This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

Characterizing Crowds to Better Optimize Worker
Recommendation in Crowdsourced Testing

Junjie Wang, Song Wang, Jianfeng Chen, Tim Menzies, Fellow, IEEE,
Qiang Cui, Miao Xie, Qing Wang, Member, IEEE

Abstract—Crowdsourced testing is an emerging trend, in which test tasks are entrusted to the online crowd workers. Typically, a
crowdsourced test task aims to detect as many bugs as possible within a limited budget. However not all crowd workers are equally
skilled at finding bugs; Inappropriate workers may miss bugs, or report duplicate bugs, while hiring them requires nontrivial budget.
Therefore, it is of great value to recommend a set of appropriate crowd workers for a test task so that more software bugs can be

detected with fewer workers.

This paper first presents a new characterization of crowd workers and characterizes them with testing context, capability, and domain
knowledge. Based on the characterization, we then propose Multi-Objective Crowd wOrker recoMmendation approach (MOCOM), which
aims at recommending a minimum number of crowd workers who could detect the maximum number of bugs for a crowdsourced testing
task. Specifically, MOCOM recommends crowd workers by maximizing the bug detection probability of workers, the relevance with the
test task, the diversity of workers, and minimizing the test cost. We experimentally evaluate MOCOM on 532 test tasks, and results show
that MOCOM significantly outperforms five commonly-used and state-of-the-art baselines. Furthermore, MOCOM can reduce duplicate
reports and recommend workers with high relevance and larger bug detection probability; because of this it can find more bugs with

fewer workers.

Index Terms—Crowdsourced testing, Crowd worker recommendation, Multi-objective optimization

INTRODUCTION

1

Esting is expensive. According to Brooks [1], testing a
T software system consumes half of the resources of any
software projects. Much work in software engineering has
focused on the reduction of this significant cost. New soft-
ware development methodologies have been developed to
encourage more and sooner testing (see all the work on
agile and continuous deployment methods) [2]-[4]. In other
work, researchers have proposed effective, but complex for-
mal methods to allow for the better expression of require-
ments, then the automatic generation of test cases [5]-[8].
Such tools, while success in their home domain, require very
skilled and very scarce human operators.

An alternative approach, explored by a growing number
of researchers, is crowdsouced testing [9]-[11]. It uses the
“crowd”, which is a large labor source, to conduct many
small tasks and do so relatively inexpensively. The promise

J. Wang, Q. Wang are with Laboratory for Internet Software Technologies,
State Key Laboratory of Computer Sciences, Institute of Software Chinese
Academy of Sciences, and University of Chinese Academy of Sciences,
Beijing, China.

Q. Wang is the corresponding author.

E-mail: {wangjunjie, wq}@itechs.iscas.ac.cn

S. Wang is with Electrical and Computer Engineering, University of
Waterloo, Canada.

E-mail: song.wang@uuwaterloo.ca

J. Chen and T. Menzies are with Department of Computer Science, North
Carolina State University, Raleigh, NC, USA.

E-mail: jchen37@ncsu.edu, timm@ieee.org

Q. Cui is with Bytedance Inc., Beijing, China.

E-mail: cuigiang1225@gmail.com

M. Xie is with Huawei Technologies Co Ltd, Beijing, China.

E-mail: 0520shui@163.com

Manuscript received xxx xx, 2018; revised xxx xx, 2018.

+

is that any large testing task can be completed in the re-
quired time, just by hiring more members of the crowd.

The problem with crowdsouced testing is optimizing
crowd workers” participation [9], [12]-[14]. Crowd
resources, while cheap, are not free. Hence, when scaling
up crowdsouced testing, it is necessary to maximize the
information gain from every member of the crowds.
Also, as shown below not all crowd workers are equally
skilled at finding bugs. Inappropriate workers may miss
bugs, or report duplicated bugs, while hiring them
requires nontrivial budgets. Furthermore, because of the
unknownness, largeness and undefinedness of the crowd
workers [11], we should not involve all the workers in a
crowdsourced testing task. Therefore, it is of great value to
recommend a set of appropriate crowd workers for a test
task so that more software bugs can be detected with fewer
workers.

Finding appropriate workers for particular software en-
gineering tasks has long been recognized as being impor-
tant and invaluable. There are many lines of related stud-
ies about worker recommendation, such as bug triage [15]-
[24], mentor recommendation [25], and expert recommen-
dation [26]. With the emergence of crowdsourcing, there
are several researches focusing on developers recommenda-
tion for crowdsourced software development [27]-[30]. The
aforementioned studies either recommend one worker or
assume the recommended set of workers are independent
with each other. However, in crowdsourced testing, a set
of workers need to be recommended to accomplish a test
task together. Furthermore, the recommended set of workers
are dependent on each other because their performance can
together influence the final test outcomes.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

Our previous work has proposed three different
approaches to recommend a set of crowd workers for
crowdsourced testing tasks [12]-[14]. However, each of
them has only partially explored the characteristics of crowd
workers and the influential factors of bug detection for
crowdsouced testing (details are in Section 3.2). We suppose
that a full exploration of crowd worker’s characteristics and
influential factors can lead to better results.

To improve the practice of crowd worker recommen-
dation, we first present a new characterization of crowd
workers which can support more effective crowd worker
recommendation. In detail, we characterize the crowd work-
ers with three dimensions, i.e., testing context, capability,
and domain knowledge. Testing context contains the device
model of a crowd worker, the operating system and ROM
of her/his device, as well as the network environment. Ca-
pability represents the ability of a crowd worker abstracted
from her/his historical testing behaviors. It contains such at-
tributes as the number of reports submitted, the number and
percentage of bugs detected. Domain knowledge represents
the domain experience a crowd worker obtained through
performing past testing tasks. We use the descriptive terms
extracted from her/his historical submitted reports to rep-
resent her/his domain knowledge.

Based on the characterization of crowd workers, we then
propose Multi-Objective Crowd wOrker recoMmendation
approach (MOCOM), which aims at recommending a
minimum set of crowd workers who could help detect
the maximum number of bugs for a crowdsourced testing
task. Specifically, MOCOM recommends crowd workers by
maximizing the bug detection probability of the selected
workers, the relevance with a specific test task, and the
diversity of workers, and minimizing the test cost. Among
the four objectives, we build a machine learning model
to learn the bug detection probability for each worker.
The features utilized in the learner are the capability of
crowd workers, in which we also consider the time-related
factors to better model the bug detection probability. For the
relevance with a specific test task, we compute the cosine
distance between workers’ domain knowledge and the
test task’s requirements. The diversity of crowd workers is
measured based on the differences of their testing context
and domain knowledge. Test cost mainly consists of the
reward for crowd workers and is measured based on the
number of recommended workers, which is a common
practice in real-world crowd testing platforms [10].

Search-Based Software Engineering (SBSE) is one of
the most-commonly used techniques for solving the multi-
objective optimization problems in software engineering
[31], [32]. Hence, we leverage a widely-used search-based
algorithm, namely NSGA-II, to optimize the four objectives
when recommending crowd workers.

This paper experimentally evaluates MOCOMF_-I on
562 test tasks (involving 2,405 crowd workers and
78,738 test reports) from one of the largest Chinese
crowdsourced testing platforms. The experimental results
show that MOCOM can detect more bugs with fewer
crowd workers, in which a median of 24 recommended
crowd workers can detect 75% of all the potential bugs.

1. https:/ / github.com /wangjunjieISCAS/CrowdWorkerSelection

2

All objectives are necessary for worker recommendation
because removing any of the objectives would result in
significant performance decline. In addition, our approach
also significantly outperforms five commonly-used and
state-of-the-art baseline approaches, with 19% to 80%
improvement at BDR@20 (BDR@20 denotes the percentage
of bugs detected by the top 20 recommended workers out
of all bugs detected in the task). This further indicates that
a full exploration of crowd worker’s characteristics and
influential factors lead to better results ever seen in prior
work.
This paper makes the following contributions:

e We characterize the crowd workers with three
dimensions, i.e., testing context, capability, and domain
knowledge, which can capture the characteristics
of crowd workers and better support the worker
recommendation in crowdsourced testing.

e We propose Multi-Objective Crowd wOrker recoM-
mendation approach (MOCOM), which recommends
crowd workers by maximizing the bug detection
probability of workers, the relevance with test tasks,
and the diversity of workers, and minimizing the test
cost.

o We design a machine learning model to learn the bug
detection probability of crowd workers on a given test
task, which serves as one objective of MOCOM and
improves the worker recommendation performance.

o We evaluate our approach on 562 test tasks (involving
2,405 crowd workers and 78,738 test reports) from one
of the largest Chinese crowdsourced testing platforms,
and the results are promising.

2 BACKGROUND AND MOTIVATION
2.1 Background

This section presents a brief background of crowdsourced
testing to help better understand the challenges of real in-
dustrial crowdsourced testing practice. Figure[I| presents the
overall procedure of crowdsourced testing. The project man-
ager provides a test task for crowdsourced testing, including
the software under test and test requirements. The crowd-
sourced testing task is usually in the format of open call
and incentives provision [11]], so a large number of crowd
workers can sign in to perform the task based on its test
requirements, and are required to submit crowdsourced test
reports. The project manager then inspects these submitted
test reports, confirm whether it is a bug, debug and fix it.
Note that not every test report involves a bug, and different
reports might describe the same bug (i.e., duplicate reports).

In order to attract workers, crowdsourced testing tasks
are often financially compensated. The commonly-used pay-
out schema includes paid by participation, paid by bug, and
paid by first bug [9], [10], [33]]. This work is based on the paid
by participation schema, in which workers who participate in
the test task are equally paid. It is a commonly-used payout
schema especially for the newly-launched platform since it
can encourage crowd worker’s participation [9]. In Section
we will discuss the usefulness of our proposed approach
in terms of other payout schemas.

Currently, in most crowdsourced testing platforms, be-
fore participating in crowdsourced testing, workers need to

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Test
reports

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

EM e

Task pubhsher

Test task
/ Crowd workers

Fmd test task

(Sear
Crowd workers
—
—
v —

who perform
the task

Fig. 1: The procedure of crowdsourced testing

TABLE 1: An example of crowdsourced test task, test report,
and crowd worker

Test Task

Task ID
Name
Requirement 1

Requirement 2

T000012

IQIYI Testing

Browse the videos through list mode IQIYI, rank the
videos using different conditions, check whether the rank
is reasonable.

Cache the video, check whether the caching list is right.

Test Report

Report ID
Task ID
Worker ID
Description

Bug label
Duplicate label

R1002948308

T000012

W5124983210

I list the videos according to the popularity. It should be
ranked according to the number of views. However, there
were many confused rankings, for example, the video
“Shibuya century legend” with 130 million views was
ranked in front of the video “I went to school” with 230
million views.

bug

R1002948315, R1002948324

Crowd worker

Worker Id W5124983210

Context Phone type: Samsung SN9009
Operating system: Android 4.4.2
ROM information: KOT49H.N9009
Network environment: WIFI

Historical R1002948308, R1037948352

Reports

search proper test tasks to perform from a large number of
published test tasks [9], [10]. This mode is ineffective for
bug detection because of the following two reasons: first,
workers may choose test tasks they are not good at, which
cannot guarantee the quality of testing; second, a test task
may be conducted by many workers with similar experience
or expertise which would result in many duplicated bugs
and waste of resources.

In this paper, we suggest a recommendation mode to
bridge the gap between crowd workers and test tasks. Our
goal is to recommend a set of appropriate workers for a
test task. The task publisher can invite these workers on
purpose, or attract them with more rewards. In this way,
more bugs can be detected with fewer crowd workers and
less cost.

2.2 Important Concepts

We introduce three important concepts in crowdsourced
testing: Test task, Test report, and Crowd worker.

A test task is the input to a crowdtesting platform pro-
vided by a task publisher. It contains task ID, task name,
test requirements (mostly written in natural language), and
the software under test (not considered in this work). Table
shows an example of a test task.

A test report is the test outcome submitted by a crowd
worker after the test task is completed. It contains report

3

ID, worker ID (i.e., who submit the report), task ID (ie.,
which task is conducted), description of how the test was
performed and what happened during the test, bug label,
and duplicate label. Table [I| shows an example of a test
report. Specifically, the labels are assigned by the project
manager to indicate whether the report contains a ”bug’ﬂ
(i.e., bug label), and whether the report is a “duplicate” of
other reports (i.e., duplicate label). Note that, in the follow-
ing paper, we refer to “bug report” (also short for “bug”) as
the report contains bugs, while refer to “test report” (also
short for “report”) as any report submitted in the test task
(including bug reports and reports without bugs).

A crowd worker is a registered worker in the crowd-
sourced testing platform, and is described by worker ID,
her/his context attributes (e.g., device model). The platform
also records the worker’s historical test reports. A test task
can be conducted by hundreds of crowd workers.

2.3 Baidu CrowdTest Dataset

We collected crowdsourced testing data from an industrial
crowdsourced testing platform, namely Baidu CrowdTesﬂ
Baidu CrowdTest was founded in 2011 and has become one
of the largest crowdsourced testing platforms in China.

We collected the test tasks that are closed between Jan.
1st 2015 and Aug. 1st 2016. When a crowd worker regis-
ters in the platform, they are asked to sign a Confidential-
ity Agreement. It claims all the submitted and generated
data can be applied to scientific research. Besides, when
we collect data from this platform, all information related
with the personal privacy (e.g., name, age, phone number,
occupation) are encrypted.

In total, we analyzed 562 test tasks, involving 2,405
crowd workers and 78,738 test reports. For each testing
task, we collected its task-related information and all
the submitted test reports (see examples in Table [T). We
also collected all the involved crowd workers and related
information (see examples in Table [1).

Figure [2| shows the statistics of workers participated, re-
ports submitted, and unique bugs (i.e., non-duplicate bug
reports) for each test task.

800 +

600

number
B
o
o
oomes

+

=

workers

200

-

unique bugs

0

reports

Fig. 2: Statistics of Baidu CrowdTest dataset

2. In our experimental platform, each test report can contain zero or
one bug.

3. Baidu (baidu.com) is the largest Chinese search service provider.
Its crowdsourced testing platform is test.baidu.com.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

baidu.com
test.baidu.com

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

o

500 percentage of workers who detected bugs

—— workers who submited reports
—— workers who detected bugs

IS

8

8
o
®

o
=3

o
=
percentage of workers who detected bugs

number of workers

0 100 200 300 400 500
task IDs (ranked by percentage of workers who detected bugs)

(a) Observation 1

N w

difference in relevance

o

~—

0 100 200 300 400 500
task IDs (ranked by difference in relevance)

(c) Observation 3

800

600

Ll g 2 T AN

400

number of detected bugs

200

0 500 1000 1500 2000
worker IDs (ranked by number of detected bugs)

(b) Observation 2

1200
percentage of duplicate reports

=)
©

1000 = reports
duplicate reports

g

8
o
=3

IS
&
8

number of reports
P
8
o o
@ S
percentage of duplicate reports

200

o
o

0
0 100 200 300 400 500

task IDs (ranked by percentage of duplicate reports)

(d) Observation 4

Fig. 3: Observations based on Baidu CrowdTest dataset

To understand the real-world crowdsourced testing
practice, we have conducted an analysis on the collected
dataset, and observations are shown in the next subsection.

2.4 Observations and Implications

Based on our collected dataset, we have made the following
observations:

1) Although a large number of crowd workers can partic-
ipate in a test task, not every worker could successfully de-
tect bugs in the task. Figure [3a] shows the number of crowd
workers participated in each test task, and the number of
crowd workers detected bugs in the task. The percentage
of workers who have detected bugs among all the involved
workers is only 52.6%.

Motivated by this observation, it would be of great value
to recommend an appropriate set of candidate workers to
perform a test task in order to detect more bugs with fewer
workers and less cost. This is especially important when the
number of candidate workers is large, which is typical in
the context of crowdsourced testing.

2) Different crowd workers might have different bug de-
tection capability. Figure Bb] shows the number of bugs de-
tected by each crowd worker. We can see that most workers
only detected very few bugs, while there is a small portion
of workers who have detected much more bugs than others.

This observation motivates us to look for capable
workers, who demonstrate greater capability in history and
would be more likely to detect bugs in future.

3) Crowd workers would be more likely to detect bugs
when conducting tasks they are familiar with. Figure

shows the relationship between workers’ familiarity with
the test task and their bug detection performance. Given
a test task, we first calculate the familiarity between each
worker and the test task (i.e., cosine similarity between
worker’s historical reports and task’s requirements). We
then average two similarity values, one for the workers who
have detected bugs (sim_p), and the other for the workers
who have not detected bugs (sim_n). Following that, we
obtain the difference for the two similarity values for each
task, i.e., (sim_p - sim_n)/sim_n. A positive value denotes
the familiarity for the workers who have detected bugs is
greater than those who have not detected bugs in the task,
while a negative value denotes the opposite phenomenon.
From Figure we can see that most projects demonstrate
positive values, indicating workers have higher possibility
to detect bugs in the test tasks they are familiar with.

This observation motivates us to select workers with ex-
pertise relevant to a given test task.

4) For each test task, a number of duplicate reports may
be reported by different crowd workers, as shown in Fig-
ure Bd] An average of 80% reports are duplicates of other
reports.

This observation motivates us to decrease the duplicate
reports by looking for diverse crowd workers so as to fur-
ther reduce the waste of cost.

In summary, the above observations motivate the need
of recommending a subset of crowd workers for a given test
task. They also motivate us to consider workers’ capability,
their relevance with the test task, as well as the diversity of
the selected set of workers.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

3 RELATED WORK

In this section, we discuss three areas related to our work,
i.e., crowdsouced testing, worker recommendation, test case
selection and prioritization.

3.1 Crowdsourced Testing

Crowdsourced testing, as a novel practice of software devel-
opment [9], [34], has been applied to generate test cases [35],
measure real-world performance of software products [36],
help usability testing [37], detect and reproduce context-
related bugs [38]. All the studies above use crowdsourced
testing to solve the problems in traditional software testing
activities. However, our approach is to solve the new en-
countered problem in the practice of crowdsourced testing,
i.e., worker recommendation for crowdsourced testing task.

Some other studies focus on solving the new encoun-
tered problem in the practice of crowdsourced testing. Feng
et al. [39], [40] proposed test report prioritization methods
for crowdsourced testing. They designed strategies to
dynamically select the most risky and diversified test
report for inspection in each iteration. Wang et al. [41], [42]
proposed to mitigate the distribution difference problem
in crowdsourced report classification, through selecting
similar data instances from training set to build a classifier
for identifying test reports that actually reveal fault.
Later, DARS [43] was proposed to leverage deep learning
techniques to overcome the data distribution difference
across domains in crowdsourced reports classification.

Our previous work has proposed three different
approaches to recommend a set of crowd workers for
crowdsourced testing tasks. Specifically, Xie et al. [14]
proposed Cocoon to recommend a set of crowd workers
for a test task. It is designed as a pigeon greedy approach
that can achieve the expected test context coverage and
maximize testing quality under the context constraint. Cui
et al. [12] proposed ExReDiv, a hybrid approach for crowd
worker selection, which recommends crowd workers by
balancing workers’ experience in testing, expertise with the
test task, and their diversity in expertise. Meanwhile, Cui
et al. [13] proposed MOOSE, which recommends crowd
workers by maximizing the coverage of test requirement
and the test experience of the selected workers, and
minimizing the cost.

Each of the above three approaches has only partially
explored the characteristics of crowd workers and the in-
fluential factors of bug detection for crowdsouced testing.
First, Cocoon put more attention on the test context, while
concerned less about the workers’ characteristics (e.g., ca-
pability, past experience) which have found to be critical
to the test performance [9], [12], [29], [44]. Second, both
ExReDiv and MOOSE did not consider the test context of the
crowd workers (e.g., the device models) which has proven
to be influential to the test outcomes [9], [14], [44]. Third,
ExReDiv and MOOSE treated the number of detected bugs
as a worker’s experience; however a worker’s experience
can also relate with other attributes, such as his submitted
reports, number of participated projects, percentage of de-
tected bugs. Fourth, none of these three approaches consid-
ered the time-related influence (e.g., worker’s experience in
terms of the past 2 month vs. worker’s experience in terms

5

of the past 12 months) on a worker’s bug detection perfor-
mance. However, previous work demonstrated the online
developers’ recent activities have greater indicative effect
on their future behaviors than the activities happened long
before [45]], [46]. Therefore, the consideration of these time-
related factors can potentially improve the worker recom-
mendation performance.

To summarize, this work differs existing studies as fol-
lows: (1) proposes a new characterization of crowd work-
ers which considers worker’s test context, capability, and
domain knowledge, while previous researches only consid-
ered one or two of them; (2) proposes a new multi-objective
worker recommendation approach based on the new char-
acterization of crowd workers, which can lead to better re-
sults ever seen in prior work; (3) models crowd worker’s ex-
perience based on multiple features, and consider the time-
related influence on its experience, which is proven to be
effective.

3.2 Worker Recommendation

Software development has become a more and more open
activity, where stakeholders can usually come from unde-
fined public. Finding appropriate workers for a particular
software engineering task is becoming important and in-
valuable. There are many lines of related studies for recom-
mending workers for various software engineering tasks,
such as bug triage [15]-[24], mentor recommendation [25],
and expert recommendation [26].

With the emergence of crowdsourcing, there are several
researches focusing on developer recommendation for
crowdsourced software development. Yang et al. [27]
proposed a novel approach, DR_PSF, to enhance developer
recommendation by leveraging personalized source
code files. Mao et al. [28] employed content-based
recommendation techniques to automatically match
tasks and developers during crowdsourced software
development. Yang et al. [29] proposed an analytics-
based decision support methodology to guide workers
recommendation of crowdsourced development.

The aforementioned researches either recommend
one worker, or assume the recommended set of workers
are independent with each other. However, our work
recommends a set of workers who are dependent on each
other, because their performance can together influence the
final test outcomes.

3.3 Test Case Selection and Prioritization

Within software testing area, another body of previous
researches focus on the test case selection and prioriti-
zation [47]-[58], which also concerns finding more bugs
with less testing cost. However, these approaches can
hardly be used in crowd worker recommendation due
to the following reasons. Firstly, most existing researches
proposed white-box approaches which rely on structural
coverage information in source code (e.g., method coverage,
statement coverage, or branch coverage) [52]-[58]. However,
the crowdsourced testing platform cannot obtain the source
code of the tested apps because of business confidentiality,
let alone the coverage information.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

Secondly, several recent researches proposed black-box
selection approaches which only utilize test cases and do
not require the tested program [47]-[50]. They employed the
linguistic data of test cases (e.g., their identifier names, com-
ments, string literals), and selected the test cases with differ-
ent linguistic representation. Such kinds of treatments could
not capture the overall characteristics of crowd workers,
thus can hardly achieve good bug detection performance.

Another type of black-box selection approaches was to
learn the bug revealing probability of a test case, and se-
lect these test cases which have a higher chance to trigger
bugs [51]. Still, the features used in the machine learning
learner were extracted from the code of test cases. While
in crowdsourced testing, what we need to handle is crowd
workers rather than code.

Although the aforementioned approaches could hardly
be used to solve our crowd worker recommendation prob-
lem, they motivate us in designing our crowd worker rec-
ommendation approach, i.e., select workers with large bug
detection probability and with different characteristics. Fur-
thermore, we also select two state-of-the-art approaches (
[48], [49]) as the baselines to evaluate MOCOM.

4 MuLTI-OBJECTIVE CROWD WORKER RECOM-
MENDATION APPROACH (MOCOM)

Motivated by the findings in Section we model the
worker recommendation problem as a multi-objective
optimization problem. We propose a Multi-Objective
Crowd wOrker recoMmendation approach (MOCOM),
which can maximize the bug detection probability of
workers, the relevance with the test task, the diversity of
workers, and minimize the test cost.

In this section, we first present the characteristics of
crowd workers (Section , followed by the measurement
of the four objectives (Section [£.2). Then we present the
multi-objective optimization framework for crowd worker
recommendation (Section [4.3).

4.1 Characterization of Crowd Worker

In this work, we characterize a crowd worker from three
dimensions, i.e., testing context, capability, and domain
knowledge. The following subsections illustrate the details
of these three dimensions.

4.1.1

Testing context represents the hardware (e.g., device
model), software (e.g., the operating system of the device),
and environment (e.g., network environment) owned by a
crowd worker. The reason we consider testing context as
one characteristic of a crowd worker is that crowd workers
often run the testing task under their specific contexts,
which can influence the testing outcomes [9], [14], [44].

We use four attributes to characterize the testing context
of a crowd worker. They are the crowd worker’s device model
used to run a test task, the operating system of the device
model, the ROM type of the device model, and the network
environment under which a test task is run. These attributes
are the complete set of testing context recorded by the Baidu

Testing Context

6

CrowdTest platform. Hence, we employ them to character-
ize a crowd worker and consider them in worker recom-
mendation process. Note that, these attributes are shared by
other popular crowdtesting platforms [9], [10], [33], because
the platforms need these attributes to reproduce the bugs
for the tested app. Even for the crowdtesting platforms that
do not have all the four attributes, they can use other similar
testing contexts for building the bug probability prediction
model, and apply the model in their own cases.

4.1.2 Capability

Capability represents the ability of a crowd worker
abstracted from her/his historical testing outcomes. A
crowd worker’s past performance can reflect her/his
capability to a great extent, and has great indicative effect
on her/his future bug detection performance [9], [12], [29],
[44]. Hence, we consider the capability as an essential
dimension to characterize a crowd worker.
We use the following attributes to characterize a crowd
worker’s capability, i.e.,
e 1) Number of projects which the worker participated in
e 2) Number of test reports submitted by the worker
o 3) Number of bug reports submitted by the worker
o 4) Percentage of bug reports submitted by the worker
It is computed as the number of bug reports submitted
by the worker divided by the number of test reports
submitted by the worker.
o 5) Degree of duplicate bug reports of the worker
It is computed as the duplicate index of a worker divided
by the number of bug reports submitted by the worker.
Init,

1
number of r's duplicates

duplicate index = Z

T

M

where 7 is the bug report submitted by a worker, and
number of r's duplicates is the number of duplicates
of report r in the test task. For example, worker
W5124983210 in Table [I| submitted two bug reports
R1002948308 and R1037948352, where R1002948308 has
2 duplicates, and R1037948352 has 6 duplicates. Then
percentage of duplicate bugs of worker W5124983210
is (1/2 + 1/6) / 2. The reason why we do not directly
use the number of duplicates divided by the number
of bug reports is that we want to not only represent the
number of duplicates but also distinguish the degree of
duplicates (i.e., using duplicate index).

4.1.3 Domain Knowledge

Domain knowledge represents the domain experience a
crowd worker obtained through performing testing tasks.
The application under test usually come from various
domains, and they call for the crowd workers with specific
domain knowledge to better explore their functionality [12],
[29]. We also observed that crowd workers are more likely
to detect bugs when conducting tasks they are familiar with
(Section 2.4). This is why we regard domain knowledge as
another important criterion to characterize a crowd worker.

We use the “descriptive terms” extracted from a crowd
worker’s historical submitted reports to represent her/his
domain knowledge and represent it as a vector. We present

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

TABLE 2: Characterization of crowd worker

Testing Context

Phone type Samsung SN9009
Operating system Android 4.4.2
ROM information KOT49H.N9009
Network environment WIFI

Capability
Number of projects participated 15
Number of reports submitted 19
Number of bugs detected 7
Percentage of bugs detected 36.8%
Percentage of duplicate bugs 41.5%

Domain Knowledge
Descriptive terms extracted from | < video, list, popularity, rank, view,
historical reports >

a detailed description about how to obtain the descriptive
terms as follows.

We first construct a descriptive terms list based on all the
tasks in the training dataset (see Section [5.2). We conduct
word segmentation and remove stopwords (i.e., on, the) to
reduce noise. Apart from that, we find that some terms may
appear in a large number of reports, while some other terms
may appear in only very few documents. Both of them are
less predictive and contribute less in modeling the crowd
workers. Therefore, we rank the terms according to the
number of reports in which a term appears (i.e., document
frequency, also known as df), and then filter 5% terms with
the highest document frequency and 5% terms with the
lowest document frequency. Note that, we have conducted
experiments with the threshold ranging from 2% to 20%,
and results show that with a threshold of 5%, the worker
recommendation performance (i.e., bug detection rate at k)
can achieve a relative high and stable value. Another note,
since the test reports are often short, the term frequency
(also known as tf), which is another commonly-used metric
in information retrieval, is not discriminative, so we only
use document frequency to rank the terms. In this way, the
final descriptive terms list V' is formed.

Secondly, we extract the words from a crowd worker’s
historical submitted reports, and by mapping these words
with descriptive terms list, we obtain the descriptive terms
for representing her/his domain knowledge.

In Table [2} we summarize all the attributes mentioned
above. We also present an example of each attribute based
on the crowd worker W5124983210 (in Table [I). We will
use these attributes to characterize the crowd workers and
measure the objectives.

4.2 Measurement of Four Objectives

Since the purpose of crowd worker recommendation is to
help find more bugs with fewer crowd workers, the design
of MOCOM considers four objectives.

First, we should recommend the crowd workers with
maximized bug detection probability [51]], since they can
potentially improve the bug detection performance.

Second, we should look for the crowd workers with
maximized relevant expertise with the test task because
they have more background knowledge and can increase
the bug detection likelihood [12], [13]. This is also because
the crowdsourcing task can be complexity and user-driven
[11], hence we should consider the workers’ relevance with
the task so as to improve the bug detection performance.

7

Third, we should select a set of crowd workers with
diverse characteristics [47]-[50], because different workers
might explore different areas of the application under test-
ing which would help detect more bugs and reduce dupli-
cate reports.

Last but not least, we should consider the test cost which
is an essential consideration in crowdsourcing field.

The following subsections illustrate the details of these
four objectives.

4.2.1 Objective 1: Maximize Bug Detection Probability of
Crowd Workers

We build a machine learning model to learn the bug de-
tection probability for each worker. The primary focus of
building the model is to determine which features can be
utilized for learning the bug detection probability.

Motivated by the findings in Section we assume a
crowd worker’s capability is tightly related with the bug
detection probability. So we treat all the crowd worker’s
capability-related attributes as the features in the machine
learning model.

Apart from that, previous work demonstrated the open
source developer’s recent activity has greater indicative
effect on his future behavior than the activity happened
long before [45], [46]. Therefore, we further take the time-
related factors into consideration, and better model the
crowd worker’s past experience. Take one of the capability
attribute number of reports submitted as an example, we also
extract the number of reports submitted in the past 2 weeks,
number of reports submitted in the past 1 months, and number
of reports submitted in the past 2 months. The reason why
we use these three time intervals is that our dataset shows
more than 75% crowd worker’s past activities occur in the
past 2 months.

In this way, the original one attribute (i.e., number of re-
ports submitted) can yield four features in the machine learn-
ing model, and the original five capability attributes in Table
generate 20 features in our learning model (demonstrated
in Table3).

Furthermore, we employ another time-related feature in
our machine learning model. It is the time interval between
the crowd worker’s last submission on this platform and
the test task’s publishing time, measured in number of days.
Intuitively, the longer this time interval is, the less likely the
crowd worker would take part in this task.

In summary, we list all the aforementioned 21 features
which are used in our machine learning model in Table
We employ Logistic Regression as our machine learning
model, which is widely reported as effective in many
different classfication tasks in software engineering [43],
[59]. Based on the logistic regression model trained on the
training dataset, given a task in the testing dataset, we
can obtain its bug detection probability of all candidate
workers. Specifically, for a set of candidate crowd workers
(i.e, one solution in Section [4.3), we add up their bug
detection probability on the given test task and consider the
summation as the bug detection probability of the test task.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

TABLE 3: Feature for machine learning model

Number of projects in the past
Number of projects in past 1 month
Number of reports in the past
Number of reports in past 1 month
Number of bugs in the past
Number of bugs in past 1 month
Percentage of bugs in the past
Percentage of bugs in past 1 month
Percentage of duplicates in the past | Percentage of dup. in past 2 weeks
Percentage of dup. in past 1 month Percentage of dup. in past 2 month
Time interval between last submission and task publish time (in days)

Number of projects in past 2 weeks
Number of projects in past 2 month
Number of reports in past 2 weeks
Number of reports in past 2 month
Number of bugs in past 2 weeks
Number of bugs in past 2 month
Percentage of bugs in past 2 weeks
Percentage of bugs in past 2 month

4.2.2 Objective 2: Maximize Relevance of Crowd Workers
with Test Task

For relevance objective, we need to measure the relevance
between the candidate crowd workers and a test task.

We use the similarity between a worker’s domain knowl-
edge and a test task to denote the relevance. It is computed
based on the cosine similarity between the descriptive terms
of the crowd worker’s domain knowledge and the descrip-
tive terms of the test task’s requirements. A larger similar-
ity value denotes the worker’s domain knowledge is more
tightly relevant with the test task. The reason why we use
cosine similarity is that past researches have demonstrated
its effectiveness in high-dimensional textual data [20], [41],
[60], which is exactly our case.

Given a specific test task, to obtain the relevance for a
set of candidate crowd workers (i.e., one solution in Section
[4.3), we first combine the domain knowledge of all selected
workers as a unified vector, then compute the cosine similar-
ity between the unified vector and a test task’s requirements.

4.2.3 Objective 3: Maximize Diversity of Crowd Workers

For the diversity objective, we need to measure the
diversity of a set of selected crowd workers. Objective 2
(i.e., maximize relevance) aims at finding workers who
are familiar with a test task. Apart from that, the nature
of software testing calls for diverse workers who can help
explore various parts of the app and reduce duplicate
reports. Hence objective 3 (i.e., maximize diversity) aims
at finding workers with diverse background. Note that,
although these two objectives seems conflicting with each
other, the multi-objective optimization framework utilized
in this work can help reach a balance between relevance
maximization and diversity maximization.

An important goal for any multi-objective optimizer is
diversity, i.e. generating solutions that span the space of pos-
sibilities, which is widely recognized [31], [61]. Hence, many
optimization algorithms have specialized diversity opera-
tors built in to their core operation. For example, the NSGA-
IT optimizer used in this work employs a novel space prun-
ing operator which strives to spread out the answers that it
generates [31]]. Note that NSGA-II's diversity is diversity in
output space.

The alternative to objective diversity in the output space
(i.e., exploring diverse solutions) is attribute diversity in the
input space (i.e., finding diverse workers within a solution).
The reason why we need attribute diversity is that NSGA-
II’s objective diversity operator was incomplete for our pur-
poses, because the observation in Section motivates us
to recommend a diverse set of workers (i.e., attribute di-
versity). In addition, experiment results (Section [6.3) show

8

that if attribute diversity is disabled, then the performance
would decline sharply.

To explore the attribute diversity, we use count-based
method to measure it, and count how many different at-
tribute values appeared in the selected set of crowd workers
(i.e., one solution in Section [4.3).

Remember that the crowd workers are characterized by
three dimensions: testing context, capability, and domain
knowledge. For capability dimension, it is unreasonable to
consider the diversity because we require all the selected
workers are capable, rather than some of them are capable
while others are not. Accordingly, we compute the diversity
based on other two dimensions, i.e., crowd workers’ testing
context and domain knowledge.

Specifically, for testing context, we count how many dif-
ferent phone types, operating systems, ROM types, and net-
work environments contained in the set of workers. For
domain knowledge, we count how many different terms
appeared in the domain knowledge of the workers.

Note that, testing context only has four attributes, while
the domain knowledge has thousands of attributes (i.e, the
number of unique descriptive terms). In order to eliminate
the influence of different number of attributes on the di-
versity measurement, we compute the diversity respectively
for testing context and domain knowledge, then obtain the
final diversity values using a weight parameter. We have
experimented with different weights, it turns out a weight of
0.5 (i.e., testing context and domain knowledge are equally
treated) can obtain relative good and stable performance. So
we use this weight in the evaluation.

4.2.4 Objective 4: Minimize Test Cost

The cost is an unavoidable objective when recommending
workers for the crowdsourced tasks. The most important
cost in crowdsourced testing is the reward for workers. We
suppose all the workers who participate in a test task are
equally paid, which is a common practice in real-world
crowdsourced testing platforms [10]. In this way, the cost
for a set of selected workers (i.e., one solution in Section
is measured as its size.

4.3 Multi-Objective Optimization Framework

We have mentioned in Section that MOCOM needs to
optimize four objectives. Obviously, it is difficult to get op-
timal results for all objectives at the same time. For exam-
ple, to maximize bug detection probability, we might need
to hire more crowd works, thus, sacrifice the fourth objec-
tive, i.e., minimize test cost. Our proposed MOCOM seeks
a Pareto front (or set of solutions). Solutions outside Pareto
front cannot dominate (better than, under all objectives) any
solutions within the front.

MOCOM uses NSGA-II algorithm (i.e., Non-dominated
Sorting Genetic Algorithm-II) to optimize the aforemen-
tioned four objectives. NSGA-II is a widely used multi-
objective optimizer in and out of Software Engineering area.
According to [61], more than 65% optimization techniques
in software analysis are based on Genetic Algorithm (for
problems with single objective), or NSGA-II (for problems
with multiple objectives). For more details of NSGA-II
algorithm, please see [62].

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

In our crowd worker recommendation scenario, a
Pareto front represents the optimal trade-off between the
four objectives determined by NSGA-II. The tester can
then inspect a Pareto front to find the best compromise
between having a crowd worker selection that balances
bug detection probability, relevance, diversity, and test
cost or alternatively having a crowd worker selection
that maximizes one/two/three objective/s penalizing the
remain one/s.

MOCOM has the the following four steps:

1) Solution encoding. Like other recommendation prob-
lems [13]], [31], we encode each worker as a binary vari-
able. If the worker is selected, the value is one; otherwise,
the value is zero. The solution is represented as a vector
of binary variables, whose length equals to the number of
candidate crowd workers. The solution space for the crowd
worker recommendation problem is the set of all possible
combinations whether each crowd worker is selected or not.

2) Initialization. The starting population is initialized
randomly, i.e, randomly selecting K (K is the size of initial
population) solutions among all possible solutions (i.e., the
solution space). We set K as 200 as recommended by [63].

3) Genetic operators. For the evolution of binary en-
coding for the solutions, we exploit standard operators as
described in [31]. We use single point crossover, bitflip mu-
tation to produce the next generation. We use binary tour-
nament as the selection operator, in which two solutions are
randomly chosen and the fitter of the two will survive in the
next population.

4) Fitness functions. Since our goal is to optimize the
four considered objectives, each candidate solution is evalu-
ated by our objective functions described in Section For
bug detection probability, relevance, and diversity, the larger
these values are, the faster the convergence of a solution is.
The test cost benefits from the smaller values.

5 EXPERIMENT DESIGN
5.1 Research Questions

Our evaluation addresses the following research questions:

e RQ1: How effective is MOCOM in crowd worker rec-
ommendation?

For RQ1, we first present some general views of our
approach for worker recommendation, measured in bug de-
tection rate. To further demonstrate the advantages of MO-
COM, we then compare its performance with 5 commonly-
used and state-of-the-art baseline methods (details are in
Section [5.4).

e RQ2: How effective is the machine learning model in
predicting the bug detection probability?

We build a machine learning model to better obtain the
bug detection probability, which serves as one objective in
MOCOM. RQ2 aims at investigating the effectiveness of our
machine learning model on predicting the bug detection
probability considering the predicted probability with the
actual bug detection results.

o RQ3: What is the contribution of each objective to the
overall approach?

In this work, four objectives are utilized for facilitating
crowd worker recommendation (details are in Section [4.2).

9

Among them, the objective of cost is indispensable, which
cannot be removed. RQ3 explores the performance of MO-
COM when removing each of the other three objectives in
order to investigate the contribution of each objective.

e RQ4: Do the results of MOCOM achieve high quality?

RQ4 is to evaluate the quality of Pareto fronts
produced by our search-based approach, which can
further demonstrate the effectiveness of our approach.
We apply three commonly-used quality indicators, i.e.,
HyperVolume (HV), Inverted Generational Distance (IGD),
and Generalized Spread (GS) (see Section[5.3).

5.2 Experimental Setup

Our experiments are conducted on crowdsourced reports
from the repositories of Baidu CrowdTest platform (details
are in Section 2.3). To simulate the usage of MOCOM in
practice, we employ a commonly-used longitudinal data
setup [21]], [23]. That is, all the 562 experimental test tasks
were sorted in the chronological order, and then divided
into 20 non-overlapped and equally sized folds with each
fold having 28 test tasks (the last fold has 30 tasks).

We then employ the former N-1 folds as the training
dataset to train MOCOM and use the test tasks in the Nth
fold as the testing dataset to evaluate the performance of
worker recommendation. We experiment N from 11 to 20
to ensure a relative stable performance because a too small
training dataset could not reach an effective model. Note
that, what varies in the different experiments is the size of
training set which goes from 10 to 19 folds, while the testing
set always contains one fold of test tasks.

The role of the training dataset is extracting the capabil-
ity and domain knowledge of the crowd workers based on
their historical submitted reports, and building the machine
learning model for predicting bug detection probability. For
each test task in the testing dataset, we run MOCOM and
baseline methods to recommend a set of crowd workers,
and evaluate their performance. In total, we have 282 test
tasks (i.e., 9 * 28 4 30) to evaluate MOCOM.

We configured NSGA-II with the setting of initial popula-
tion = 200, maximum fitness evaluation (i.e., number of runs) =
20,000 as recommended by [63].

5.3 Evaluation Metrics

Given a test task, we measure the performance of a worker
recommendation approach based on whether it can find the
“appropriate” workers who can detect bugs. Following pre-
vious studies [12]-[14], we use the commonly-used bug de-
tection rate for the evaluation.

Bug Detection Rate at &k (BDR@k) is the percentage of
bugs detected by the recommended £ crowd workers in a
test task out of all bugs historically detected in the specific
task. Formally, given a set of recommended k& workers (i.e.,
W) and a test task (i.e., T'), the BDR@k is defined as follows:

#bugs detected by workers in W 9
Ftall bugs of T @

Note that, “bugs” here are referred as no duplicate bugs.
We inspect the Pareto front produced by our approach (Sec-
tion 4.3), and find the recommended worker set under dif-
ferent k values. Since a smaller subset is usually preferred in

BDRQL =

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

crowd worker recommendation due to the limited budget,
we obtain BDR@k when k is 3, 5, 10, 20, 50, and 100.

To compare the BDR@k values of the different worker
recommendation approaches, we additionally use two met-
rics.

Firstly, we employ %A which is the percent difference
between the BDR@k of two approaches.

VAN B —_— ®)
H1

where pq and po are the BDR@k values of two worker
recommendation approaches.

Secondly, we use the Mann-Whitney U statistical test
[59] to determine if the difference between the BDR@k is
statistically significant. The Mann-Whitney U test has the
advantage that the sample populations need not be nor-
mally distributed (non-parametric). If the p-value of the test
is below 0.05, then the difference is considered statistically
significant.

In addition, we apply HyperVolume (HV), Inverted Gen-
erational Distance (IGD), and Generalized Spread (GS) to
evaluate the quality of Pareto fronts produced by our search-
based approach (see Section [£.3), which have been widely
used in existing Search-Based Software Engineering studies
[31], [61], [64]. These three quality indicators compare the re-
sults of the algorithm with the reference Pareto front, which
consists of best solution.

HyperVolume (HV) is the combination of convergence
and diversity indicator. It calculates the volume covered by
the non-dominated set of solutions from an algorithm. A
higher value of HV demonstrates a better convergence as
well as diversity; Answering RQ4: Quality of Optimization
higher values of HV are better. Inverted Generational Dis-
tance (IGD) is a performance indicator. It computes the aver-
age distance between set of non-dominated solutions from
the algorithm and the reference Pareto set. A lower IGD
indicates the result is closer to the reference pareto front of
a specific problem; i.e. lower values of IGD are better. Gener-
alized Spread (GS) is a diversity indicator. It computes the
extent of spread for the non-dominated solutions found by
the algorithm. A lower value of GS shows that the results
have a better distribution; i.e. lower values of GS are better.
Due to the limited space, for details about the three quality
indicators, please refer to [31].

5.4 Ground Truth and Baselines

The Ground Truth of bug detection performance is obtained
based on the historical crowd workers who participated in
test tasks. In detail, we first rank the crowd workers based
on their submitted reports in chronological order, then ob-
tain the BDR@k based on this order. For example, BDR@3
is based on all bugs detected by the first three crowd work-
ers who participated in test tasks. The maximum value of
BDR@k of ground truth is 1.00 because we suppose all the
bugs have been detected when a test task is closed.

To further explore the performance of MOCOM, we com-
pare MOCOM with 5 commonly-used and state-of-the-art
baselines.

ExReDiv [12]: This is a weight-based crowd worker
recommendation approach. It linearly combines experience

10

strategy (i.e., select experienced workers), relevance strategy
(i.e., select workers with expertise relevant to the test task),
and diversity strategy (i.e., select diverse workers).

MOOSE [13]: This is a multi-objective crowd worker
recommendation, which can maximize the coverage of test
requirement, maximize the test experience of the selected
crowd workers, and minimize the cost.

Cocoon [14]: This crowd worker recommendation ap-
proach is based on maximizing the testing quality under
the test context coverage constraint. In it, the testing quality
of each worker is measured based on the number of bugs
reported in history.

STRING [48]: This approach is designed for black-box
test case selection. It uses string distances on the text of test
cases for comparing and prioritizing test cases. In detail,
this approach first converts each test case into a string of
text, and greedily selects one test case which is farthest from
the set of already-selected test cases. In our crowd worker
selection scenario, we treat a crowd worker as a test case and
consider her/his historical submitted reports as the content
of test case.

TOPIC [49]: This is another popular black-box test case
selection approach. It represents the test cases using the
linguistic data of test cases (i.e., their identifier names,
comments, and string literals), and applies topic modeling
to the linguistic data to model the functionality of each
test case. Then it gives high priority to the test cases
which test different functionality of the system under test.
In our crowd worker selection scenario, we also treat a
crowd worker as a test case and consider her/his historical
submitted reports as the linguistic content. Although
STRING and TOPIC are designed for test case selection
and consider different aspects from other three worker
recommendation baselines, we want to investigate whether
test case selection approaches can also do the crowd worker
recommendation problem.

6 RESULTS AND ANALYSIS
6.1 Answering RQ1: Effectiveness of MOCOM

We first present some general views of the performance for
our proposed MOCOM for worker recommendation, mea-
sured in bug detection rate (BDR@k).

Figure ffa| demonstrates BDR@k under six representative
k values. We can see the median BDR@k is 0.46 when k is
3, the median BDR@k is 0.62 when £k is 10, and the median
BDR@k is 0.70 when k is 20. To put it another way, with
3 recommended workers, the median for the percentage of
detected bugs is 46%. In addition, a median of 62% of all
bugs can be detected with 10 recommended workers, and
a median of 70% of all bugs can be detected with 20 rec-
ommended workers. This indicates the effectiveness of our
approach.

Figure [b] shows BDR@k curve when k increases from
1 to 100. We can easily observe that BDR@k of MOCOM in-
creases rapidly and reaches 75% when a median of 24 crowd
workers are employed. This means with the crowd workers
recommended by our proposed MOCOM, only a median of
24 workers are needed to detect 75% of all potential bugs.

In Figure [da] and we also present the BDR@k of
ground truth (see Section . We can observe that when k&

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

smaes e o+ o

100

1.0 | mm MOCOMT + —
== Ground Truth {
- 1
0.8 4 g
06 T !
Q
14
o
@ 0.4 -
I '
0.2 1
+
*
004 -+ - -+ + + +
\ \ \
10 20 50

k

(a) Bug detection rate for projects

11

—— MOCOM
| —e— Ground Truth

0.2 4

0.0 T T T
20 40 60 80 100
k

(b) Median bug detection rate curve

Fig. 4: Performance of MOCOM (RQ1)

mm MOCOM mmm ExReDiv = MOOSE mmm Cocoon mmm STRING mmm TOPIC

1.0 4 .
*y
¢
0.8 - R
H
~ 06 1 +
® $
' .
[a]
D 0.4 -
X
0.2
X X
+ +
0.0 1 e e (XXX}
T T T
5 10 20

3

T T
50 100
k

Fig. 5: Performance comparison with baselines (RQ1)

is below 20, the bug detection rate (BDR@k) achieved by
our proposed MOCOM is much higher than the BDR@k
of groundtruth. This implies our proposed approach can
detect more bugs with few crowd workers, which is the
main concern and contribution of this work. We also
notice that BDR@k of MOCOM is lower than BDR@k of
groundtruth when £ is larger than 20. We will explain the
detailed reason in Section [7.1]

To further demonstrate the advantages of MOCOM, we
then present the comparison between MOCOM and the five
commonly-used and state-of-the-art baseline methods (de-
tails are in Section [5.4).

Figure [p| presents the BDR@k values of our propose MO-
COM and the five baselines. We can easily observe that our
proposed MOCOM is much more effective, considering the
bug detection performance (BDR@k) of these recommended
workers. This is particularly true when the £ is smaller than
50.

Table[d demonstrates the results of %A between our pro-
posed MOCOM and the five baselines. BDR@5 of MOCOM
has 50% to 607% improvement compared with the baselines,
while BDR@20 of MOCOM undergoes 19% to 80% improve-
ment compared with the baselines.

We additionally conduct Mann-Whitney U Test for
BDR@k between our proposed MOCOM and the five

TABLE 4: Results of %A for median BDR@k of base-

lines(RQ1)

k=3 | k=5 | k=10 | k=20 | k=50 | k=100
MOCOM vs. ExReDiv_| 69% | 50% | 33% | 19% 6% 0%
MOCOM vs. MOOSE | 111% | 53% | 31% | 21% % | 1%
MOCOM vs. Cocoon 171% | 135% | 61% | 42% | 23% | 6%
MOCOM vs. STRING | 397% | 123% | 75% | 71% | 58% | 21%
MOCOM vs. TOPIC INE | 607% | 56% | 80% 71% | 36%

TABLE 5: Results of Mann-Whitney U Test (RQ1)

k=3 | k=5 | k=10 | k=20 | k=50 | k=100
MOCOM vs. ExReDiv_| 0.000| 0.000%| 0.000%| 0.000° | 0.035| 0.630
MOCOM vs. MOOSE | 0.000°| 0.000~| 0.000| 0.000*| 0.000"| 0.188
MOCOM vs. Cocoon | 0.000%| 0.000%| 0.000%| 0.000% | 0.000°| 0.008
MOCOM vs. STRING | 0.000%| 0.000%| 0.000%| 0.000 | 0.000°*| 0.000°*
MOCOM vs. TOPIC 0.000| 0.0007| 0.000%| 0.000°| 0.0007| 0.000°

baseline approaches. Results show that for k is 3, 5, 10, 20,
and 50, the p-value between our proposed MOCOM and
each of the five baselines are all below 0.05 (details are in
Table [5). This signifies that the bug detection performance
of the crowd workers recommended by our approach is
significantly better than existing approaches, which further
indicates the advantages of our approach over the five
commonly-used and state-of-the-art baseline methods.

Furthermore, unsurprisingly, the two baseline methods
which are originally designed for test case selection (i.e.,
STRING and TOPIC) perform bad for crowd worker recom-
mendation. And the three baseline methods which are pro-
posed specifically for crowd worker recommendation (i.e.,
ExReDiv, MOOSE, and Cocoon) perform better. This indi-
cates, once again, the need of designing approach for crowd
worker recommendation exclusively, because the character-
istics of crowd workers are different from other objects (e.g.,
test case) in software testing context.

Among the three baselines for crowd worker recommen-
dation (i.e., ExReDiv, MOOSE, and Cocoon), we can observe
that ExReDiv is a little better than the other two. This might
occur ExReDiv also considers the crowd worker’s relevance
with the test task, and the diversity among the selected
crowd workers, although not as comprehensive as our
proposed MOCOM. Moreover, experimental results show
that relevance and diversity are important factors which
should be considered in crowd worker recommendation
(details are in Section [6.3).

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

1.0
" é
0.8
807 1
=4
£
£ 06 i
< {
*
Q0.5 +
+
04 M .
0.3 4 .
+
0.2 - . . .
Precision Recall F-Measure

Fig. 6: Machine learner performance for bug detection prob-
ability (RQ2)

TABLE 6: Feature importance rank(RQ2)

Rank| Feature Rank| Feature

1 Number of bugs in past 2 weeks 12 Number of projects in past 1 month

2 Number of bugs in past 1 month 13 Number of projects in the past

3 Percentage of bugs in past 2 weeks | 14 Number of reports in past 2 month

4 Number of bugs in past 2 month 15 Number of projects in past 2 month

5 Number of projects in past 2 weeks | 16 Number of reports in past 1 month

6 Number of reports in past 2 weeks | 17 Percentage of dup. in past 1 month

7 Percentage of bugs in past 1 month | 18 Number of reports in the past

8 Number of bugs in the past 19 Percentage of bugs in the past

9 Percentage of dup. in past 2 weeks | 20 Percentage of dup. in past 2 month

10 Time interval between last sub- | 21 Percentage of dup. in the past
mission and task publish time

11 Percentage of bugs in past 2 month

6.2 Answering RQ2: Effectiveness of Machine Learn-
ing Model for Bug Detection Probability

This research question aims at investigating the effective-
ness of the machine learning model in predicting the bug
detection probability, which serves as one objective of MO-
COM (Section [4.2.T). We use the three most commonly-used
metrics (i.e., Precision, Recall, and F-Measure) [59] to mea-
sure the effectiveness of prediction. We treat the worker
with a predicted probability greater than 0.5 as a bug finder,
otherwise as not a bug finder. In the historical submitted
reports, we can obtain who have detected bugs, and who
have not. Hence, the three metrics are computed based on
the worker’s predicted bug detection results and the actual
bug detection results.

Figurelf] presents the effectiveness for predicting the bug
detection probability. We can easily see that our machine
learning model can achieve high precision, recall, and f-
measure. Specifically, the median precision is about 0.91, the
median recall is about 0.89, and the median f-measure is
0.89. Furthermore, in 75% of the experimental projects, our
machine learning model can achieve the precision of 0.82,
the recall of 0.79, and the f-measure of 0.82. This implies that
our machine learning model can predict the crowd worker’s
bug detection probability with high accuracy. Therefore, we
can use the predicted bug detection probability as one objec-
tive in our multi-objective crowd worker recommendation
approach.

We further explore the relative importance of different
features in our machine learning model. We first obtain the
Information Gain [59]] for each feature in every project, then
treat it as its rank and compute the average rank across all
the experimental projects for each feature. Table [f] presents
the rank of the features.

12

mm ALL = noCAP == noREV mmm noDIV
1.0 A
4
4
0.8
4
+ 06 - : H
© R
(=) 4+
0 0.4 o |
(]
LR AR
0.2
4 + LR
LR
004 + . ‘e I
T T T T T T
3 5 10 20 50 100
k

Fig. 7: Performance of MOCOM under different objectives
(RQ3)

Generally speaking, the features which capture the more
recent activities of crowd workers are ranked much higher.
For example, the feature number of bugs in past 2 weeks (1st
rank) is ranked higher than number of bugs in the past (8th
rank), while the former is about the workers” activity in the
past 2 weeks and the latter is about the workers’ activity in
the whole past. This indicates the need of considering the
time-related factors when modeling crowd worker’s capa-
bility in predicting bug detection probability.

In addition, the features which relate with bug detection
activity are ranked higher than these about general activi-
ties. For example, the feature number of bugs in past 2 weeks
(1st rank) and percentage of bugs in the past 2 weeks (3rd rank)
are ranked higher than number of projects in past 2 weeks (5th
rank) and number of reports in past 2 weeks (6th rank). This im-
plies, compared with general activities in the crowdsourced
testing platform, the past bug detection activity can bet-
ter model the crowd worker’s capability and bug detection
probability.

6.3 Answering RQ3: Contribution of Each Objective

This research question is to evaluate the contribution of
each objective, i.e., whether each of the applied objectives
is necessary for our crowd worker recommendation. For
the crowd worker recommendation problem, the objective
of cost is indispensable, which cannot be removed. Hence,
we remove each of the other three objectives, run MOCOM
with the remaining objectives, and evaluate the bug
detection rate (BDR@k).

Figure [7] presents the BDR@k under different settings,
where ALL denotes using all the four objectives (i.e., our
proposed MOCOM), noCAP denotes the recommendation
without the objective maximizing bug detection probability of
workers, noREV denotes the recommendation without the
objective maximizing relevance with the test task, and noDIV
denotes the recommendation without the objective maximiz-
ing diversity of workers.

We can easily observe that without any of the three ob-
jectives, the bug detection performance (BDR@k) would de-
cline dramatically. This is particularly true when k is smaller

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

TABLE 7: Results of %A for BDR@k of different objectives
(RQ3)

k=3 k=5 k=10 [k=20 k=50 [k=100
ALL vs. noCap 69% 36% 20% 11% 6% 1%
ALL vs. noREV 126% | 88% 26% 19% 6% -1%
ALL vs. noDIV INF 282% | 119% | 53% 23% 8%

TABLE 8: Results of Mann-Whitney U Test (RQ3)

k=3 k=5 k=10 k=20 k=50 k=100
ALL vs. noCap 0.000**| 0.000**| 0.000**| 0.000**| 0.038**| 0.556
ALL vs. noREV 0.000**| 0.000**| 0.000**| 0.000**| 0.011**| 0.415
ALL vs. noDIV 0.000**| 0.000**| 0.000**| 0.000**| 0.000**| 0.066

than 50. This indicates all the objectives are necessary for
recommending an appropriate set of crowd workers.

Specifically, Table [7] demonstrates the results of %A for
MOCOM with different objectives. BDR@5 of our approach
with all four objectives has 36% to 282% improvement com-
pared with the recommendation with three objectives, while
BDR@20 of our approach with all four objectives undergoes
11% to 53% improvement compared with the recommenda-
tion with three objectives.

We additionally conduct Mann-Whitney U Test for
BDR@k between the recommendation under all objectives
(i.e., ALL) and the recommendation under partial objectives
(i.e., noCap, noREV, and noDIV). Results show that when
k is equal to 3, 5, 10, 20, and 50, the p-value between
all objectives and partial objectives are all below 0.05
(details are in Table[8). This signifies that the bug detection
performance between using all objectives and partial
objectives is significantly different, which further indicates
all the objectives are necessary, and they together contribute
to the worker recommendation performance.

Furthermore, the bug detection performance would un-
dergo the most dramatic decline without the diversity ob-
jective (i.e., noDIV). This might occur without considering
diversity, the selected workers tend to possess similar back-
ground and would report duplicate bugs so as to influence
their bug detection rate. This proves, once again, the impor-
tance of diversity in software testing context [47]-[50].

Note that, one can easily generate a mistaken perception
that bug detection probability is the most “bug-related” fea-
ture in our approach. Thus one may feel confused that rno-
CAP (i.e., recommendation without the bug probability ob-
jective) can still results in a “still quite good” model. How-
ever, the bug detection probability in our model denotes the
general ability of bug detection, rather than the specialized
ability of detecting bugs for a specific task in testing dataset.
This is because the features, utilized to build the machine
learning model for capability prediction (in Table [3), all in-
volve the general past activities of the crowd workers. This
is why we include the second objective “relevance of crowd
workers with test task” to help select the workers who are
more capable for a specific task. The results of noCAP is
better than noREV indicates that the general capability of
bug detection contributes less to worker recommendation,
while the specialized background with the task contributes
more to worker recommendation.

6.4 Answering RQ4: Quality of Optimization

Since MOCOM is a search-based approach, which produces
Pareto fronts, this research question is to evaluate the quality

13

10 @
uo
.“. a“ c wﬂ WM
b .2
sp @
8
@
£ 06 4 e HV
£ e IGD
2 GS
®©
204
02 °
o J
ba® @ J . 9% &
o‘.o.- % ‘;:"*‘r’. S l‘ s .. b""
o ,f’or WS J“ .h}y k'{..

50 100 150 200 250
test tasks

Fig. 8: Quality indicators (RQ4)

of Pareto front, i.e., the quality of optimization. Three
commonly-used quality indicators, i.e., HyperVolume (HV),
Inverted Generational Distance (IGD), and Generalized
Spread (GS) [31], are applied. For each test task, we present
the value of each quality indicator obtained by MOCOM in
Figure

We can see that most projects have very high HV values,
very low IGD values and very low GS values. The average
HYV is 0.95, the average IGD is 0.04, and the average GS
is 0.05. This denotes our optimization has achieved high
quality.

Existing researches on test case selection and worker se-
lection achieve similar results [13], [64]. This further sug-
gests that the results of MOCOM have high quality.

7 DISCUSSION
7.1 Further Exploration of Results

In Section we show that when k is below 20, the bug
detection rate (BDR@k) achieved by MOCOM is much larger
than that of ground truth, which implies the effectiveness
of our approach. However, we also notice that BDR@k of
MOCOM is smaller than BDR@k of ground truth when k is
larger than 20. In addition, the median BDR@k of ground
truth can achieve 1.00, while the median BDR@k of MO-
COM can only reach 0.80 even 100 workers are employed
(Figure @b). The possible reasons for this phenomenon are
as follows.

Firstly, as our evaluation is conducted on the historical
reports, we assume that the historical submitted bugs are
the total number of bugs. This is why BDR@k of ground
truth can achieve 1.00.

Secondly, we find that there are newcomers in some
projects who do not have historical data. For these workers,
we cannot model their capability and domain knowledge.
Under this situation, our approach would not recommend
them to perform test tasks. This is the cold-start problem
in recommendation [65], which has not been well solved.
In our experimental dataset, there are 128 test tasks whose
BDR@100 values are less than 0.80. Among these 128 test
tasks, 43 (33.5%) tasks have newcomers, who would not
be recommended by our approach. However they have
detected 5% of total bugs in the ground truth.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

120 | mm MOCOM +
mm Ground Truth

100 ~ 4

.o

80 +

60 o

cost

+
.
+
+

+
40
+
: §oe
+
N ﬁ #
o
3 5 10 15

bug count

(a) Reducing cost

' ! : ! T
0.9 4 T T
=
Qo
[
Q
< 0.7 A
o
8
© 06
° t 1 - v +
= . 1 ! + $ '
205 A M . t oy
. +
0.4 | == MQCOM ¢ ¢ . .
mm Ground Truth H
T T T T T
3 5 10 15 20

k

(c) Increasing bug detection probability

14

0.6
== MOCOM
mm Ground Truth

'
é % . +
10 15 20
k

(b) Reducing duplicate reports

P
;}’ ‘:

== MOCOM
mm Ground Truth
0.00 T T T T T
3 5 10 15 20

k

o
o
I

-
. e o

o
~
L

s sem se o+ o
-

- .

- o osee
e e e v -

duplicate percentage
o o
o b
) !

o
L

0.0 T T

0.20 +

relevance
o
&

L

o
o
L

0.05 4

(d) Increasing relevance

Fig. 9: Benefits of MOCOM

To mitigate the impact of newcomers, we plan to in-
corporate the static attributes of crowd workers (e.g., oc-
cupation, interest) to help model the crowds. In addition,
we suggest the project manager employ our recommended
workers to find the 80% bugs with most of the budgets.
Meanwhile, the same test task can also be delivered to the
newcomers or other crowds with the leaving tiny proportion
of budgets. With this varying pricing mechanism, our work
recommendation approach can play a better role, and the
crowdsourced task can be tested in a more cost-effective
way.

Thirdly, there are some bug-finders who did not follow
the mechanism we designed in this work. For example, we
found several bug-finders did not submit any reports in
the past six months, or their past experience are not tightly
related with the task’s test requirements. In this case, our
approach has very low probability of recommending them
to perform the test task. These outliers are common in rec-
ommendation problems, and because of this, almost all the
recommendation problems can not achieve 100% recall [65].
We will explore other influential factors to better improve
the recommendation results.

7.2 Benefits of MOCOM

As discussed in previous section, our approach can find a
median of 75% bugs with fewer crowd workers, but might
fail to find all bugs. Despite of this, we believe the value of
our approach is finding more bugs, earlier (see Figure @b).

This is important because the goal of testing optimization
in many circumstances is to shut down the testing process
early (thereby saving the resources that would have oth-
erwise been spent). For the teams handling the bugs, the
goal is often not “find all bugs” but “find as many bugs
using least resources as possible” (which, in our case, is the
number of crowd workers) [2].

This section then discusses the benefits of MOCOM in
terms of the four objectives. Section will present the
effectiveness of MOCOM in reducing cost when detecting
equal number of bugs; Section will show its effective-
ness in reducing duplicate reports; Section and
will demonstrate its effectiveness in recommending workers
with high bug detection probability and relevance.

7.2.1 Reducing Cost

Figure 9a| demonstrates the consumed cost of MOCOM and
ground truth when detecting equal number of bugs. We can
see that our proposed MOCOM consumes less cost than
ground truth (ie., current crowdsourced testing practice).
For example, when detecting 15 bugs, with our MOCOM,
the platform can save an average of 33% costs (i.e., (30-
20)/30). The reduced cost is a tremendous figure when con-
sidering the large number of tasks delivered in a crowdtest-
ing platform.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

7.2.2 Reducing Duplicate Reports

Figure 9b| demonstrates the duplicate percentage of MOCOM
and ground truth in terms of the top k recommended crowd
workers. Duplicate percentage is computed by the number
of duplicates pairs divided by the total number of reports
pairs. Note that, in Section we conclude that our pro-
posed MOCOM is effective especially when k is less than
20; thus we only present the results with k from 3 to 20 in
this subsection and the next two subsections.

We can easily see that with MOCOM, the percentage of
duplicate reports is less than current crowdsourced testing
practice. This indicates the design of our approach (i.e., con-
sidering diversity) can help reduce duplicate reports so as
to improve the cost-effectiveness.

7.2.3

Figure presents the bug detection probability of the
crowd workers (Section[4.2.T) for MOCOM and ground truth
in terms of the top k recommended crowd workers. We can
see that the recommended crowd workers have higher bug
detection probability than current crowdsourced testing
practice. This implies our approach can recommend crowd
workers with higher bug detection probability so as to
detect more bugs with less cost (see results in Section [6.)).

Increasing Bug Detection Probability

7.2.4

Figure 0d] shows the relevance of crowd workers with the
test task (Section for MOCOM and ground truth in
terms of the top k recommended crowd workers. We can
see that the recommended crowd workers have higher rele-
vance with the test task than current crowdsourced testing
practice. This suggests our approach can recommend crowd
workers who have higher relevance with the test task so that
they can detect more bugs (see results in Section [6.)).

Increasing Relevance

7.3 Usefulness in Terms of Payout Schema

This section discusses whether our proposed MOCOM still
works with other types of payout schema.

Paid by participation. Our proposed approach is based
on the Baidu CrowdTest payout schema in which workers
are equally paid when they submit reports in a test task.
It is a commonly-used payout schema especially for the
newly-launched platform because it can encourage crowd
worker’s participation [9]. Evaluation results show that
MOCOM detects more bugs with fewer crowd workers (i.e.,
less cost) thus improves the cost-effectiveness of current
crowdsourced testing practice.

Paid by bug. In this schema, only those crowd workers
who detect bugs are paid (no matter whether it is a duplicate
bug). It is also a commonly-used payout schema [9]. Because
the reduced cost is measured by the number of workers in
our current evaluation, for this payout schema, the reduced
cost might not remain the same as current evaluation results.
However, our evaluation results have also showed that with
the recommended crowd workers, the number of duplicate
reports is reduced (see Section [7.2.2). Since the duplicate
reports also need to be paid, the reduction in duplicates
can help save cost, as well as decrease the effort to manage
these duplicates. Hence, in this schema, with our proposed

15

approach, the costs-effectiveness of crowdsourced testing
can also be improved.

Paid by first bug. In this schema, the crowd workers
who detect the first bug are paid (the following duplicates
would not be paid). It is another popular payout schema
[33], in which any worker recommendation approach
would not save cost because the total cost is the number
of bugs contained in the software system. However, as
our approach can detect more bugs with fewer crowd
workers, for this payout schema, it means that, with
our recommended crowd workers, bugs can be reported
earlier than current crowdsourced testing practice. This is
important since a large quantity of software are developed
under agile model which calls for rapid iteration [66]. In
addition, the reduction in duplicate reports by our approach
can also help decrease the effort to manage the duplicates.

7.4 Threats to Validity

The threats to external validity concern the generality of
this study. First, our experimental data consists of 562 test
tasks collected from one of the largest crowdsourced test-
ing platforms in China. The results of our study may not
generalize beyond this environment where our experiments
were conducted. However, the size of this dataset relatively
reduces this threat.

The internal validity mainly concerns the implemen-
tation of baselines. Since the original implementation of
STRING baseline and TOPIC baseline are not released, we
have reimplemented our own version. We have strictly
followed the procedures described in their work to alleviate
this threat. These two approaches are designed for test case
selection, while our aim is to select crowd workers which is
different from test case. The original approaches treat test
cases as strings of text, and we employ the text of worker’s
historical reports which is the most similar attribute in
our context. In addition, we model the diversity of testing
context based on the number of attributes. A refined
modeling of diversity might improve the performance
of worker recommendation, and we will explore other
modeling manner of diversity in future.

The main threat to construct validity in this study
involves the four objectives in multi-objective formulation.
These four objectives are designed from different aspects:
such as the bug detection probability of workers, the
relevance with the test task, the diversity of workers, and
the test cost. Although other objectives may also influence
bug detection in crowdsourced testing, we have obtained
promising results with these four objectives. Nevertheless,
exploration of other objectives would further address this
threat.

8 CONCLUSION

In crowdsourced testing, it is of great value to recommend a
set of appropriate crowd workers for a test task so that more
software bugs can be detected with fewer workers. We first
present a new characterization of crowd workers which can
support more effective crowd worker recommendation. We
characterize the crowd workers with three dimensions, i.e.,
testing context, capability, and domain knowledge. Based

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

Transactions on Software Engineering

on the characterization, we then propose Multi-Objective
Crowd wOrker recoMmendation approach (MOCOM),
which aims at recommending a minimum number of crowd
workers who could detect the maximum number of bugs
for a crowdsourced testing task. Specifically, MOCOM
recommends crowd workers by maximizing the bug
detection probability of workers, the relevance with the test
task, the diversity of workers, and minimizing the test cost.

We experimentally evaluate our approach on 562 test
tasks (involving 2,405 crowd workers and 78,738 test re-
ports) from one of the Chinese largest crowdsourced testing
platforms. The experimental results show that our MOCOM
can detect more bugs with fewer crowd workers, in which a
median of 24 crowd workers can detect 75% of all potential
bugs. All the objectives are necessary for worker recommen-
dation because removing any of the objectives would result
in a significant performance decline. In addition, our ap-
proach also significantly outperforms five commonly-used
and state-of-the-art baseline methods, with 19% to 80% im-
provement at BDR@20.

ACKNOWLEDGMENTS

This work is supported by the National Key Research
and Development Program of China wunder grant
No.2018YFB1401000, the National Natural Science Foun-
dation of China under grant No.61602450, No.61432001,
and China Scholarship Council. We would like to thank the
testers in Baidu for their extensive efforts in supporting this
work.

REFERENCES

[1] E Brooks, Jr., The Mythical Man-Month: Essays on Software Engineer-
ing. MA: Addison-Wesley, 1995.

[2] S.Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development envi-
ronments,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014,
2014, pp. 235-245.

[3] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siem-
borski, and J. Micco, “Taming google-scale continuous testing,” in
Proceedings of the 39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track, ser. ICSE-SEIP 17, 2017,
pp. 233-242.

[4] V.Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study
on agility and testing processes in software organizations,” in
Proceedings of the 19th International Symposium on Software Testing
and Analysis, ser. ISSTA "10, 2010, pp. 231-240.

[5] I Schaefer and R. Hahnle, “Formal methods in software product
line engineering,” Computer, vol. 44, no. 2, pp. 82-85, 2011.

[6] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How amazon web services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66-73, 2015.

[7] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of prac-
tice in model-driven engineering,” IEEE software, vol. 31, no. 3, pp.
79-85, 2014.

[8] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivanc¢i¢, and
A. Gupta, “Probabilistic temporal logic falsification of cyber-
physical systems,” ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 12, no. 2s, p. 95, 2013.

[9] X.Zhang, Y. Feng, D. Liu, Z. Chen, and B. Xu, “Research progress
of crowdsourced software testing,” Journal of Software, vol. 29(1),
pp. 69-88, 2018.

[10] http://www.softwaretestinghelp.com/
crowdsourced-testing-companies /|

[11] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “The four pillars
of crowdsourcing: A reference model,” in Research Challenges in
Information Science (RCIS), 2014 IEEE Eighth International Conference
on. IEEE, 2014, pp. 1-12.

16

[12] Q. Cui, J. Wang, G. Yang, M. Xie, Q. Wang, and M. Li, “Who
should be selected to perform a task in crowdsourced testing?”
in COMPSAC’17, 2017, pp. 75-84.

[13] Q. Cui, S. Wang,]. Wang, Y. Hu, Q. Wang, and M. Li, “Multi-
objective crowd worker selection in crowdsourced testing,” in
SEKE’17,2017, pp. 218-223.

[14] M. Xie, Q. Wang, G. Yang, and M. Li, “Cocoon: Crowdsourced
testing quality maximization under context coverage constraint,”
in ISSRE’17, 2017, pp. 316-327.

[15]]J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in ICSE’06, 2006, pp. 361-370.

[16] G.Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in FSE'09, 2009, pp. 111-120.

[17] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in ICSE’12, 2012, pp. 25-35.

[18] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “Devnet: exploring
developer collaboration in heterogeneous networks of bug repos-
itories,” in ESEM’13, 2013, pp. 193-202.

[19] W. Zhang, S. Wang, Y. Yang, and Q. Wang, “Heterogeneous
network analysis of developer contribution in bug repositories,”
in CSC'13, 2013, pp. 98-105.

[20] S. Wang, W. Zhang, and Q. Wang, “Fixercache: Unsupervised
caching active developers for diverse bug triage,” in ESEM'14,
2014, p. 25.

[21] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learn-
ing and multi-feature tossing graphs to improve bug triaging,” in
ICSM'10, 2010, pp. 1-10.

[22] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports
using a vocabulary-based expertise model of developers,” in
MSR09, pp. 131-140.

[23] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen,
“Fuzzy set and cache-based approach for bug triaging,” in FSE'11,
pp. 365-375.

[24] H. Naguib, N. Narayan, B. Briigge, and D. Helal, “Bug report
assignee recommendation using activity profiles,” in MSR'13, pp.
22-30.

[25] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is
going to mentor newcomers in open source projects?” in FSE'12,

.44

[26] pD Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recom-
mendation with usage expertise,” in ICSM'09, pp. 535-538.

[27] H. Yang, X. Sun, B. Li, and Y. Duan, “DR_PSF: Enhancing de-
veloper recommendation by leveraging personalized source-code
files,” in COMPSAC’16, vol. 1, 2016, pp. 239-244.

[28] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer
recommendation for crowdsourced software development tasks,”
in SOSE’15, 2015, pp. 347-356.

[29] Y. Yang, M. R. Karim, R. Saremi, and G. Ruhe, “Who should
take this task?: Dynamic decision support for crowd workers,”
in ESEM’16, 2016, p. 8.

[30] B.Yeand Y. Wang, “CrowdRec: Trust-aware worker recommenda-
tion in crowdsourcing environments,” in ICWS’16, 2016, pp. 1-8.

[31] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, “A practical guide
to select quality indicators for assessing pareto-based search al-
gorithms in search-based software engineering,” in ICSE’16, 2016,
pp. 631-642.

[32] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon, “Combin-
ing multi-objective search and constraint solving for configuring
large software product lines,” in ICSE’15, pp. 517-528.

[33] https://help.utest.com/submitting-bug-reports-utest/|

[34] N. Leicht, I. Blohm, and J. M. Leimeister, “Leveraging the power
of the crowd for software testing,” IEEE Software, vol. 34, no. 2, pp.
62-69, 2017.

[35] N. Chen and S. Kim, “Puzzle-based automatic testing: Bringing
humans into the loop by solving puzzles,” in ASE’12, pp. 140-149.

[36] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and S. Gan-
guly, “Leveraging the crowd: how 48,000 users helped improve
lync performance,” IEEE software, vol. 30, no. 4, pp. 3845, 2013.

[37] V. H. Gomide, P. A. Valle, J. O. Ferreira, J. R. Barbosa, A. F.
Da Rocha, and T. Barbosa, “Affective crowdsourcing applied
to usability testing,” International Journal of Computer Scienceand
Information Technologies, vol. 5, no. 1, pp. 575-579, 2014.

[38] M. Gémez, R. Rouvoy, B. Adams, and L. Seinturier, “Reproduc-
ing context-sensitive crashes of mobile apps using crowdsourced
monitoring,” in Mobile Software Engineering and Systems (MOBILE-
Soft), 2016 IEEE/ACM International Conference on, 2016, pp. 88-99.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.softwaretestinghelp.com/crowdsourced-testing-companies/
http://www.softwaretestinghelp.com/crowdsourced-testing-companies/
https://help.utest.com/submitting-bug-reports-utest/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918520, IEEE

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Software Engineering

Y. Feng, Z. Chen, J. A. Jones, C. Fang, and B. Xu, “Test report
prioritization to assist crowdsourced testing,” in FSE15, pp. 225~
236.

Y. Feng, J. A. Jones, Z. Chen, and C. Fang, “Multi-objective test
report prioritization using image understanding,” in ASE’16, pp.
202-213.

J. Wang, Q. Cui, Q. Wang, and S. Wang, “Towards effectively test
report classification to assist crowdsourced testing,” in ESEM’16,
p. 6.

J. Wang, S. Wang, Q. Cui, and Q. Wang, “Local-based active
classification of test report to assist crowdsourced testing,” in
ASE’16, pp. 190-201.

J. Wang, Q. Cui, S. Wang, and Q. Wang, “Domain adaptation
for test report classification in crowdsourced testing,” in ICSE-
SEIP’17, pp. 83-92.

K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, pp. 57-84, 2017.

M. Zhou and A. Mockus, “What make long term contributors:
Willingness and opportunity in oss community,” in ICSE'12, pp.
518-528.

——, “Who will stay in the floss community? modeling partici-
pant’s initial behavior,” IEEE Transactions on Software Engineering,
vol. 41, no. 1, pp. 82-99, 2015.

Y. Ledru, A. Petrenko, and S. Boroday, “Using string distances for
test case prioritisation,” in ASE’09, 2009, pp. 510-514.

Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing
test cases with string distances,” Automated Software Engineering,
vol. 19, no. 1, pp. 65-95, 2012.

S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static
test case prioritization using topic models,” Empirical Software
Engineering, vol. 19, no. 1, pp. 182-212, 2014.

J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
B. Xie, “Test case prioritization for compilers: A text-vector based
approach,” in ICST'16, pp. 266-277.

J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning
to prioritize test programs for compiler testing,” in ICSE’17, 2017,
pp- 700-711.

S. Wang, J. Nam, and L. Tan, “QTEP: quality-aware test case
prioritization,” in FSE'17, 2017, pp. 523-534.

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]
[66]

17

G. Rothermel, R. H. Untch, C. Chu, and M. r.]J. Harrold, “Priori-
tizing test cases for regression testing,” TSE'11, vol. 27, no. 10, pp.
929-948, 2011.

S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: a survey,” STVR'12, vol. 22, no. 2, pp. 67—
120, 2012.

Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” TSE'07, vol. 33, no. 4, pp. 225-
237, 2007.

G. Rothermel, R. H. Untch, C. Chu, and M. r. J. Harrold, “Test case
prioritization: An empirical study,” in ICSM’99, 1999, pp. 179-188.
H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel,
“A static approach to prioritizing junit test cases,” TSE'12, vol. 38,
no. 6, pp. 1258-1275, 2012.

A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and
combining test-suite reduction and regression test select ion,” in
FSE’15, pp. 237-247.

I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

H. Rocha, M. T. Valente, H. Marques-Neto, and G. C. Murphy,
“An empirical study on recommendations of similar bugs,” in
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, vol. 1, 2016, pp. 46-56.

M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput-
ing Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective op-
timization: Nsga-II,” in International Conference on Parallel Problem
Solving From Nature. Springer, 2000, pp. 849-858.

J. H. Holland, Genetic algorithms. ~Scientific American, 1992.

M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical
evaluation of pareto efficient multi-objective regression test case
prioritisation,” in ISSTA 2015, 2015, pp. 234-245.

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender

%/stems handbook. _Springer, 2015. o
. C. Martin, Agile software development: principles, patterns, and

practices. Prentice Hall, 2002.

