for pretraining, when the target task is dynamic scene
recognition, as done in [13]). More importantly, the benefits and complementarity
of the proposed two organizations were clearly demonstrated. Reflecting back
on the question posed in the beginning of this section, the results shown here
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suggest that none of the organizations is better than another in considerations of
transfer learning. Instead, they are complementary and can be used judiciously
depending on the specifics of the end application.

4.3 Finetuning on DTDB to Establish New State-of-the-art

Experimental Protocol. In this experiment we evaluate the ability of the
architectures considered in this study to compete with the state-of-the-art on
YUVL for dynamic textures and YUP++ for dynamic scenes when finetuned
on DTDB. The the goal is to further emphasize the benefits of DTDB when
used to improve on pretrained models. In particular, we use the C3D and two-
stream models that were previously pretrained on Sports-1M [18] and ImageNet
[29], respectively, then finetune those models using both versions of DTDB.
Finetuning details are provided in the supplemental material.

Results. We first consider the results on the YUVL dataset, shown in Ta-
ble 5 (Left). Here, it is seen that finetuning the pretrained models using either
the dynamics or appearance organizations of DTDB improves the results of both
C3D and MSOE-two-stream compared to the results in Table 4 (Left). Notably,
the boost in performance is especially significant for C3D. This can be largely
attributed to the fact that C3D is pretrained on a large video dataset (i.e.
Sports-1M), while in the original two-stream architecture only the RGB stream
is pretrained on ImageNet and the motion stream is trained from scratch. No-
tably, MSOE-two-stream finetuned on DTDB-dynamics still outperforms C3D
and either exceeds or is on-par with previous results on YUVL using SOE-Net.

Turning attention to results obtained on YUP++, summarized in Table 5
(Right), further emphasizes the benefits of finetuning on the proper data. Simi-
lar to observations made on YUVL, the boost in performance is once again es-
pecially notable on C3D. Importantly, finetuning MSOE-two-stream on DTDB-
appearance yields the overall best results and considerably outperforms previous
state-of-the-art, which relied on a more complex architecture [13].

Table 5. Performance of spatiotemporal ConvNets, finetuned using both organizations
of DTDB, (Left) on the various breakdowns of the YUVL dataset [8] and (Right) on
the Static and Moving camera portions of YUP++ and the entire YUP++ [13]

YUVL-1 YUVL-2 YUVL-3
State-of-
the-art

SOE-Net [15] 95.6 91.7 91.0

Dynamics
based fine-
tuning

C3D 89.1 90.0 89.5

MSOE-two-stream 91.1 92.7 90.0

Appearance
based fine-
tuning

C3D 88.8 87.4 85.4

MSOE-two-stream 90.2 91.2 87.8

YUP++(S)YUP++(M) YUP++
State-of-
the-art

T-ResNet [13] 92.4 81.5 89.0

Dynamics
based fine-
tuning

C3D 89.4 80.8 85.5

MSOE-two-stream 95.9 84.5 90.4

Appearance
based fine-
tuning

C3D 90.0 82.7 86.3

MSOE-two-stream 97.0 87.0 91.8

Interestingly, results of finetuning using either version of DTDB also out-
perform previously reported results using C3D or two-stream architectures, on
both YUVL and YUP++, with sizable margins [15, 13]. Additional one-to-one
comparisons are provided in the supplemental material.

Conclusions. The experiments in this section further highlighted the added
value of the proposed dual organization of DTDB in two ways. First, on YUVL,
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finetuning standard architectures led to a notable boost in performance, compet-
itive with or exceeding previous state-of-the-art that relied on SOE-Net, which
was specifically hand-crafted for dynamic texture recognition. Hence, an interest-
ing way forward, would be to finetune SOE-Net on DTDB to further benefit this
network from the availability of a large scale dynamic texture dataset. Second,
on YUP++, it was shown that standard spatiotemporal architectures, trained
on the right data, could yield new state-of-the-art results, even while compared
to more complex architectures (e.g. T-ResNet [13]). Once again, the availability
of a dataset like DTDB could allow for even greater improvements using more
complex architectures provided with data adapted to the target application.

5 Summary and Discussion

The new DTDB dataset has allowed for a systematic comparison of the learning
abilities of broad classes of spatiotemporal ConvNets. In particular, it allowed
for an exploration of the abilities of such networks to represent dynamics vs.
appearance information. Such a systematic and direct comparison was not pos-
sible with previous datasets, as they lacked the necessary complementary orga-
nizations. The results especially show the power of two-stream networks that
separate appearance and motion at their input for corresponding recognition.
Moreover, the introduction of a novel MSOE-based motion stream was shown
to improve performance over the traditional optical flow stream. This result has
potential for important impact on the field, given the success and popularity of
two-stream architectures. Also, it opens up new avenues to explore, e.g. using
MSOE filtering to design better performing motion streams (and spatiotemporal
ConvNets in general) for additional video analysis tasks, e.g. action recognition.
Still, a learning free ConvNet, SOE-Net, yielded best overall performance on
DTDB, which further underlines the room for further development with learn-
ing based approaches. An interesting way forward is to train the analytically
defined SOE-Net on DTDB and evaluate the potential benefit it can gain from
the availability of suitable training data.

From the dataset perspective, DTDB not only has supported experiments
that tease apart appearance vs. dynamics, but also shown adequate size and
diversity to support transfer learning to related tasks, thereby reaching or ex-
ceeding state-of-the-art even while using standard spatiotemporal ConvNets.
Moving forward, DTDB can be a valuable tool to further research on spacetime
image analysis. For example, training additional state-of-the-art spatiotempo-
ral ConvNets using DTDB can be used to further boost performance on both
dynamic texture and scene recognition. Also, the complementarity between the
two organizations can be further exploited for attribute-based dynamic scene
and texture description. For example, the various categories proposed here can
be used as attributes to provide more complete dynamic texture and scene de-
scriptions beyond traditional categorical labels (e.g. pluming vs. boiling volcano
or turbulent vs. wavy water flow). Finally, DTDB can be used to explore other
related areas, including dynamic texture synthesis, dynamic scene segmentation
as well as development of video-based recognition algorithms beyond ConvNets.
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