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Abstract

As the success of deep models has led to their deployment
in all areas of computer vision, it is increasingly impor-
tant to understand how these representations work and what
they are capturing. In this paper, we shed light on deep spa-
tiotemporal representations by visualizing what two-stream
models have learned in order to recognize actions in video.
We show that local detectors for appearance and motion ob-
jects arise to form distributed representations for recogniz-
ing human actions. Key observations include the following.
First, cross-stream fusion enables the learning of true spa-
tiotemporal features rather than simply separate appear-
ance and motion features. Second, the networks can learn
local representations that are highly class specific, but also
generic representations that can serve a range of classes.
Third, throughout the hierarchy of the network, features be-
come more abstract and show increasing invariance to as-
pects of the data that are unimportant to desired distinc-
tions (e.g. motion patterns across various speeds). Fourth,
visualizations can be used not only to shed light on learned
representations, but also to reveal idiosyncracies of training
data and to explain failure cases of the system. This docu-
ment is best viewed offline where figures play on click.

1. Motivation
Principled understanding of how deep networks operate

and achieve their strong performance significantly lags be-
hind their realizations. Since these models are being de-
ployed to all fields from medicine to transportation, this is-
sue becomes of ever greater importance. Previous work has
yielded great advances in effective architectures for recog-
nizing actions in video, with especially significant strides
towards higher accuracies made by deep spatiotemporal
networks [2, 8, 32, 39, 40]. However, what these mod-
els actually learn remains unclear, since their compositional
structure makes it difficult to reason explicitly about their
learned representations. In this paper we use spatiotempo-
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(a) (b) (c) (d)
Figure 1. Studying a single filter at layer conv5 fusion: (a) and
(b) show what maximizes the unit at the input: multiple coloured
blobs in the appearance input (a) and moving circular objects at
the motion input (b). (c) shows a sample clip from the test set,
and (d) the corresponding optical flow (where the RGB channels
correspond to the horizontal, vertical and magnitude flow compo-
nents respectively). Note that (a) and (b) are optimized from white
noise under regularized spatiotemporal variation. Best viewed in
Adobe Reader where (b)-(d) should play as videos.

rally regularized activation maximization [23, 25, 31, 38,
42] to visualize deep two-stream representations [32] and
better understand what the underlying models have learned.

As an example, in Fig. 1 we highlight a single inter-
esting unit at the last convolutional layer of the VGG-16
Two-Stream Fusion model [8], which fuses appearance and
motion features. We visualize the appearance and motion
inputs that highly activate this filter. When looking at the
inputs, we observe that this filter is activated by differently
coloured blobs in the appearance input and by linear mo-
tion of circular regions in the motion input. Thus, this unit
could support recognition of the Billiards class in UCF101,
and we show in Fig. 1c a sample Billiards clip from the test
set of UCF101. Similar to emergence of object detectors for
static images [1, 46], here we see the emergence of a spa-
tiotemporal representation for an action. While [1, 46] au-
tomatically assigned concept labels to learned internal rep-
resentations by reference to a large collection of labelled
input samples, our work instead is concerned with visualiz-
ing the network’s internal representations without appeal to
any signal at the input and thereby avoids biasing the visu-
alization via appeal to a particular set of samples.

Generally, we can understand deep networks from two
viewpoints. First, the architectural viewpoint that consid-
ers a network as a computational structure (e.g. a directed
acyclic graph) of mathematical operations in feature space
(e.g. affine scaling and shifting, local convolution and pool-
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ing, nonlinear activation functions, etc.). In previous work,
architectures (such as Inception [36], VGG16 [33], ResNet
[14]) have been designed by composing such computational
structures with a principle in mind (e.g. a direct path for
backpropagation in ResNet). We can thus reason about
their expected predictions for given input and the quanti-
tative performance for a given task justifies their design,
but this does not explain how a network actually arrives
at these results. The second way to understand deep net-
works is the representational viewpoint that is concerned
with the learned representation embodied in the network pa-
rameters. Understanding these representations is inherently
hard as recent networks consist of a large number of param-
eters with a vast space of possible functions they can model.
The hierarchical nature in which these parameters are ar-
ranged makes the task of understanding complicated, espe-
cially for ever deeper representations. Due to their com-
positional structure it is difficult to explicitly reason about
what these powerful models actually have learned.

In this paper we shed light on deep spatiotemporal net-
works by visualizing what excites the learned models us-
ing activation maximization by backpropagating on the in-
put. We are the first to visualize the hierarchical features
learned by a deep motion network. Our visual explanations
are highly intuitive and provide qualitative support for the
benefits of separating into two pathways when processing
spatiotemporal information – a principle that has also been
found in nature where numerous studies suggest a corre-
sponding separation into ventral and dorsal pathways of the
brain [9, 11, 24] as well as the existence of cross-pathway
connections [19, 29].

2. Related work on visualization
The current approaches to visualization can be grouped

into three types, and we review each of them in turn.
Visualization for given inputs have been used in several
approaches to increase the understanding of deep networks.
A straightforward approach is to record the network activi-
ties and sample over a large set of input images for finding
the ones that maximize the unit of interest [1, 43, 46, 47].
Another strategy is to use backpropagation to highlight
salient regions of the hidden units [22, 30, 31, 45].
Activation maximization (AM) has been used by back-
propagating on, and applying gradient ascent to, the input
to find an image that increases the activity of some neuron
of interest [5]. The method was employed to visualize units
of Deep Belief Networks [5, 15] and adopted for deep auto-
encoder visualizations in [21]. The AM idea was first ap-
plied to visualizing ConvNet representations trained on Im-
ageNet [31]. That work also showed that the AM techniques
generalize the deconvolutional network reconstruction pro-
cedure introduced earlier [43], which can be viewed as a
special case of one iteration in the gradient based activation

maximization. In an unconstrained setting, these methods
can exploit the full dimensionality of the input space; there-
fore, plain gradient based optimization on the input can gen-
erate images that do not reflect natural signals. Regulariza-
tion techniques can be used to compensate for this deficit. In
the literature, the following regularizers have been applied
to the inputs to make them perceptually more interpretable:
L2 norms [31], total-variation norms [23], Gaussian blur-
ring, and suppressing of low values and gradients [42], as
well as spatial sifting (jittering) of the input during opti-
mization, [25]. Backpropagation on the input has also been
used to find salient regions for a given input [22, 35, 45], or
to “fool” networks by applying a perturbation to the input
that is hardly perceptible to humans [28, 38].
Generative Adversarial Networks (GANs) [12] provide
even stronger natural image priors, for visualizing class
level representations [26, 27] in the activation maximization
framework. These methods optimize a high-dimensional
code vector (typically fc 6 in AlexNet) that serves as an in-
put to the generator which is trained with a perceptual loss
[4] that compares the generater features to those from a pre-
trained comparator network (typically AlexNet trained on
ImageNet). The approach induces strong regularization on
the possible signals produced. In other words, GAN-based
activation maximization does not start the optimization pro-
cess from scratch, but from a generator model that has been
trained for the same or a similar task [4]. More specifi-
cally, [26] trains the generator network on ImageNet and
activation maximization in some target (ImageNet) network
is achieved by optimizing a high-level code (i.e. fc 6) of this
generator network. Activation maximization results pro-
duced by GANs offer visually impressive results, because
the GAN enforces natural looking images and these meth-
ods do not have to use extra regularization terms to sup-
press extremely high input signals, high frequency patterns
or translated copies of similar patterns that highly activate
some neuron. However, the produced result of this maxi-
mization technique is in direct correspondence to the gen-
erator, the data used to train this model, and not a random
sample from the network under inspection (which serves as
a condition for the learned generative prior). Since we are
interested in the raw input that excites our representations,
we do not employ any generative priors in this paper. In
contrast, our approach directly optimizes the spatiotempo-
ral input of the models starting from randomly initialized
noise image (appearance) and video (motion) inputs.

3. Approach
There are several techniques that perform activation

maximization for image classification ConvNets [23, 25, 31,
38, 42] which have shown that features become more ab-
stract when approaching deeper layers of image-based net-
works. We build on these methods for visualizing the hi-
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Figure 2. Schematic of our two-stream activation maximization approach (see Section 3 for details).

erarchical features learned by a deep motion network. In
particular, we optimize in the spacetime domain to find
the preferred spatiotemporal input of individual units in a
Two-Stream Fusion model [8]. We formulate the problem
as a (regularized) gradient-based optimization problem that
searches in the input space. An overview of our approach
is shown in Fig. 2. A randomly initialized input is pre-
sented to the optical flow and the appearance pathways of
our model. We compute the feature maps up to a partic-
ular layer that we would like to visualize. A single target
feature channel, c, is selected and activation maximization
is performed to generate the preferred input in two steps.
First, the derivatives on the input that affect c are calcu-
lated by backprogating the target loss, summed over all lo-
cations, to the input layer. Second, the propagated gradient
is scaled by the learning rate and added to the current in-
put. These operations are illustrated by the dotted red lines
in Fig. 2. Gradient-based optimization performs these steps
iteratively with an adaptively decreasing learning rate until
the input converges. Importantly, during this optimization
process the network weights are not altered, only the input
receives changes. The detailed procedure is outlined in the
remainder of this section.

3.1. Activation maximization

To make the above more concrete, activation maximiza-
tion of unit c at layer l seeks an input x∗ ∈ RH×W×T×C ,
with H being the height, W the width, T the duration, and
C the color and optical flow channels of the input. We find
x∗ by optimizing the following objective

x∗ = argmax
x

1

ρ2l âl,c
〈al(x), ec〉 − λrRr(x) (1)

where al are the activations at layer l, ec is the natural basis
vector corresponding to the cth feature channel, and Rr are
regularization term(s) with weight(s) λr. To produce plausi-
ble inputs, the unit-specific normalization constant depends
on ρl, which is the size of the receptive field at layer l (i.e.
the input space), and âl,c, which is the maximum activation
of c recorded on a validation set.

Since the space of possible inputs that satisfy (1) is vast,
and natural signals only occupy a small manifold of this
high-dimensional space, we use regularization to constrain
the input in terms of range and smoothness to better fit
statistics of natural video signals. Specifically, we apply
the following two regularizers, RB and RTV , explicitly to
the appearance and motion input of our networks.

3.2. Regularizing local energy

As first regularizer, RB , we enforce a local norm that
penalizes large input values

RB(x) =

{
NB(x) ∀i, j, k :

√∑
d x(i, j, k, d)

2 ≤ B
+∞, otherwise.

(2)
with NB(x) =

∑
i,j

(∑
d x(i, j, k, d)

2
)α

2 and i, j, k are
spatiotemporal indices of the input volume and d indexes
either color channels for appearance input, or optical flow
channels for motion input, B is the allowed range of the
input, and α the exponent of the norm. Similar norms are
also used in [23, 31, 42], with the motivation of preventing
extreme input scales from dominating the visualization.

3.3. Regularizing local frequency

The second regularizer, RTV , penalizes high frequency
content in the input, since natural signals tend to be domi-
nated by low frequencies. We use a total variation regular-
izer based on spatiotemporal image gradients

RTV (x;κ, χ) =
∑
ijkd

[
κ
(
(∇xx)

2 + (∇yx)
2
)
+ χ(∇tx)

2
]
,

(3)

where i, j, k are used to index the spatiotemporal dimen-
sions of input x, d indexes the color and optical flow chan-
nels of the input, and ∇x,∇y , ∇t are the derivative oper-
ators in the horizontal, vertical and temporal direction, re-
spectively. κ is used for weighting the degree of spatiotem-
poral variation and χ is an explicit slowness parameter that
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accounts for the regularization strength on the temporal fre-
quency. By varying 0 ≤ χ <∞we can selectively penalize
with respect to the slowness of the features at the input.

We now derive interesting special cases of (3) that we
will investigate in our experiments:

• A purely spatial regularizer, κ > 0;χ = 0 does
not penalize variation over the temporal dimension,
t. This choice produces reconstructions with uncon-
strained temporal frequency while only enforcing two-
dimensional spatial smoothness in (3). This choice can
be seen as an implicit low-pass filtering in the 2D spa-
tial domain.

• An isotropic spatiotemporal regularizer, κ = χ;κ, χ >
0 equally penalizes variation in space and time. This
can be seen as an implicit low-pass filtering in the 3D
spatiotemporal domain.

• An anisotropic spatiotemporal regularizer, κ 6=
χ;κ, χ > 0 allows balancing between space and time
to e.g. visualize fast varying features in time that are
smooth in space. The isotropic case above would bias
the visualization to be smooth both in space and time,
but not allow us to trade-off between the two.

Discussion. Purely spatial variation regularization is im-
portant to reconstruct natural images, examples of applica-
tion include image/video restoration [44], feature inversion
[23], or style transfer [17], or activation maximization [42]
where a 2D Gaussian filter was applied after each maxi-
mization iteration to achieve a similar effect. Isotropic spa-
tiotemporal regularization relates to multiple hand-designed
features that operate by derivative filtering of video signals,
examples include HOG3D [18], Cuboids [3], or SOEs [6].
Finally, anisotropic spatiotemporal regularization relates to
explicitly modelling the variation in the temporal dimen-
sion. Larger weights χ in (3) stronger penalize the temporal
derivative of the signal and consequently enforce low-pass
characteristic such that it varies slowly in time. This is a
well studied principle in the literature. For learning gen-
eral representations from video in an unsupervised manner,
minimizing the variation across time is seen both in bio-
logical, e.g. [10, 41], and artificial, e.g., [13] systems. The
motivation for such an approach comes from how the brain
solves object recognition by building a stable, slowly vary-
ing feature space with respect to time [41] in order to model
temporally contiguous objects for recognition.

In summary, the regularization of the objective, (1), com-
bines (2) and (3): Rr(x) = RB(x) +RTV (x;κ, χ). Thus,
Rr(x) serves to bias the visualizations to the space of natu-
ral images in terms of their magnitudes and spatiotemporal
rates of change. Note that the three different special cases
of the variational regularizer for the motion input allow us
to reconstruct signals that are varying slowly in space, uni-
formly in spacetime and non-uniformly in spacetime.

3.4. Implementation details

For optimizing the overall objective, (1), we use ADAM
that adaptively scales the gradient updates on the input by
its inverse square root, while aggregating the gradients in a
sliding window over previous iterations. We use the same
initializations as in [23]. During optimization, we spatially
sift (jitter) [25] the input randomly between 0 and the stride
of the optimized layer. For all results shown in this paper,
we chose the regularization/loss trade-off factors λr to pro-
vide similar weights for the different terms (2) - (3). We
apply the regularizers separately to the optical flow and ap-
pearance input. The regularization terms for the appearance
input are chosen to λB,rgb = 1

HWBα and λTV ,rgb = 1
HWV 2 ,

with V = B/6.5, B = 160 and α = 3, i.e. the default
parameters in [23]. The motion input’s regularization dif-
fers from that of appearance, as follows. In general, the
optical flow is assumed to be smoother than appearance in-
put; therefore, the total-variation regularization term of mo-
tion inputs has 10 times higher weight than the one for the
appearance input. In order to visualize different speeds of
motion signals, we use different weight terms for the vari-
ational regularizers of the motion input. In particular, to
reconstruct different uniformly regularized spatiotemporal
inputs we vary κ for penalizing the degree of spatiotem-
poral variation for reconstructing the motion input (we set
χ = κ and only list the values for κ in the experiments). For
anisotropic spatiotemporal reconstruction, we vary the tem-
poral slowness parameter, χ and fix κ = 1. The values in
all visualizations are scaled to min-max over the whole se-
quence for effectively visualizing the full range of motion.

4. Experiments

For sake of space, we focus all our experimental stud-
ies on a VGG-16 two-stream fusion model [8] that is illus-
trated in Fig. 2 and trained on UCF-101. Our visualiza-
tion technique, however, is generally applicable to any spa-
tiotemporal architecture. In the supplementary material1,
we visualize various other architectures: Spatiotemporal
Residual Networks [7] using ResNet50 streams, Temporal
Segment Networks [40] using BN-Inception [16] or Incep-
tion v3 [37] streams, trained on multiple datasets: UCF101
[34], HMDB51[20] and Kinetics [2].

We plot the appearance stream input directly by showing
an RGB image and the motion input by showing the optical
flow as a video that plays on click; the RGB channels of
this video consist of the horizontal, vertical and magnitude
of the optical flow vectors, respectively. It is our impression
that the presented flow visualization is perceptually easier to
understand than standard alternatives (e.g. HSV encoding).

1http://feichtenhofer.github.io/action_vis.pdf
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4.1. Emergence of spatiotemporal features

We first study the conv5 fusion layer (i.e. the last local
layer; see Fig. 2 for the overall architecture), which takes in
features from the appearance and motion streams and learns
a local fusion representation for subsequent fully-connected
layers with global receptive fields. Therefore, this layer is of
particular interest as it is the first point in the network’s for-
ward pass where appearance and motion information come
together. At conv5 fusion we see the emergence of both
class specific and class agnostic units (i.e. general units that
form a distributed representation for multiple classes). We
illustrate both of these by example in the following.
Local representation of class specific units. In Fig. 1 we
saw that some local filters might correspond to specific con-
cepts that facilitate recognition of a single class (e.g. Bil-
liards). We now reconsider that unit from Fig. 1 and visu-
alize it under two further spatiotemporal regularization de-
grees, intermediate and fast temporal variation, in Fig. 3.
(The visualization in Fig. 1 corresponds to slow motion.)
Similar to Fig. 1, multiple coloured blobs show up in the
appearance, Fig. 3a, and moving circular objects in the mo-
tion input (3b), but compared to Fig. 1, the motion is now
varying faster in time. In Fig. 3d and 3c, we only regularize
for spatial variation with unconstrained temporal variation,
i.e. χ = 0 in (3). We observe that this neuron is funda-
mentally different in the slow and the fast motion case: It
looks for linearly moving circular objects in the slow spa-
tiotemporal variation case, while it looks for an exploding,
accelerating motion pattern into various directions in the
temporally unconstrained (fast) motion case. It appears that
this unit is able to detect a particular spatial pattern of mo-
tion, while allowing for a range of speeds and accelerations.
Such an abstraction presumably has value in recognizing an
action class with a degree of invariance to exact manner in
which it unfolds across time. Another interesting fact is that
switching the regularizer for the motion input, also has an
impact on the appearance input (Fig. 3a vs. 3c) even though
the regularization for appearance is held constant. This fact
empirically verifies that the fusion unit also expects specific
appearance when confronted with particular motion signals.

We now consider unit f004 at conv5 fusion in Fig. 4. It
seems to capture some drum-like structure in the center of
the receptive field, with skin-colored structures in the upper
region. This unit could relate to the PlayingTabla class. In
Fig. 4 we show the unit under different spacetime regular-
izers and also show sample frames from three PlayingTabla
videos from the test set. Interestingly, when stronger reg-
ularization is placed on both spatial and temporal change
(e.g. κ = 10, top row) we see that a skin colour blob is
highlighted in the appearance and a horizontal motion blob
is highlighted in the motion in the same area, which com-
bined could capture the characteristic head motions of a
drummer. In contrast, with less constraint on motion vari-

(a) appearance slow (b) motion slow (c) appearance fast (d) motion fast

Figure 3. Studying the Billiards unit at layer conv5 fusion from
Fig. 1. We now show what highly activates the filter in the appear-
ance and in the motion input space using intermediate spatiotem-
poral variation regularization (a) and (b). Figs. (c) and (d) show
what excites the filter when there is no restriction on the tempo-
ral variation of the input: The appearance, (3c) now also shows a
black dot with skin-coloured surroundings at the top which might
resemble a head and the motion filter (d) now detects exploding
motion patterns (e.g. when the white ball hits the others after it has
been accelerated by the billiard cue). All videos play on click.

appearance κ = 10

co
nv

5
fu

si
on

f0
04

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

appearanceχ = 0
co

nv
5

fu
si

on
f0

04
flowχ = 10 flowχ = 5 flowχ = 1 flowχ = 0

PlayingTabla 1 flow PlayingTabla 2 flow PlayingTabla 3 flow

Figure 4. Specific unit at conv5 fusion. Comparison between
isotropic and anisotropic spatiotemporal regularization for a single
filter at the last convolutional layer. The columns show the appear-
ance and the motion input generated by maximizing the unit, under
different degrees of isotropic spatiotemporal (κ) and anisotropic
spatiotemporal TV regularization (χ). The last row shows sample
videos of appearance and optical flow from the PlayingTabla class.

ation (e.g. χ = 0, bottom row) we see that the appearance
more strongly highlights the drum region, including hand
and arm-like structures near and over the drum, while the
motion is capturing high frequency oscillation where the
hands would strike the drums. Significantly, we see that
this single unit fundamentally links appearance and motion:
We have the emergence of true spatiotemporal features.
Distributed representation of general units. In contrast
to units that seem very class specific, we also find units that
seem well suited for cross-class representation. To begin,
we consider filters f006 and f009 at the conv5 fusion layer
that fuses from the motion into the appearance stream, as
shown in Fig. 5. These units seem to capture general spa-
tiotemporal patterns for recognizing classes such as YoYo
and Nunchucks, as seen when comparing the unit visual-
izations to the sample videos from the test set. Next, in
Fig. 6, we similarly show general feature examples for the
conv5 fusion layer that seem to capture general spatiotem-
poral patterns for recognizing classes corresponding to mul-
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Figure 5. Two general units at the convolutional fusion layer. The
columns show the appearance and the motion input generated by
maximizing the unit, under different degrees of anisotropic spa-
tiotemporal regularization (χ). The last row shows videos of 15
sample frames from the YoYo and Nunchucks classes.
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Figure 6. General units at the convolutional fusion layer that could
be useful for representing ball sports. The columns show the ap-
pearance and the motion input generated by maximizing the unit,
under different degrees of temporal regularization (χ). The last
row shows sample videos from UCF101.

tiple ball sport actions such as Soccer or TableTennis. These
visualizations reveal that at the last convolutional layer the
network builds a local representation that can be both dis-
tributed over multiple classes and quite specifically tuned to
a particular class (e.g. Fig. 4 above).

4.2. Progressive feature abstraction with depth

Visualization of early layers. We now explore the layers
of a VGG-16 Two-Stream architecture [8]. In Fig. 7 we
show what excites the convolutional filters of this architec-
ture at the early layers of the network hierarchy. We use the
anisotropic regularization in space and time that penalizes
variation at a constant rate across space and varies accord-
ing to the temporal regularization strength, χ, over time.

We see that the spatial patterns are preserved through-

appearance

co
nv

3
3

f1
-8

1

flowχ = 10 flowχ = 5 flowχ = 1 flowχ = 0

co
nv

4
3

f1
-3

6
co

nv
5

3
f1

-1
6

Figure 7. Two-stream conv filters under anisotropic regularization.
We show appearance and the optical flow inputs for slowest χ =
10, slow χ = 5, fast χ = 1, and fastest χ = 0, temporal variation.
Spatial regularization is constant.

out various temporal regularization factors χ, at all layers.
From the temporal perspective, we see that, as expected, for
decreasing χ the temporal variation increases; interestingly,
however, the directions of the motion patterns are preserved
while the optimal motion magnitude varies with χ. For ex-
ample, consider the last shown unit f36 of layer conv4 3
(bottom right filter in the penultimate row of Fig. 7). This
filter is matched to motion blobs moving in an upward direc-
tion. In the temporally regularized case, χ > 0, the motion
is smaller compared to that seen in the temporally uncon-
strained case, χ = 0. Notably, all these motion patterns
strongly excite the same unit. These observations suggest
that the network has learned speed invariance, i.e. the unit
can respond to the same direction of motion with robust-
ness to speed. Such an ability is significant for recogni-
tion of actions irrespective of the speed at which they are
executed, e.g. being able to recognize “running” without a
concern for how fast the runner moves. For a comparison
of multiple early layer filters under isotropic spatiotemporal
regularization please consider the supplementary material.
Visualization of fusion layers. We now briefly re-examine
the convolutional fusion layer (as in the previous Sect. 4.1).
In Fig. 8, we show the filters at the conv5 fusion layer,
which fuses from the motion into the appearance stream,
while varying the temporal regularization and keeping the
spatial regularization constant. This result is again achieved
by varying the parameter χ in (3); visualizations of varying
the regularization strengths isotropically (κ) are shown in
the supplementary material. The visualizations reveal that
these first 3 fusion filters at this last convolutional layer
show reasonable combinations of appearance and motion
information, a qualitative proof that the fusion model in [8]
performs as desired. For example, the receptive field centre
of conv5 fusion f002 seems matched to lip like appearance
with a juxtaposed elongated horizontal structure, while the
motion is matched to slight up and down motions of the
elongation (e.g. flute playing). Once again, we also observe
that the units are broadly tuned across temporal input vari-
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ation (i.e. all the different inputs highly activate the same
given unit).

appearanceχ = 0

co
nv

5
fu
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flowχ = 10 flowχ = 5 flowχ = 1 flowχ = 0
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Figure 8. Visualization of 3 filters of the conv5 fusion layer. We
show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, tem-
poral variation regularization. The filter in row 2 could be related
to the PlayingFlute class by locally filtering lips and a moving in-
strument (flute).

Visualization of global layers. We now visualize the lay-
ers that have non-local filters, e.g. fully-connected layers
that operate on top of the convolutional fusion layer illus-
trated above. Fig. 9 and Fig. 10 show filters of the fully-
connected layers 6 (fc 6) and 7 (fc 7) of the VGG-16 fu-
sion architecture. In contrast to the local features above,
we observe a holistic representation that consists of a mix-
ture of the local units seen in the previous layer. For exam-
ple, in Fig. 9 we see units that could combine features for
prediction of VolleyballSpiking (top) PlayingFlute (centre)
and Archery (bottom row); please compare to the respective
prediction layer visualizations in the supplementary mate-
rial. In Fig. 10 we see a unit that resembles the Clean and
Jerk action (where a barbell weight is pushed over the head
in a standing position) in the top row and another unit that
could correspond to Benchpress action (which is performed
in lying position on a bench). Notice how the difference in
relative body position is captured in the visualizations, e.g.
the relatively vertical vs. horizontal orientations of the re-
gions captured beneath the weights, especially in the motion
visualizations. Here, it is notable that these representations
form something akin to a nonlinear (fc 6) and linear (fc 7)
basis for the prediction layer; therefore, it is plausible that
the filters resemble holistic classification patterns.

Finally, we visualize the ultimate class prediction lay-
ers of the architecture, where the unit outputs corresponds
to different classes; thus, we know to what they should
be matched. In Fig. 11, we show the fast motion activa-
tion of the classes Archery, BabyCrawling, PlayingFlute
and CleanAndJerk (see the supplement for additional ex-
amples). The learned features for archery (e.g., the elon-
gated bow shape and positioning of the bow as well as
the shooting motion of the arrow) are markedly distinct

appearanceχ = 0

fc
6

f0
14

flowχ = 10 flowχ = 5 flowχ = 1 flowχ = 0

fc
6

f0
15

fc
6

f0
16

Figure 9. Visualization of 3 filters of the fc 6 layer under differ-
ent temporal regularization. We show the appearance input and
the optical flow inputs for slowest χ = 10, slow χ = 5, fast
χ = 1, and unconstrained (fastest) χ = 0, temporal variation
regularization. The filter shown in the first row could resemble the
VolleyballSpiking class whereas the filter shown in the second row
is visually similar to the unit for predicting PlayingFlute and the
last row to the Archery class.

fc
7

f0
06

fc
7

f0
23

Figure 10. Visualization of 2 filters of the fc 7 layer under different
temporal regularization strength χ. The filter shown in the first
row is visually similar to the unit for predicting the Clean and Jerk
class in the next layer, whereas the filter shown in the second row
could resemble the BenchPress action.

from those of the baby crawling (e.g., capturing the facial
parts of the baby appearance while focusing on the arm and
head movement in the motion representation), and those of
PlayingFlute (e.g. filtering eyes and arms (appearance) and
moving arms below the flute (motion)), as well as those of
CleanAndJerk and BenchPress (e.g. capturing barbells and
human heads in the appearance with body motion for press-
ing (χ = 0) and balancing (χ = 10) the weight). Thus, we
find that the class prediction units have learned representa-
tions that are well matched to their classes.

4.3. Utilizing visualizations for understanding fail-
ure modes and dataset bias

Another use of our visualizations is to debug the model
and reason about failure cases. In UCF101 15% of the Play-
ingCello videos get confused as PlayingViolin. In Fig. 12,
we observe that the subtle differences between the classes
are related to the alignment of the instruments. In fact, this
is in concordance with the confused videos in which the Vi-
olins are not aligned in a vertical position.

In UCF101 the major confusions are between the classes
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appearance χ = 10 χ = 5 χ = 1 χ = 0 Archery

BabyCrawling

PlayingFlute

CleanAndJerk

BenchPress

Figure 11. Classification units at the last layer of the network. The
first column shows the appearance and the second to fifth columns
the motion input generated by maximizing the prediction layer
output for the respective classes, with different degrees of tempo-
ral variation regularization (χ). The last column shows 15 sample
frames from the first video of that class in the test set.

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingCello

PlayingViolin

Figure 12. Explaining confusion for PlayingCello and PlayingVio-
lin. We see that the learned representation focuses on the horizon-
tal (Cello) and vertical (Violin) alignment of the instrument, which
could explain confusions for videos where this is less distinct.

BrushingTeeth and ShavingBeard. In Fig. 13 we visualize
the inputs that maximally activate these classes and find that
they are quite similar, e.g. capturing a linear structure mov-
ing near the face, but not the minute details that distinguish
them. This insight not only explains the confusion, but also
can motivate remediation, e.g. focused training on the un-
captured critical differences (i.e. tooth brush vs. shaver).

appearance χ = 10 χ = 5 χ = 1 χ = 0 BrushingTeeth

ShavingBeard

Figure 13. Explaining confusion for BrushingTeeth and Shaving-
Beard. The representation focuses on the local appearance of face
and lips as well as the local motion of the tool.

Dataset bias and generalization to unseen data is im-
portant for practical applications. Two classes, ApplyEye-
Makeup and ApplyLipstick are, even though being visually
very similar, easily classified in the test set of UCF101 with
classification rates above 90% (except for some obvious
confusions with BrushingTeeth). This result makes us curi-
ous, so we inspect the visualizations in Fig. 14. The inputs
are capturing facial features, such as eyes, and the motion of
applicators. Interestingly, it seems that ApplyEyeMakeup
and ApplyLipstick are being distinguished, at least in part,
by the fact that eyes tend to move in the latter case, while
they are held static in the former case. Here, we see a bene-
fit of our visualizations beyond revealing what the network
has learned – they also can reveal idiosyncrasies of the data
on which the model has been trained.

appearance χ = 10 χ = 5 χ = 1 χ = 0 ApplyEyeMakeup

ApplyLipstick

Figure 14. Classification units for ApplyEyeMakeup and Ap-
plyLipstick. Surprisingly, the prediction neuron for ApplyLipstick
gets excited by moving eyes at the motion input. Presumably be-
cause this resembles a peculiarity of the dataset which contains
samples of the ApplyEyeMakeup class with eyes appearing static.

5. Conclusion

The compositional structure of deep networks makes it
difficult to reason explicitly about what these powerful sys-
tems actually have learned. In this paper, we have shed light
on the learned representations of deep spatiotemporal net-
works by visualizing what excites the models internally. We
formulate our approach as a regularized gradient-based op-
timization problem that searches in the input space of a two-
stream architecture by performing activation maximization.
We are the first to visualize the hierarchical features learned
by a deep motion network. Our visual explanations are
highly intuitive and indicate the efficacy of processing ap-
pearance and motion in parallel pathways, as well as cross-
stream fusion, for analysis of spatiotemporal information.
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