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Assessing Evaluation Metrics for
Neural Test Oracle Generation

Jiho Shin, Hadi Hemmati, Moshi Wei, Song Wang

Abstract—Recently, deep learning models have shown promising results in test oracle generation. Neural Oracle Generation (NOG)
models are commonly evaluated using static (automatic) metrics which are mainly based on textual similarity of the output, e.g. BLEU,
ROUGE-L, METEOR, and Accuracy. However, these textual similarity metrics may not reflect the testing effectiveness of the generated
oracle within a test suite, which is often measured by dynamic (execution-based) test adequacy metrics such as code coverage and
mutation score. In this work, we revisit existing oracle generation studies plus gpt-3.5 to empirically investigate the current standing of
their performance in textual similarity and test adequacy metrics. Specifically, we train and run four state-of-the-art test oracle
generation models on seven textual similarity and two test adequacy metrics for our analysis. We apply two different correlation
analyses between these two different sets of metrics. Surprisingly, we found no significant correlation between the textual similarity
metrics and test adequacy metrics. For instance, gpt-3.5 on the jackrabbit-oak project had the highest performance on all seven textual
similarity metrics among the studied NOGs. However, it had the lowest test adequacy metrics compared to all the studied NOGs. We
further conducted a qualitative analysis to explore the reasons behind our observations. We found that oracles with high textual
similarity metrics but low test adequacy metrics tend to have complex or multiple chained method invocations within the oracle’s
parameters, making them hard for the model to generate completely, affecting the test adequacy metrics. On the other hand, oracles
with low textual similarity metrics but high test adequacy metrics tend to have to call different assertion types or a different method that
functions similarly to the ones in the ground truth. Overall, this work complements prior studies on test oracle generation with an
extensive performance evaluation on textual similarity and test adequacy metrics and provides guidelines for better assessment of
deep learning applications in software test generation in the future.

Index Terms—AI4SE, Large Language Model, Neural Oracle Generation, Test Adequacy Metrics, Automated Testing, and Test Case
Generation

✦

1 INTRODUCTION

Unit testing is considered a standard procedure when devel-
oping a software product. The primary goal of unit testing
is to verify whether a unit behaves as expected. However,
writing an effective unit test requires non-trivial effort for
developers. To mitigate this challenge, there have been
numerous recent studies to automate the process exploiting
deep neural generation models [1]–[4]. These models do not
consider the specific state (behavior) they want to test or
verify (oracle) and mainly focus on catching higher-level
exceptions or crashes of the software. Recently, researchers
further propose test oracle generators based on deep learn-
ing and large language models (LLMs), which aim to gen-
erate meaningful assertions or exception-handling logic for
a method under test by providing the state they want
to verify [5]–[9]. We call these approaches neural oracle
generation (NOG).

Textual similarity metrics such as BLEU [10] and exact
match accuracy [11] have been widely adopted to evaluate
NOG models’ performance. These metrics are calculated
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automatically and statically based on the textual similarity
of the generated oracle and the ground truth oracle. Due
to the ease of collecting benchmarks (no test case execution
is needed) and the cost efficiency in the calculation (string
similarity calculation), most studies adopt these metrics
to evaluate the performance of generated test oracles. Al-
though these generic metrics are useful to evaluate the
quality in readability and maintainability of tests (similarity
with human-written), their benefit in special domains such
as test adequacy of unit test cases and test oracle generation
is unclear.

Although the current field of NOG only considers textual
similarity metrics, test adequacy metrics, i.e. code coverage
and mutation scores, were widely used to evaluate gener-
ated test cases and oracles [12], [13]. These metrics evaluate
the effectiveness of unit tests and oracles in their complete-
ness of test coverage and fault detectability. Test adequacy
metrics are dynamic, meaning they are only obtainable by
executing the software under test and the test suite thus
cannot be evaluated using static/automated textual similar-
ity metrics. These are the currently well-known metrics that
can evaluate the actual capability of tests in the literature
[14]–[16].

Problem Statement: Despite the wide use of textual
similarity metrics in evaluating NOGs, no study confirms
their correlation with the generated oracle’s testing capa-
bilities. Without such a study, there is no guarantee that
a generated oracle with higher BLEU (but not 100%) is
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“better” (i.e., covering the same functionality and poten-
tially detecting the same bug as the ground truth oracle)
than one with lower BLEU. The oracle might be textually
similar to ground truth, but functionality-wise, it verifies a
completely different assertion. In other words, if the textual
similarity (i.e., BLEU type metrics) and the test adequacy
metrics have a low correlation, it would be a problem to
only consider the textual similarity metric as the primary
evaluation criterion for NOGs. This paper aims to fill this
gap and comprehensively analyze the relationship between
dynamic test adequacy metrics and static textual similarity
metrics for NOGs.

// Test prefix
testFileManagerNoFile () {

FileManager fileManager = FileManager.create();
fileManager.addLocatorFile();
try {

InputStream in =
fileManager.open(filenameNonExistent);

closeInputStream(in);
"<AssertPlaceHolder>";

} catch(NotFoundException ex) {
}

}
// Focal method
private void closeInputStream(InputStream in ) {

try {
if ( in != null ) in.close ( ) ;

} catch ( Exception ex ) {
}

}

// Ground truth oracle
assertNull("Found non-existent file: " +

filenameNonExistent, in)

// Generated oracle by GPT-3.5
assertEquals(null, in)

Listing 1: An example of oracle generation.

Listing 1 shows an example of when these two met-
rics do not agree with each other. The listing shows an
input and output example of an oracle generated by gpt-
3.5, i.e., an LLM developed by OpenAI which is a widely
used generative model in various domains including soft-
ware engineering [4], [17]. The task of a NOG is to gen-
erate an appropriate oracle that will be substituted with
“<AssertPlaceHolder>” when an aggregation of the test
prefix and the focal method is given as input. As we can
observe, the generated oracle and the ground truth oracle
function have the same functionality (i.e., check whether
‘in’ is null) but differ in the type of assert statement used.
We can consider that the model generated a correct oracle
with the same functionality and testing capability leading
to the same code coverage and mutation score. However,
the textual similarity metrics cannot capture their capability
resulting in a low BLEU score of 0.21. Such examples call
for a more thorough investigation of using textual similarity
metrics and their correlation to test adequacy metrics in
evaluating oracle generation tasks.

Before delving into the correlation between the two met-
rics, we first investigate current NOG literature to find their
performance in various textual similarity metrics, i.e. BLEU,
CodeBLEU, ROUGE-L, METEOR, Accuracy, Edit Similarity,
and ChrF. Then we check the testing effectiveness of the
oracles by measuring the test adequacy metrics, i.e., line
coverage and mutation score. After, we calculate the correla-
tions between the pairs of evaluation metrics (seven textual

similarity metrics and two dynamic test adequacy metrics).
Finally, we perform an ablation study on some of the results
to further analyze why we observe such discrepancies in the
two types of metrics.

The results show that the correlation between these two
evaluation metric categories is insignificant. Our manual
analysis found cases where the static metrics show an oracle
is textually similar to a developer-written oracle but are
quite different semantically (their line coverage and muta-
tion scores are very different). Or vice versa, the static met-
rics suggest the two oracles are syntactically very different,
but semantically very similar (e.g., same line coverage and
mutation score). These disagreements were the root cause of
the low correlation between the two metrics. Thus, we claim
that researchers should not only consider textual similarity
metrics assuming a high correlation between the textual
similarity metrics and the test adequacy metrics.

In summary, our main contributions are as follows:
• We revisit the performance of four state-of-the-art neu-

ral oracle generation models on two categories of met-
rics, i.e., static textual similarity metrics and dynamic
test adequacy metrics.

• As far as we know, this paper is the first to show
that there is no significant correlation between the two
categories of metrics, which shapes future research in
this domain.

• We provide a manual analysis of the findings and pro-
vide justifications on why there is a mismatch between
static and dynamic metrics in this domain, based on our
observations.

• We provide a new benchmark for evaluating and study-
ing NOG models, with almost 30K executable methods
under test and their corresponding metrics from 13
open-source projects. We also release our experiments’
dataset and source code to help other researchers repli-
cate and extend our study1.

The rest of this paper is organized as follows. Section 2
presents the background. Section 3 shows the experimental
setup. Section 4 presents the evaluation results. Section 5
discusses the threats to the validity of our study. Section 6
presents the related studies. Section 7 concludes this paper.

2 BACKGROUND

2.1 Current NOG’s Evaluations

The current literature on NOG mainly focuses on the JUnit
frameworks, a Java unit testing framework. Here we list
the most closely relevant studies in NOG that generate
assertion oracles when the test prefix and method under test
are given. ATLAS [5] was the first study to exploit a deep
neural generative model for generating assertion oracles.
They have evaluated their models in two different settings:
1) the abstract data where they normalize all identifiers, e.g.
IDENT 0/1/2 and METHOD 0/1/2, and 2) the raw data
where they keep all the raw identifiers. They have used ex-
act match accuracy and BLEU-4 score to evaluate the perfor-
mance. They also investigated what types of assertions were
generated by the models, e.g. asserEquals, assertNull,

1. https://github.com/shinjh0849/assessing ntog
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TABLE 1: Performance of NOGs in the original papers.
NOGs BLEU ACC
ATLAS 61.85 17.66
IR Old 78.86 46.54
IR New 60.92 42.20
TOGA - 69.00

assertThat, etc. Yu and Lou et al. [6] extended the for-
mer by integrating simple information retrieval techniques
(abbr. IR), i.e. Jaccard coefficient [18], Overlap [19], and Dice
coefficient [20]. They have used the same evaluation metrics
from the former, i.e. accuracy and BLEU-4. TOGA [7] ex-
ploits a unified transformer-based neural model to generate
exception handling and assertion for unit test case oracles.
It first generates oracle candidates using type constraints
for assertion types and forms vocabularies by observing the
variables accessible from the test for the parameters. Then
it ranks the best candidate using CodeBERT [21], choosing
the top-1 as the generated oracle. These proposed methods
have shown great potential in NOGs using textual similarity
metrics, ranging from 17.66% [5] to as high as 96% TOGA in
accuracy according to their reports. In Table 1, we report the
static textual similarity metrics used in the relevant studies,
i.e., BLEU and accuracy score.

2.2 Test Adequacy Metrics
In software testing [12], [13], the effectiveness of a unit test
or an oracle is evaluated using test adequacy metrics, e.g.,
code coverage and mutation score. Code coverage metrics
evaluate how much the software under test is exercised [22],
[23] by the test case. When software test suites have low cov-
erage, some parts of the software remain untested, leading
to incomplete testing. However, high coverage (e.g., cover-
ing all lines of code) does not guarantee that the test cases
detect all bugs in that code. Different code coverage metrics
exist, e.g., function, line, statement, condition, branch, path,
data-flow coverage, etc. For example, if a test case exercises
5 lines of software under test with a total number of 10 lines,
the line coverage of the test case will be 50%.

Another category of test adequacy metrics is fault-
based coverage criteria. Unlike coverage-based metrics,
fault-based metrics focus on detecting faults (defects). A
test is effective if it finds all defects in the code. This is
the ultimate metric for any testing approach, but given
that the defects are typically not known while testing, in
practice fault-based testing must simulate defects. There are
many approaches for this for example seeding old bugs
into code or manually adding likely bugs, but the most
systematic way is mutation testing [24], [25]. In mutation
testing bugs are seeded into code as small changes syntactic
changes, or mutations. This can be done automatically by
defining mutation operators that systematically insert bugs
in the code wherever applicable. A mutation score is the
corresponding adequacy metric that calculates the test cases’
ability to identify (kill) those seeded faults (mutants). For
example, if 10 mutations were applied to the software under
test, and the test cases reveal (kill) 5 mutants, the mutation
score is 50%.

Although covering all the code or killing all mutants still
does not guarantee bug-free software, these two metrics,
so far, are the best evaluation methods in software testing,

which target evaluating the completeness and effectiveness
of the generated test cases/oracles. These properties of
tests can only be assessed with dynamic execution and
thus cannot be evaluated from generic static/textual sim-
ilarity metrics, which assess only the syntactic similarity
(and not semantic or functionality). One simple example
of syntactic vs. semantic similarity is when two oracles
can be syntactically very similar (e.g., only one character
difference; one testing a method with 0 and one with 1,
as one of the method’s parameter values), but semantically
very different (e.g., the zero case covers a very different path
in the control flow graph that results to a failure). Thus a
purely syntactic metric will have a hard time distinguishing
between the two oracles and if used as the only metric
for NOG, result in creating sub-optimal oracles with high
BLEU values. Therefore, at best, most NOG literature that
only evaluates textual similarity metrics implicitly assumes
a strong positive correlation between dynamic test adequacy
metrics and textual similarity metrics. However, there is no
study to support this assumption.

3 EXPERIMENTAL DESIGN

In this section, we explain the neural oracle generation
models, our dataset, the evaluation metrics, the correlation
analysis used in the paper, our research questions, and their
corresponding procedures.

3.1 Neural Oracle Generators (NOGs)

We select three state-of-the-art (SOTA) NOG models based
on the following criteria:

• Should be a neural oracle generation model proposing
a novel approach for oracle generations.

• Should be published within 3 years to represent SOTA.
• The replication package should be publicly available.
• The study should report evaluation results to their gen-

erated oracles’ quality (using any comparable metric).
As a result, three NOG models were selected from 13
candidate papers published on main Software Engineering
and testing venues (ICSE, FSE, ASE, ISSTA, ICST, AST,
TSE, TOSEM, EMSE, IST, and arXiv). Out of 13 candidates,
three baselines were selected as 1) two papers did not have
a public replication package [8], [26], 2) two used oracle
generation as a downstream task on a pre-training model
(not a novel approach for oracle generation) [27], [28], 3)
four focused on a different task, i.e., test completion [29],
bug reproduction [30], enhancing SBST with LLM [31], and
whole unit test case generation [32], and 4) two evaluated
with a different perspective, i.e. oracle ranking [33] and
predicting passing/failing oracles [34]. We included gpt-3.5
as a baseline for SOTA LLM, which has not been applied on
NOG at the time of conducting this study but is deemed
relevant. The four selected NOGs in this study are the
following:

• ATLAS [5]: is the first study to apply a deep neural
generation model on oracle generation. It exploits a
sequence-to-sequence encoder-decoder (RNN) model
to learn and automatically generate an oracle when the
test prefix and the focal method are given as input.
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• IR [6]: extends the previous study ATLAS by leveraging
information retrieval techniques and integrating deep
learning to enhance performance. They also expanded
the evaluation by adding unknown vocabulary to make
the oracle generation problem more challenging.

• TOGA [7]: proposed a unified transformer-based neu-
ral model for exceptional and assertion oracles. They
first identify if the test method should raise an ex-
ception or generate an assertion. If it decides to raise
an exception, it generates a try-catch clause. If not, it
generates candidate assertions with different parame-
ters. Then an assertion oracle ranker decides the best
candidate for generating the assertion.

• gpt-3.5 [35]: is a generative large language model (LLM)
developed by OpenAI. gpt-3.5 is one of the most widely
used LLMs. We wanted to investigate the impact of
LLM as it has shown great potential in generating
source code for different software engineering tasks [4],
[9], [17], [36].

3.2 Dataset
As all three NOG models evaluate their performance with
the ATLAS dataset [5], i.e., a set of Java projects with test
cases, we reuse the same dataset to facilitate a direct
comparison between their results and ours. We do not
investigate additional datasets as we deem this dataset com-
prehensive, i.e. covers over 9K projects in various domains
with more than 320K instances. The dataset is a parallel
corpus of test prefixes plus the focal method paired with the
oracle. However, to calculate the test adequacy metrics, we
have to execute each test method and its corresponding focal
method. To execute them, we need the package information
of the projects that they were originally mined from. In the
replication package of the ATLAS paper, they provide the
resulting raw dataset of test-oracle pairs and the project lists
they used for mining. Since the script that constructs the
original dataset was not publicly available and each instance
was randomly shuffled, retrieving the package information
was not possible. So, we replicate and re-implement the
ATLAS dataset by following the steps reported in their
papers.

The steps to mine the ATLAS dataset are as follows:
First, we clone the project list that is publicly available in
the original ATLAS paper. We extract all methods with the
@Test annotation, which is inherently used by the JUnit
framework for unit test cases. For retrieving the oracle, we
parse the test methods and look for the specific invocation of
assertion APIs, e.g., assertEquals, assertTrue, assertNull, etc.
To parse the corresponding focal method, we first extract
all methods declared within the project. Then we apply
a heuristic to iterate all the invoked methods within the
test method. The invoked methods are queried to the list
of declared methods in the project. Then we get the last
matched method before the oracle statement, assuming it’s
the focal method. Note that if there is a method invoked
within the assertion parameter, we take the method as a
focal method instead. Test methods with more than one
assert line are filtered as ATLAS only focuses on single-line
assertion generation as well as duplicate instances.

After retrieving the test-oracle pairs, we split the train,
valid, and test set at a project level so that instances in the

TABLE 2: Experiment data
Training Validation Test Total

#of instances 261.7K 32.4K 29.7K 323.9K
Avg. input tokens 78.96 78.39 85.42 79.99

Avg. output tokens 13 12.87 13.03 12.99
Unique input tokens 706.5K 110.7K 96.4K 851K

Unique output tokens 172.7K 29.2K 22.9K 204.6K

same project are not in different splits to remove potential
information leakage within the projects. We randomly shuf-
fle the projects and assign them to the train-valid-test set
with a ratio of 8:1:1, which is the same ratio as the ATLAS
dataset. For evaluating projects on an execution level, we
use a subset of the test set comprised of 13 projects as
all the projects weren’t deployable. We considered the raw
version of ATLAS where we keep identifier names since
it is a more challenging problem and IR and TOGA only
consider them as well. We also adapt the ideas of IR’s
new dataset that considers unknown vocabularies to better
reflect the data distribution of the real world [6]. We didn’t
consider Methods2Test used in TOGA as we only focus on
assertion oracles rather than exceptional oracles or whole
unit test case generations. As shown in Table 2, after re-
implementing the data construction we resulted in a total of
323,994 test-oracle pairs, 261,794 for the train set, 32,476 for
validation, and 29,724 for the test set.

3.3 Evaluation Metrics

3.3.1 Textual Similarity Metrics

Existing oracle generation methods used textual similarity
metrics which were originally adopted from the natural
language processing (NLP) field to assess the performance
of their models. The three NOGs used BLEU and Accuracy
to assess their models. However, researchers pointed out
that BLEU and Accuracy are not suitable to assess code
generation models due to the distinct difference between
natural language and source code [37], [38]. For a more
comprehensive experiment, we have also added other met-
rics, i.e., CodeBLEU, METEOR, ROUGE-L, Edit Similarity,
and ChrF which are widely used to assess code generation
models. Note that all these metrics are textual similarity
metrics that compute a similarity score between the gener-
ated oracle and the ground-truth reference. All the studied
metrics range between 0 to 1, with 0 being a complete
mismatch and 1 being a perfect match. However, we report
them as rates with percentage points (0 to 100%).

1) BLEU-4 (abbr. BLEU) [10] is a widely used evaluation
metric that evaluates the text quality generated by the
model. It is calculated by an n-gram precision which
is the number of matching n-grams from the generated
and the ground truth text. We use 4-gram, i.e., BLEU-
4, as it is the most widely used and also used by the
baseline approaches in this work.

2) Accuracy (abbr. ACC) [11] is the number of true
predictions over the total amount of instances. The
generated is a true positive only if it is an equivalent
text, i.e. exact match, to the ground truth.

3) CodeBLEU (abbr. CB) [37] is an evaluation metric
specifically designed for code generation models. It is
calculated by the combination of a weighted n-gram
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precision (token similarity), AST matching (syntax sim-
ilarity), and data flow matching (semantic similarity).

4) ROUGE-L (abbr. RL) [39] is another metric used in
similarity-based metric. Out of the different ROUGE
values, we report the ROUGE-L value which exploits
the Longest Common Sub-sequence (LCS) in evaluating
the similarity of the texts.

5) METEOR (abbr. MT) [40] is also commonly used to
evaluate textual similarity. The metric is calculated by
the harmonic mean of unigram precision and recall but
with a higher weight on recall.

6) Edit Similarity (abbr. ES) [41] is a metric that imple-
ments Levenshtein distance to measure the distance
between two sequences by calculating the smallest
number of edit operations (i.e., insertion, deletion, and
replacement) required to transform one string into an-
other.

7) Character n-gram F-score (abbr. ChrF) [42] focuses on
character-level n-grams, i.e., sub-sequence of charac-
ters. It is calculated by the harmonic mean of how many
n-grams are correct (Precision) and how many reference
n-grams are covered (Recall).

We used a Python script to calculate all the textual
similarity metrics. We calculated BLEU and METEOR us-
ing the nltk package. We used (0.25, 0.25, 0.25, 0.25) as
the weights for BLEU and a basic smoothing function to
match previous studies. For ACC and ChrF, we created a
simple script without any packages. For CodeBLEU, we
used the script provided by CodeXGLUE [43]. We used
the rouge_scorer package to calculate ROUGE-L. For
Edit similarity, we used SequenceMatcher in difflib
package. All the non-mentioned parameters were set to
default.

3.3.2 Test Adequacy Metrics

Following existing work, we use line coverage and mutation
score in this work to measure the test adequacy of generated
test oracles [44]–[46]. Note that these metrics are calculated
by executing the project (thus dynamic) to evaluate the
adequacy of the generated tests. All range between 0 (not
adequate at all) and 1 (perfect adequacy). We also report
them as percentage points (0 to 100%).

1) Line Coverage: is a common coverage metric to mea-
sure the number of lines covered when a test case is
executed. It shows the test case’s strength regarding
their completeness in exercising the source code line-
wise.

2) Mutation Score: is a fault-based metric to measure the
quality of the generated test case by measuring how it
can effectively detect synthetic faults (code mutants).
The ability to detect a mutant means that the tests are
likely to be effective at catching real faults.

3.4 Correlation Analysis

To measure the correlation between each pair of metrics
(i.e. one textual similarity and one test adequacy metric),
we have chosen two correlation analysis methods, namely
Spearman’s and Kendall’s rank correlation analysis. We
chose these two methods because we need a statistical test

that can be applied to non-parametric distributions. Spear-
man’s and Kendall’s rank correlation measures the correla-
tion between two ranked variables. They are non-parametric
measures of statistical dependence between two variables
and work on non-normal distributions. The reason for using
non-parametric measures is that we cannot guarantee a
normal distribution from the variables where parametric
tests assume them to be normally distributed. If parametric
tests are applied to non-normally distributed variables, it
can lead to inaccurate results. Spearman’s calculation is
calculated based on deviations from the mean ranks, while
Kendall’s correlation is calculated based on concordant and
discordant pairs of ranks. Previous studies have commonly
used these methods for correlation analysis on evaluation
metrics, thus we follow their methodology [47]–[51].

3.5 Research Questions

We design experiments to answer the following research
questions:

RQ1: How do current NOGs perform based on textual
similarity evaluation metrics? In the literature, NOGs are
evaluated with two metrics, i.e. Accuracy and BLEU score.
We added five other majorly used textual similarity metrics,
i.e. CodeBLEU, ROUGE-L, METEOR, Edit Similarity, and
ChrF for a more comprehensive empirical study. Thus this
RQ will show a thorough comparison among SOTA NOG
models regarding seven different textual similarity metrics.

RQ2: How do current NOGs perform based on test
adequacy evaluation metrics? RQ1 compares different
baselines based on the quality of the generated oracles
measured by the textual similarity metrics. RQ2 repeats this
experiment with dynamic test adequacy metrics. Since the
goal of a NOG is to create an oracle as close as possible to
a developer-written oracle, we measure how close the line
coverage and mutation score of the generated oracles are
to the developer-written oracles. Thus the main motivation
behind RQ2 is whether we see the same trends when
comparing baselines as RQ1.

RQ3: What is the correlation between textual similarity
and test adequacy metrics? The main motivation of RQ3
is to come up with a recommendation for the research
community on which static textual similarity metrics
(if any) can safely be used as a surrogate measure for
expensive adequacy metrics when evaluating their NOGs.
A high/low correlation between a textual similarity metric
and any test adequacy metric will be used as evidence of
whether the textual similarity metric should be used in
future research in this domain.

RQ4: What are the reasons behind the correlation in RQ3?
To further analyze the root cause of correlations in RQ3,
we manually analyze samples with mismatched correlation
coefficients. Looking at these examples, we want to find
out why some of the generated oracles have high scores
in one metric category but low in the other. The goal is to
provide justifications, based on the observed patterns, for
the recommendations given in RQ3.
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TABLE 3: The number of injected oracles generated by each NOG. Ms denotes the number of test methods, Cs denotes the
number of affected classes, and Ss denotes the number of affected sub-modules.

ATLAS IR TOGA gpt-3.5
project name Ms Cs Ss Ms Cs Ss Ms Cs Ss Ms Cs Ss
activemq-artemis 379 177 21 489 211 21 66 43 13 472 210 21
cayenne 417 204 13 460 224 13 94 65 4 463 217 21
cloudstack 410 198 41 466 223 43 190 80 31 466 218 43
cxf 709 291 60 1091 329 62 66 52 22 690 323 62
drill 295 144 39 386 165 40 73 49 17 349 164 40
hadoop 537 356 41 667 426 41 91 67 20 172 92 2
ignite 573 377 15 214 120 8 158 112 9 655 409 15
itext7 520 242 10 606 266 10 61 39 9 586 257 10
jackrabbit-oak 907 504 29 1107 581 29 398 246 21 1111 566 29
james-project 252 121 45 325 138 48 4 4 1 282 129 46
jena 815 273 24 920 293 24 132 49 12 930 293 24
nifi 468 289 118 541 338 128 159 115 64 546 328 128
openmrs-core 507 157 3 540 170 3 215 82 3 391 132 1
total 6789 3333 459 7812 3484 470 1707 1003 226 7113 3338 442

3.6 Experiment Procedure

Experiment Setting for RQ1: We assess the textual simi-
larity evaluation metrics, i.e. BLEU, Accuracy, CodeBLEU,
ROUGE-L, METEOR, Edit Similarity, and ChrF on the stud-
ied NOGs. To generate oracles from the existing NOGs, i.e.,
ATLAS, IR, and TOGA, we download the publicly available
replication package shared in the paper and follow their
instruction to train and run these tools on our dataset. We
also report the BLEU and Accuracy scores reported in the
original paper for comparison.

For gpt-3.5, following existing work [9], we feed a single
basic query (zero-shot) to suggest a single line oracle be
replaced in the oracle placeholder given the text prefix and
its focal method. We used gpt-3.5 APIs for the model version
as it was the latest model accessible to us during the time of
our experiment.

We expect there would be a noticeable gap in the textual
similarity metrics between our evaluation and the originally
reported evaluation as we have divided the train-valid-
test splits so that instances from the same project would
fall into the same split. This is to mitigate any possible
project-specific information leak between the train and the
evaluation sets [4].
Experiment Setting for RQ2: To calculate the test adequacy
metrics, we build and execute each project and run the test
cases with the generated oracles injected into the project.
Since the ATLAS dataset only considers single-line oracles,
there are numerous test cases in the repository that are not
our target. So we construct a sub-project for each project that
only has the target test cases (those with single-line oracles).
Specifically, we first remove all the test cases that are not in
our test set for each project. After we get the sub-projects,
we replace the generated oracles with the original oracles
written by the developers. Since the generated oracles are
not guaranteed to be executable, after the replacement, we
check if the modified test case with the generated oracles
is still executable on the project (note that the original
developer-written tests are all executable, before replacing
their oracles). We exclude test cases if they become not
executable after the oracle injection as we need all test suites
to be passing to calculate the test adequacy metrics. The
resulting numbers of injected oracles are organized in Table
3. We use PIT [52] to calculate the test adequacy metrics,
i.e. line coverage and mutation score. We also calculate and

report (as the original score plus/minus the difference after
the replacement) the test adequacy metrics per sub-project
within the dataset.
Experiment Setting for RQ3: We conduct a correlation
analysis between the textual similarity metrics and the test
adequacy metrics. We get both metrics at the project level
and perform correlation analysis using Spearman’s and
Kendall’s rank correlation coefficient as they are the most
common analysis done by different previous metric analysis
studies.

The two variables being measured for rankings are one
textual similarity metric versus one test adequacy metric.
Note that for the adequacy metrics, similar to RQ2, we use
the differences (deltas) between the score of the developer-
written oracle and the generated oracle. We calculate the
correlations between each textual similarity metric and the
normalized inverse of |delta| of line coverage and mutation
scores (min-max normalization). We use delta and not the
actual metric score to capture the difference in test adequacy
between the ground truth (human-written) and the model-
generated oracle. This is to match what the similarity met-
rics are also assessing, capturing the similarity of the ground
truth and the model generated. We take the normalized in-
verse to make the delta (difference/distance) into similarity
to match textual similarity metrics.

Since we have seven textual similarity metrics and two
test adequacy metrics, we have a total of 14 correlation
test runs, per project and baseline. However, the number of
samples (projects) per baseline is limited (only 13 projects)
which harms the statistical tests p-values. We report this
individual baseline analysis in the supplementary material
in the replication package. But in the paper, we aggregate
the four baseline data and look at a pool of 52 (13 X 4)
samples per distribution (i.e., each distribution consists of
52 sample values for a given metric). Then we report the
correlation coefficients (ρ or τ ) and p-values per correlation
test when comparing two metrics (each with a distribution
of 52 samples).

From the results, we want to see how many metrics
have a significant correlation between them, i.e. p-values
of less than 0.05, and ρ or τ values of at least 0.5. We expect
these two metrics to have a negative correlation because
high similarity metrics mean the two sequences are similar
whereas similar code will result in lower |delta| (difference).
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TABLE 4: Performance of NOGs with our new dataset. Each
column denotes the score of the seven textual similarity
metrics. Bold denotes the best score from a NOG.

NOGs BLEU ACC CB RL MT ES ChrF
ATLAS 32.88 2.15 12.83 22.21 41.98 46.93 22.77
IR 34.35 5.28 21.29 21.99 40.11 49.17 24.48
TOGA 12.78 9.73 12.79 12.3 12.73 12.93 11.29
gpt-3.5 49.65 11.35 26.63 44.13 51.26 61.78 30.85

TABLE 5: Automatic similarity metric scores on ATLAS.
Project Name BLEU ACC CB RL MT ES ChrF
activemq-artemis 34.32 3.66 13.85 20.94 42.41 45.02 17.92
cayenne 40.66 0.72 17.76 31.24 50.42 54.06 28.80
cloudstack 30.42 0.24 11.43 26.22 46.51 50.10 25.88
cxf 34.20 0.14 10.19 25.05 47.17 48.64 24.07
drill 32.95 0.00 10.92 20.20 39.73 43.98 23.20
hadoop 31.85 0.74 12.26 22.39 41.51 47.95 23.40
ignite 36.81 1.05 18.29 28.25 46.91 51.88 25.75
itext7 33.52 8.46 13.34 22.90 41.65 47.03 25.70
jackrabbit-oak 30.40 0.33 13.25 17.06 41.84 45.61 19.93
james-project 26.29 0.00 20.61 9.35 27.53 36.53 12.59
jena 35.46 0.86 7.61 32.67 47.28 50.89 29.45
nifi 32.87 2.35 14.72 28.20 49.86 50.15 27.24
openmrs-core 30.11 0.99 8.66 14.20 40.36 42.68 17.46
average 33.07 1.50 13.30 22.97 43.32 47.27 23.18
stdev 3.54 2.33 3.81 6.72 5.96 4.60 4.93

TABLE 6: Automatic similarity metric scores on IR.
Project Name BLEU ACC CB RL MT ES ChrF
activemq-artemis 28.40 3.89 13.16 18.34 35.86 47.14 22.42
cayenne 35.89 0.00 11.72 34.17 41.24 52.54 26.61
cloudstack 44.83 18.24 27.18 34.17 48.51 60.40 39.70
cxf 32.71 1.19 14.12 19.66 38.44 49.96 25.87
drill 25.17 0.00 11.08 14.89 29.26 44.15 20.04
hadoop 53.08 29.54 33.97 44.37 55.77 65.92 47.05
ignite 26.61 0.80 8.68 13.52 33.15 46.34 21.90
itext7 31.79 8.42 18.47 19.73 34.87 49.99 26.79
jackrabbit-oak 32.64 4.52 18.11 18.90 40.11 50.06 24.32
james-project 24.83 0.31 14.17 9.17 29.15 40.25 17.20
jena 34.00 6.65 16.28 38.48 50.59 61.19 45.28
nifi 34.00 6.65 16.28 22.10 41.20 50.69 27.65
openmrs-core 28.64 0.74 12.08 10.05 35.94 44.55 19.48
average 33.28 6.23 16.56 22.89 39.55 51.01 28.02
stdev 7.98 8.65 6.96 11.26 8.04 7.42 9.75

We expect a delta score of zero for a perfectly generated
oracle. A higher value of |delta| means the two oracles are
semantically different.
Experiment Setting for RQ4: In this RQ, we select 104
random samples of generated oracles to understand what
causes the correlations. We are specifically interested in
cases that have a high disagreement between the textual
similarity and adequacy metrics. We pick random 2 samples
from each project generated by each NOG where the models
are given the same input, i.e., the same generation problem
(2 X 13 X 4 = 104).

While doing the manual analysis, we look for any pat-
terns of syntax and semantics of the test code or the oracle
itself that may have caused the disagreement.

4 EXPERIMENTAL RESULTS

4.1 RQ1: Textual Similarity Metrics
The results of the four studied NOGs are organized in
Table 4. We show the scores of all seven textual similarity
metrics discussed in Section 3.3. We also organize the results
reported in the original papers for comparison, in Table 1.
In Table 1, the results of ATLAS are from evaluating the
raw dataset (without normalizing identifier names) which
is the version used by the other NOGs, i.e. IR and TOGA.
For the results of IR, we report the results from the old

TABLE 7: Automatic similarity metric scores on TOGA.
Project Name BLEU ACC CB RL MT ES ChrF
activemq-artemis 9.16 7.36 9.18 8.88 9.14 9.23 7.99
cayenne 11.70 5.70 8.27 10.63 11.51 11.99 11.29
cloudstack 25.81 23.97 19.34 25.42 25.74 25.95 24.35
cxf 5.78 5.38 5.79 5.74 5.78 5.80 5.52
drill 6.38 5.45 4.71 6.27 6.34 6.40 6.34
hadoop 8.04 6.92 8.02 7.79 7.98 8.10 7.66
ignite 16.92 11.57 17.13 16.06 16.91 17.21 14.55
itext7 5.17 4.33 5.19 5.03 5.15 5.22 4.66
jackrabbit-oak 20.72 16.01 20.78 20.12 20.65 20.88 17.61
james-project 0.27 0.27 0.20 0.27 0.26 0.27 0.27
jena 8.55 7.08 8.54 8.35 8.54 8.63 7.70
nifi 17.04 12.73 12.56 16.26 16.26 17.24 15.50
openmrs-core 17.11 8.19 17.50 15.60 17.00 17.52 10.24
average 11.74 8.84 10.55 11.26 11.64 11.88 10.28
stdev 7.26 6.05 6.37 7.00 7.19 7.34 6.37

TABLE 8: Automatic similarity metric scores on gpt-3.5. Bold
denotes the best score. The asterisk denotes the best average
metric score across all NOGs.

Project Name BLEU ACC CB RL MT ES ChrF
activemq-artemis 45.11 9.32 28.66 40.48 48.78 60.44 25.41
cayenne 60.31 18.79 54.67 56.54 62.39 72.77 45.22
cloudstack 55.30 18.45 33.36 49.03 57.09 68.75 38.28
cxf 53.28 11.16 31.85 51.39 59.66 67.51 35.82
drill 47.36 6.30 35.58 39.67 45.30 60.21 29.79
hadoop 59.23 26.24 40.36 48.23 55.84 66.89 38.14
ignite 43.28 7.79 32.21 39.08 46.96 59.37 27.46
itext7 49.78 17.58 25.80 46.24 51.49 63.03 33.54
jackrabbit-oak 44.78 7.29 26.04 37.64 49.13 60.96 26.19
james-project 43.68 3.19 26.04 31.78 34.60 53.78 20.29
jena 69.96 47.85 42.54 68.07 70.76 78.65 63.26
nifi 54.03 19.05 33.93 49.83 58.72 67.79 37.48
openmrs-core 58.91 10.79 29.44 48.00 56.61 68.88 35.60
average 52.69* 15.68* 33.88* 46.61* 53.64* 65.31* 35.11*
stdev 8.03 11.69 8.14 9.34 9.05 6.54 10.81

and new datasets. IR Old is the result of using the same
dataset as ATLAS, without unknown tokens. IR New is the
new dataset that keeps instances that were dropped from
the old dataset due to the unknown tokens. For TOGA, we
report the results that used ATLAS dataset for their assertion
oracle generation. We can see that TOGA does not report
the BLEU score as the methodology treats this problem as
a ranking problem. However, considering the first-ranked
candidate assertion as a generation output, we can calculate
the BLEU score. So for comparison, we have included them
in our results.

Using the original ATLAS dataset, the best accuracy
reported in the original papers is TOGA. Since TOGA has
a very high score on accuracy, it is very likely that it also
achieves the best BLEU score because accuracy is a much
more strict evaluation metric to achieve. However, since
they do not report the exact BLEU score, it is uncertain. So
the NOG that has the best reported BLEU score is generated
from IR Old.

Comparing what is reported in the original papers in
Table 1 and the ones we evaluate in Table 4, we can see that
the BLEU and accuracy scores reported from the original
papers have a big gap from the results we got from the
newly processed data. As mentioned in Section 3.5, one
possible reason for this is that the splitting of train-valid-test
splits at a project level is impacted by removing information
leaked into the new test set [4]. By keeping the instances
from the same project in each split, similar code structures
and project-dependent information are removed from the
training set, making it harder for the NOG models to gener-
ate project-specific oracles.
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TABLE 9: The results of test adequacy metrics for each NOG. LC denotes the line coverage metric and MS denotes the
mutation score. Column ±% denotes the absolute difference in percentage points. The green color shows an increase after
injection and the red shows a decrease after the injection.

ATLAS IR TOGA gpt-3.5
project name LC ±% MS ±% LC ±% MS ±% LC ±% MS ±% LS ±% MS ±%
activemq-artemis 28.31 -0.02 27.09 0.79 27.97 -0.23 29.69 -0.26 28.58 0.24 28.77 1.65 22.71 -0.19 21.68 -0.20
cayenne 46.69 0.00 38.47 0.11 44.32 0.00 40.53 -0.49 56.42 0.00 31.59 0.56 45.71 0.00 41.73 0.32
cloudstack 35.76 0.00 34.21 -0.15 35.19 0.00 32.93 -0.20 38.63 0.00 39.18 -0.40 34.39 1.73 33.50 1.88
cxf 29.56 0.00 25.08 0.00 28.60 0.00 24.75 0.00 22.30 0.00 17.72 0.24 33.44 2.77 32.25 0.89
drill 49.04 0.41 36.68 1.06 35.59 0.00 25.17 0.36 14.64 0.00 5.49 0.00 43.18 2.63 26.64 2.30
hadoop 21.02 0.00 13.33 -0.08 27.31 0.00 23.53 0.00 16.07 0.00 6.05 0.00 21.02 -0.66 17.23 -3.06
ignite 48.93 0.00 42.95 0.00 33.78 0.00 37.27 0.00 22.86 0.00 25.90 0.00 48.93 0.00 42.95 -0.72
itext7 53.51 0.00 44.96 -0.41 54.01 0.00 48.99 -0.15 38.85 0.00 15.20 0.00 51.96 0.00 46.13 -0.61
jackrabbit-oak 36.10 0.00 33.93 0.85 36.76 0.00 42.67 0.00 28.03 0.00 26.00 0.06 36.36 -0.68 32.70 -0.83
james-project 31.22 0.00 32.77 -2.87 33.94 -2.74 34.54 -1.73 35.60 0.00 28.30 0.00 33.94 0.00 33.07 -1.39
jena 52.75 -0.05 52.27 0.76 59.94 0.00 60.23 0.00 38.62 0.00 35.43 0.00 59.87 0.52 57.53 3.23
nifi 58.16 0.00 58.48 0.00 58.16 0.00 58.48 0.00 58.37 0.00 53.38 0.00 63.41 0.00 59.74 -0.46
openmrs-core 8.25 0.00 4.82 0.00 8.25 0.00 4.82 0.00 8.25 0.00 4.82 0.00 8.25 0.00 4.85 -0.03
median 36.10 0.00 34.21 0.00 35.19 0.00 34.54 0.00 28.58 0.00 26.00 0.00 36.36 0.00 33.07 -0.20
average 38.41 0.03 34.23 0.00 37.22 -0.23 35.66 -0.19 31.32 0.02 24.45 0.16 38.71 0.47 34.62 0.10
stdev 14.64 0.12 14.63 0.98 14.18 0.76 15.14 0.50 15.16 0.07 14.37 0.49 15.75 1.15 15.39 1.66

Overall, in terms of the average scores across the
projects, gpt-3.5 exhibits the best performance among all
textual similarity metrics (See average values with an as-
terisk in Table 8). In Tables 5-8, we also report the textual
similarity metrics at a project level to investigate their effec-
tiveness in each project. Each table has a bold score for each
metric score that achieves the highest with its model. For
instance, ATLAS achieves the highest BLEU, METEOR, and
Edit Similarity scores when evaluating cayenne project, the
highest accuracy on itext7, the highest CodeBLEU on james-
project, the highest ROUGE-L and ChrF score on jena. For IR,
all the best score was achieved when evaluating the hadoop
project. For TOGA, it achieves the highest on six metrics
when evaluating cloudstack, except for CodeBLEU, which is
from jackrabbit-oak. And lastly, gpt-3.5 achieves the best on
jena for six metrics, except for CodeBLEU which achieves
on the cayenne project. Looking at all these project-level data,
gpt-3.5 has the highest average metric values (marked with
an asterisk in Table 8).

Another clear observation is that the results of the
baseline NOGs can vary depending on the project and
the variation is not consistent across the techniques. To
summarize these variations we also report the standard
deviation per baseline metric over the 13 projects. The
results show that gpt-3.5 had the highest standard deviation
in five out of seven metrics (only the IR’s RL and ES had a
higher standard deviation than gpt-3.5). Despite having the
best performance on the textual similarity metrics, it was
shown that it didn’t have the best reliability in generating a
consistent performance across different projects.

From what is originally reported, TOGA has the best over-
all score for textual similarity metrics. From evaluating
the newly curated dataset, gpt-3.5 has the best scores for
all seven textual similarity metrics. There is a big drop
in textual similarity metrics when we consider project-
level for splitting. However, we also found that gpt-3.5
had the highest standard deviation, showing that it has a
less reliable performance in generating oracles in different
projects.

4.2 RQ2: Test Adequacy Metrics

The overall results of test adequacy metrics are shown in Ta-
ble 9. We also report the box plot of test adequacy metrics to
compare the different NOGs evaluated in this study in Fig.
1. As discussed in Section 3.6, we execute the sub-projects
before and after replacing the oracles generated by each
studied NOG. The test adequacy metrics scores reported in
Table 9 are calculated before the injection and the column
denoted with ±% on the right side of each metric shows
the absolute percentage point difference by calculating the
metrics after the generated oracles are injected.

As explained in Section 3.6, the level of increase or
decrease in the test adequacy metrics is not big as we are ex-
pecting the generated oracle to be similar to the developer-
written one. For the results of ATLAS, we can see that the
highest increase in line coverage and mutation score is from
evaluating the drill project. For IR, drill had the highest
increase in mutation score but no projects were increased for
line coverage. For TOGA, activemq-artemis had the highest
increase in both line coverage and mutation score. For gpt-
3.5, cxf had the highest increase in line coverage and jena in
mutation score.

To compare which NOG has the best performance over-
all, we can observe that gpt-3.5 has the highest increase in
line coverage when evaluating cxf and mutation score when
evaluating jena. If we consider the average increase of line
coverage, gpt-3.5 still has the best performance while TOGA
has the best performance in the average increase of mutation
score. Overall, gpt-3.5 has the highest performance which is
in line with the results from RQ1. However, it is also very
interesting to find that gpt-3.5 also has the most number of
projects that have a decrease in the test adequacy metrics
with 11 out of 26 fields, which accounts for around 42%.
This could also tell us that despite having a very high score
in textual similarity metrics, it could harm the quality or the
strength of the generated oracle. This calls to our attention
that we must be careful in using textual similarity metrics
as the standard to evaluate NOGs.

Also, unlike what we have observed from textual simi-
larity metrics in RQ1, there was a similar trend in the ranges
of scores in test adequacy metrics for projects throughout
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Fig. 1: Line coverage and mutation scores of ATLAS, IR,
TOGA, and gpt-3.5, respectively.

the NOGs. For instance, the metric scores for activemq-
artemis ranged in the 20s, cloudstack ranged in the 30s, james-
project ranged in the 30s, etc. Some projects had higher
variance than others, but the patterns and ranges are much
clearer than the ones we observed in the results for textual
similarity metrics. One reason that we suspect is that the
textual similarity metric has a high fluctuation in the score
if the model generates even one token that is different from
the ground truth text. Since the task is to generate a one-
liner assertion oracle with shorter tokens, the metric will
have a very big decrease. However for test adequacy, even
though the generation is different token-wise, if it correctly
generates the same type and values in a similar range for
an argument, the executed line of code will be similar.
Additionally, gpt-3.5 showed the highest standard deviation,
showing unreliable performance for test adequacy metrics.

Overall, gpt-3.5 showed the best performance in the
test adequacy metrics concerning the maximum score it
reaches and the average score. However, we also found
that gpt-3.5 had the most number of projects that have
decreased in the test adequacy metrics and the highest
standard deviation, showing us that it can be unreliable
on different projects. We also found that test adequacy
metrics are more stable and have a much clearer trend
than textual similarity metrics based on the variation of
scores across different projects.

4.3 RQ3: Correlation Analysis

We report the correlation coefficient (ρ and τ ) and the p-
value of Spearman’s and Kendall’s rank correlation in Table
10. The bold number in the table shows p-values less than
0.05, which shows the statistical significance of the results.
The different colors in the cell show the level of agreement
that each coefficient has. Red color shows a very weak
agreement, orange color shows a weak agreement, and
green color shows a moderate agreement. As expected, the
two metrics show a negative correlation, since we compare
the inverse delta of test adequacy metrics to the textual
similarity metrics. This means the more textually similar
oracles (higher score), the lower their semantic differences
(lower delta). For ρ, 0.01 to 0.10 is considered a very weak
agreement, 0.10 to 0.39 is considered a weak agreement,
0.4 to 0.69 is considered a moderate correlation, 0.70 to
0.89 is considered a strong correlation, and 0.90 to 1.00 is
considered a very strong correlation [53]. For τ , 0.01 to

TABLE 10: The result of correlation analysis on the two
different types of metrics. Bold denotes the p-value less than
0.05 meaning the correlations are statistically significant.
The red cell shows “Very Weak Agreement” and the orange
cell shows “Weak Agreement”. LC and MS are the inverse
values of their deltas (details in Section 3.6).

Spearman’s Kendall’s
Metrics ρ P-value τ P-value

LC vs BLEU -0.3461 0.0070 -0.2760 0.0057
LC vs ACC -0.0394 0.3944 -0.0342 0.3773
LC vs CB -0.2806 0.0250 -0.2225 0.0223
LC vs RL -0.3096 0.0148 -0.2499 0.0110
LC vs MT -0.3347 0.0090 -0.2600 0.0086
LC vs ES -0.2821 0.0243 -0.2169 0.0234

LC vs ChrF -0.2234 0.0612 -0.1737 0.0556
MS vs BLEU -0.3982 0.0021 -0.2894 0.0019
MS vs ACC -0.0927 0.2637 -0.0695 0.2444
MS vs CB -0.3198 0.0121 -0.2320 0.0114
MS vs RL -0.3286 0.0102 -0.2307 0.0106
MS vs MT -0.3178 0.0126 -0.2249 0.0124
MS vs ES -0.2926 0.0202 -0.2021 0.0218

MS vs ChrF -0.2567 0.0371 -0.1874 0.0307

0.24 is considered a very weak agreement, 0.25 to 0.34 is
considered a weak agreement, 0.35 to 0.39 is considered a
moderate agreement, and 0.40 to 1.0 is considered a strong
agreement [54].

As we can see from the results, except for LC and MS vs
Accuracy and LC vs ChrF, the tests from all other pairs result
in p-values less than 0.05, which shows their correlation
results are statistically significant. However, using either
test, all correlations are low. The highest correlation is for
MS vs BLEU with ρ = -0.39, which is still considered a
weak agreement. Considering these results we can say, that
although there is a direct correlation between syntactic and
semantic similarity, the strength of the correlations is weak
or very weak. Therefore, we do NOT recommend using
textual similarity metrics (such as the BLEU category) to
evaluate the generated oracle’s effectiveness. In other words,
unless there is an exact match between the generated oracle
and the ground truth, higher BLEU does not necessarily
indicate a more effective generated oracle.

Using Spearman’s and Kendall’s rank correlation analysis,
we found that the most closely correlated textual similar-
ity metric to the test adequacy metrics was the BLEU score
with ρ(BLEUvsMS)=-0.39, which is considered a weak
correlation. Based on this finding we recommend NOG
researchers avoid only using textual similarity metrics
when evaluating NOGs and make sure to include at least
one test adequacy metric as their main metric.

4.4 RQ4: Manual Analysis
To further investigate why these two metrics are not sig-
nificantly correlated, we manually inspect the randomly
selected 104 examples of the generated oracles, from all
projects. We have found three major types of patterns in
the generated oracles. 1) Type-1: identical, 2) Type-2: tex-
tually different but same/similar functions, 3) and Type-
3: textually similar but different in semantics. Type-1 ex-
hibits a high textual similarity metric and a close to zero
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increase/decrease in test adequacy metric. That means both
metrics agree that the generated oracle and the developer-
written one are similar. Type-2 and 3 are the interesting ones.
Type-2 exhibits a low score for textual similarity metrics,
however, it achieves close to zero increase/decrease in test
adequacy. This means the two oracles are textually differ-
ent but semantically (from a testing perspective) similar.
Type-3 also shows a disagreement between the metrics by
exhibiting high textual similarity metrics (textually similar)
but different in the testing semantics.

From the 104 samples we inspected, we found 36 Type-1
examples, 37 Type-2 examples, and 1 Type-3 example. TOGA
had the most Type-1 with 22, gpt-3.5 had the most Type-2
with 17 and the only Type-3 as well. We give examples of
the 3 types for better demonstration in Listing 2. For Type-1,
most of the oracles exactly match the ground truth leading
to high similarity and identical semantics. As introduced
also in Listing 1, the examples demonstrate Type-2 with a
high textual difference but similar functions. Oracles with
this type tend to have different assertion types to check
the status or call different methods in their parameters with
similar or identical semantics to the ground truth oracle. An
example of Type-3 is also shown where it is textually similar
but not semantically. Type-3 has a close textual similarity
where the parameters are all included in the ground truth
oracle with the BLEU score of 0.54. However, the type of
assertion is different and the generated oracle doesn’t cover
the lines for IsoMatcher.isomorphic(). This would affect
the test adequacy metrics. The ground truth oracles of this
type had multiple or complex method invocations within
the parameter, making it hard for the model to generate.
These examples show how the generated oracles can cause
the two metrics to disagree.

From our manual analysis, we have found three major
types of patterns in the generated oracles, and two of them
contribute to the nonalignment of textual similarity and
test adequacy metrics. Type-1 is an oracle generated with
a close agreement to ground truth (high similarity, high
test adequacy metric), Type-2 is an oracle with disagree-
ment by low similarity but high test adequacy metric,
and Type-3 with disagreement with high similarity but
low test adequacy metric. We found that Type-2 is the
most common. They tend to have different methods for
achieving a similar function. Type-3 wasn’t found much
however it was due to the model’s failure to generate the
whole sequence of method chain that hindered the test
adequacy metric. The first two types were the cause of
major disagreement between the two different metric sets.

4.5 Practical Implication of the Results

From the results of RQ3, we have observed that the textual
similarity metrics and test adequacy metrics exhibit “Very
Weak Agreement” to “Weak Agreement”, meaning they
do not have a strong correlation. This empirical evidence
implies that using only textual similarity is not sufficient
for evaluating NOG models. However, textual similarity
to human written tests/oracles is still a good measure of
understandability and maintainability [55], [56]. Therefore,

our recommendation is to use both types of metrics (tex-
tual similarity to human written oracles and test adequacy
metrics).

From RQ4, we have observed that the current state-of-
the-art models still have challenges in correctly generating
oracles with complex parameters (e.g., a long sequence of
method chains). To improve the current NOG models, future
researchers should: a) guide the models to correctly infer the
target library and its APIs and b) use external knowledge to
improve oracle generation. These directions could be chal-
lenging as library and API information is not provided in
the inputs. State-of-the-art LLMs and Retrieval Augmented
Generation (RAG) [57] could be a possible solution.

// Type-1 example
// Ground truth oracle
assertTrue(answer.getResult())
// Generated oracle from TOGA
assertTrue(answer.getResult())

// Type-2 example
// Ground truth oracle
assertFalse (newMember.isActive(dateToTest))
// Generated oracle
assertEquals (false, newMember.isActive())

// Type-3 example
// Ground truth oracle
assertTrue(IsoMatcher.isomorphic(dsgData,

dataset.asDatasetGraph()))
// Generated oracle from gpt-3.5
assertEquals(dsgData, dataset.asDatasetGraph())

Listing 2: Example of Type-1/2/3.

5 THREATS TO VALIDITY

Internal Validity. To avoid all confounding factors, we use
metrics used in the literature for textual similarity and test
adequacy metrics. We use the same implementation of the
models and the metrics from the original papers to the best
of our ability.
Construct Validity. The main threat to the construct validity
can be the evaluation metrics we used. The test adequacy
metrics used in this study are line coverage and mutation
score. Although these metrics are widely used to evaluate
the effectiveness of test cases, they may not be highly cor-
related to finding actual bugs (the ultimate goal of testing).
We plan to examine correlations to real bug detection in our
future study.
Conclusion Validity. We have conducted two statistical
tests and carefully analyzed the statistical significance when
reporting correlations, to avoid conclusion validity threats.
External Validity. The main threats to external validity in
this study are the limitations to (a) baseline models (b) test
adequacy metrics, (c) the dataset size, (d) and programming
language. Regarding baselines, we have used the most
recently published state-of-the-art performing models of
neural oracle generation models that were publicly available
in which they propose a novel way of generating assertion
statement lines when the test prefix and focal method are
given. Including other baselines might change the obser-
vations from this study and will be worth exploring when
they are proposed in the future. Regarding test adequacy
metrics, we use the line coverage and mutation score. It is
possible that our findings do not apply to other levels of
code coverage, i.e., branch coverage, statement coverage, or
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method coverage. In the future, we plan to include more
types of code coverage. Regarding the dataset, although we
have put much effort into maintaining high-quality data by
using real-world test methods contributed by developers
on GitHub and using multiple varieties in the domain of
projects, it could not be enough to generalize to all data
points. This was inevitable as we had limited resources to
evaluate projects that needed to build, execute, and run
the entire project to get test adequacy metrics which takes
a lot of time and computational complexity. However, we
deem we have devised a good number of projects from
different domains and a good number of instances in test
methods, to show significant observations from the used
test set. Regarding the scope of programming language, we
only investigate Java as all of the most relevant NOGs were
based on ATLAS which is a Java dataset. Our findings are
limited to Java and whether they could be generalized to
other programming languages is left for future studies.

6 RELATED WORK

6.1 Traditional Test Oracle Generation

There have been numerous traditional test oracle genera-
tion techniques before neural generation models. In this
subsection we very briefly mention them. Peter and Par-
nas [58] proposed a test oracle generator tool that uses
relational program specifications or documents to generate
expected outputs of tests as tabular expressions. Bousqpent
et al. [59] proposed Lutess, a framework that automatically
constructs test harnesses from various formal descriptions,
i.e. software environment constraints, functional and safety-
oriented properties, software operation profiles, and soft-
ware behavior patterns. Shahamiri et al. [60] proposed an
automated test oracle framework using I/O relational anal-
ysis to generate the output domain, multi-networks oracle
for input-to-output domain mapping, and a comparator to
adjust the precision of generated oracle by defining the
comparison tolerance. Liu and Shin [61] proposed a new
method, V-method for automatic test case and test oracle
generation from model-based formal specifications. They
exploit functional scenarios defined in the formal specifi-
cation, test generation criteria, algorithms, and mechanisms
for deriving test oracles.

6.2 Re-evaluating Evaluation Metrics

Since our study is about re-evaluating NOG evaluation
metrics, in this subsection, we also cover most related work
that re-evaluates evaluation metrics but in domains other
than NOG. Recently, there have been numerous studies
about revisiting evaluation metrics in the natural language
processing field. Mathur et al. [62] did a re-evaluating study
on automatic machine translation evaluation metrics and
how they correlate with human judgments. They argue
that the current methods for evaluating metrics are un-
reliable because they depend on the choice and quality
of the translations. They also propose a new method for
comparing different systems based on how well they agree
with human judgments, and how to measure the errors of
accepting or rejecting systems that are better or worse than
others. Roy et al. [48] empirically investigated how well

automatic metrics, such as BLEU, METEOR, and ROUGE,
can measure the quality of code summaries generated by
data-driven methods. They find that small differences in
metric scores (less than 2 points) are not reliable indicators
of better summaries and that some metrics (METEOR and
ChrF) are more consistent with human evaluations than
others (corpus BLEU). Liu et al. [33] pointed out three
inappropriate settings in existing evaluation methods of
TOGA and comprehensively investigated their impacts on
evaluating and understanding the bug-finding performance
of TOGA.

Some studies re-visited textual similarity metrics in the
code generation domain. Takaichi et al. [63] evaluated vari-
ous NLP metrics for their suitability in assessing code gener-
ated by automated techniques, particularly when the code is
syntactically incorrect. They conclude that METEOR is the
most effective metric for evaluating the ease of modifying
generated code that aligns with the natural language-based
inputs. Evtikhiev et al. [64] evaluated six metrics, i.e., BLEU,
ROUGE-L, METEOR, ChrF, CodeBLEU, and RUBY for code
generation models and found that none can emulate hu-
man judgment with high certainty for the CoNaLa dataset.
They suggest that ChrF is a better fit for evaluating code
generation models, but emphasized the need for a new
metric that closely agrees with human evaluation. Liguori
et al. [65] evaluated various textual similarity metrics for
assessing AI-based offensive code generators, comparing
them to human judgment to determine their effectiveness in
different contexts. They provided insights into the strengths
and limitations of these metrics, highlighting the need for
more accurate evaluation methods for code correctness.
Sikand et al. [66] revisited the metrics used to evaluate
generative AI models for code development. They surveyed
satisfaction, well-being, performance, activity, communica-
tion, and collaboration. Textual similarity metrics fall into
the performance aspect. They concluded that there need
to be new metrics concerning the maintainability and the
security of generated code. Unlike the above studies, in
this work, we revisit the performance of three recent neural
oracle generation models and gpt-3.5 on oracle generation
with static textual similarity and dynamic test adequacy
metrics.

7 CONCLUSION

This paper conducted an empirical study of existing neural
oracle generation models. We first investigated the mod-
els’ performance on different textual similarity evaluation
metrics. We assessed the generated oracles’ performance in
their test adequacy metrics, i.e. line coverage and mutation
score. We performed a quantitative and qualitative analysis
of the textual similarity metrics and the test adequacy to find
the correlation of these models and find the gaps between
what is currently being used and what we should aim to
achieve from the study of this field. We found the correlation
between textual similarity metrics and the test adequacy
metrics was not significant, meaning the currently assessed
textual similarity metrics, i.e. BLEU, accuracy, Rouge-L,
METEOR, and CodeBLEU, have no significant relationship
with test adequacy metrics, which we use to evaluate the
effectiveness of test cases. This shows that textual similarity
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metrics are not optimal for showing the quality of the
generated oracles and that test adequacy metrics should be
considered the main evaluation metrics in this field.
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