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Abstract—Software defect prediction, which predicts defective code regions, can assist developers in finding bugs and prioritizing their
testing efforts. Traditional defect prediction features often fail to capture the semantic differences between different programs. This
degrades the performance of the prediction models built on these traditional features. Thus, the capability to capture the semantics
in programs is required to build accurate prediction models. To bridge the gap between semantics and defect prediction features, we
propose leveraging a powerful representation-learning algorithm, deep learning, to learn the semantic representations of programs
automatically from source code files and code changes. Specifically, we leverage a deep belief network (DBN) to automatically learn
semantic features using token vectors extracted from the programs’ abstract syntax trees (AST) (for file-level defect prediction models)
and source code changes (for change-level defect prediction models).

We examine the effectiveness of our approach on two file-level defect prediction tasks (i.e., file-level within-project defect prediction
and file-level cross-project defect prediction) and two change-level defect prediction tasks (i.e., change-level within-project defect
prediction and change-level cross-project defect prediction). Our experimental results indicate that the DBN-based semantic features can
significantly improve the examined defect prediction tasks. Specifically, the improvements of semantic features against existing traditional
features (in F1) range from 2.1 to 41.9 percentage points for file-level within-project defect prediction, from 1.5 to 13.4 percentage points
for file-level cross-project defect prediction, from 1.0 to 8.6 percentage points for change-level within-project defect prediction, and from
0.6 to 9.9 percentage points for change-level cross-project defect prediction.

Index Terms—Defect prediction, quality assurance, deep learning, semantic features.
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1 INTRODUCTION

SOftware defect prediction techniques [22], [29], [31], [41],
[45], [53], [59], [62], [80], [96], [112] have been proposed

to detect defects and reduce software development costs.
Defect prediction techniques build models using software
history data and use the developed models to predict
whether new instances of code regions, e.g., files, changes,
and methods, contain defects.

The efforts of previous studies toward building accurate
prediction models can be categorized into the two following
approaches: The first approach is manually designing new
features or new combinations of features to represent de-
fects more effectively, and the second approach involves the
application of new and improved machine learning based
classifiers. Researchers have manually designed many fea-
tures to distinguish defective files from non-defective files,
e.g., Halstead features [19] based on operator and operand
counts; McCabe features [50] based on dependencies; CK
features [8] based on function and inheritance counts, etc.;
MOOD features [21] based on polymorphism factor, cou-
pling factor, etc.; process features [29], [80] (including num-
ber of lines of code added, removed, meta features, etc.);
and object-oriented features [3], [11], [49].
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Traditional features mainly focus on the statistical
characteristics of programs and assume that buggy
and clean programs have distinguishable statistical
characteristics. However, our observations on real-world
programs show that existing traditional features often
cannot distinguish programs with different semantics.
Specifically, program files with different semantics can have
traditional features with similar or even the same values.
For example, Figure 1 shows an original buggy version, i.e.,
Figure 1(a), and a fixed clean version, i.e., Figure 1(b), of
a method from Lucene. In the buggy version, there is an
IOException when initializing variables os and is before
the try block. The buggy version can lead to a memory
leak1 and has already been fixed by moving the initializing
statements into the try block in Figure 1(b). Using traditional
features to represent these two code snippets, e.g., code
complexity features, their feature vectors are identical.
This is because these two code snippets have the same
source code characteristics in terms of complexity, function
calls, raw programming tokens, etc. However, the semantic
information in these two code snippets is significantly
different. Specifically, the contextual information of the two
variables, i.e., os and is, in the two versions is different.
Features that can distinguish such semantic differences are
needed for building more accurate prediction models.

To bridge the gap between the programs’ semantic infor-
mation and defect prediction features, we propose leverag-
ing a powerful representation-learning algorithm, namely,

1. https://issues.apache.org/jira/browse/LUCENE-3251

https://issues.apache.org/jira/browse/LUCENE-3251
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1 public void copy(Directory to, String src, String dest)
throws IOException {

2 IndexOutput os = to.createOutput(dest);
3 IndexInput is = openInput(src);
4 IOException priorException = null;
5
6 try {
7 is.copyBytes(os, is.length());
8 } catch (IOException ioe) {
9 priorException = ioe;

10 }
11 finally {
12 IOUtils.closeSafely(priorException, os, is);
13 }
14 }

(a) Original buggy code snippet.

1 public void copy(Directory to, String src, String dest)
throws IOException {

2 IndexOutput os = null;
3 IndexInput is = null;
4 IOException priorException = null;
5 try {
6 os = to.createOutput(dest);
7 is = openInput(src);
8 is.copyBytes(os, is.length());
9 } catch (IOException ioe) {

10 priorException = ioe;
11 } finally {
12 IOUtils.closeSafely(priorException, os, is);
13 }
14 }

(b) Code snippet after fixing the bug.

Fig. 1: A motivating example from Lucene.

deep learning [27], to learn semantic representations of pro-
grams automatically. Specifically, we use the deep belief net-
work (DBN) [26] to automatically learn features from to-
ken vectors extracted from source code, and then we utilize
these features to build and train defect prediction models.

DBN is a generative graphical model, which learns a
semantic representation of the input data that can recon-
struct the input data with a high probability as the output.
It automatically learns high-level representations of data by
constructing a deep architecture [4]. There have been suc-
cessful applications of DBN in many fields, including speech
recognition [58], image classification [9], [43], natural lan-
guage understanding [56], [86], and semantic search [85].

To use a DBN to learn features from code snippets,
we first convert the code snippets into vectors of
tokens with the structural and contextual informa-
tion preserved, and then we use these vectors as
the input into the DBN. For the two code snippets
presented in Figure 1, the input vectors are [...,
IndexOutput, createOutput(), IndexInput,
openInput(), IOException, try, ...] and [...,
IndexOutput, IndexInput, IOException, try,
createOutput(), openInput()...] respectively
(Details regarding the token extraction are provided in
Section 3.1). As the vectors of these two code snippets are
different, the DBN will automatically learn features that can
distinguish them.

We examine our DBN-based approach to generating se-
mantic features on both file-level defect prediction tasks (i.e.,
predict which files in a release are buggy) and change-level
defect prediction tasks (i.e., predict whether a code commit
is buggy), because most of the existing approaches to defect
prediction are on these two levels [2], [24], [29], [67], [82],
[90], [94], [103], [104]. Focusing on these two different de-
fect prediction tasks enables us to extensively compare our
proposed technique with state-of-the-art defect prediction
features and techniques. For file-level defect prediction, we
generate DBN-based semantic features by using the com-
plete Abstract Syntax Trees (AST) of the source files, while
for change-level defect prediction, we generate the DBN-
based features by using tokens extracted from code changes,
as detailed in Section 3.

In addition, most defect prediction studies have been
conducted in one or two settings, i.e., within-project defect
prediction [29], [57], [90], [104] and/or cross-project defect

prediction [24], [67], [94], [103]. Thus, we evaluate our ap-
proach in these two settings as well.

In this work, we explore the performance of the DBN-
based semantic features using different measures under dif-
ferent evaluation scenarios. We first evaluate the prediction
performance by using Precision, Recall, and F1, as they
are commonly used evaluation measures in defect predic-
tion studies [2], [67], [82], [97], which we refer to as the
non-effort-aware scenario in this work. In addition, we also
conduct an effort-aware evaluation [52] to show the prac-
tical aspect of defect prediction by using PofB20, i.e., the
percentage of bugs that can be discovered by inspecting
20% lines of code (LOC) [29]. For example, when a team
can afford to inspect only 20% LOC before a deadline, it is
crucial to inspect the 20% that can assist the developers in
discovering the highest number of bugs.

This paper makes the following contributions:
• Shows the incapability of traditional features in captur-

ing the semantic information of programs.
• Proposes a new technique to leverage a powerful

representation-learning algorithm, deep learning, to
learn semantic features from token vectors extracted
from programs’ ASTs (for file-level defect prediction
models) and source code changes (for change-level
defect prediction models) automatically.

• Conducts rigorous and large-scale experiments to eval-
uate the performance of the DBN-based semantic fea-
tures for defect prediction tasks under both the non-
effort-aware and effort-aware scenarios; and

• Demonstrates that DBN-based semantic features can
significantly improve defect prediction. Specifically,
the improvements of semantic features against existing
traditional features (in F1) range from 2.1 to 41.9
percentage points for file-level within-project defect
prediction, from 1.5 to 13.4 percentage points for
file-level cross-project defect prediction, from 1.0 to
8.6 percentage points for change-level within-project
defect prediction, and from 0.6 to 9.9 percentage points
for change-level cross-project defect prediction.

The rest of this paper is summarized as follows. Section
2 provides the backgrounds on defect prediction and DBN.
Section 3 describes our approach to learning semantic fea-
tures followed by leveraging the learned features to predict
defects. Section 4 presents the experimental setup. Section 5
evaluates the performance of the learned semantic features.
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Section 6 discusses our results and threats to the validity.
Section 7 surveys the related work. Section 8 summarizes
our study. This paper extends our prior publication [97]
presented at the 38th International Conference on Software
Engineering (ICSE’16). New materials with respect to the
conference version include:

• Examining the effectiveness of the proposed approach
for generating semantic features on two change-level
defect prediction tasks, i.e., change-level within-
project defect prediction (WCDP) and change-level
cross-project defect prediction (CCDP). The details
are presented in Section 4.5.2 (experimental design),
Section 4.8 (WCDP), Section 4.9 (CCDP), Section 5.3
(results of WCDP), and Section 5.4 (results of CCDP).

• New techniques to process incomplete code from
source code changes for generating DBN-based
features automatically are proposed. The details are
presented in Section 3.1.2.

• The model performance assessment scenarios are
updated. Both the non-effort-aware and effort-aware
evaluation processes are employed to comprehensively
evaluate the performance of the DBN-based semantic
features on file-level and change-level defect prediction
tasks. The details are presented in Section 5.

• New experiments on open-source commercial projects
and additional details regarding the experimental
design and results are provided. In addition, statistical
testing and Cliff’s delta effect size analysis are
conducted to measure and demonstrate the significance
of the prediction performance of the DBN-based
semantic features. The details are provided in Section 5.

2 BACKGROUND

TABLE 1: Defect prediction tasks investigated in this work.

Within-project Cross-project
File Level WPDP CPDP
Change Level WCDP CCDP

This section provides the backgrounds of file-level and
change-level defect prediction and deep belief network. Ta-
ble 1 shows the investigated prediction tasks and their cor-
responding abbreviations.

2.1 File-level Defect Prediction
Figure 2 presents a typical file-level defect prediction pro-
cess that is adopted by existing studies [31], [45], [55], [66],
[67], [76], [100]. The first step is to label the data as buggy or
clean based on post-release defects for each file. One could
collect these post-release defects from a Bug Tracking Sys-
tem (BTS) via linking bug reports to its bug-fixing changes.
Files related to these bug-fixing changes are considered as
buggy. Otherwise, the files are labeled as clean. The second
step is to collect the corresponding traditional features of
these files. Instances with features and labels are used to
train machine learning classifiers. Finally, trained models are
used to predict new instances as buggy or clean.

We refer to the set of instances used for building models
as a training set, whereas the set of instances used to evaluate
the trained models is referred to as a test set. As shown in

Fig. 2: Defect Prediction Process

Figure 2, when performing within-project defect prediction
(following existing work [66], we call this WPDP), the train-
ing and test sets are from the same project, i.e., project A.
When performing cross-project defect prediction (following
existing work [66], we call this CPDP), the prediction models
are trained by a training set from project A (source), and a
test set is from a different project, i.e., project B (target).

In this study, for file-level defect prediction, we examine
the performance of the learned DBN-based semantic fea-
tures on both WPDP and CPDP.

2.2 Change-level Defect Prediction
Change-level defect prediction can predict whether a change
is buggy at the time of the commit so that it allows devel-
opers to act on the prediction results as soon as a commit is
made. In addition, since a change is typically smaller than
a file, developers have much less code to examine in order
to identify defects. However, for the same reason, it is more
difficult to predict buggy changes accurately.

Similar to file-level defect prediction, change-level defect
prediction also consists of the following processes:

• Labeling process: Labeling each change as buggy or
clean to indicate whether the change contains bugs.

• Feature extracting process: Extracting the features to
represent the changes.

• Model building and testing process: Building a predic-
tion model with the features and labels and then using
the model to predict testing data.

Different from labeling file-level defect data, labeling
change-level defect data requires further linking of bug-
fixing changes to bug-introducing changes. A line that
is deleted or changed by a bug-fixing change is a faulty
line, and the most recent change that introduced the faulty
line is considered a bug-introducing change. We could
identify the bug-introducing changes by a blame technique
provided by a Version Control System (VCS), e.g., git or
SZZ algorithm [40]. Such blame techniques are widely used
in existing studies [29], [40], [57], [90], [107]. In this work,
the bug-introducing changes are considered as buggy, and
other changes are labeled clean. Note that, not all projects
have a well maintained BTS, and we consider changes
whose commit messages contain the keyword “fix” as
bug-fixing changes by following existing studies [29], [90].

In this work, similar to the file-level defect prediction,
we also examine the performance of DBN-based features on
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Fig. 3: Deep belief network architecture and input instances
of the buggy version and the clean version presented in Fig-
ure 1. Although the token sets of these two code snippets are
identical, the different structural and contextual information
between tokens enables DBN to generate different features
to distinguish them.

both change-level within-project defect prediction (WCDP)
and change-level cross-project defect prediction (CCDP).

2.3 Deep Belief Network

A deep belief network is a generative graphical model that
uses a multi-level neural network to learn a representation
from the training data that could reconstruct the semantic
and content of the training data with a high probability [4].
DBN contains one input layer and several hidden layers, and
the top layer is the output layer that contains final features
to represent input data as shown in Figure 3. Each layer
consists of several stochastic nodes. The number of hidden
layers and the number of nodes in each layer vary depend-
ing on users’ demand. In this study, the size of learned
semantic features is the number of nodes in the top layer.
The idea of DBN is to enable the network to reconstruct the
input data using generated features by adjusting weights
between nodes in different layers.

DBN models the joint distribution between input layer
and the hidden layers as follows:

P (x, h1, ..., hl) = P (x|h1)(
l∏

k=1

P (hk|hk+1)) (1)

where x is the data vector from input layer, l is the number
of hidden layers, and hk is the data vector of kth layer
(1 ≤ k ≤ l). P (hk|hk+1) is a conditional distribution for
the adjacent k and k + 1 layers.

To calculate P (hk|hk+1), each pair of two adjacent layers
in DBN are trained as a Restricted Boltzmann Machines
(RBM) [4]. An RBM is a two-layer, undirected, bipartite
graphical model where the first layer consists of observed
data variables, referred to as visible nodes, and the second
layer consists of latent variables, referred to as hidden nodes.
P (hk|hk+1) can be efficiently calculated as:

P (hk|hk+1) =

nk∏
j=1

P (hkj |hk+1) (2)

Fig. 4: The distribution of DBN-based features of the two
code snippets shown in Figure 1.

P (hkj = 1|hk+1) = sigm(bkj +

nk+1∑
a=1

W k
ajh

k+1
a ) (3)

where nk is the number of nodes in layer k, sigm(c) =
1

1+e−c , b is a bias matrix, bkj is the bias for node j of layer
k, and W k is the weight matrix between layer k and layer
k + 1. sigm is the sigmod function, which serves as the
activation function to update the hidden units. We use the
sigmod function because it outputs a more smooth range of
nonlinear values with a relatively simple computation [20].

DBN automatically learns W and b matrices using an
iteration process. W and b are updated via log-likelihood
stochastic gradient descent:

Wij(t+ 1) =Wij(t) + η
∂log(P (v|h))

∂Wij
(4)

bok(t+ 1) = bok(t) + η
∂log(P (v|h))

∂bok
(5)

where t is the tth iteration, η is the learning rate, P (v|h)
is the probability of the visible layer of an RBM given the
hidden layer, i and j are two nodes in different layers of the
RBM, Wij is the weight between the two nodes, and bok is
the bias on the node o in layer k.

To train the network, one first initializes all W matrices
between two layers via RBM and sets the biases b to 0. They
can be well-tuned with respect to a specific criterion, e.g.,
the number of training iterations, error rate between recon-
structed input data and original input data. In this study,
we use the number of training iterations as the criterion for
tuning W and b. The well-tuned W and b are used to set
up a DBN for generating semantic features for both training
and test data. Also, we discuss how these parameters affect
the performance of learned semantic features in Section 4.5.

The DBN model generates features with more complex
network connections. These network connections enable
DBN models to generate features with multiple levels of
abstraction and high-level semantics. DBN features are
weighted combinations/vectors of input nodes, which
may represent patterns of the usages of input nodes
(e.g., methods, control-flow nodes, etc.). We believe such
DBN-based features can help distinguish the semantics of
different source code snippets, which traditional features
cannot handle well. For example, Figure 4 shows the
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distribution of the DBN-based semantic features of the
two code snippets shown in Figure 1. Specifically, we use
the trained DBN model on project Lucene (details are
in Section 4.8) to generate a feature set that contains 50
different features for each of the two code snippets. As
we can see in the figure, the distributions of features of
the two code snippets are different. Specifically, most of
the features of code snippet shown in Figure 1(b) have
larger values than those of the features of code snippet
shown in Figure 1(a). Thus, the new features are capable
of distinguishing these two code snippets with a proper
classifier.

3 APPROACH

In this work, we use DBN to generate semantic features
automatically from source files and code changes and fur-
ther leverage these features to improve defect prediction.
Figure 5 illustrates the workflow of our approach to gen-
erating features for both file-level defect prediction (inputs
are source files) and change-level defect prediction (inputs
are source code changes). Specifically, for file-level defect
prediction, our approach takes AST node tokens from the
source code of the training and test source files as the in-
put, and generates semantic features from them. Then, the
generated semantic features are used to build the models
for predicting defects. Note that for change-level defect pre-
diction, the input data to our DBN-based feature generation
approach are changed code snippets. Since building AST for
an incomplete code snippet is challenging, in this work we
propose a heuristic approach to extracting important struc-
tural and context information from code change snippets
(details are in Section 3.1.2). The DBN requires input data
in the form of integer vectors, to satisfy this requirement,
we first build a mapping between integers and tokens and
then convert the token vectors to integer vectors, to generate
semantic features, we first use the integer vectors of the
training set to build and train a DBN. Then, we use the
trained DBN to automatically generate semantic features
from the integer vectors of the training and test sets. Finally,
based on the generated semantic features, we build defect
prediction models from the training set, and evaluate their
performance on the test set.

Our approach consists of four major steps: 1) parsing
source code (source files for file-level defect prediction and
changed code snippets for change-level defect prediction)
into tokens, 2) mapping tokens to integer identifiers, which
are the expected inputs to the DBN, 3) leveraging the DBN
to automatically generate semantic features, and 4) building
defect prediction models and predicting defects using the
learned semantic features of the training and test data.

3.1 Parsing Source Code

3.1.1 Parsing Source Code for Files
For file-level defect prediction tasks, we utilize the Java
Abstract Syntax Tree (AST) to extract syntactic information
from source code files. Specifically, three types of AST
node are extracted: 1) nodes of method invocations
and class instance creations, e.g., in Figure 3, method
createOutput() and openInput() are recorded as

their method names, 2) declaration nodes, i.e., method
declarations, type declarations, and enum declarations, and
3) control-flow nodes such as while statements, catch
clauses, if statements, throw statements, etc. Control-flow
nodes are recorded as their statement types, e.g., an if
statement is simply recorded as if. In summary, for each
file, we obtain a vector of tokens of the three categories. We
exclude AST nodes that are not one of these three categories,
such as assignment and intrinsic type declaration, because
they are often method-specific or class-specific, which may
not be generalizable to the whole project. Adding them may
dilute the importance of other nodes.

Since the names of methods, classes, and types
are typically project-specific, methods of an identical
name in different projects are either rare or of different
functionalities. Thus, for cross-project defect prediction,
we extract all three categories of AST nodes, but for the
AST nodes in categories 1) and 2), instead of using their
names, we use their AST node types such as method
declarations and method invocations. Take project
xerces as an example. As an XML parser, it consists
of many methods named getXXX and setXXX, where
XXX refers to XML-specific keywords including charset,
type, and href. Each of these methods contains only
one method invocation statement, which is in form of
either getAttribute(XXX) or setAttribute(XXX).
Methods getXXX and setXXX do not exist in other projects,
while getAttribute(XXX) and setAttribute(XXX)
have different meanings in other projects, so using the
names getAttribute(XXX) or setAttribute(XXX)
is not helpful. However, it is useful to know that method
declaration nodes exist, and only one method invocation
node is under each of these method declaration nodes, since
it might be unlikely for a method with only one method
invocation inside to be buggy. In this case, compared with
using the method names, using the AST node types method
declaration and method invocation is more useful
since they can still provide partial semantic information.

3.1.2 Parsing Source Code for Changes

Different from file-level defect prediction data, i.e., program
source files, for which we could build ASTs and extract
AST token vectors for feature generation, change-level
defect prediction data are changes that developers made to
source files, whose syntax information is often incomplete.
These changes could have different locations and include
code additions and code deletions, which are syntactic
incomplete. Thus, building ASTs for these changes is
challenging. In this study, for tokenizing changes, instead
of building ASTs, we tokenize a change by considering the
code addition, the code deletion, and the context
code in the change. Code additions are the added lines
in a change, code deletions are the deleted lines in a
change, and the code around these additions or deletions is
considered the context code. For example, Figure 6 shows
a real change example from project Lucene. In this change,
the code addition contains lines 15 and 16, the code deletion
contains lines 7 to 14, and the context contains lines 4 to
6, 17, and 18. Note that the contents of the source code
lines in the additions, deletions, and context code are often
overlapping, e.g., the deleted line 7 and the added line 15
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Fig. 5: Overview of our DBN-based approach to generating semantic features for file-level and change-level defect
prediction.

1 --- a/solr/src/java/org/apache/solr/handler/component/QueryComponent.java
2 +++ b/solr/src/java/org/apache/solr/handler/component/QueryComponent.java
3 @@ -217,14 +217,8 @@ public class QueryComponent extends SearchComponent
4 for (String groupByStr : funcs) {
5 QParser parser = QParser.getParser(groupByStr, "func", rb.req);
6 Query q = parser.getQuery();
7 - SolrIndexSearcher.GroupCommandFunc gc;
8 - if (groupSort != null) {
9 - SolrIndexSearcher.GroupSortCommand gcSort = new SolrIndexSearcher.GroupSortCommand();

10 - gcSort.sort = groupSort;
11 - gc = gcSort;
12 - } else {
13 - gc = new SolrIndexSearcher.GroupCommandFunc();
14 - }
15 + SolrIndexSearcher.GroupCommandFunc gc = new SolrIndexSearcher.GroupCommandFunc();
16 + gc.groupSort = groupSort;
17 if (q instanceof FunctionQuery) {
18 gc.groupBy = ((FunctionQuery)q).getValueSource();

Fig. 6: A change example from Lucene (commit id is 9535bb795f6d1ec4c475a5d35532f3c7951101da).

contain the same line of code for class instance creation,
i.e., SolrIndexSearcher.GroupCommandFunc gc;.
Thus, to distinguish these lines, we add different prefixes
to the raw tokens that are extracted from different types of
changed code. Specifically, for the addition, we use prefix
“added ”, for the deletion, we use prefix “deleted ”, and
for the context code, we use prefix “context ”. The details
of the three types of tokens extracted from the example
change (in Figure 6) are shown in Table 2.

From Table 2, we could observe that different types of to-
kens from the changed code snippets contain different infor-
mation. For example, the context nodes show that the code
is changed inside a for loop, an if statement is removed
from the source code in the deletions, and an instantiation
of class GroupCommandFunc was created in the additions.

Intuitively, DBN-based features generated from different
types of tokens may have different impacts on the perfor-
mance of the change-level defect prediction. To extensively
explore the performance of different types of tokens, we
build and evaluate change-level defect prediction models
with seven different combinations among the three different
types of tokens, i.e., added: only considers the additions;
deleted: only considers the deletions; context: only consid-
ers the context information; added+deleted: considers both

the additions and the deletions; added+context: considers
both the additions and the context tokens; deleted+context:
considers both the deletions and the context tokens; and
added+deleted+context: considers the additions, deletions,
and context tokens together. We discuss the effectiveness of
these different combinations in Section 5.

Note that some of the tokens extracted from the
changed code snippets are project-specific, which means
that they are rare or never appear in changes from a
different project. Thus, for change-level cross-project
defect prediction we first filter out variable names, and
then use method declaration, method invocation,
and class instantiation to represent a method
declaration, a method call, and an instance of a class
instantiation respectively.

3.2 Handling Noise and Mapping Tokens
3.2.1 Handling Noise
Defect data are often noisy and suffer from the mislabeling
problem. Studies have shown that such noises could sig-
nificantly erode the performance of defect prediction [25],
[39], [92]. To prune noisy data, Kim et al. proposed an ef-
fective mislabeling data detection approach named Closest
List Noise Identification (CLNI) [39]. It identifies the k-nearest
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TABLE 2: Three types of tokens extracted from the example
change shown in Figure 6.

added

added SolrIndexSearcher.GroupCommandFunc
added gc
added SolrIndexSearcher.GroupCommandFunc
added gc.groupSort
added groupSort

deleted

deleted SolrIndexSearcher.GroupCommandFunc
deleted gc
deleted if
deleted groupSort
deleted Notnull
deleted SolrIndexSearcher.GroupSortCommand
deleted gcSort
deleted SolrIndexSearcher.GroupSortCommand
deleted gcSort.sort
deleted groupSort
deleted gc
deleted gcSort
deleted delete else
deleted gc
deleted SolrIndexSearcher.GroupCommandFunc

context

context for
context QParser
context parser
context QParser.getParser
context Query
context q
context parser.getQuery
context if
context q
context FunctionQuery
context gc.groupBy
context FunctionQuery
context q.getValueSource

neighbors for each instance and examines the labels of its
neighbors. If a certain number of neighbors have opposite
labels, the examined instance will be flagged as noise. How-
ever, such an approach cannot be directly applied to our
data because their approach is based on the Euclidean Dis-
tance of traditional numerical features. Since our features
are semantic tokens, the difference between the values of
two features only indicates that these two features are of
different tokens.

To detect and eliminate mislabeling data and to help the
DBN learn the common knowledge between the semantic
information of buggy and clean instances, we adopt the edit
distance similarity computation algorithm [68] to define the
distances between instances. The edit distances are sensitive
to both the tokens and the order among the tokens. Given
two token sequences A and B, the edit distance d(A,B)
is the minimum-weight series of edit operations that trans-
form A to B. The smaller d(A,B) is, the more similar A and
B are.

Based on edit distance similarity, we deploy CLNI to
eliminate data with potential incorrect labels. In this study,
since our purpose is not to find the best training or test
set, we do not spend too much effort on well tuning the
parameters of CLNI. We use the recommended parameters
and find them to work well. In our benchmark experiments
with traditional features, we also perform CLNI to remove
the incorrectly labeled data.

In addition, we also filter out infrequent tokens extracted
from the source code, which might be designed for a specific
file and cannot be generalized to other files. Given a project,

if the total number of occurrences of a token is less than
three, we filter it out. We encode only the tokens that occur
three or more times, which is a common practice in the NLP
research field [48]. The same filtering process is also applied
to change-level prediction tasks.

3.2.2 Mapping Tokens
DBN takes only numerical vectors as inputs, and the lengths
of the input vectors must be the same. To use the DBN to
generate semantic features, we first build a mapping be-
tween integers and tokens, and encode token vectors to inte-
ger vectors. Each token has a unique integer identifier. Since
our integer vectors may have different lengths, we append 0
to the integer vectors to make all the lengths consistent and
equal to the length of the longest vector. Adding zeros does
not affect the results, and it is simply a representation trans-
formation to make the vectors acceptable by the DBN. Tak-
ing the code snippets in Figure 3 as an example, if we only
consider the two versions, the token vectors for the “Buggy”
and “Clean” versions would be mapped to [1, 2, 3, 4, 5, 6, ...]
and [1, 3, 5, 6, 2, 4, ...] respectively. Through this encoding
process, the method invocation information and inter-class
information are represented as integer vectors. In addition,
some program structure information is preserved since the
order of tokens remains unchanged. Note that, in this work
we employ the same token mapping mechanism for both
the file-level and change-level defect prediction tasks.

3.3 Training the DBN and Generating Features

3.3.1 Training the DBN
As we discussed in Section 2, to train an effective DBN for
learning semantic features, we need to tune three parame-
ters, which are: 1) the number of hidden layers, 2) the number
of nodes in each hidden layer, and 3) the number of training iter-
ations. Existing studies that leveraged DBN models to gen-
erate features for NLP [86], [87] and image recognition [9],
[43] reported that the performance of DBN-based features
is sensitive to these parameters. A few hidden layers can
be trained in a relatively short period of time, but result
in poor performance as the system cannot fully capture the
characteristics of the training datasets. Too many layers may
result in overfitting and a slow learning time. Similar to
the number of hidden layers, too few or too many hidden
nodes or iterations result in either slow learning or poor
performance [87]. We show how we tune these parameters
in Section 4.5.

To simplify our model, we set the number of nodes to
be the same in each layer. Through these hidden layers and
nodes, DBN obtains characteristics that are difficult to ob-
serve but are capable of capturing semantic differences. For
each node, the DBN learns the probabilities of traversing
from this node to the nodes of its top level. Through back-
propagation validation, the DBN reconstructs the input data
using generated features by adjusting the weights between
nodes in different hidden layers.

The DBN requires the values of the input data to range
from 0 to 1, while the data in our input vectors can have
any integer values due to our mapping approach. To satisfy
the input range requirement, we normalize the values in the
data vectors of the training and test sets by using min-max
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normalization [102]. In our mapping process, the integer
values for different tokens are just identifiers. One token
with a mapping value of 1 and one token with a mapping
value of 2 only means that these two nodes are different
and independent. Thus, the normalized values can still be
used as token identifiers since the same identifiers pertain
the same normalized values.

3.3.2 Generating Features
After we train a DBN, both the weights w and the biases b
(details are in Section 2) are fixed. We input the normalized
integer vectors of the training data and the test data into the
DBN, and then obtain semantic features for the training and
the test data from the output layer of the DBN.

3.4 Building Models and Performing Defect Prediction
After we obtain the generated semantic features for each in-
stance from both the training and the test datasets, we then
build defect prediction models by following the standard
defect prediction process described in Section 2. The test
data are used to evaluate the performance of the built defect
prediction models.

Note that, as revealed in existing work [90], [91],
the widely used validation technique, i.e., k-fold cross-
validation often introduces nontrivial bias for evaluating
defect prediction models, which makes the evaluation
inaccurate. In addition, for change-level defect prediction,
the k-fold cross-validation may make the evaluation
incorrect. This is because the changes follow a certain order
in time. Randomly partitioning the dataset into k folds
may cause a model to use future knowledge which should
not be known at the time of prediction to predict changes
in the past. Thus, cross-validation may use information
regarding a change committed in 2017 to predict whether a
change committed in 2015 is buggy or clean. This scenario
would not be a real case in practice, because at the time
of prediction, which is typically soon after the change is
committed in 2015 for the earlier detection of bugs, the
change committed in 2017 is not yet existent.

To avoid the above validation problem, we do not use
the k-fold cross-validation in this work. Specifically, for file-
level defect prediction, we evaluate the performance of our
DBN-based features and traditional features by building
prediction models with data from different releases. For
change-level defect prediction, we collect the training
and test datasets following the time order (Details are in
Section 4.3.2) to build and evaluate the prediction models
without k-fold cross-validation.

4 EXPERIMENTAL SETUP

In this section, we describe the detailed settings for our eval-
uation experiments. All experiments are run on a 2.5GHz
i5-3210M machine with 4GB RAM.

4.1 Research Questions
Table 3 lists the scenarios for the investigated research ques-
tions. Specifically, we evaluate the performance of our DBN-
based semantic features by comparing it with traditional
defect prediction features under each of the four different

TABLE 3: Research questions investigated in this work.

Scope
Within-project Cross-project

Level File RQ1 RQ2
Change RQ3 RQ4

prediction scenarios. These questions share the following
format.

RQi (1 ≤ i ≤ 4): Do DBN-based semantic features out-
perform traditional features at the <level> <scope> under
the non-effort-aware and effort-aware evaluation scenarios?

For example, in RQ1, we explore the effectiveness of
the DBN-based semantic features for within-project defect
prediction at the file-level under both the non-effort-aware
and effort-aware evaluation scenarios.

4.2 Evaluation Metrics
4.2.1 Metrics for Non-effort-aware Evaluation
Under the non-effort-aware scenario, we use three metrics:
Precision, Recall, and F1. These metrics have been widely
adopted to evaluate defect prediction techniques [31], [54],
[55], [67], [90], [112]. Here is a brief introduction:

Precision =
true positive

true positive+ false positive
(6)

Recall =
true positive

true positive+ false negative
(7)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(8)

Precision and recall are composed of three numbers in terms
of true positive, false positive, and false negative. True positive
is the number of predicted defective files (or changes) that
are truly defective, while false positive is the number of pre-
dicted defective ones that are actually not defective. A false
negative records the number of predicted non-defective files
(or changes) that are actually defective. Higher precision is
demanded by developers who do not want to waste their
debugging efforts on the non-defective code, while higher
recall is often required for mission-critical systems, e.g., re-
vealing additional defects [112]. However, comparing de-
fect prediction models by using only these two metrics may
be incomplete. For example, one could simply predict all
instances as buggy instances to achieve a recall score of
1.0 (which will likely result in a low precision score) or
only classify the instances with higher confidence values as
buggy instances to achieve a higher precision score (which
could result in a low recall score). To overcome the above
issues, we also use the F1 score (i.e., F1), which is the har-
monic mean of precision and recall, to measure the perfor-
mance of the defect prediction.

4.2.2 Metrics for Effort-aware Evaluation
For effort-aware evaluation, we employ PofB20 [29] to
measure the percentage of bugs that a developer can
identify by inspecting the top 20 percent lines of code.

To calculate PofB20, we first sort all the instances in the
test dataset based on the confidence levels (i.e., probabilities
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TABLE 4: Cliff’s Delta and the effectiveness level [10].

Cliff’s Delta (δ) Effectiveness Level
|δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.33 Small
0.33 ≤ |δ| < 0.474 Medium
|δ| ≥ 0.474 Large

of being predicted as buggy) that a defect prediction model
generates for each instance. This is because an instance with
a higher confidence level is more likely to be buggy. We then
simulate a developer that inspects these potentially buggy
instances. We accumulate the lines of code (LOC) that are
inspected and the number of bugs identified. The process
will be terminated when 20 percent of the LOC in the test
data have been inspected and the percentage of bugs that
are identified is referred to as the PofB20 score. A higher
PofB20 score indicates that a developer can detect more
bugs when inspecting a limited number of LOC.

4.2.3 Statistical Tests
Statistical tests can help understand whether there is a
statistically significant difference between two results. In
this work, we used the Wilcoxon signed-rank test to check
whether the performance difference between prediction
models with DBN-based semantic features and prediction
models with traditional features is significant. For example,
in RQ3, we want to compare the performance of DBN-
based features and traditional features for change-level
within-project defect prediction for the projects listed in
Table 6. To conduct the Wilcoxon signed-rank test, we first
run experiments with these two sets of features and obtain
prediction results for each test subject. We then apply
the Wilcoxon signed-rank test on the results of the test
subjects. The Wilcoxon signed-rank test does not require
the underlying data to follow any distribution. In addition,
it can be applied to pairs of data and is able to compare
the difference against zero. At the 95% confidence level,
p-values that are less than 0.05 indicate that the difference
between subjects is statistically significant, while p-values
that are 0.05 or larger indicate that the difference is not
statistically significant.

4.2.4 Cliff’s Delta Effect Size Analysis
To further examine the effectiveness of our DBN-based fea-
tures, following the existing work in [64], [103], we employ
Cliff’s delta (δ) [10] to measure the effect size of our ap-
proach. Cliff’s delta is a non-parametric effect size mea-
sure that quantifies the amount of difference between two
approaches. In this work, we use Cliff’s delta to compare
the defect prediction models that are built with our DBN-
based features to the defect prediction models that are built
with traditional features. Cliff’s delta is computed using the
formula delta = (2W/mn) − 1, where W is the W statistic
of the Wilcoxon rank-sum test, and m and n are the sizes
of the result distributions of two compared approaches. The
delta values range from -1 to 1, where δ = −1 or 1 indicates
the absence of an overlap between the performances of the
two compared models (i.e., all F1 values from one prediction
model are higher than the F1 values of the other prediction
model, and vice versa), while δ = 0 indicates that the two

prediction models completely overlap. Table 4 describes the
meanings of the different Cliff’s delta values [10].

4.3 Evaluated Projects and Data Sets
In this work, we use different datasets for evaluating file-
level and change-level defect prediction tasks. Specifically,
for evaluating the performance of DBN-based features on
file-level defect prediction, we use publicly available data
from the PROMISE data repository, which are widely used
for evaluating file-level defect prediction models [24], [31],
[66], [67], [103]. For change-level defect prediction, we adopt
the dataset from previous studies [29], [90], [104].

The main reason for adopting different datasets for file-
level and change-level defect prediction tasks is that using
existing widely used datasets enables us to directly compare
our approach with existing defect prediction models on the
same datasets, which makes the comparison more reliable.

4.3.1 Evaluated Projects for File-level Defect Prediction
To facilitate the replication and verification of our experi-
ments, we use publicly available data from the PROMISE
data repository. Specifically, we select all the Java projects
from PROMISE2 whose version numbers are provided. We
need the version numbers of each project because we need
its source code archive to extract token vectors from the
ASTs of the source code to feed our DBN-based feature gen-
eration approach. In total, 10 Java projects are collected. Ta-
ble 5 lists the versions, the average number of source files
(excluding test files), and the average buggy rate of each
project. The average number of files of the projects ranges
from 122 to 815, and the buggy rates of the projects have a
minimum value of 9.4% and a maximum value of 62.9%.

4.3.2 Evaluated Projects for Change-level Defect Predic-
tion
We choose six open-source projects: Linux kernel,
PostgreSQL, Xorg, Jdt (from Eclipse), Lucene, and
Jackrabbit. They are large and typical open source projects
covering operating systems, database management systems.
These projects have sufficient change histories to build and
evaluate change-level defect prediction models and are
commonly used in the literature [29], [90], [104]. For Lucene
and Jackrabbit, we use manually verified bug reports from
Herzig et al. [25] to label the bug-fixing changes, and the
keyword search approach [88] is used for the others.

Table 6 shows the evaluated projects for change-level
defect prediction. The LOC and the number of changes in
Table 6 include only source code (C and Java) files3 and their
changes because we want to focus on classifying source code
changes only. Although these projects are written in C and
Java, our DBN-based feature generation approach is not lim-
ited to any particular programming language. With the ap-
propriate feature extraction approach, our DBN-based fea-
ture generation approach can easily be extended to projects
in other languages.

Change-level defect data are often imbalanced [23], [29],
[34], [35], i.e., there are fewer buggy instances than clean

2. http://openscience.us/repo/defect
3. We include files with these extensions: .java, .c, .cpp, .cc, .cp, .cxx,

.c++, .h, .hpp, .hh, .hp, .hxx and .h++.
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TABLE 5: Evaluated projects for file-level defect prediction.

Project Description Releases Avg # Source Files Avg Buggy Rate (%)
ant Java based build tool 1.5,1.6,1.7 463.7 21.0
camel Enterprise integration framework 1.2,1.4,1.6 815 22.5
jEdit Text editor designed for programmers 3.2,4.0,4.1 297 27.4
log4j Logging library for Java 1.0,1.1 122 29.1
lucene Text search engine library 2.0,2.2,2.4 260.7 56.0
xalan A library for transforming XML files 2.4,2.5 763 32.6
xerces XML parser 1.2,1.3 446.5 15.7
ivy Dependency management library 1.4,2.0 296.5 9.4
synapse Data transport adapters 1.0,1.1,1.2 211.7 25.5
poi Java library to access Microsoft format files 1.5,2.5,3.0 354.7 62.9

TABLE 6: Evaluated projects for change-level defect prediction in this work. Lang is the programming language used for
the project. LOC is the number of the line of code. First Date is the date of the first commit of a project, while Last Date
is the date of the latest commit. Changes is the number of changes collected in this work. TrSize is the average size of
training data on all runs. TSize is the average size of test data on all runs. NR is the number of runs for each subject.

Project Lang LOC First Date Last Date Changes TrSize TSize Average Buggy Rate (%) # NR
Linux C 7.3M 2005-04-16 2010-11-21 429K 1,608 6,864 22.8 4
PostgreSQL C 289K 1996-07-09 2011-01-25 89K 1,232 6,824 27.4 7
Xorg C 1.1M 1999-11-19 2012-06-28 46K 1,756 6,710 14.7 6
JDT Java 1.5M 2001-06-05 2012-07-24 73K 1,367 6,974 20.5 6
Lucene Java 828K 2010-03-17 2013-01-16 76K 1,194 9,333 23.6 8
Jackrabbit Java 589K 2004-09-13 2013-01-14 61K 1,118 8,887 37.4 10

Fig. 7: Change-level data collection process [90].

instances in the training dataset. For example, as shown in
Table 6, the average ratio of the buggy and the clean changes
is 1.0 to 3.1. The imbalanced data can lead to poor prediction
performance [90]. For change-level data, we borrow the data
collection process introduced by Tan et al. [90]. Specifically,
a gap between the training set and the test set (see Figure 7)
is used because the gap allows more time for buggy changes
in the training set to be discovered and fixed. For example,
the time period between time T2 and time T4 is a gap. In
this manner, the training set will be more balanced, i.e.,
the training set will have a higher buggy rate. A reasonable
setup is to make the sum of the gap and the test set, e.g., the
duration from time T2 to T5, close to the typical bug-fixing
time (i.e., the time from when a bug is introduced until it
is fixed). We use the recommended gap values in [90] to
collect multiple runs of experimental data, e.g., Linux has
four different runs during the given time period (between
the First Date and Last Date) as shown in Table 6.
Note that our previous study [90] tuned and evaluated the
defect prediction models based on their precision values. In
this work, we do not have a bias on either precision or recall,
and we tune and evaluate the prediction models based on
the harmonic of the precision and recall, i.e., F1 (details are
in Section 4.2.1).

Imbalanced data issues occur in both the file-level and
the change-level defect data, and as shown in Table 5 and

Table 6, most of the examined projects have buggy rates
less than 50%. To build optimal defect prediction models,
we also perform the re-sampling technique used in existing
work [90], i.e., SMOTE [6], on the imbalanced projects.

4.4 Baselines of Traditional Features

4.4.1 Baselines for Evaluating File-level Defect Prediction
To evaluate the performance of semantic features for file-
level defect prediction tasks, we compare the semantic fea-
tures with two different traditional features. Our first base-
line of traditional features consists of 20 traditional features.
Table 7 shows the details of the 20 features and their descrip-
tions. These features and data have been widely used in pre-
vious work to build effective defect prediction models [24],
[31], [54], [55], [67], [112].

We choose the widely used PROMISE data so that we
can directly compare our approach with previous studies.
For a fair comparison, we also perform the noise removal
approach described in Section 3.2.1 on the PROMISE data.

The traditional features from PROMISE do not contain
AST nodes, which were used as the input by our DBN mod-
els. For a fair comparison, our second baseline of traditional
features is the AST nodes that were given to our DBN mod-
els, i.e., the AST nodes in all files after handling the noise
(Section 3.2.1). Each instance is represented as a vector of
term frequencies of the AST nodes.

4.4.2 Baselines for Evaluating Change-level Defect Predic-
tion
Our baseline features for change-level defect prediction
include three types of change features, i.e., bag-of-words
features, characteristic features, and meta
features, which have been used in previous studies [29],
[90].

• Bag-of-words features: The bag-of-words
feature set is a vector representing the count of



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877612, IEEE
Transactions on Software Engineering

11

TABLE 7: Metrics used for file-level defect prediction.

Metric Description
WMC the number of methods used in a given class [8]
DIT the maximum distance from a given class to the root of

an inheritance tree [8]
NOC the number of children of a given class in an inheritance

tree [8]
CBO the number of classes that are coupled to a given class [8]
RFC the number of distinct methods invoked by code in a

given class [8]
LCOM the number of method pairs in a class that do not share

access to any class attributes [8]
LCOM3 another type of lcom metric proposed by Henderson-

Sellers [11]
NPM the number of public methods in a given class [3]
LOC the number of lines of code in a given class [3]
DAM the ratio of the number of private/protected attributes to

the total number of attributes in a given class [3]
MOA the number of attributes in a given class which are of

user-defined types [3]
MFA the number of methods inherited by a given class di-

vided by the total number of methods that can be ac-
cessed by the member methods of the given class [3]

CAM summation of number of different types of method pa-
rameters in every method divided by a multiplication of
number of different method parameter types in whole
class and number of methods [3]

IC the number of parent classes that a given class is coupled
to [33]

CBM the total number of new or overwritten methods that all
inherited methods in a given class are coupled to [33]

AMC the average size of methods in a given class [33]
CA afferent coupling, which measures the number of classes

that depends upon a given class [49]
CE efferent coupling, which measures the number of classes

that a given class depends upon [49]
Max CC the maximum McCabe’s cyclomatic complexity (CC)

score [50] of methods in a given class
Avg CC the arithmetic mean of the McCabe’s clomatic complex-

ity (CC) scores [50] of methods in a given class

occurrences of each word in the text of changes. We
employ the snowBall stemmer to group words of
the same root, then we use Weka [18] to obtain the
bag-of-words features from both the commit messages
and the source code changes.

• Characteristic features: Inspired by the
Deckard tool [28], we use characteristic vectors as
features. Characteristic vectors represent the syntactic
structure by counting the numbers of each node
type in the Abstract Syntax Tree (AST). Bag-of-words
and characteristic vectors have different abstraction
levels. Although bag-of-words can capture keywords,
such as if and while, it cannot capture abstract
syntactic structures, such as the number of statements.
Suppose that we are using if and else node types
for characteristic vectors, the characteristic vector of
the code before the changes shown in Figure 6 is (1,
1). After obtaining the characteristic vectors for the
file before the change and the file after the change,
we subtract the two characteristic vectors to obtain
the difference. For each change, we use Deckard [28]
to automatically generate two characteristic vectors:
one for the source code file before the change and one
for the source code file after the change. We use the
difference between the two characteristic vectors and
the characteristic vector of the file after the change as
two sets of features.

Fig. 8: File-level defect prediction performance with differ-
ent parameters.

• Meta features: In addition to characteristic and
bag-of-words vectors, we also use a set of metadata
features, which includes the basic information of
changes, e.g., commit time, filename, developers, etc. It
also contains code change metrics, e.g., the added line
count per change, the deleted line count per change,
etc.

4.5 Parameter Settings for Training a DBN
Many DBN applications [9], [43], [58] report that an effective
DBN requires well-tuned parameters, i.e., 1) the number of
hidden layers, 2) the number of nodes in each hidden layer, and
3) the number of iterations. In this section, we study the impact
of the three parameters on defect prediction models.

4.5.1 Setting Parameters for File-level Defect Prediction
For file-level defect prediction, we tune the three parameters
by conducting experiments with different values of the pa-
rameters on ant (1.5, 1.6), camel (1.2, 1.4), jEdit (4.0, 4.1),
lucene (2.0, 2.2), and poi (1.5, 2.5). Each experiment has
specific values for the three parameters and runs on the five
projects individually. Given an experiment, for each project,
we use the older version of the project to train a DBN with
respect to the specific values of the three parameters. Then,
we use the trained DBN to generate semantic features for
both the older and newer versions of the project. After this,
we use the older version to build a defect prediction model
and apply it to the newer version. Finally, we evaluate the
specific values of the parameters by the average F1 score of
the five projects for file-level defect prediction.

Setting the number of hidden layers and the number
of nodes in each layer. Because the number of hidden layers
and the number of nodes in each hidden layer interact with
each other, we tune these two parameters together. For the
number of hidden layers, we experiment with 11 discrete
values that include 2, 3, 5, 10, 20, 50, 100, 200, 500, 800,
and 1,000. For the number of nodes in each hidden layer,
we experiment with eight discrete values i.e., 20, 50, 100,
200, 300, 500, 800, and 1,000. When we evaluate these two
parameters, we set the number of iterations to 50 and keep
it constant.

Figure 8 illustrates the average F1 scores obtained when
tuning the number of hidden layers and the number of
nodes in each hidden layer together for file-level defect
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Fig. 9: Average error rates and time costs for different
numbers of iterations for tuning file-level defect prediction.

prediction. When the number of nodes in each layer is
fixed while increasing the number of hidden layers, all the
average F1 scores are convex curves. Most curves peak at
the point where the number of hidden layers is 10. If the
number of hidden layers remains unchanged, the best F1
score occurs when the number of nodes in each layer is 100
(the top line in Figure 8). As a result, we choose the number
of hidden layers as 10 and the number of nodes in each
hidden layer as 100. Thus, the number of the DBN-based
features for file-level defect prediction tasks is 100.

Setting the number of iterations. The number of itera-
tions is another important parameter for building an effec-
tive DBN. During the training process, the DBN adjusts the
weights to narrow down the error rate between the recon-
structed input data and original input data in each iteration.
In general, the higher the number of iterations, the lower
the error rate. However, there is a trade-off between the
number of iterations and the computational time cost. For
tuning the parameters for file-level defect prediction, we
choose the same five projects to conduct experiments with
ten discrete values for the number of iterations. The values
range from 1 to 10,000. We use the error rate to evaluate
this parameter. Figure 9 demonstrates that, as the number
of iterations increases, the error rate decreases slowly as
the corresponding time cost increases exponentially. In this
study, we set the number of iterations to 200, with which the
average error rate is approximately 0.098 and the time cost
is 15 s.

4.5.2 Setting Parameters for Change-level Defect Predic-
tion

For change-level defect prediction, we use the same param-
eter tuning process as the file-level defect prediction to ex-
plore the best parameter values with all the runs of each of
the six projects listed in Table 6. For each run of a project,
we use its training data to train a DBN with respect to the
specific values of the DBN parameters. Then, we use the
trained DBN to generate semantic features for both the train-
ing and test datasets. Afterward, we use the training dataset
to build a defect prediction model and apply it to the test
dataset. Last, we evaluate the specific values of the param-
eters by using the average F1 score of the 41 runs from the
six projects.

Note that, for change-level defect prediction, as we de-
scribed in Section 3.1.2, we have seven different approaches
available to extract the source code token vector for a source
code change. Our tuning process considers these different
types of tokens, the number of hidden layers, and the num-
ber of nodes in each layer together. Specifically, for each
type of tokens we input them into our DBN model to gen-
erate features with different configurations. Similar to our
tuning process of file-level defect prediction, for the number
of hidden layers, we experiment with 11 discrete values,
i.e., 2, 3, 5, 10, 20, 50, 100, 200, 500, 800, and 1,000. For the
number of nodes in each hidden layer, we experiment with
eight discrete values, i.e., 20, 50, 100, 200, 300, 500, 800, and
1,000. When we evaluate the seven different types of tokens
and the two parameters, we set the number of iterations to
50 and keep it constant.

Table 8 shows the F1 scores of the change-level defect
prediction with DBN-based semantic features generated by
each of the seven types of tokens. Note that among the three
basic token types (i.e., added, deleted, and context),
the DBN-based features generated by added and deleted
deliver better performance than context on all six projects.
The improvement could be up to 20.8 percentage points
(on project Jdt) and on average the improvement is larger
than 8 percentage points. In addition, all the four different
combinations, i.e., added+deleted, added+context,
deleted+context, and added+deleted+context, can
generate better performance than the corresponding three
basic token types. This may be because the combinations
provide more information to the DBN model for generating
more effective features to capture buggy changes (a detailed
discussion is provided in Section 6.2). Among the four
combinations, added+deleted+context achieves the
best performance.

In this work, we use the combination of added,
deleted, and context tokens as input to DBN models
to generate features. The corresponding best value of
the number of hidden layers is 5 and the best value of
the number of nodes in each hidden layers is 50. This
means that the number of generated DBN-based features
for change-level defect prediction is 50. Additionally, for
change-level defect prediction, we also set the number of
iterations to 200, with which the average error rate is less
than 0.05 and the time cost for feature generation is less
than 5 seconds.

4.6 File-level Within-Project Defect Prediction

To examine the performance of our semantic features on
file-level within-project defect prediction, we build defect
prediction models using three machine learning classifiers,
i.e., ADTree, Naive Bayes, and Logistic Regression, which
have been widely explored in previous work [31], [54], [55],
[67], [112]. We use two consecutive versions of each project
listed in Table 5 as the training and test data sets. We use the
source code of an older version to train the DBN and gen-
erate the training feature set. Then we use the trained DBN
to generate features for instances from a newer version. We
compare our semantic features with the traditional features
as described in Section 4.4. For a fair comparison, we use
the same classifiers on these traditional features.
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TABLE 8: The comparison of F1 scores among change-level defect prediction with different DBN-based features generated
by the seven different types of tokens. The F1 scores are measured as a percentage. The best F1 values are highlighted in
bold.

Project added deleted context added+deleted added+context deleted+context added+deleted+context
Linux 39.2 39.8 32.5 39.8 40.1 40.6 41.3
PostgreSQL 48.9 49.5 39.6 49.8 51.8 50.1 55.0
Xorg 41.1 38.4 30.2 40.7 41.3 41.2 41.4
JDT 39.5 30.5 18.7 40.1 39.6 33.3 41.4
Lucene 37.2 38.1 31.4 37.8 38.9 38.5 39.7
Jackrabbit 45.3 44.7 39.5 45.6 46.6 47.8 49.9
Average 41.9 40.2 32.0 42.3 43.1 41.9 44.8

4.7 File-level Cross-Project Defect Prediction

Due to a lack of defect data, it is often difficult to build
accurate prediction models for new projects. To overcome
this problem, cross-project defect prediction techniques train
prediction models using data from mature projects (called
source projects), and use the trained models to predict defects
for new projects (called target projects). However, because the
features of source projects and target projects often have dif-
ferent distributions, making an accurate and precise cross-
project defect prediction model is still challenging [66].

We believe that the semantic features can capture the
common characteristics of defects, which implies that the
semantic features trained from one project can be used to
predict defects in a different project, and so is applicable
in cross-project defect prediction. To measure the perfor-
mance of the semantic features in cross-project defect predic-
tion, we propose a technique called DBN Cross-Project De-
fect Prediction (DBN-CP). Given a source project and a tar-
get project, DBN-CP first trains a DBN by using the source
project and generates semantic features for both projects.
Then, DBN-CP trains an ADTree based defect prediction
model using data from the source project and uses the built
model to perform defect prediction on the target project.

We choose TCA+ [67] as our baseline. To compare with
TCA+, we design two different experiments. First, for each
of the 16 test versions (which are the target versions in cross-
project prediction) from the within-project experiments list
in Table 9, we randomly select two source projects that are
different from the target projects. Thus, 32 test pairs are
collected. Our first experiment can help evaluate the per-
formance of DBN-CP compared to TCA+ and the corre-
sponding within-project defect prediction. Then, to exten-
sively examine the performance of DBN-CP, we use each
version from one project as a target project and each version
from the other projects as a source project. In total, 606 test
pairs are formed.

The reason why we use TCA+ for the comparison
that TCA+ is one of the state-of-the-art techniques in
cross-project defect prediction [67]. In our reproduction, we
follow the processes described in [67]. We first implement
all five of their proposed normalization methods and assign
them the same conditions as given in the TCA+ paper.
We then perform Transfer Component Analysis [73] on the
source projects and the target projects together, and map
them onto the same subspace while minimizing the data
difference and maximizing the data variance. Finally, we
use the source projects and target projects with the new

features to build and evaluate the ADTree-based prediction
models.

4.8 Change-level Within-Project Defect Prediction

To examine the effectiveness of the learned DBN-based
features for change-level defect prediction tasks, we
compare the performance of the DBN-based features to the
three types of traditional features described in Section 4.4.2.
By examining the combination of these traditional features,
we should be able to generate the best performance for
change-level defect prediction [29], [90]. In this work, we
use the combination as the benchmark for change-level
defect prediction.

To generate DBN-based semantic features, for each run
of a project listed in Table 6, we use its training data to
train a DBN (with the combination of all the tokens in a
change as the input to the DBN). Then, we use the trained
DBN to generate semantic features for both the training and
test datasets. We then use the training data to build a de-
fect prediction model and apply it to the test data. For the
classification algorithm, we use ADTree in Weka [18] as the
classifier, because it has delivered the best performance in
previous work [29], [67], [90].

4.9 Change-level Cross-Project Defect Prediction

Similar to file-level defect models, change-level models also
require a large amount of training data to train and build
prediction models. However, sufficient training data are not
often available when projects are in their initial develop-
ment phases. To address this limitation, cross-project mod-
els for change-level prediction tasks are needed [34]. To ex-
plore the performance of the DBN-based semantic features
in change-level cross-project defect prediction, we propose
a technique called DBN Change-level Cross-Project defect
Prediction (DBN-CCP). Specifically, given a source project
and a target project, DBN-CCP first trains a DBN by us-
ing the source project and generates semantic features for
both the source project and the target project. Then, DBN-
CCP trains a defect prediction model using data from the
source project, and uses the built model to perform defect
prediction on the target project.

For evaluating the performance of DBN-CCP, we
also choose TCA+ [67] as our baseline. Note that TCA+
requires that the target and source projects have the same
features for learning TCA+ based features. As described
in Section 4.4.2, in this study we leverage three different
types of features for change-level defect prediction, i.e.,
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bag-of-words features, characteristic features, and meta
features. Both the bag-of-words features and characteristic
features are project-specific and vary for different projects.
Thus, for TCA+ on change-level prediction, we only use the
meta features.

To extensively evaluate the performance of DBN-CCP,
we use each test dataset in all runs from one project as
a target dataset and each training dataset in all runs from
the other projects as a source dataset to form change-level
cross-project test pairs. For example, one test pair could be a
training set from Run 1 of Project A and a test set from Run
1 of Project B, a training set from Run 2 of Project A and a
test set from Run 1 of Project B, etc. In total, 1,380 test pairs
are formed.

5 RESULTS

5.1 RQ1: Performance of semantic features for file-
level within-project defect prediction

5.1.1 Non-effort-aware evaluation scenario
We build file-level within-project defect prediction models
to compare the impact of three sets of features: semantic fea-
tures that are automatically learned by DBN, PROMISE fea-
tures, and AST features. The latter two are the baselines of
traditional features. We conduct 16 sets of file-level within-
project defect prediction experiments, each of which uses
two versions from the same project (listed in Table 5). The
older version is used to train the prediction models, and the
newer version is used as the test set to evaluate the trained
models.

Table 9 shows the performance of the file-level within-
project defect prediction experiments. The highest F1 values
of the three sets of features are shown in bold. For example,
by using ant 1.6 as the training set, and ant 1.7 as the
test set, the F1 of using semantic features is 94.2%, while the
F1 is only 54.2% with the first baseline of traditional features
(from PROMISE), and the F1 is 47.0% with the second base-
line of traditional features (AST nodes). For this comparison,
the only difference is the three sets of features, meaning that
the same classification algorithm, namely ADTree and the
same training and test sets are used.

The results demonstrate that by using the DBN-based
semantic features instead of the PROMISE features, we can
improve the F1 by 14.2 percentage points on the 16 exper-
iment pairs on average. The average improvements in the
precision and recall are 14.7 percentage points and 11.5 per-
centage points respectively.

Since the DBN algorithm has randomness, the generated
features vary between different runs. Therefore, we run our
DBN-based feature generation approach five times for each
experiment. Among the runs, the difference in the gener-
ated features is at the level of 1.0E-20, which is too small to
propagate to precision, recall, and F1. In other words, the
precision, recall, and F1 of all five runs are identical.

5.1.2 Effort-aware evaluation scenario
For the effort-aware scenario, we rerun the 16 pairs of file-
level within-project defect prediction experiments listed in
Table 9, and calculate the PofB20 of the test data in each
experiment based on our setup description in Section 4.2.2.

TABLE 9: Comparison between semantic features and two
baselines of traditional features (PROMISE features and
AST features) using ADTree. Tr denotes the training set
version and T denotes the test set version. P, R, and F1
denote the precision, recall, and F1 score respectively and
are measured as a percentage. The better F1 values with
statistical significance (p-value < 0.05) among the three sets
of features are shown with an asterisk (*). The numbers in
parentheses are the effect sizes comparative to the Seman-
tic. A positive value indicates that the semantic features
improve the baseline features in terms of the effect size.

Project Versions Semantic* PROMISE (0.555) AST (0.656)
(Tr⇒ T) P R F1 P R F1 P R F1

ant 1.5⇒ 1.6 88.0 95.1 91.4 44.8 51.1 47.7 40.5 51.4 45.3
1.6⇒ 1.7 98.8 90.1 94.2 41.8 77.1 54.2 41.2 54.7 47.0

camel 1.2⇒ 1.4 96.0 66.4 78.5 24.8 75.2 37.3 32.3 55.6 40.2
1.4⇒ 1.6 26.3 64.9 37.4 28.3 63.7 39.1 29.7 51.5 38.3

jEdit 3.2⇒ 4.0 46.7 74.7 57.4 44.7 73.3 55.6 45.8 47.4 46.6
4.0⇒ 4.1 54.4 70.9 61.5 46.1 67.1 54.6 50.4 40.4 44.8

log4j 1.0⇒ 1.1 67.5 73.0 70.1 49.1 73.0 58.7 55.4 38.6 45.5

lucene 2.0⇒ 2.2 75.9 56.9 65.1 73.3 38.2 50.2 69.5 37.4 48.4
2.2⇒ 2.4 66.5 92.1 77.3 70.9 52.7 60.5 65.9 53.1 58.8

xalan 2.4⇒ 2.5 65.0 54.8 59.5 64.7 43.2 51.8 60.1 43.5 50.5
xerces 1.2⇒ 1.3 40.3 42.0 41.1 16.0 46.4 23.8 25.5 22.0 23.6
ivy 1.4⇒ 2.0 21.7 90.0 35.0 22.6 60.0 32.9 31.6 28.6 30.0

synapse 1.0⇒ 1.1 46.0 66.7 54.4 45.5 50.0 47.6 51.5 45.7 48.4
1.1⇒ 1.2 57.3 59.3 58.3 51.1 55.8 53.3 50.7 40.5 49.0

poi 1.5⇒ 2.5 76.1 55.2 64.0 73.7 44.8 55.8 70.0 31.6 43.5
2.5⇒ 3.0 81.6 79.0 80.3 75.0 75.8 75.4 72.1 46.3 55.6

Average 63.0 70.7 64.1 48.3 59.2 49.9 49.5 43.0 44.7

TABLE 10: PofB20 scores of DBN-based features and tradi-
tional features for WPDP. The PofB20 scores are measured
as a percentage. The best values are in bold. The better
PofB20 values with statistical significance (p-value < 0.05)
between the two sets of features are indicated with an
asterisk (*). The numbers in parentheses are the effect sizes
comparative to the Semantic.

Project Versions
(Tr⇒T) Semantic* PROMISE (0.756)

ant 1.5⇒1.6 44.3 16.3
1.6⇒1.7 50.2 23.5

camel 1.2⇒1.4 33.2 33.8
1.4⇒1.6 30.1 23.4

jEdit 3.2⇒4.0 40.1 29.3
4.0⇒4.1 32.6 17.7

log4j 1.0⇒1.1 25.0 21.6

lucene 2.0⇒2.2 32.1 14.6
2.2⇒2.4 37.9 23.2

xalan 2.4⇒2.5 24.5 8.3
xerces 1.2⇒1.3 9.1 7.2
ivy 1.4⇒2.0 28.3 15.1

synapse 1.0⇒1.1 29.6 13.3
1.1⇒1.2 32.5 12.8

poi 1.5⇒2.5 38.7 26.2
2.5⇒3.0 25.5 13.9

Average 32.1 18.8

Table 10 presents the PofB20 of file-level within-project
defect prediction models with DBN-based semantic features
and the PROMISE features. As we can see, in all the exper-
iments, DBN-based features could achieve better PofB20
than the corresponding PROMISE features. Compared to the
PROMISE features, the improvement could be as much as
26.7 percentage points (ant 1.6⇒ ant 1.7) and is, on average,
13.3 percentage points.

We further conduct the Wilcoxon signed-rank test
(p < 0.05) to compare the performance of the DBN-based
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semantic features and PROMISE features for file-level
within-project defect prediction with the 16 experiment
pairs under both the non-effort-aware and effort-aware
evaluation scenarios. The results suggest that the DBN-
based semantic features are significantly better than the
PROMISE features.

Our DBN-based approach is effective in automatically
learning semantic features, which significantly improves
the performance of file-level within-project defect pre-
diction under both non-effort-aware and effort-aware
evaluation scenarios with large effect sizes.

5.1.3 RQ1a: Do semantic features outperform traditional
features with other classification algorithms?
To answer this question, we build file-level within-project
defect prediction models by using two alternative classi-
fication algorithms, i.e., Naive Bayes and Logistic Regres-
sion. We conduct 16 sets of file-level within-project defect
prediction tests, where the training sets and the test sets
are exactly the same as those in RQ1. Table 11 shows the
F1 scores of running Naive Bayes and Logistic Regression
on semantic features and PROMISE features. Take ant as
an example, when the model is built on Naive Bayes, by
choosing version 1.5 as the training set and 1.6 as the test
set, the semantic features produce an F1 of 63.0%, which
is 7.0 percentage points higher than using PROMISE fea-
tures. For the same example with Logistic Regression as the
classification algorithm, the semantic features achieve an F1
of 91.6%, while using PROMISE features produces an F1
of 50.6% only. Among the experiments with either Naive
Bayes or Logistic Regression as the classification algorithm,
the semantic features outperform the PROMISE features 14
out of the 16 times. On average, the Naive Bayes based
defect prediction model with semantic features achieves an
F1 of 60.0%, which is 14.8 percentage points higher than the
Naive Bayes with PROMISE features. Similarly, the average
F1 of using semantic features with Logistic Regression is
59.7%, which is 10.7 percentage points higher than Logistic
Regression with PROMISE features.

The semantic features automatically learned from the
DBN improve the file-level within-project defect predic-
tion and the improvement is not tied to a particular
classification algorithm.

5.2 RQ2: Performance of semantic features for file-
level cross-project defect prediction
5.2.1 Non-effort-aware evaluation scenario
To answer this question, we compare our file-level
cross-project defect prediction technique DBN-CP with
TCA+ [67]. DBN-CP runs on the semantic features that are
automatically generated by the DBN, while TCA+ uses the
PROMISE features. For a fair comparison, we also provide a
benchmark of within-project defect prediction. As described
in Section 4.7, our preliminary experimental evaluation
includes a set of 32 cross-project test pairs. Each experiment
takes two versions separately from two different projects,
with one used as the training set and the other used as

TABLE 11: Comparison of F1 scores between semantic
features and PROMISE features using Naive Bayes and
Logistic Regression. Tr denotes the training set version and
T denotes the test set version. The F1 scores are measured
as a percentage.

Project Version Naive Bayes Logistic Regression
(Tr⇒T) Semantic PROMISE Semantic PROMISE

ant 1.5⇒1.6 63.0 56.0 91.6 50.6
1.6⇒1.7 96.1 52.2 92.5 54.3

camel 1.2⇒1.4 45.9 30.7 59.8 36.3
1.4⇒1.6 48.1 26.5 34.2 34.6

jEdit 3.2⇒4.0 58.3 48.6 55.2 54.5
4.0⇒4.1 60.9 54.8 62.3 56.4

log4j 1.0⇒1.1 72.5 68.9 68.2 53.5

lucene 2.0⇒2.2 63.2 50.0 63.0 59.8
2.2⇒2.4 73.8 37.8 62.9 69.4

xalan 2.4⇒2.5 45.2 39.8 56.5 54.0
xerces 1.2⇒1.3 38.0 33.3 47.5 26.6
ivy 1.4⇒2.0 34.4 38.9 34.8 24.0

synapse 1.0⇒1.1 47.9 50.8 42.3 31.6
1.1⇒1.2 57.9 56.5 54.1 53.3

poi 1.5⇒2.5 77.0 32.3 66.4 50.3
2.5⇒3.0 77.7 46.2 78.3 74.5

Average 60.0 45.2 59.7 49.0

TABLE 12: F1 scores of the file-level cross-project defect
prediction for target projects explored in RQ1. The F1 scores
are measured as a percentage. Better F1 values with sta-
tistical significance (p-value < 0.05) between DBN-CP and
TCA+ are indicated with an asterisk (*). The numbers in
parentheses are the effect sizes comparative to DBN-CP.

Source Target Cross-Project Within-Project
DBN-CP* TCA+ (0.274) Semantic Features

camel1.4 ant1.6 97.9 61.6 91.4poi3.0 ant1.6 47.8 59.8
camel1.2 ant1.7 31.2 35.4 94.2
jEdit3.2 ant1.7 41.7 45.5
ant1.6 camel1.4 31.6 29.2 78.5jEdit4.1 camel1.4 69.3 33.0
ant1.5 camel1.6 49.0 21.3 37.4
lucene2.0 camel1.6 49.2 32.1
xerces1.2 jEdit4.0 51.9 32.7 57.4
ivy1.4 jEdit4.0 35.0 50.2
camel1.4 jEdit4.1 61.5 53.7 61.5log4j1.1 jEdit4.1 50.3 41.9
jEdit4.1 log4j1.1 64.5 57.4 70.1lucene2.2 log4j1.1 61.8 57.1
xalan2.5 lucene2.2 59.4 56.1 65.1log4j1.1 lucene2.2 69.2 52.4
poi2.5 lucene2.4 64.9 54.4 77.3
xalan2.4 lucene2.4 61.6 60.9
lucene2.2 xalan2.5 55.0 53.0 59.5xerces1.3 xalan2.5 57.2 58.1
xalan2.5 xerces1.3 38.6 39.4 41.1ivy2.0 xerces1.3 42.6 39.8
xerces1.3 ivy2.0 45.3 40.9 35.0synapse1.2 ivy2.0 82.4 38.3
ivy1.4 synapse1.1 48.9 34.8 54.4poi2.5 synapse1.1 42.5 37.6
ivy2.0 synapse1.2 43.3 57.0 58.3poi3.0 synapse1.2 51.4 54.2
synapse1.2 poi3.0 66.1 65.1 80.3ant1.6 poi3.0 61.9 34.3
synapse1.1 poi2.5 44.6 40.6 64.0
ant1.6 poi2.5 47.5 44.7

Average 53.9 46.1 64.1

the test set. The benchmark of the file-level within-project
defect prediction uses the data from an older version of the
target project as the training set.

Table 12 lists the F1 scores of the DBN-CP, TCA+, and
the benchmark within-project defect prediction. The better
F1 scores between the DBN-CP and TCA+ are in bold. Re-
garding the average F1, DBN-CP achieves 53.9%, which is
7.8 percentage points higher than the 46.1% of TCA+. As the
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Fig. 10: Results of the DBN-CP, TCA+, and Baseline for
CPDP.

source projects are randomly selected, we did not perform
statistical tests for these experiments.

As described in Section 4.7, to extensively evaluate
the performance of DBN-CP, we use each version from
one project as the target project and one version from the

TABLE 13: F1 scores of file-level cross-project defect pre-
diction for all projects listed in Table 5. The F1 scores are
measured as a percentage. Better F1 values with statistical
significance (p-value < 0.05) between DBN-CP, TCA+, and
Baseline are shown with an asterisk (*). Numbers in paren-
theses are effect sizes comparative to DBN-CP.

Source Target DBN-CP TCA+ Baseline Within-Project

All
Others

ant 57.3* 50.9 (0.638) 38.9 (0.774) 92.8
camel 46.1* 32.7 (0.484) 22.7 (0.685) 57.9
jEdit 49.7* 43.9 (0.405) 44.5 (0.261) 59.4
log4j 56.2* 52.9 (0.231) 38.7 (0.450) 70.1
lucene 43.9* 41.0 (0.522) 31.7 (0.541) 71.2
xalan 46.2* 44.7 (0.363) 35.2 (0.577) 59.5
xerces 39.7* 33.4 (0.570) 34.6 (0.513) 41.1
ivy 41.4* 28.6 (0.148) 31.7 (0.782) 35.0
synapse 50.2* 47.9 (0.336) 35.3 (0.636) 56.4
poi 63.2* 58.1 (0.307) 34.9 (0.592) 72.2

Average 49.4 43.4 (0.401) 34.8 (0.628) 61.6

other projects as the source project to form a file-level
cross-project experiment test pair. This experiment includes
606 test pairs. Specifically, DBN-CP runs on the semantic
features and TCA+ runs on generated features by using
the PROMISE features. We also provide two benchmarks,
i.e., Baseline and Within-Project. Baseline is the result of
cross-project defect prediction with the original PROMISE
features.

Table 13 shows the average F1 scores of the DBN-CP,
TCA+, Baseline, and Within-Project defect prediction on
each of the file-level projects. Overall, both DBN-CP and
TCA+ deliver better performance than Baseline. Moreover,
DBN-CP generates a better F1 than TCA+ on all 10 projects
listed, and the improvement is as much as 12.8 percentage
points (ivy) and is, on average, 6.0 percentage points
higher. Compared with the within-project defect prediction,
DBN-CP improves the cross-project defect prediction by
reducing the gap to approximately 12 percentage points.
The statistical tests also show that overall DBN-CP is
significantly better than both TCA+ and Baseline.

Figure 10 shows the boxplots of the F1 scores for DBN-
CP, TCA+, and Baseline for the 10 projects listed in Table 5.
Specifically, each boxplot presents the F1 distribution (me-
dian and upper/lower quartiles) of each of the three ap-
proaches for cross-project file-level defect prediction. The
boxplots indicate that overall, both DBN-CP and TCA+ per-
form better than Baseline, and that DBN-CP performs better
than TCA+ and Baseline on almost all projects.

5.2.2 Effort-aware evaluation scenario

For the effort-aware evaluation, we also calculate the
PofB20 for the DBN-CP, TCA+, and Baseline approaches
on each of the target projects.

Table 14 shows the PofB20 of the three file-level cross-
project defect prediction models. The highest PofB20 val-
ues among the three approaches are shown in bold. In all
the experiments, DBN-CP achieves better PofB20 than both
TCA+ and Baseline. The PofB20 scores of DBN-CP vary
from 21.8 to 37.6 percentage points across the 606 experi-
ments, and the average PofB20 score of DBN-CP is 29.5
percentage points. Compared to TCA+, the improvement is
as high as 21.8 percentage points (Poi) and is, on average,
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TABLE 14: PofB20 scores of DBN-based features and tra-
ditional features for CPDP. PofB20 scores are measured
in percentage. Better PofB20 values with statistical signifi-
cance (p-value < 0.05) among DBN-CP, TCA+, and Baseline
are showed with an asterisk (*). Numbers in parentheses are
effect sizes comparative to DBN-CP.

Source Target DBN-CP TCA+ Baseline

All
Others

ant 28.3* 28.1 (0.434) 18.3 (0.888)
camel 32.7* 14.8 (0.982) 10.7 (1)
jEdit 23.2* 21.8 (0.302) 19.6 (0.462)
log4j 28.6* 19.1 (0.787) 18.4 (0.855)
lucene 30.5* 15.6 (1) 10.9 (1)
xalan 37.6* 15.5 (0.900) 14.6 (0.910)
xerces 29.1* 22.5 (0.479) 12.9 (0.855)
ivy 26.5* 20.1 (0.488) 17.9 (0.789)
synapse 21.8* 19.2 (0.133) 15.7 (0.450)
poi 36.7* 14.9 (0.994) 11.2 (1)

Average 29.5 19.2 (0.650) 15.0 (0.821)

TABLE 15: Overall results of the change-level within-project
defect prediction. All values are measured as a percentage.
The better F1 values with statistical significance (p-value <
0.05) between the two sets of features are indicated with an
asterisk (*). The numbers in parentheses are the effect sizes
comparative to the Semantic Features in terms of F1.

Projects Features P R F1

Linux
Change Features [29], [90] (0.821) 28.7 49.5 36.3

Semantic Features 32.5 56.9 41.3*

PostgreSQL
Change Features (1) 44.1 49.0 46.4

Semantic Features 51.6 58.8 55.0*

Xorg
Change Features (0.653) 29.1 51.5 37.2

Semantic Features 31.7 59.4 41.4*

JDT
Change Features (0.421) 32.5 41.5 36.4

Semantic Features 30.2 65.9 41.4*

Lucene
Change Features (0.136) 33.0 46.8 38.7

Semantic Features 31.4 54.0 39.7*

Jackrabbit
Change Features (0.525) 46.0 44.6 45.3

Semantic Features 49.3 50.4 49.9*

Average
Change Features (0.593) 36.3 50.6 40.1

Semantic Features 37.6 56.6 44.8

10.3 percentage points. The results of the Wilcoxon signed-
rank test (p < 0.05) also indicate that DBN-CP is overall
significantly better than both TCA+ and Baseline.

DBN-CP significantly improves the performance of file-
level cross-project defect prediction under both non-
effort-aware and effort-aware evaluation scenarios with
a nontrivial effect. This implies that the semantic features
learned by the DBN are effective and are able to capture
the common characteristics of defects across projects.

5.3 RQ3: Performance of semantic features for change-
level within-project defect prediction

5.3.1 Non-effort-aware evaluation scenario

To answer this question, we use different features to build
change-level within-project defect prediction models, e.g.,
DBN-based semantic features, and three change features de-
scribed in Section 4.4.2 (i.e., the bag-of-words features, the
characteristic features, and the meta features). As we de-
scribed in Section 4.3.2, in the change-level dataset, each
project has multiple runs. Thus, we use the training data

TABLE 16: PofB20 scores of the DBN-based features and
the traditional features for WCDP. The PofB20 scores are
measured as a percentage. The best values are in bold. The
better PofB20 values with statistical significance (p-value <
0.05) among these two sets of features are indicated with an
asterisk (*). The numbers in parentheses are the effect sizes
comparative to the DBN-based semantic features.

Project Semantic Features Change Features
Linux 28.6* 25.0 (0.324)
PostgreSQL 29.2* 8.1 (1)
Xorg 37.6* 24.8 (0.901)
JDT 23.8* 14.5 (1)
Lucene 28.1* 21.9 (0.887)
Jackrabbit 27.9* 21.3 (0.621)
Average 29.2 19.3 (0.789)

from each run to build and train the ADTree based predic-
tion model and evaluate its performance on the test data
in this run. To show the overall performance, we use the
weighted average precision, recall, and F1 following existing
work [29], [90].

Table 15 shows the precision, recall, and F1 of the within-
project change-level defect prediction experiments. Overall,
the DBN-based features generate better results than the tra-
ditional change features in terms of F1. Specifically, for all
the projects, the DBN-based features could improve the best
existing change features up to 8.6 percentage points in F1,
and the improvement is 4.7 percentage points, on average.

5.3.2 Effort-aware evaluation scenario
We further evaluate the DBN-based semantic features and
traditional change features for change-level within-project
defect prediction with the PofB20 metric.

Table 16 shows the PofB20 of the change-level within-
project defect prediction models with DBN-based semantic
features and the traditional change features. The DBN-based
features could achieve better PofB20 scores than the corre-
sponding change features in all the experiment pairs. The
PofB20 scores (measured as a percentage) of DBN-based
features vary from 23.8 to 37.6 across the experiments, and
the average PofB20 score of the defect prediction models
with DBN-based features is 29.2. Compared to the change
features, the improvement could be up to 21.1 percentage
points (PostgreSQL) and is 9.9 percentage points, on aver-
age. In addition, the statistical test, i.e., the Wilcoxon signed-
rank test (p < 0.05), also suggests that the DBN-based fea-
tures are overall significantly better than the change features
under both the non-effort-aware and effort-aware evalua-
tion scenarios.

The semantic features automatically learned from the
DBN could improve the change-level within-project de-
fect prediction with statistical significance under both
non-effort-aware and effort-aware evaluation scenarios
with nontrivial effect sizes.

5.4 RQ4: Performance of semantic features for change-
level cross-project defect prediction
5.4.1 Non-effort-aware evaluation scenario
To answer this question, we compare our cross-project
change-level defect prediction technique DBN-CCP with
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Fig. 11: Results of DBN-CCP, TCA+, and Baseline for CCDP.

TABLE 17: F1 scores of change-level cross-project defect
prediction for all projects. The F1 scores are measured as
percentages. The better F1 values with statistical significance
(p-value < 0.05) between DBN-CCP, TCA+, and Baseline are
indicated with an asterisk (*). The numbers in parentheses
are the effect sizes comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline Within

All
Others

Linux 35.1* 32.4 (0.295) 24.7 (0.439) 41.3
PostgreSQL 44.2* 43.6 (0.130) 25.7 (0.370) 55.0
Xorg 31.8* 30.4 (0.128) 22.8 (0.310) 41.4
JDT 33.3* 27.3 (0.360) 22.6 (0.566) 41.4
Lucene 31.3* 30.2 (0.129) 21.3 (0.520) 39.7
Jackrabbit 44.4* 43.3 (0.131) 26.5 (0.463) 49.9

Average 36.7 34.5 (0.196) 23.9 (0.445) 44.7

TCA+. For a fair comparison, we also provide two
benchmarks, i.e., Baseline and Within-Project. The Baseline
is the result of change-level defect prediction with the
original change features. As we described in Section 4.9, we
use the test data of one run from one project as the target
project and the training data of one run from a different
project as the source project to form the change-level
cross-project test pairs (in total 1,380 pairs). For each test
pair, we build the ADTree based defect prediction model
using the three different sets of features.

Table 17 shows the average F1 scores of the DBN-CCP,
TCA+, Baseline, and Within-Project for each of the change-
level projects. Overall, both DBN-CCP and TCA+ deliver
better performance than Baseline. Moreover, DBN-CCP gen-
erates a better F1 than TCA+ on all the projects on average.
The improvement is as high as 6.0 percentage points and
is 2.2 percentage points higher, on average. Compared to
the within-project defect prediction, DBN-CCP improves the

TABLE 18: PofB20 scores of the DBN-based features and
traditional features for CCDP. The PofB20 scores are mea-
sured as a percentage. The best values are in bold. The better
PofB20 values with statistical significance (p-value < 0.05)
among the DBN-CCP, TCA+, and Baseline are indicated
with an asterisk (*). The numbers in parentheses are the
effect sizes comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline

All
Others

Linux 24.7* 24.1 (0.255) 18.5 (0.500)
PostgreSQL 20.7 20.3 (0.019) 15.9 (0.438)
Xorg 22.7* 22.0 (0.110) 19.7 (0.511)
JDT 25.6* 22.6 (0.273) 13.5 (0.360)
Lucene 18.1 18.0 (0.030) 17.0 (0.371)
Jackrabbit 19.3* 16.4 (0.352) 16.1 (0.343)

Average 21.9 20.6 (0.180) 16.8 (0.421)

cross-project defect prediction by reducing the gap to only
8.0 percentage points.

Figure 11 shows the boxplots of the F1 scores for DBN-
CCP, TCA+, and Baseline for the six projects listed in Ta-
ble 6. Specifically, each boxplot presents the F1 distribution
(median and upper/lower quartiles) of each of the three ap-
proaches for the change-level cross-project defect prediction.
The boxplots show that overall both DBN-CCP and TCA+
perform better than Baseline, moreover DBN-CCP performs
better than TCA+ and Baseline on almost all projects.

5.4.2 Effort-aware evaluation scenario
We also calculate the PofB20 score for the DBN-CCP, TCA+,
and Baseline approaches on each of the target projects when
conducting change-level cross-project defect prediction.
Table 18 shows the PofB20 values of the three change-level
cross-project defect prediction models. The highest PofB20
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TABLE 19: Time and space costs of generating semantic
features for file-level defect prediction (s: second).

Project Generating Features
Time (s) Memory (MB)

ant 15.5 2.8
camel 32.0 5.5
jEdit 18.1 3.3
log4j 10.1 2.2
lucene 11.1 2.4
xalan 29.6 6.2
xerces 13.9 5.8
ivy 8.0 2.2
synapse 8.5 1.9
poi 11.9 4.4

values among the three approaches are shown in bold.
DBN-CCP achieves better PofB20 scores than both TCA+
and Baseline. On average, the PofB20 score (measured as
a percentage) of DBN-CCP is 21.9. Compared to TCA+,
the improvement can be up to 3.0 percentage points (Jdt)
and is 1.3 percentage points, on average. The results of the
Wilcoxon signed-rank test (p < 0.05) also indicate that the
performance of DBN-CCP is, overall, significantly better
than TCA+ and Baseline under both the non-effort-aware
and effort-aware evaluation scenarios.

DBN-CCP significantly improves the performance of the
change-level cross-project defect prediction compared to
the traditional change features with a nontrivial effect.

5.5 Time and Memory Overhead

To understand the space cost of file-level defect prediction,
during file-level defect prediction experiments, we keep
track of the time cost and memory space cost for our DBN-
based feature generation process (details are in Section 3.3).
In addition, we also have recorded the time cost for tuning
the DBN models in our experiments. The other processes,
including parsing source code, handling noise, mapping
tokens, building models, and predicting defects, are all
common procedures, so we do not analyze their costs.

As described in Section 4.5.1, we tune the three parame-
ters, i.e., the number of hidden layers, the number of nodes
in each layer, and the number of iterations, for the randomly
selected five projects. To find the best combination among
the three parameters, we have 11 × 8 × 10 experiments. In
total, the tuning process costs approximately 5 hours.

Table 19 shows the time cost and the memory space cost
of each project for generating semantic features. As shown
in Table 9, ant has two sets of within-project defect pre-
diction experiments, which are ant 1.5 ⇒ 1.6 and ant
1.6 ⇒ 1.7. On average, it takes the two experiments 15.5
seconds and 2.8 MB memory for the DBN to generate the
semantic features for both the training data and the test
data. Among all the projects, the time cost of automatically
generating the semantic features varies from 8.0 seconds
(ivy) to 32.0 seconds (camel). For the memory space cost,
it takes less than 6.5MB for all the examined projects.

In addition, we also keep track of the time and memory
space cost for generating DBN-based features for the
change-level defect prediction during our experiments.

Different from the file-level defect prediction that predicts
whether a file contains bugs or not, change-level defect
prediction predicts whether a change is buggy or clean.
Source files often contain hundreds of LOC, while changes
often have fewer lines than files. Thus, both the time
and memory costs of generating DBN-based features for
changes are smaller than those for files. In our experiments,
the average time cost and memory cost of generating
DBN-based features for changes are 2.4 seconds and 0.6
MB.

Our DBN-based approach to automatically learning se-
mantic features is applicable in practice.

6 DISCUSSION

6.1 Why Do DBN-based Semantic Features Work?

Our experiments in Section 5 show that compared to tra-
ditional features, the DBN-based features that are directly
learned from source code deliver significantly better perfor-
mance for all the four defect prediction tasks investigated in
this work. The probable reasons for the outstanding perfor-
mance of DBN-based features are summarized as follows.

First, the DBN models generate features with more
complex network connections. These network connections
enable the DBN models to generate features with
multiple levels of abstraction and high-level semantics.
In this work, the generated DBN features are weighted
combinations/vectors of original input source code, which
could represent patterns of the usages of the input source
code, e.g., method usages, control-flow usages, etc. While
traditional features often focus on statistical information of
the source code, e.g., LOC, the number of function calls, etc.,
which cannot capture the semantic information. Although
the Bag-of-words feature or the Characteristic
feature (details are in Section 4.4) are derived from
the raw programming tokens, they consider each token
as an independent feature element and cannot represent
the contextual and structural information among the raw
tokens. Thus, these features have underperformed.

Second, the DBN-based features are more capable of dis-
tinguishing between the semantic information of different
code snippets, especially for code snippets that have similar
source code characteristics. For example, as shown in Fig-
ure 1, the traditional features (e.g., code complexity) of the
two code snippets are identical. Training prediction mod-
els containing them will degrade the discrimination ability
of classifiers and consequently hurt the prediction perfor-
mance. While the DBN-based features can make a differ-
ence, as shown in Figure 4, the different structural and con-
textual information among tokens of these two code snip-
pets enables the DBN model to generate different features
to distinguish between these two code snippets.

6.2 Efficiency of Different Types of Tokens in Change-
level Defect Prediction

As described in Section 4.5.2, to achieve better prediction
performance for change-level defect prediction, we use
the combination of the three types of tokens, i.e., added,
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TABLE 20: Information gain of different types of tokens and their combinations that are used for generating DBN-based
semantic features in change-level defect prediction. Spearman is the Spearman correlation value between the information
gain and the prediction results of different types of tokens for a project.

Project added deleted context added+deleted added+context deleted+context added+deleted+context Spearman
Linux 4.2 3.8 3.0 4.3 5.0 4.9 5.1 0.90
Postgresql 5.9 5.5 5.3 6.0 6.7 6.6 7.6 0.96
Xorg 4.8 4.0 4.9 5.5 6.0 5.9 6.1 0.82
JDT 8.1 7.0 7.1 8.0 9.8 8.4 8.9 0.64
Lucene 6.9 6.5 6.3 7.1 7.6 7.4 7.7 0.89
Jackrabbit 8.2 7.4 7.4 8.2 8.6 8.4 8.9 0.96
Average 6.4 5.7 5.6 6.5 7.3 6.9 7.4 0.86

deleted, and context, to generate DBN-based semantic
features. In this section, we further examine the reason
why the combination outperforms each of the three types
of tokens extracted from changes. One possible reason is
that, the combination contains more information than any
of the three types of tokens. To explore this, we leverage
the information gain [13], which is a widely used metric to
measure how much information there is in a given event, to
measure the information in each of the three types of tokens
and their different combinations.

Specifically, given a document s = {a1 ... an} of length
n, a1 to an are tokens in the document s. The information
gain of this document H(s) is measured as follows:

H(s) =

n∑
i=1

−pilog pi (9)

where pi is the probability of token ai in the document s.
We use the TF (term frequency) of token ai to represent its
probability in the document s.

To calculate the information gain of a specific type of
token in changes, we first collect all seven types of tokens
from all the changes in a project. Then, we calculate the
information gain of a specific type of tokens extracted from
all changes of a project. Table 20 shows the various informa-
tion gains of the three types of tokens and their combina-
tions. Overall, among the basic three types of tokens, added
and deleted contain more information than context. The
combination of either two of them could achieve better per-
formance than either of the two types of tokens. In addition,
the combination of all the three types of tokens contains
more information than any other combinations. We further
compute the Spearman correlation between the value of in-
formation gain and the prediction result of different types
of tokens in a project. The high correlation value (on aver-
age 0.86) indicates that the prediction result of DBN-based
features generated from a specific type of token has a posi-
tive correlation with its information gain. This explains why
DBN-based features generated from the combination of all
the three types of tokens achieve the best performance.

6.3 Analysis of the Performance

In this section, we evaluate the performance of our pro-
posed DBN-based semantic features on both file-level and
change-level defect prediction tasks. We can observe that the
improvement of DBN-based semantic features on file-level
defect prediction is generally better than change-level defect
prediction. The main reason for this phenomenon is that

a file generally contains more information than a change.
Thus, file-level defect prediction data often provide more
context to a DBN model, allowing it to learn more accurate
features.

We also note that our approach achieves better
performance on some projects than others for file-level
with-project defect prediction, e.g., it achieves an F1 of
94.2% on ant and an F1 of approximately 80% on camel,
lucene, poi, and jEdit. This is because we use these
projects, i.e., ant, camel, lucene, poi, and jEdit, as
data to train a DBN model for generating features. During
the training process, we tune the DBN parameters based
on the performance of the defect prediction models with
the generated features for the five projects (details are
presented in Section 4.5.1). Because the training process is
an optimization task to generate features that may produce
the best performance for the training dataset, the features
fit the training dataset better. Thus, our approach achieves
relatively higher F1 values for the five projects (ant, camel,
lucene, poi, and jEdit) than other projects. This may be
a risk of overfitting. However, this may also suggest that
training a DBN model by using a project’s own history data
is appropriate when applying our approach to the project.

6.4 Performance on Open-source Commercial Projects

In Section 4, we evaluated the DBN-based semantic features
on 15 open source projects (i.e., the projects listed in Ta-
ble 5 and Table 6). To explore the performance of the DBN-
based semantic features on commercial projects, we apply
our approach to four additional open-source commercial
projects, i.e., Buck4, Hhvm5, Guava6, and Skia7. Buck is a
build system developed and used by Facebook. Hhvm is a
virtual machine, which was also developed and is currently
used by Facebook. Guava is a set of Google’s core libraries
for Java. Skia is a complete 2D graphics library for drawing
text, geometries, and images developed and used by Google.
These four projects were originally developed and main-
tained by Facebook and Google and became open-source
projects recently. We selected these four projects, because
they are the largest Java/C++ projects (in terms of commit
size). To collect the change-level data, we use the same ap-
proaches as we described in Section 2.2 and Section 4.4 to
label the changes and collect the features for each change.

4. https://buckbuild.com/
5. https://hhvm.com/
6. https://github.com/google/guava
7. https://skia.org/

https://buckbuild.com/
https://hhvm.com/
https://github.com/google/guava
https://skia.org/
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TABLE 21: The four open-source commercial projects evaluated. Lang is the programming language used for the project.
LOC is the number of the line of code. First Date is the date of the first commit of a project, while Last Date is the date of
the latest commit. Changes are the number of changes collected in this work. TrSize is the average size of the training data
on all runs. TSize is the average size of the test data on all runs. NR is the number of runs for each subject.

Project Lang LOC First Date Last Date Changes TrSize TSize Average Buggy Rate (%) # NR
Buck (Facebook) JAVA 296K 2013-04-18 2018-03-23 92K 31k 19k 7.2 3
Hhvm (Facebook) C++ 1M 2010-02-03 2018-04-06 120K 51K 14K 11.6 3
Guava (Google) JAVA 380K 2009-06-18 2018-03-21 29K 8.6K 8.8K 4.0 2
Skia (Google) C++ 765K 2006-09-20 2018-04-07 147K 48K 22K 30.6 5

The details of the four open-source commercial projects are
listed in Table 21.

With these four additional projects, we conduct change-
level within-project and change-level cross-project defect
prediction tasks to compare the DBN-based semantic
features to traditional features under both the non-effort-
aware and effort-aware scenarios. Note that we adopt the
same procedures to tune the DBN models and generate
semantic features as described in Section 4.8 and Section 4.9.

Table 22 shows the results of the change-level within-
project prediction on the four projects. Overall, the
DBN-based features generate better results than traditional
change features in terms of F1, which is consistent with
our previous experiment results on pure open-source
projects 15. Specifically, for all four projects, DBN-based
features could improve the best existing change features
up to 6.6 percentage points in F1, and on average the
improvement is 5.4 percentage points. These improvements
are consistent with our previous experimental results on
open-source projects (i.e., the best improvement is 8.6
percentage points and the average improvement is 4.7
percentage points).

TABLE 22: Results of WCDP on the four projects. All values
are measured in percentage. Better F1 values with statistical
significance (p-value< 0.05) between the two sets of features
are showed with an asterisk (*). Numbers in parentheses are
effect sizes comparative to Semantic Features in terms of F1.

Projects Features P R F1

Buck
Change Features (0.542) 10.9 39.9 17.2

Semantic Features 14.0 46.6 21.6*

Hhvm
Change Features(0.477) 14.2 39.8 20.9

Semantic Features 23.6 33.1 27.5*

Guava
Change Features (0.685) 7.4 58.0 13.1

Semantic Features 10.5 63.2 18.1*

Skia
Change Features (0.710) 34.5 40.4 37.3

Semantic Features 45.2 42.9 44.0*

Average
Change Features (0.622) 16.7 44.5 22.4

Semantic Features 23.3 46.5 27.8

TABLE 23: F1 scores of change-level cross-project defect
prediction for the four projects. Better F1 values with statisti-
cal significance (p-value < 0.05) between DBN-CCP, TCA+,
and Baseline are showed with an asterisk (*). Numbers in
parentheses are effect sizes comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline Within

All
Others

Buck 14.3* 11.9 (0.459) 10.8 (0.693) 21.6
Hhvm 22.6* 21.7 (0.017) 20.2 (0.112) 27.5
Guava 7.2 7.6* (-0.024) 4.2 (0.407) 18.1
Skia 47.9* 38.0 (0.613) 36.9 (0.765) 44.0

Average 23.0* 19.8 (0.358) 18.0 (0.422) 27.8

TABLE 24: PofB20 scores of DBN-based features and tra-
ditional features for WCDP on the four projects. PofB20
scores are measured in percentage. Better PofB20 values
with statistical significance (p-value < 0.05) among these
two sets of features are showed with an asterisk (*). Num-
bers in parentheses are effect sizes comparative to DBN-
based semantic features.

Project Semantic Features Change Features
Buck 28.2* 14.7 (1)
Hhvm 21.9* 13.3 (0.882)
Guava 17.4* 15.5 (0.351)
Skia 27.0* 21.3 (0.655)
Average 23.6* 16.2 (0.520)

TABLE 25: PofB20 scores of DBN-based features and tradi-
tional features for CCDP on the four projects. Better PofB20
values with statistical significance (p-value < 0.05) among
DBN-CCP, TCA+, and Baseline are showed with an asterisk
(*). Numbers in parentheses are effect sizes comparative to
DBN-CCP.

Source Target DBN-CCP TCA+ Baseline

All
Others

Buck 25.0* 17.9 (0.801) 14.2 (1)
Hhvm 13.4 17.4* (-0.653) 12.0 (0.455)
Guava 14.3* 13.0 (0.625) 10.5 (0.746)
Skia 18.2* 17.1 (0.210) 16.9 (0.437)

Average 18.7* 16.4 (0.623) 13.4 (0.766)

Table 23 shows the results of the change-level cross-
project prediction for the four projects. Overall, DBN-CCP
generates a better F1 than both TCA+ and Baseline for
all four projects on average. The improvement is up to
9.9 percentage points and is 3.2 percentage points on
average. The results are also consistent with our previous
change-level cross-project defect prediction results listed
in 17.

We also calculate the PofB20 values for both the
change-level within-project and cross-project approaches.
Table 24 shows the PofB20 values of the change-level
within-project defect prediction models with DBN-based
semantic features and the traditional change features.
DBN-based features achieve better PofB20 values than
the corresponding change features for all experiment pairs.
The improvement is up to 13.5 percentage points (Buck)
and is 7.4 percentage points on average. Table 25 shows
the PofB20 values of the three change-level cross-project
defect prediction approaches. Similar to our previous
results, DBN-CCP achieves better PofB20 values than both
TCA+ and Baseline on average. Compared to TCA+, the
improvement is as high as 7.1 percentage points and is 2.3
percentage points, on average.
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DBN-based semantic features outperform traditional fea-
tures on four open-source commercial projects from Face-
book and Google, which indicates that DBN-based se-
mantic features are also applicable for improving defect
prediction for open-source commercial projects.

6.5 Threats To Validity
6.5.1 Implementation of TCA+
For the comparative analysis, we compare our cross-project
defect prediction models with TCA+ [67], which is the state-
of-the-art cross-project defect prediction technique with
traditional features. Since the original implementation is
not released, we reimplemented our own version of TCA+.
Although we strictly followed the procedures described
in their work, our new implementation may not reflect all
the implementation details of the original TCA+. We test
our implementation with the data provided by their work.
Since our implementation can generate the same results, we
are confident that our implementation reflects the original
TCA+.

In this work we did not evaluate our DBN-based fea-
ture generation approach on projects used for evaluating
TCA+ [67]. This is because our DBN-based feature genera-
tion approach to within-project defect prediction works on
data of two different versions from the same project. How-
ever, the datasets used in [67] only provided one version
of defect data for each of their eight projects, which are
unsuitable for evaluating our approach to within-project de-
fect prediction. To reduce this threat, we evaluated TCA+
and our approach on the publicly available projects from
PROMISE.

6.5.2 Project Selection
The examined projects in this work have a large variance
in average buggy rates. We have tried our best to make
our dataset general and representative. However, it is still
possible that the 15 projects used in our experiments are not
generalizable enough to represent all software projects. Our
approach might generate better or worse results for other
projects that are not used in the experiments. We mitigate
this threat by selecting projects of different functionalities
(operating systems, servers, and desktop applications) that
are developed in different programming languages (C and
Java).

Our approach to generating semantic features is only
evaluated on open source projects. While we believe that
this approach should be generalizable to proprietary soft-
ware, evaluating our approach on proprietary software is
challenging, because the approach requires AST analysis of
source code. We mitigate this threat by applying our ap-
proach to four open source commercial projects that were
originally developed and maintained by Google and Face-
book and are open source now. The performance of these
projects suggests our proposed DBN-based semantic fea-
tures could deliver better results than traditional features.

6.5.3 Labeling Data
Following previous work [40], [88], the labeling process is
automatically completed with the annotating or blaming

function in VCS. It is known that this process can introduce
noise [29], [39]. The noise in the data can potentially harm
the performance of defect prediction. Manual inspection of
the process shows reasonable precision and recall on open
source projects [29]. To mitigate this threat, we use the noise
data filtering algorithm introduced in [39].

7 RELATED WORK

7.1 Software Defect Prediction

There are many software defect prediction techniques [15],
[22], [29], [31], [41], [45], [53], [59], [61]–[63], [65], [70], [80],
[83], [96], [99], [109], [110], [112], most of which leverage
features that are extracted from the repositories of projects
to train machine learning based classifiers [55]. Commonly
used features can be divided into code features and pro-
cess features [54]. Code features, e.g., Halstead [19], Mc-
Cabe’s cyclomatic complexity [50], CK [8], and MOOD fea-
tures [21], have been widely examined and used for defect
prediction. Recently, process features have been proposed
and used for defect prediction. Moser et al. [59] used the
number of revisions, authors, past fixes, and ages of files as
features to predict defects. Nagappan et al. [62] proposed
code churn features, and showed that these features were
effective for defect prediction. Hassan et al. [22] used en-
tropy of change features to predict defects. Their evaluation
of six projects showed that their proposed features can sig-
nificantly improve the results of defect prediction in com-
parison to other change features. Lee et al. [45] proposed
56 micro interaction metrics to improve defect prediction.
Their evaluation results on three Java projects showed that
their proposed features can improve defect prediction re-
sults compared to traditional features. Other process fea-
tures, including the developers’ characteristics [29], [71] and
collaboration between developers [45], [55], [76], [100], have
also been used to build defect prediction models. In this
work, we adopted process features such as the commit time,
filename, developers, the added line count, the deleted line
count, the changed line count, etc., which are included in
the meta features (details are presented in Section 4.4.2). We
did not compare the DBN-based semantic features with the
meta features alone since we found that combining them
with the bag-of-words and characteristic vector outperforms
using them alone. The results in Section 5 show that com-
pared with the combination of the three benchmark features
(including some process features), our DBN-based semantic
features produce better performance.

The main difference between our DBN-based semantic
features and the above traditional features is that traditional
features are manually encoded and mainly focus on the sta-
tistical information of the source code, e.g., LOC, the num-
ber of function calls, etc., while our DBN-based semantic
features are automatically learned by using deep learning
techniques and try to capture patterns of the usages of to-
kens (e.g., method usages, control-flow usages, etc.) in the
source code.

In this work, we rigorously compare the DBN-based se-
mantic features with traditional defect prediction features
on two different defect prediction tasks—within-project de-
fect prediction and cross-project defect prediction.
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7.1.1 Within-Project Defect Prediction

Within-project defect prediction uses training data and test
data that are from the same project. Many machine learn-
ing algorithms have been adopted for within-project defect
prediction, including Support Vector Machine (SVM) [12],
Bayesian Belief Network [1], Naive Bayes (NB) [93], Deci-
sion Tree (DT) [14], [37], [96], Neural Network (NN) [72],
[78], and Dictionary Learning [31].

Elish et al. [12] evaluated the capability of SVM
in predicting defect-prone software modules, and they
compared SVM against eight statistical and machine
learning models on four NASA datasets. Their results
showed that SVM is generally better than, or at least, is
competitive against other models, e.g., Logistic Regression,
Bayesian techniques, etc. Amasaki et al. [1] proposed an
approach to predicting the final quality of a software
product by using the Bayesian Belief Network. They
evaluated their approach on a closed project, and the
results showed that their proposed approach can predict
bugs that the Software Reliability Growth Model (SRGM)
cannot handle. Wang et al. [96] and Khoshgoftaar et
al. [37] examined the performance of Tree-based machine
learning algorithms on defect prediction, their results
suggested that Tree-based algorithms could help defect
prediction. Tao et al. [93] proposed a Naive Bayes based
defect prediction model, and they evaluated the proposed
approach on 11 datasets from the PROMISE defect data
repository. Their experiment results showed that the Naive
Bayes based defect prediction models could achieve better
performance than J48 (decision tree) based prediction
models. Our previous work [97] used the deep belief
network to generate semantic features for file-level defect
prediction tasks. The new contributions made by this paper
are described in Section 1.

In this work, to evaluate the performance of our DBN-
based semantic features and the traditional defect prediction
features, we built prediction models by using three typi-
cal machine learning algorithms, i.e., ADTree, Naive Bayes,
and Logistic Regression. Our experiment results show that
the learned DBN-based semantic features consistently out-
perform the traditional defect prediction features on these
machine learning classifiers.

Most of the above approaches are designed for file-
level defect prediction. For change-level defect prediction,
Mockus and Weiss [57] and Kamei et al. [35] predicted the
risk of a software change by using change measures, e.g.,
the number of subsystems touched, the number of files
modified, the number of added lines, and the number of
modification requests. Kim et al. [38] used the identifiers in
added and deleted source code and the words in change
logs to classify changes as being defect-prone or clean.
Jiang et al. [29] and Xia et al. [104] built separate prediction
models with the characteristic features and meta features
for each developer to predict software defects in changes.
Tan et al. [90] improved the change classification techniques
and proposed the online defect prediction models for
imbalanced data. Their approach used time sensitive
change classification to address the incorrect evaluation
introduced by cross-validation. McIntosh et al. [51] studied
the performance of change-level defect prediction as

software systems evolve. Change classification can also
predict whether a commit is buggy or not [75], [77].

In this work, we also compare the DBN-based semantic
features with the widely used change-level defect predic-
tion features, and our results suggest that the DBN-based
semantic features can also outperform these change-level
defect prediction features.

7.1.2 Cross-Project Defect Prediction
Due to the lack of data, it is often difficult to build accu-
rate models for new projects. Some studies [42], [95], [111]
have been done on evaluating cross-project defect predic-
tion against within-project defect prediction and show that
cross-project defect prediction is still a challenging problem.
He et al. [24] showed the feasibility to find the best cross-
project models among all available models to predict de-
fects on specific projects. Turhan et al. [94] proposed using
a nearest-neighbor filter to improve cross-project defect pre-
diction. Nam et al. [67] proposed TCA+, which adopted a
state-of-the-art technique called Transfer Component Anal-
ysis (TCA) and the optimized TCA’s normalization process
to improve cross-project defect prediction. Xia et al. [103]
proposed HYDRA, which leverages a genetic algorithm and
ensemble learning (EL) to improve cross-project defect pre-
diction. HYDRA requires massive training data and a por-
tion (5%) of labeled data from test data to build and train
the prediction models.

TCA+ [67] and HYDRA [103] are the two state-of-the-
art techniques for cross-project defect prediction. However,
in this work, we only use TCA+ as our baseline for cross-
project defect prediction. This is because HYDRA requires
that the developers manually inspect and label 5% of the
test data, while in real-world practice, it is very expensive
to obtain labeled data from software projects, which requires
the developers’ manually inspection, and the ground truth
might not be guaranteed.

Most of the above existing cross-project approaches
are examined for file-level defect prediction only. Recently,
Kamei et al. [34] empirically studied the feasibility of
change-level defect prediction in a cross-project context.
In this work, we also examine the performance of the
DBN-based semantic features on change-level cross-project
defect prediction tasks.

The main differences between our approach and existing
approaches for within-project defect prediction and cross-
project defect prediction are as follows. First, existing
approaches to defect prediction are based on manually
encoded traditional features which are not sensitive to
the programs’ semantic information, while our approach
automatically learns the semantic features using a DBN
and uses these features to perform defect prediction tasks.
Second, since our approach requires only the source code
of the training and test projects, it is suitable for both
within-project defect prediction and cross-project defect
prediction.

7.2 Deep Learning and Semantic Feature Generation in
Software Engineering

Recently, deep learning algorithms have been adopted
to improve research tasks in software engineering. Yang
et al. [107] proposed an approach that leveraged deep
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learning to generate features from existing features and
then used these new features to build defect prediction
models. This work was motivated by the weaknesses of
logistic regression (LR), which is that LR cannot combine
features to generate new features. They used a DBN
to generate features from 14 traditional change level
features, including the following: the number of modified
subsystems, modified directories, modified files, code
added, code deleted, line of code before/after the change,
files before/after the change, and several features related to
developers’ experience [107].

Our work differs from the above study mainly in three
aspects. First, we use a DBN to learn semantic features di-
rectly from the source code, while features generated from
their approach are relations among existing features. Since
the existing features cannot distinguish between many se-
mantic code differences, the combination of these features
would still fail to capture semantic code differences. For
example, if two changes add the same line at different lo-
cations in the same file, the traditional features cannot dis-
tinguish between the two changes. Thus, the generated new
features, which are combinations of the traditional features,
would also fail to distinguish between the two changes.
Second, we evaluate the effectiveness of our generated fea-
tures using different classifiers for both within-project and
cross-project defect prediction, while they only use LR for
within-project defect prediction. Third, we focus on both file
and change-level defect prediction, while they only work on
change-level defect prediction.

There also many existing studies that leverage deep
learning techniques to address other problems in software
engineering [16], [17], [30], [32], [44], [46], [60], [74], [84],
[101], [106], [108]. Mou et al. [60] used deep learning
to model programs and showed that deep learning can
capture the programs’ structural information. Deep learning
has also been used for malware classification [74], [108],
test report classification [32], link prediction in a developer
online forum [106], software traceability [30], etc.

How to explain deep learning results is still a
challenging question to the AI community. To interpret
deep learning models, Andrej et al. [36] used character-
level language models as an interpretable testbed to
explain the representations and predictions of a Recurrent
Neural Network (RNN). Their qualitative visualization
experiments demonstrate that RNN models could learn
powerful and often interpretable long-range interactions
from real-world data. Radford et al. [79] focused on
understanding the properties of representations learned
by byte-level recurrent language models for sentiment
analysis. Their work reveals that there exists a sentiment
unit in the well-trained RNNs (for sentiment analysis)
that has a direct influence on the generative process of the
model. Specifically, simply fixing its value to be positive
or negative can generate samples with the corresponding
positive or negative sentiment. The above studies show
that to some extent deep learning models are interpretable.
However, these two studies focused on interpreting RNNs
on text analysis. In this work we leverage a different deep
learning model, i.e., the deep belief network (DBN), to
analyze the ASTs of source code. The DBN adopts different
architectures and learning processes from RNNs. For

example, an RNN (e.g., LSTM) can, in principle, use its
memory cells to remember long-range information that can
be used to interpret data it is currently processing, while a
DBN does not have such memory cells (details are provided
in Section 2.3). Thus, it is unknown whether DBN models
share the same property (i.e., interpretable) as RNNs.

Many studies used a topic model [5] to extract semantic
features for different tasks in software engineering [7],
[47], [69], [70], [89], [105]. Nguyen et al. [70] leveraged
a topic model to generate features from source code for
within-project defect prediction. However, their topic model
handled each source file as one unordered token sequence.
Thus, the generated features cannot capture structural
information in a source file.

8 CONCLUSIONS AND FUTURE WORK

This work leverages a representation-learning algorithm,
i.e., deep learning, to learn semantic representation directly
from source code for defect prediction. Specifically, we
deploy a deep belief network to learn semantic features
from programs’ ASTs (for file-level defect prediction
models) and source code changes (for change-level defect
prediction models) automatically, and leverage the learned
semantic features to build prediction models.

We examined the effectiveness of the learned DBN-
based semantic features on two file-level defect prediction
tasks, i.e., file-level within-project defect prediction (WPDP)
and file-level cross-project defect prediction (CPDP), and
two change-level defect prediction tasks, i.e., change-level
within-project defect prediction (WCDP) and change-
level cross-project defect prediction (CCDP). To conduct
comprehensive performance evaluations, we employed
both non-effort-aware and effort-aware evaluation metrics.

For file-level defect prediction tasks, our evaluations
were conducted on 26 versions of data from 10 open source
projects. Our results show that the DBN-based semantic
features improve WPDP on average by 13.3 percentage
points (in F1), and outperform the state-of-the-art CPDP
with traditional features on average by 6.0 percentage
points. For change-level defect prediction, our evaluations
were conducted on more than 1M changes from six open
source projects and four open-source commercial projects.
The experimental results indicate that the DBN-based
semantic features can improve WCDP on average by
5.1 percentage points, and improve the state-of-the-art
CCDP technique with traditional change-level features, on
average, by 2.9 percentage points. In addition, under the
effort-aware evaluation scenario, our DBN-based semantic
features can outperform traditional features for both the
file-level and the change-level defect prediction.

In the future, we would like to extend our DBN-based
approach to generate semantic features for method-level de-
fect prediction, which helps in predicting the buggy meth-
ods in software projects. It could be promising to leverage
the defect prediction result to facilitate other practices dur-
ing software development and maintenance. For example,
software defect prediction has been used by QA teams to
help prioritize test cases [98], enhance static bug finders [81],
etc. We plan to explore the potential applications of defect
prediction for improving risk management, quality control,
and project planning.



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877612, IEEE
Transactions on Software Engineering

25

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feed-
back which helped improve this paper. This work has been
partially supported by the Natural Sciences and Engineering
Research Council of Canada.

REFERENCES

[1] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno. A Bayesian
Belief Network for Assessing the Likelihood of Fault Content. In
ISSRE’03, pages 215–226.

[2] E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining
techniques for building fault-proneness models in telecom java
software. In ISSRE’07, pages 215–224.

[3] J. Bansiya and C. G. Davis. A hierarchical model for object-
oriented design quality assessment. TSE’02, 28(1):4–17.

[4] Y. Bengio. Learning Deep Architectures for AI. Foundations and
Trends in Machine Learning, 2(1):1–127, 2009.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–1022, 2003.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of
artificial intelligence research, 16:321–357, 2002.

[7] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan.
Explaining software defects using topic models. In MSR’12,
pages 189–198.

[8] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object
Oriented Design. TSE’94, 20(6):476–493.

[9] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep
neural networks for image classification. In CVPR’12, pages
3642–3649.

[10] N. Cliff. Ordinal methods for behavioral data analysis. 2014.
[11] F. B. e Abreu and R. Carapuça. Candidate metrics for object-

oriented software within a taxonomy framework. JSS’94,
26(1):87–96.

[12] K. O. Elish and M. O. Elish. Predicting defect-prone software
modules using support vector machines. JSS’08, 81(5):649–660.

[13] W. B. Frakes and R. Baeza-Yates. Information retrieval: data
structures and algorithms. 1992.

[14] N. Gayatri, S. Nickolas, A. Reddy, S. Reddy, and A. Nickolas.
Feature selection using decision tree induction in class level
metrics dataset for software defect predictions. In WCECS’10,
pages 124–129.

[15] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained
source code changes and code churn for bug prediction. In
MSR’11, pages 83–92.

[16] X. Gu, H. Zhang, and S. Kim. Deep code search. In ICSE’18,
pages 933–944.

[17] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning. In
FSE’16, pages 631–642.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.
SIGKDD’09, 11(1):10–18.

[19] M. H. Halstead. Elements of Software Science (Operating and
programming systems series). Elsevier Science Inc., 1977.

[20] J. Han and C. Moraga. The influence of the sigmoid function
parameters on the speed of backpropagation learning. From
Natural to Artificial Neural Computation, pages 195–201, 1995.

[21] R. Harrison, S. J. Counsell, and R. V. Nithi. An evaluation of the
mood set of object-oriented software metrics. TSE’98, 24(6):491–
496.

[22] A. E. Hassan. Predicting faults using the complexity of code
changes. In ICSE’09, pages 78–88.

[23] H. He and E. A. Garcia. Learning from imbalanced data.
TKDE’09, 21(9):1263–1284.

[24] Z. He, F. Peters, T. Menzies, and Y. Yang. Learning from open-
source projects: An empirical study on defect prediction. In
ESEM’13, pages 45–54.

[25] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature:
how misclassification impacts bug prediction. In ICSE’13, pages
392–401.

[26] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural computation’06, 18(7):1527–
1554.

[27] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science’06, 313(5786):504–507.

[28] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable
and accurate tree-based detection of code clones. In ICSE’07,
pages 96–105.

[29] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In
ASE’13, pages 279–289.

[30] G. Jin, C. Jinghui, and C.-H. Jane. Semantically enhanced soft-
ware traceability using deep learning techniques. In ICSE’17,
pages 3–14.

[31] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu. Dictionary
learning based software defect prediction. In ICSE’14, pages 414–
423.

[32] W. Junjie, C. Qiang, W. Song, and W. Qing. Domain adaptation
for test report classification in crowdsourced testing. In ICSE’17,
pages 83–92.

[33] M. Jureczko and L. Madeyski. Towards identifying software
project clusters with regard to defect prediction. In PROMISE’10,
page 9.

[34] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan. Studying just-in-time defect prediction using
cross-project models. Empirical Software Engineering, 21(5):2072–
2106, 2016.

[35] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus,
A. Sinha, and N. Ubayashi. A large-scale empirical study of just-
in-time quality assurance. TSE’13, 39(6):757–773.

[36] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and under-
standing recurrent networks. In ICLR’16 Workshop.

[37] T. Khoshgoftaar and N. Seliya. Tree-based software quality
estimation models for fault prediction. In Software Metrics’02,
pages 203–214.

[38] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying software
changes: Clean or buggy? TSE’08, 34(2):181–196.

[39] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in
defect prediction. In ICSE’11, pages 481–490.

[40] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Auto-
matic identification of bug-introducing changes. In ASE’06, pages
81–90.

[41] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller.
Predicting faults from cached history. In ICSE’07, pages 489–498.

[42] B. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus
within-company cost estimation studies: A systematic review.
TSE’07, 33(5):316–329.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in
neural information processing systems’12, pages 1097–1105.

[44] A. Lam, A. Nguyen, H. Nguyen, and T. Nguyen. Combining
deep learning with information retrieval to localize buggy files
for bug reports. In ASE’15, pages 476–481.

[45] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro interaction
metrics for defect prediction. In FSE’11, pages 311–321.

[46] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder. Cclearner:
A deep learning-based clone detection approach. In ICSME’17,
pages 249–260.

[47] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chriso-
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