ﬁ water m\py

Article
Machine Learning-Based Water Level Prediction in
Lake Erie

Qi Wang ! and Song Wang 2*
1
2

Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; qi.wang@queensu.ca
Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
*  Correspondence: wangsong@eecs.yorku.ca; Tel.: +1-416-736-2100 (ext. 33939)

check for
Received: 15 August 2020; Accepted: 21 September 2020; Published: 23 September 2020 updates

Abstract: Predicting water levels of Lake Erie is important in water resource management as well as
navigation since water level significantly impacts cargo transport options as well as personal choices
of recreational activities. In this paper, machine learning (ML) algorithms including Gaussian process
(GP), multiple linear regression (MLR), multilayer perceptron (MLP), M5P model tree, random forest
(RF), and k-nearest neighbor (KNN) are applied to predict the water level in Lake Erie. From 2002 to
2014, meteorological data and one-day-ahead observed water level are the independent variables,
and the daily water level is the dependent variable. The predictive results show that MLR and M5P
have the highest accuracy regarding root mean square error (RMSE) and mean absolute error (MAE).
The performance of ML models has also been compared against the performance of the process-based
advanced hydrologic prediction system (AHPS), and the results indicate that ML models are superior
in predictive accuracy compared to AHPS. Together with their time-saving advantage, this study
shows that ML models, especially MLR and M5P, can be used for forecasting Lake Erie water levels
and informing future water resources management.

Keywords: machine learning; water levels; Lake Erie

1. Introduction

Water level plays an important part in the community’s well-being and economic livelihoods.
For example, water level changes can impact physical processes in lakes, such as circulation, resulting in
changes in water mixing and bottom sediment resuspension, and thus could further affect water quality
and aquatic ecosystems [1,2]. Hence, water level prediction attracts more and more attention [3,4].
For example, the International Joint Commission (IJC) suggests more efforts should be implemented to
improve the methods of monitoring and predicting water level [5].

Water-level change is a complex hydrological phenomenon due to its various controlled factors,
including meteorological conditions, as well as water exchange between the lake and its watersheds [6,7].
Thus, many tools used to forecast water levels, while considering influencing factors, have been
developed, such as process-based models [8]. For example, Gronewold et al. showed that the advanced
hydrologic prediction system (AHPS) can be used to capture seasonal and inter-annual patterns of
Lake Erie water level from 1997 to 2009 [9]. However, the effectiveness of process-based models
mainly depends on the accuracies of the models to represent the aquatic conditions and the abilities
of the models in describing the variabilities in the observations [10,11]. In addition, process-based
models are often time-consuming [12], so numerous studies have proposed using statistical models
to predict water level, e.g., autoregressive integrated moving average model [13], artificial neural
network [14], genetic programming [15], and support vector machine [16]. These studies mainly
focused on leveraging historical water level without considering the physical process driven by
meteorological conditions [6,17,18].
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In this paper, six machine learning methodologies [19], with fast leaning speed, are applied to
predict daily Lake Erie water level. And then the ML model predictive performance is compared
to the process-based model (i.e., AHPS). ML models are established by considering not only the
impacts of the historical water-level changes but also meteorological factors. Overall, there are three
innovations of this work. First, it is the first work to take account of both historical water level and
meteorological conditions in water level prediction for Lake Erie. Second, it is the first study to apply
various ML models to forecast Lake Erie water level and compare the performance among various ML
models. Third, it is the first work to compare the predictive performance between ML models and the
process-based model AHPS.

The following parts of this paper are divided into four sections. Section 1 introduces the
experimental area of this study. Section 2 describes various ML algorithms and the model performance
assessment metrics. Section 3 presents the independent variables selection and performance comparison
results for ML models. Section 4 discusses the forecasting results of various ML predicting models,
and the performance comparisons between ML models and the process-based prediction system AHPS
(Figure 1).
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Figure 1. Flow chart of this paper.

2. Materials and Methods

2.1. Study Area

Lake Erie is the southernmost, shallowest, and smallest part of the Great Lakes System and
its mean depth, surface area, and volume are 18.9 m, 25,657 km?, and 484 km3 [20]. It has three
distinguishing basins including western, central, and eastern basins, with average depths of 7.4 m, 19 m,
and 28.5 m [21,22]. The western basin is separated from the central basin by the islands extending from
Point Pelee in Ontario to Marblehead in Ohio, and the eastern basin is separated from the central basin
by the Pennsylvania Ridge from Long Point extending to Erie Pennsylvania [21]. There are five major
inflows (Detroit River, Maumee River, Sandusky River, Cuyahoga River, and Grand River), and one
outflow (Niagara River) for Lake Erie. The water retention capacity of Lake Erie is 2.76 years [20,23].
Figure 2 is generated based on GLERL (Great Lakes Environmental Research Laboratory) data and
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the identifiers represent the meteorological stations (red stars) and water level measuring stations
(black circles).
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Figure 2. Lake Erie bathymetric plan view (generated from GLERL data); Meteorological stations
(red stars); Water level stations (black circles): Toledo, Port Stanley, Buffalo, and Cleveland; A~F
represent Detroit, Maumee, Sandusky, Cuyahoga, Grand, and Niagara Rivers.

2.2. Data Source

Following existing studies, e.g., Bucak et al. (2018), who use various meteorological variables to
simulate the water level of Lake Beysehir in Turkey, this study also considers meteorological variables
including precipitation, air temperature, shortwave radiation, longwave radiation, wind speed,
and relative humidity. The average daily measured water level data at four stations including
St. Toledo, Port Stanley, Buffalo, and Cleveland are regarded as the observed daily water level of Lake
Erie (Table 1).

Table 1. Summary of sources of meteorological and water level data.

Parameter Source and Location Frequency
Air temperature US National Data Buoy Center (NDBC) buoys (western basin,
tation 45005);
Wind speed semon )

Environment and Climate Change Canada (ECCC) lake buoy data
Longwave radiation  (central basin, Port Stanley 45132; eastern basin, Port Colborne 45142); Hourly
Great Lakes Environmental Research Laboratory (GLERL) land stations

Shortwave radiation

(station THLO1);
Relative humidity US NDBC land stations (stationGELO1, DBLNG6)
Precipitation National Oceanic and Atmospheric Administration (NOAA) Daily

Water level

The independent variables are selected in terms of the relevance degree between the meteorological
variables (daily, one-day-, two-day-, and three-day-ahead observed average, minimum, and maximum
values of air temperature, shortwave radiation, longwave radiation, wind speed, and relative humidity;
daily, one-day-, two-day-, and three-day-ahead observed average precipitation values) (Table 2) and
the water level. The correlation function has been typically applied in previous studies [17,24],
measuring the linear dependence between two variables. When the relatedness is not linear, it is not
appropriate to apply this method. In this study, we use mutual information (MI) instead of correlation
function since MI can measure the general dependence between two variables [25].
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Table 2. Summary of variables.

Variable Description Variable Description Variable Description Variable Description Variable Description Variable Description

Wind Air Relative Shortwave Longwave Precipitati
X1 speed(daily X2 temperature X3 humidity X4 Radiation X5 radiation X6 (;eclipl 4 l())l’l
ave.) (daily ave.) (daily ave.) (daily ave.) (daily ave.) aty ave.
. Air Relative Shortwave Longwave .
X7 ‘(/;“Tf P ee‘; X8  temperature X9 humidity X10 Radiation X11 radiation X12 ‘("O]l"f? P ‘?e‘;
atly max (daily max) (daily max) (daily max) (daily max) atly min,
Air Relative Shortwave Longwave Wind speed Air
X13 temperature X14 humidity X15 Radiation X16 radiation X17 (2_1 da 5 e) X18 temperature
(daily min) (daily min) (daily min) (daily min) ¥ ave. (2-day ave)
Relative Shortwave Longwave Precipitation Wind speed Air
X19 humidity X20 Radiation X21 radiation X22 - d;pla ri) X23 (2-da br}:\ax) X24 temperature
(2-day ave.) (2-day ave.) (2-day ave.) yave. y (2-day max)
Relative Shortwave Longwave Wind speed Air Relative
X25 humidity X26 Radiation X27 radiation X28 (-da Eﬁn) X29 temperature X30 humidity
(2-day max) (2-day max) (2-day max) y (2-day min) (2-day min)
Shortwave Longwave Wind speed Air Relative Shortwave
X31 Radjiation X32 radiation X33 (3-da sve ) X34 temperature X35 humidity X36 Radiation
(2-day min) (2-day min) y : (3-day ave.) (3-day ave.) (3-day ave.)
Longwave Precipitation Wind speed Air Relative Shortwave
X37 radiation X R X9 o gqax) X40  temperature X4l humidity X42 Radiation
(3-day ave.) y ave. y (3-day max) (3-day max) (3-day max)
Longwave Wind d Air Relative Shortwave Longwave
X43 radiation xa o Slr’ne;) X45  temperature  X46 humidity X47  Radiation  X48 radiation
(3-day max) v (3-day min) (3-day min) (3-day min) (3-day min)

MI, i.e., Equation (1), measures the relevance degree between two variables according to the joint
probability distribution function p(x, y) [26].

MIY;X) = Y Y pxy) 1#%) 1)

xeX yeY

2.3. Machine Learning Algorithms

This study adopts six widely used ML methods, including Gaussian process, multiple linear
regression, multilayer perceptron, M5P model tree, random forest, and k-nearest neighbors.

2.3.1. Gaussian Process

Gaussian process (GP) [27] can be applied to settle two categories of problems: (1) Regression,
where the data are continuous, and optimization of study can provide a close prediction for most of
the time; (2) Classification, where the datasets are discrete and the predictions end up with a discrete
set of classes [28]. In this work, we adopt the same algorithm of GP from existing studies [27-29].
Taking account of the noise of observation y, the Gaussian process is shown below:

y = f(x) +e¢ )

f(x) = g(m (x), k(x)) ®)

where x and y represent the input and output, respectively, f is a multi-dimensional Gaussian
distribution determined by m(x) (mean function) and k(x,x") (covariance matrix), x and x” are the
input values at two points, and ¢ (~N(0, o %)) is the independent white Gaussian noise. To make
choosing an appropriate noise level easier, this study applies normalization to the target attribute as
well as the other attributes. If the data can be scaled properly, the mean could be zero. A function
producing a positive semi-definite covariance matrix with elements [K];; = k(x;, xj) is applied as
the covariance function, so f is expressed as p(flx) = N(0,K). Based on previous noise assumptions,
p(y|f) = N(f, 01) is obtained, and I is the unit matrix.

p(yX) = f p(y|f)p(fix)df = N(0,K + 1) @)



Water 2020, 12, 2654 5o0f 14

The prediction y, is the output corresponding to the input x.:

p(Y* X’Y’X*) = N((Yx-lux-/ 0_57*) (5)
-1

wo=kI(K + o’T) 'y ©)

02 = k- KI(K + o’ 'k @)

where k. can be obtained from x and x. through [k,] = k(x,x*), and k.. can be obtained from x.

through [k,,] = k(x,,x.). . and cr?,* represent expectation and variance. The Gaussian covariance
function is: o )
-3 X wal'—x")]

k(Xi, Xj) = pe Zda 0T (8)

where [v,w, wy,..., wy| represent a parameter vector, called hyperparameters. The simplest
expression can be shown as follows:

logp(y|x) = %yT(K + 021)_1y - %log()K + 021|) - glog(27r) 9)

2.3.2. Multiple Linear Regression

The multiple linear regression (MLR) method describes the linear relationship between the
dependent and independent variables. In this work, we adopt the same MLR algorithm as existing
studies [30-32].

Yi= Bo+ B1Xpi + BaXoi+ ..o + Xii + & (10)

where X1, Xp;,..., Xkj and Y; are the ith observations of the independent and dependent variables,
respectively; B, B1, ..., Bk are regression coefficients; and ¢; is the residual for the ith observations.

2.3.3. Multilayer Perceptron

An artificial neural network (ANN) mimics human brain functioning, processing information
through a single neuron. In this work, we adopt the same MLP algorithm as existing studies [33-36].
Multiplayer perceptron (MLP), a class of feedforward ANN, has three layers including input, hidden,
and output layers. The hidden layers receive the signals from the nodes of the input layer and
transform them into signals that are sent to all output nodes, transforming them into the last layer of
outputs. The weights between the adjacent layers are adjusted automatically while minimizing the
errors between the simulations and observations by using the backpropagation algorithm.

2.3.4. M5P Model Tree

There is a collection of training samples (T); each training sample is featured by a fixed set of
attributes, which are input values, and has a corresponding target, which is the output value. In this
work, we adopt the same M5P algorithm from existing studies [37-39]. In the beginning, T is associated
with a leaf storing linear regression function or split into subsets accounting for the outputs, and then
the same process is recursive for the subsets.

In this process, choosing appropriate attributes to split T, in order to minimize the expected error
at a particular node, requires a splitting criterion, and standard deviation reduction is the expected
error reduction, calculated by Equation (11).

Iy

SDR = sd(T) - s
—~ [T|

d(T;) (11)

where T is a group of samples that achieves the node; T; is the result of splitting the node in terms of
the chosen attribute. The model finally chooses the split that maximizes the expected error reduction.
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2.3.5. Random Forest

In this work, we adopt the same random forest (RF) algorithm from existing studies [40,41].
Unlike random tree (RT), instead of choosing features, RF can determine the most important ones
among all the features after training. It combines many binary decision trees and each tree learns from
a random sample of the observations without pruning. In RF, bootstrap samples are drawn to build
multiple trees, which means that some samples will be used multiple times in a single tree, and each
tree grows with a randomized subset of features from the total number of features. Finally, the output
representing the average of each single-tree methodology is generated. Since RF contains a lot of trees,
handling a larger number of data, limited generalization errors occur, avoiding overfitting.

2.3.6. K-Nearest Neighbor

Generally, the above machine learning methods can be regarded as eager methods, which means
these methods start learning when they receive the data and create a global approximation. On the
other hand, k-nearest neighbor (KNN) belongs to lazy learning, which creates a local approximation.
In this work, we adopt the same KNN algorithm from existing studies [42—44]. It simply stores the
training data without learning until it is given a test set, and calculates in terms of the current data set
instead of coming up with an algorithm based on historic data. KNN is a method that can be used
for either classification or regression, while distributing the attribute values for a target, which is the
average of the values of its k nearest neighbors.

2.4. Model Performance Evaluation

The outputs of each ML model are daily water levels of Lake Erie. Then, these predictions are
compared against the observations, which are the average measured water levels at the four stations
mentioned above. The model performance evaluation criteria selected include root means square
error (RMSE), mean absolute error (MAE), correlation coefficient (r), and mutual information (MI)
mentioned in Section 2.2.

RMSE shows the residual value between the predictions and the observations, thus a smaller
RMSE value represents a better fit between observations and predictions.

(0

L (0; - Py)?
RMSE = 1—1—1) (12)

n

The mean absolute error (MAE) can be also applied to access the accuracy of fitting time-series
data. Similar to RMSE, a smaller MAE value represents a better fit.

1 n
MAE = — Z{'Oi - Py (13)

The correlation coefficient (r) describes the weight of the relationship between observations and
predictions and ranges from —1 to 1. The closer to 0, the weaker linear relationship between observations
and predictions. For example, a value of zero represents no linear relationship, —1 represents a strong
negative linear relationship, and 1 represents a strong positive linear relationship.

?:1 (Oi _61) (Pi - E)

r =
\/Zin:1 (e 61)2 ?:1 (P; - E)Z

(14)

where O; and P; represent the observations and predictions at the ith time step, O; and P; are the means
of observations and predictions, and n represents total time step numbers.
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RMSE and MAPE describe the overall accuracy of the models, while r and MI describe the
differences between the observations and the predictions [19].

3. Results

3.1. Input Selection

A MI value of zero represents zero relatedness between two variables, and the larger value
represents stronger relatedness [45]. All meteorological variables except one-day-, two-day-,
and three-day-ahead observed minimum shortwave radiation (15X, 31X, and 47x) show a strong
relevance to water level (Figure 3), so this study uses daily, one-day-, two-day-, and three-day-ahead
observed average, minimum, and maximum values of air temperature, longwave radiation,
relative humidity, and wind speed; daily, one-day-, two-day-, and three-day-ahead observed average
and maximum values of shortwave radiation; daily, one-day-, two-day-, and three-day-ahead observed
average values of precipitation as independent variables. One-day-ahead observed water level is also
considered as an independent variable since it can also impact water level changes the next day [46].
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Figure 3. Mutual information of all variables.

Following a previous study [47], we split the whole dataset from 2002 to 2014 into two sections,
including the training set (approximately 84% observations) from 2002 to 2012, aiming to establish the
model and adjust the weights, as well as the testing set (approximately 16% observations) from 2013 to
2014, aiming to assess the model performance.

3.2. Model Performance Comparison

Table 3 shows the performance of ML models for predicting water level by RMSE, MAE, r, and MI.
MLR and M5P provide the most reliable predictions of water level during the testing period from 2013
to 2014 with RMSE and MAE values of 0.02 and 0.01, respectively.

The RMSE values for different ML models in this study are also comparable to previous studies
on water-level prediction, e.g., Khan et al. (2006) found RMSE values for the time horizon of 1 to
12 months of 0.057-0.239, 0.085-0.246, and 0.068-0.304 by applying SVM, MLP, and SAR models to
Lake Erie [16].
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Table 3. Summary of performance for multiple ML models.

Model RMSE MAE r MI
Gaussian process 0.07 0.06 0.94 8.45
Multiple linear regression 0.02 0.01 0.99 8.54
Multiple Perceptron 0.03 0.02 0.99 8.57
MS5P Model Tree 0.02 0.01 0.99 8.53
Random Forest model tree 0.05 0.04 0.97 8.43
KNN 0.10 0.09 0.83 8.25

4. Discussion

4.1. Multiple ML Models Comparison

Based on RMSE and MAE (Table 3), the predictions of ML models are acceptable compared
to previous studies. For example, Bazartseren et al. predicted water levels with RMSE values of
1.39 and 3.40 for the Oder and Rhein River in Germany by using artificial neural networks [48].
Yoon et al. predicted groundwater levels in the coastal aquifer in Donghae City, Korea, through two
wells with average RMSE values of 0.13 and 0.136 by applying ANN and SVM (support vector machine),
respectively [49].

The predicted water levels agree with the observations qualitatively (Figure 4). Due to the long
period of testing time (2013-2014), we will divide it into three periods for each year to discuss the
predictions in detail. In Figure 5a,b, both observations and predictions show the increasing trends,
from January to March in 2013 and 2014, due to low precipitation frequency, the water levels are
relatively stable and become lowest during the whole year. Beginning from April, the water level rises
with frequent rainfall. From May to August (Figure 5¢,d), the water level continues increasing to reach
a peak in July in 2013 and 2014, showing the significant effects of precipitation on water level changes.
From September to December, with precipitation reducing, the water level decreases.

1746 -
O Observation
—GP
—MLR
—MLP
—M5P
RF
1743 KNN
E
©
>
)
8
o
z
174
1 | 1 | | 1 | ]

173.7
2012/10/18 2013/01/26 2013/05/06 2013/08/14 2013/11/22 2014/03/02 2014/06/10 2014/09/18 2014/12/27 2015/04/06
Time (yyyy/mm/dd)

Figure 4. Time series of predicted and observed water level of Lake Erie during the testing period from
January 1st 2013 to December 31st 2014.
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Figure 5. Comparisons between the predictions of six ML models and observations for water level
from: (a) January to April 2013; (b) January to April 2014; (c) May to August 2013; (d) May to August
2014; (e) September to December 2013; (f) September to December 2014.

Figure 6 shows that the predicted water levels agree with the observations quantitatively.
The slopes are close to 1, indicating that the predictions from ML models show a strong correlation
with the observed water levels even though there is a small difference between them. The dots in
the KNN comparison figure seem scattered, showing that the predictions are smaller/larger than
the observations.

174.8 174.8 174.6
y=0.7757x+39.08 E y=0.9804x+3.406 = y=1.003x-0.4913
Eq744 = # 4
" f
5 2
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B 174 g
[= %
o .~ jis
O 1738} & y
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173.8 174 1742 1744 173.8 174 1742 174.4 173.8 174 1742 1744

Observation (m) Observation (m) Observation (m)

Figure 6. Scatter plots of the observations and predictions from GP, MLR, MLP, M5P, REF, and KNN
models during the testing period from January 1st 2013 to December 31st 2014.

Among these six models, the MLR and M5P models show better performance than others with
only a 0.003% difference in capturing the peak values. The KNN model underestimates the peaks
in 2013 and 2014 (Figure 4) and overestimates the lowest level in winter 2014, which may be due to
the k value selection. Choosing small values for k can be noisy and impact the predictions, while the
large values can lead to smooth decision boundaries, resulting in low variance but increased bias and
expensive computation. In this study, the value of k is set to 69, which is the square root of the total
number of samples based on a previous study [50].
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4.2. Comparison between ML Models and AHPS

An advanced hydrologic prediction system (AHPS) is a web-based suite of forecast products,
and it has been widely used in predicting the water levels and hydrometeorological variables of
the Laurentian Great Lakes [51]. In AHPS, the spatial meteorological forcing data obtained from
the National Climatic Data Center (NCDC) for sub-basins and over-lakes are averaged by Thiessen
Polygon Software, and the results are regarded as the inputs of the lake thermodynamics model,
calculating heat storage, and the large basin runoff model, calculating moisture storage, and the net
basin supply is calculated based on water balance. Finally, the net basin supplies are translated to
water levels and joint flows by the lake routing and regulation model [52]. Gronewold et al. predicted
the water level of Lake Erie by using AHPS. He compared 3-month and 6-month mean predicted water
level values to the monthly averaged water level observations for 13 years (1997-2009) and assessed
AHPS predictive performance by forecasting bias (the averaged differences between the median value
of predictions and monthly averaged observations) [9]. In this part, we also compare ML models and
AHPS predictive performance in terms of forecasting bias.

All absolute values of forecasting bias based on ML models during the testing period (2013-2014)
are smaller than those in AHPS from 1997 to 2009 (Table 4), showing that the predicted median
water level values in ML models are much closer to the monthly average observations than AHPS,
even though both AHPS and the five ML models (MLR, MLP, M5P, RF, and KNN) underestimate
observations with negative forecasting bias. Table 5 indicates the time consumed during training and
testing periods in ML models, which are all less than one minute except for the GP model. This is
much faster than AHPS. ML models are more accurate than process-based AHPS in forecasting water
level, and can also save computational time and expense.

Table 4. Performance comparisons between AHPS and multiple ML models.

Bias in Median Water Level Forecast (cm)

Method
3-Month Forecast 6-Month Forecast

AHPS -5.50 -5.40

Gaussian Process 1.81 2.58
Multiple Linear Regression -2.05 -3.31
Multilayer Perceptron -3.64 —4.57
M5P Model Tree -2.05 -3.31
Random Forest Model Tree -1.97 —4.25
KNN -2.42 -3.60

Table 5. Time to train and test multiple ML models.

Model Train Time Test Time
Gaussian Process 156.0 s 35.39s
Multiple Linear Regression 0.28's 0.61s
Multilayer Perceptron 53.78 s 049s
M5P Model Tree 248 s 0.51s
Random Forest Model Tree 5.83s 0.73s
KNN <0.1s 2.35s

4.3. Impact of Training and Testing Data Selection

In this study, following existing studies [18,53], we used 84% of the total dataset (years 2002-2012)
as the training data and the remaining 16% (years 2013-2014) as the testing data. The performance
of ML models can vary with different sizes of training data. To explore the impact of the training
and testing data selection, we further examined these ML models with different sizes of training
data. Specifically, we built ML-based prediction models with different training data and tested their
performance on the same set of testing data (years 2013-2014). The detailed results are shown in



Water 2020, 12, 2654 11 of 14

Tables 6-11 (training data are from years 2008-2012, 2007-2012, 20062012, 20052012, 2004-2012,
and 2003-2012, respectively). We observed consistent performance of these ML models with different
training data, i.e., MLR and M5P are the best ML models for predicting the water level of Lake Erie.

Table 6. Summary of performance of multiple ML models with training data from 2008 to 2012.

Model RMSE MAE r MI
Gaussian process 0.09 0.07 091 8.43
Multiple linear regression 0.02 0.01 0.99 8.52
Multiple Perceptron 0.03 0.02 0.99 8.52
M5P Model Tree 0.02 0.01 0.99 8.54
Random Forest model tree 0.06 0.05 0.95 8.42
KNN 0.10 0.08 0.83 8.17

Table 7. Summary of performance of multiple ML models with training data from 2007 to 2012.

Model RMSE MAE r MI
Gaussian process 0.09 0.07 0.91 8.45
Multiple linear regression 0.02 0.01 0.99 8.42
Multiple Perceptron 0.02 0.01 0.99 8.59
M5P Model Tree 0.02 0.01 0.99 8.50
Random Forest model tree 0.06 0.05 0.95 8.41
KNN 0.11 0.09 0.80 8.21

Table 8. Summary of performance of multiple ML models with training data from 2006 to 2012.

Model RMSE MAE r MI
Gaussian process 0.08 0.07 0.92 8.50
Multiple linear regression 0.02 0.01 0.99 8.52
Multiple Perceptron 0.02 0.02 0.99 8.56
MS5P Model Tree 0.02 0.01 0.99 8.50
Random Forest model tree 0.05 0.04 0.96 8.44
KNN 0.11 0.09 0.81 8.19

Table 9. Summary of performance of multiple ML models with training data from 2005 to 2012.

Model RMSE MAE r MI
Gaussian process 0.08 0.06 0.93 8.45
Multiple linear regression 0.02 0.01 0.99 8.53
Multiple Perceptron 0.03 0.02 0.99 8.57
MS5P Model Tree 0.02 0.01 0.99 8.53
Random Forest model tree 0.06 0.05 0.95 8.39
KNN 0.11 0.09 0.79 8.21

Table 10. Summary of performance of multiple ML models with training data from 2004 to 2012.

Model RMSE MAE r MI
Gaussian process 0.08 0.06 0.94 8.44
Multiple linear regression 0.02 0.01 0.99 8.54
Multiple Perceptron 0.03 0.02 0.99 8.57
M5P Model Tree 0.02 0.01 0.99 8.54
Random Forest model tree 0.06 0.04 0.96 8.39

KNN 0.10 0.09 0.82 8.19
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Table 11. Summary of performance of multiple ML models with training data from 2003 to 2012.

Model RMSE MAE r MI
Gaussian process 0.08 0.06 0.94 8.47
Multiple linear regression 0.02 0.01 0.99 8.53
Multiple Perceptron 0.02 0.01 0.99 8.56
M5P Model Tree 0.02 0.01 0.99 8.53
Random Forest model tree 0.05 0.04 0.97 8.44
KNN 0.10 0.08 0.84 8.26

5. Conclusions

Considering multiple independent variables including meteorological data and one-day-ahead
observed water level, this study developed multiple ML models to forecast Lake Erie water level and
compared the performance among ML models by RMSE and MAE. MLR and M5P, among all ML
models, had the best performance in capturing the variations of water level with the smallest RMSE and
MAE, which were 0.02 and 0.01, respectively. Furthermore, this paper also compared the performance
of process-based AHPS and ML models, showing that ML models have higher accuracy than AHPS
in predicting water level. Based on the advantages of high accuracy and short computational cost,
ML methods could be used for informing future water resources management in Lake Erie.
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