
1

CoCoFuzzing: Testing Neural Code Models with
Coverage-Guided Fuzzing

Moshi Wei∗, Yuchao Huang†, Jinqiu Yang‡, Junjie Wang†, Song Wang∗
∗York University, Canada

{moshiwei, wangsong}@yorku.ca
‡Concordia University, Canada
{jinqiuy}@encs.concordia.ca

†Institute of Software, Chinese Academy of Sciences, China
{hycsoge, junjie}@iscas.ac.cn

Abstract—Deep learning-based code processing models have
demonstrated good performance for tasks such as method name
prediction, program summarization, and comment generation.
However, despite the tremendous advancements, deep learning
models are frequently susceptible to adversarial attacks, which
pose a significant threat to the robustness and generalizability of
these models by causing them to misclassify unexpected inputs.
To address the issue above, numerous deep learning testing
approaches have been proposed; however, these approaches
primarily target testing deep learning applications in the domains
of image, audio, and text analysis, etc., and cannot be “directly
applied” to “neural models for code” due to the unique properties
of programs.

In this paper, we propose a coverage-based fuzzing frame-
work, CoCoFuzzing, for testing deep learning-based code pro-
cessing models. In particular, we first propose ten mutation
operators to automatically generate validly and semantically
preserving source code examples as tests, followed by a neu-
ron coverage-based approach for guiding the generation of
tests. The performance of CoCoFuzzing is evaluated using
three state-of-the-art neural code models, i.e., NeuralCodeSum,
CODE2SEQ, and CODE2VEC. Our experiment results indicate
that CoCoFuzzing can generate validly and semantically pre-
serving source code examples for testing the robustness and
generalizability of these models and enhancing neuron coverage.
Furthermore, these tests can be used for adversarial retraining
to improve the performance of neural code models.

Index Terms—Robustness, code model, language model, fuzzy
logic, deep learning

I. INTRODUCTION

Recent applications of deep learning (DL) have successfully
accelerated a variety of tasks in automated source code pro-
cessing, including the prediction of variable names [1], [2],
code summarization [3]–[8], and API recommendation [9]–
[11]. The majority of these deep learning-based code models
(i.e., neural code models) have demonstrated excellent perfor-
mance. However, it is well-known that deep learning models
are susceptible to adversarial attacks [12], [13], in which a
subtly-modified input can cause neural networks to misclassify
data and result in severe DL model errors. The reliability and
robustness of neural networks can be improved through more
exhaustive testing. Several testing strategies for deep learning,
such as coverage-guided fuzzing [14], adversarial-generative

fuzzing [15], and adversarial examples generation [16] have
been proposed to address the issue. However, the majority
of these approaches primarily focus on generating tests for
deep learning models in the domains of image, audio, and text
analysis by employing mutations such as image adjustment,
image scaling, image rotation, noise addition, etc., which
cannot be applied directly to neural code models. In addi-
tion, unlike adversarial example generation for images, audio,
and natural languages, the structured nature of programming
languages introduces new challenges, i.e., the program must
strictly adhere to the rigid lexical, grammatical, and syntactic
constraints and tests generated for a program are expected to
preserve the original program semantics.

Recently, Some adversarial example generation strategies
for source code were recently proposed. Zhang et al. [17] per-
formed variable name replacements to perturb the programs.
Yefet et al. [18] proposed to use both variables renaming and
dead code (i.e., unused variable declaration) insertion to gener-
ate semantically equivalent adversarial examples. However, the
types of perturbations introduced by the two transformations
are limited, as we have observed numerous other types of noise
or perturbation in real-world software programs with the same
semantics [19]. Consequently, using only the two operators
for exhaustively testing neural code models could result in the
omission of numerous edge cases.

In this paper, we propose a coverage-based fuzzing frame-
work, CoCoFuzzing, to test neural code models. Specifi-
cally, ten mutation operators are proposed and implemented to
represent various real-world, semantically preserving transfor-
mations of programs in order to automatically generate valid
and semantically preserving source code examples as tests.
Then, a neuron coverage-based guidance mechanism is used to
systemically explore various program transformation types and
guide the generation of tests. We investigate the performance
of CoCoFuzzing on three state-of-the-art typical neural code
models, i.e., NeuralCodeSum [3] (leverages a self-attention-
based neural network to generate summarization of programs),
CODE2SEQ [1] (builds an Abstract Syntax Tree (AST)-based
Recurrent Neural Network (RNN) to predict method names),
and CODE2VEC [2] (uses a path-based attention model for
learning code embeddings to represent a method).



2

Our experiment results indicate that CoCoFuzzing can
generate valid and semantically preserving tests for evaluating
the robustness and generalizability of neural code models.
Specifically, the newly-generated tests by CoCoFuzzing can
reduce the performance of NeuralCodeSum, CODE2SEQ, and
CODE2VEC by 84.81%, 22.06%, and 27.58% respectively.
In addition, we find that adversarial retraining can be used
to improve the performance of the neural code models of
interest using these new tests by CoCoFuzzing. Specifically,
the performance of NeuralCodeSum can be improved by
35.15%, CODE2SEQ by 8.83%, and CODE2VEC by 34.14%
by retraining the models with synthetic data generated by
CoCoFuzzing.

This paper makes the following contributions:
• This study proposes a coverage-based fuzzing framework
CoCoFuzzing for testing the robustness of neural code
models. To the best of our knowledge, CoCoFuzzing
is the first fuzzing framework for testing neural code
models. The implementation of our tool is made available
for the replication of this study1.

• This study proposes and implements a set of ten mutation
operators that represent various real-world semantically
preserving transformations of programs in order to auto-
matically generate tests.

• This study conducts an experiment with a neuron
coverage-based guidance mechanism for systemically ex-
ploring the large search space comprised of various types
of program transformations and evaluating the fuzzing’s
adequacy.

• This study evaluates CoCoFuzzing against three state-
of-the-art neural code process models, namely Neu-
ralCodeSum, CODE2SEQ, and CODE2VEC. The re-
sults of the experiment demonstrate the efficacy of
CoCoFuzzing.

The rest of this paper is organized as follows. Section II
presents the background of neural code models. Section III
describes the methodology of our proposed CoCoFuzzing.
Section IV shows the setup of our experiments. Section V
presents the result of our study. Section VI discusses the
threats to the validity of this work. Section VII presents related
studies. Section VIII concludes this paper.

II. BACKGROUND

In this section, we present the background of neural code
models and fuzzing testing.

A. Neural Code Models

The expanding availability of open-source repositories cre-
ates new opportunities for applying deep learning to accelerate
code processing tasks such as prediction of variable names [1],
[2], [20], code summarization [3]–[5], [21], and API recom-
mendation [9]–[11]. Recurrent Neural Networks (RNNs) and
Attention Neural Networks (ANNs) are the two types of deep
neural networks used in neural code processing models. Below
is a brief explanation of each architecture.

1https://doi.org/10.5281/zenodo.4000441

Recurrent Neural Network Architecture. A recurrent neural
network is a neural network with a hidden state h and an
optional output y which operates on a sequence of variable
length x = (x1, ..., xT ). And at each time step t, the RNN’s
hidden state ht is updated by ht = f(ht−1, xt), where f
is a non-linear activation function. Due to the vanishing and
exploding gradient problems, standard RNNs are incapable of
learning “long-term dependencies”, meaning they cannot prop-
agate information that appeared earlier in the input sequence.
Long short-term memory (LSTM) [22] has been proposed to
address the above issue. It introduces additional internal states,
known as memory cells, that are not affected by vanishing
gradients and regulate the propagation of information.
Attention Network Architecture. Recent applications of
attention neural models in the field of natural language pro-
cessing have yielded very promising results [23]. A neural
attention mechanism enables a neural network to focus a
subset of its inputs when processing a large amount of data.
Attention neural networks have three primary variants based
on network characteristics: global and local attention [24], hard
and soft attention [25], and self-attention [26]. Google recently
proposed the Transformer model [27] for natural language
processing tasks; it is the first transduction model to rely solely
on self-attention to compute input and output representations.

B. Fuzz Testing

Software fuzzing is a technique for testing a program that
generates mutants by modifying valid seed inputs [28]. The
mutants fail tests if they exhibit abnormal behaviors (such
as crashing the system being tested); otherwise, they pass.
Coverage-guided fuzzing has been proposed and is widely
used to discover numerous critical bugs in real software [29],
in which a fuzzing process maintains an input data corpus
for the program under consideration. Changes are made to
those inputs based on a mutation procedure, and mutated
inputs are retained in the corpus when they exhibit new
“coverage”. Traditional software fuzz testing techniques utilize
code coverage metrics that track which lines of code have
been executed and which branches have been followed [28].
However, these traditional fuzzing frameworks could not be
directly applied to deep neural network-based software due to
a fundamental difference in the programming paradigm and
the development process [14], i.e., a neural network run on
different inputs will frequently execute the same lines of code
and follow the same branches, but may produce significantly
different behavior due to the difference in input values.

Recently, many coverage-guided fuzz testing frameworks
such as DeepHunter [14], TensorFuzz [30], and DeepTest [31]
have been proposed to test deep neural networks. These frame-
works apply neuron coverage metrics to guide the fuzzing
test to deep learning applications in the domain of image
processing, and they perform image transformations such as
blurring and shearing to generate

III. THE APPROACH OF COCOFUZZING

In this section, we describe the approach of
CoCoFuzzing. Figure 1 shows the overview and



3

Neuron Coverage analysisMutation Generation

Seed Program (s) Neural Network

Activation Analysis

Neuron Coverage
analysis

Op1

Op2

Op3

Op4

Op10

Mutant1

Mutant2

Mutant3

Mutant4

Mutant10

Mutation
Operators

Generated Tests

Fig. 1: The overview of our proposed CoCoFuzzing.

Algorithm 1 Coverage-Guided Test Generation in CoCoFuzzing

Input: Seed Program List S; Target Neural Code Model NM;
Mutation Operators Ops; Maximum number of mutations MAX;
Variables: sets of activated neurons NCp, NCcurr ,NCbest

Seed Program P;
mutation operator op;
number of accumulative mutation numTries;
the best mutant among all mutants bestMutant;
neuron activation count of the best mutant bestAC;
neuron activation count of current mutant currentAC;
functions: neuronActivation calculates the activated neuron by
Program P;
newNeurons calculates the new activated neuron compare to
NCp;
Output: generated tests T;

1: for P in S do
2: NAp ← neuronActivation(P, NM)
3: for numTries = 1, numTries <= MAX , numTries++

do
4: bestMutant ← null
5: NAbest ← ∅
6: bestAC ← 0
7: for op in Ops do
8: currMutant = mutate(P, op)
9: NAcurr ← newNeurons(currMutant, NAp, NM)

10: currentAC ← size(NAcurr)
11: if currentAC > bestAC then
12: bestAC ← currentAC
13: NAbest ← NAcurr

14: bestMutant ← currMutant
15: end if
16: end for
17: if bestMutant! = null then
18: P ← bestMutant
19: NAp ← NAbest ∪NAp

20: T.push(P)
21: end if
22: end for
23: end for

Algorithm 1 describes the main algorithm in detail.
CoCoFuzzing takes a set of initial seed programs and a
neural code model as the input, and produces new test sets
iteratively through mutation generation (Section III-C) and
neuron coverage analysis (Section III-B).

A. Overview of CoCoFuzzing

Algorithm 1 shows how CoCoFuzzing works step by
step. CoCoFuzzing begins by randomly selecting one seed

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Pe
rc

en
ta

ge

Fig. 2: Average percentages of noise code in the mutants generated
with different MAX (i.e., X axis).

program from the seed queue (lines 1–2), then transforming
the input source code based on a predefined list of mutation op-
erators (line 7). Given the non-trivial search space constructed
by combinations of mutation operators, CoCoFuzzing uses
a neuron coverage-guided (NC-guided) approach (lines 3–23),
to search for specific types of mutated programs. At a high
level, CoCoFuzzing searches for program mutations that
activate the most number of new neurons (lines 11–14) while
controlling the maximum mutations on a single seed program
(line 3 and a threshold MAX), for both naturalness and the
viability of implementing metamorphic testing (i.e., mutated
programs can use the same test oracle as the seed program).

Note that in traditional coverage-guided fuzzers for com-
puter programs [32], a seed can be reused and mutated
multiple times, e.g., these tools frequently use either time
constraints or the number of generated mutants as the ter-
mination condition, and a single seed can produce thousands
of mutants [33]. However, a similar process cannot be applied
directly to testing neural code models because there are no
explicit oracles (i.e., program crashes) available to evaluate the
outcome of a seed program that has been mutated multiple
times [14]. To bypass the oracle challenge in testing neural
code models, we employ metamorphic testing, similar to the
approach of Tian et al. [31] If the transformation is seman-
tically preserving, the mutated and original programs share
the same oracle. Note that mutating a program may impair
its naturalness, as the inserted or mutated code may serve as
noise for the original program. Therefore, we use a threshold
MAX to limit the maximum number of mutations applied to a
seed program, meaning a seed program can be mutated a total
of MAX times. Note that the design of the MAX controller
does not guarantee that the inserted mutation code is natural.
A robust code model should be able to disregard noise code
regardless of its naturalness.

To determine an appropriate value for MAX , one thousand
sample programs are selected at random from the test datasets
of the three neural code models under investigation (see
section IV-A for details). Random MAX mutation operators
are selected for each sample and applied to each instance to
generate mutants. We experiment with MAX values ranging
from 1to10. The generated code is assumed to be completely
unnatural in the most conservative scenario. We determine the
naturalness of the mutated program based on the proportion
of code that was generated.

Figure 2 shows the average percentage of code generated
against the seed program for varying MAX values. The
naturalness of the code decreases dramatically as MAX
increases. For instance, when MAX is equal to 1, only 9.25%
of the code in a mutated program is noise (i.e., generated



4

code), whereas when MAX is increased to 10, the average
noise code percentage is 59.60%.

Prior research demonstrated that there is approximately 28%
noise code in real-world software projects [34]. Consequently,
for the remainder of the experiments in this paper, We set
MAX to three, which reduces average noise by 30%.

In terms of syntactical constraints, mutation operators are
designed so that the mutated program is semantically equiva-
lent to the original. For a single mutation operation, mutation
operators only add dead code to the program, so that the
execution of the mutated program is identical to that of the
original. Note that, in this work, mutation operations are
orthogonal to one another, which ensures that the accumulation
of mutations in an original program does not alter its execu-
tion. For example, a dead branch operator does not utilize the
unused variable created by other operator (see Section III-C).

B. Neuron Coverage Analysis

Algorithm 1 describes how CoCoFuzzing searches for
new test data using neuron coverage (line 5—25). In each
iteration (line 10–18), CoCoFuzzing evaluates all mutation
operators and identifies the mutated program that activates
the most number of new neurons. This mutated program is
generated as one set of test data (line 24) and also saved for
the subsequent mutation iteration. Controlled by the threshold
MAX (line 5), this mutant could be continuously mutated in the
subsequent iteration until the empirically determined threshold
of three mutations per original seed program is reached.

Two methods neuronActivation and newNeurons in Algo-
rithm 1 are for neuron coverage analysis. The neuronActivation
method uses input and a trained neural model to generate a set
of activated neurons as the output. For instance, two listeners
are injected to monitor the neurons of a trained PyTorch model.
Then, using the injected listeners, we collected the output of
each neuron and ran the inference or prediction of the trained
model using the input. Similar to prior work [14], the value of
each neuron is scaled to the range of 0 to 1 and compared to a
threshold for each neuron. If the scaled output is greater than
the threshold (i.e., 0.4, the same value as in [31]), the neuron
is considered active; otherwise, it is considered inactive.

The newNeurons method is very similar to neuronActiva-
tion, which takes a model, one input data, and a set of activated
neurons (i.e., NCp in line 12) as the input. The method
newNeurons computes the activated neurons based on the input
and returns a set of newly activated neurons based on the input
but not NCp. The neuron coverage analysis implementation
in CoCoFuzzing is model-independent and can be broadly
applied to a variety of deep learning models.

C. Mutation Generation

In CoCoFuzzing, we adopt and implement specialized
mutation operators for programming mutations. To circum-
vent the oracle problem, we propose mutation operators that
maintain program semantics. Therefore, the test oracles of the
mutated programs should be identical to those of the original
programs, i.e. metamorphic testing. In testing neural models,
previous research [14] has proposed mutation operators for

image and audio inputs, such as image scaling, image rotation,
noise addition, etc. As source code programs must adhere to
rigid lexical, grammatical, and syntactical constraints, these
operators cannot be directly implemented.

In this paper, we propose a set of ten mutation operators
that can be used to generate semantically equivalent methods.
Mutation operations range from common refactorings, such
as variable renaming, to more intrusive ones, such as adding
unreachable branches. Table I provides a summary of the ten
mutation operators and how each operator can be utilized to
modify a program. Notably, among the ten operators, Op1
and Op10 have been proposed and experimented in prior
studies [17] to generate adversarial examples for neural code
models. In this work, the other eight mutation operators are
used for the first time. Various types of program transfor-
mations are targeted by these mutation operators. The open-
source java parser package javalang2 Given a program T
and a mutation operator O, we first use the Abstract Syntax
Tree (AST) parser from the javalang package to convert T
to a list of sub-ASTs, with each element representing the
AST representation of a statement. The algorithm then iterates
through the sub-AST list and identifies potential positions
for O based on its specific transformation requirements. The
following outlines the specific mutation generation process for
each operator.

• (Op1) Dead store [18]: inserts an unused variable dec-
laration with one primitive type (e.g., string, int, double,
and long, etc.) to a randomly selected basic block in the
program. The name of the variable is a string of eight
characters randomly generated in the form of [a-z]. Only
one dead store is added in each transformation by this
operator.

• (Op2 and Op3) Obfuscating: rewrites a numerical value
or variable and its usages in a statement by adding
and deleting the same random numerical value of the
same type. For example, x = 1.0; can be mutated
to x = 1.0 + 0.1− 0.1; or x = 1.0 + 0 − 0;. If one
program contains more than one numerical variable, we
randomly pick one to perform the transformation. This
operator only works on assignment, declaration, or return
statements.

• (Op4) Duplication: duplicates a randomly selected as-
signment statement and inserts it immediately after its
current location. To avoid side effects, the applicable
assignment statement is limited to the ones without using
method invocation.

• (Op5 to Op9) Unreachable loops/branches: inserts an
unreachable loop or branch (including if statement, for
statement, while statement, and switch statement) into
a randomly selected basic block in the program. The
condition of the inserted loop or branch is always false
to make it unreachable.

• (Op10) Renaming [17], [18]: renames a local variable
declared in a program. If there exist multiple variables,
we randomly select one for the mutation. The new name
of the variable will be in the form of [a-z].

2https://pypi.org/project/javalang/ is used for code parsing and tokenization.

https://pypi.org/project/javalang/


5

TABLE I: Ten Semantic-Preserving Mutation Operators Ap-
plied in CoCoFuzzing.

NO. Operator name Description
Op1 [18] dead store Inserting unused variable declarations

Op2 numerical obfuscating Obfuscating the numerical variables via
adding/deleting a same numerical value

Op3 adding zero Obfuscating the numerical values via
adding zero

Op4 duplication Duplicating assignment statements
Op5 unreachable if Inserting unreachable if statements
Op6 unreachable if-else Inserting unreachable if-else statements
Op7 unreachable switch Inserting unreachable switch statements
Op8 unreachable for Inserting unreachable for statements
Op9 unreachable while Inserting unreachable while statements
Op10 [17], [18] renaming Renaming user-defined variables

Note that some of the proposed operators, such as Op1
and Op5–Op9, can be inserted into any locations in a given
program. In this work, we randomly pick a location to apply
these mutation operators because our experiments indicate
that there is no statistically significant correlation between
the chosen location and the effectiveness of these mutation
operators (details are in Section VI-A).

IV. EXPERIMENT SETUP

We conduct all experiments using the Google Cloud Plat-
form. The hardware of our experiment machine is comprised
of two n1-highmem-2 virtual central processing units (vCPU)
with 13-gigabyte memory in total and one NVIDIA Tesla
T4 GPU. We use PyTorch 1.4 for running NeuralCodeSum,
TensorFlow 1.15 for CODE2SEQ, and TensorFlow 2.1 for
CODE2VEC.

A. Subject Models and Datasets

1) Studied Models: In this work, three state-of-the-art neu-
ral code models that adopt different neural network char-
acteristics, i.e., NeuralCodeSum [3], CODE2SEQ [1], and
CODE2VEC [2] are used to evaluate CoCoFuzzing. For
our experiments, we employ the pre-trained models of the
three neural code models studied, which are made available
in their respective papers. In learning code embedding from
large-scale data and generating a high-level summary given
a method, all three models are similar. However, the three
models are distinct in numerous ways. They utilize distinct
model architectures first. Second, their representations of code
differ. Thirdly, the level of detail in the summaries generated
by the three models is distinct; NeuralCodeSum generates a
complete English sentence as output, whereas CODE2SEQ
and CODE2VEC produce the name of the method. We briefly
describe the details of the three models below.
NeuralCodeSum [3] uses Transformer [3] (comprised of
stacked multi-head attention and parameterized linear transfor-
mation layers for both the encoder and decoder) to generate a
natural language summary from a source code snippet. Both
the code and the summary consist of token sequences repre-
sented by vector sequences. To allow the Transformer to utilize
the order information of source code tokens, NeuralCodeSum
encodes both the absolute position and pairwise relationship
of source code tokens.
CODE2SEQ [1] uses an encoder-decoder architecture to
encode paths node-by-node and generate label as sequences. In

TABLE II: Experimental datasets. ‘Pro’ is the number of
projects.

Model Language #Pro #Training #Validation #Test #Method
NeuralCodeSum Java 9.7k 69.7k 8.7k 8.7k 87.1K
CODE2SEQ Java 11 692.0k 23.8k 57.1k 772.9KCODE2VEC

CODE2SEQ, the encoder represents the body of a method as a
set of AST paths, with each path compressed to a fixed-length
vector using a bi-directional LSTM that encodes paths node-
by-node. The decoder employs attention to choose relevant
paths during decoding and predicts sub-tokens of the target
sequence at each step when generating the method’s name.
CODE2VEC [2] proposes a path-based attention model for
learning vectors for arbitrary-sized snippet of code. The model
allows the embedding of a program into a continuous space.
Specifically, it first extracts syntactic paths from within a code
snippet, i.e., ASTs, and then it represents them as a bag of
distributed vector representations. Then, using an attention
network, a learned weighted average of the path vectors will
be computed in order to generate a single code vector.

2) Dataset: We perform our experiments using the original
datasets associated with each of the three studied neural code
models. Table II lists the basic statistics of the three datasets.
Specifically, the dataset of NeuralCodeSum contains 9.7K
open-source Java projects hosted in GitHub and each of the
projects has at least 20 stars. 87.1k methods that have JavaDoc
comments were collected.

CODE2SEQ created three Java datasets, which are different
in size, the popularity of the open-source software where the
data is from, and the distribution of training, validation, and
testing. Among the three Java datasets by CODE2SEQ, we
decided to use one, i.e., Java-small. Despite its relatively
small size among the three, it is commonly used by prior
studies [2], [5], including CODE2VEC. Also, all the projects
in Java-small are large-scale and mature open-source software,
in comparison with the other two datasets (i.e., many are from
smaller and less popular projects).

Java-small contains 11 relatively large Java projects 9 for
training, 1 for validation, and 1 for testing. Overall, it contains
about 772.9K methods.

B. Evaluation Metrics

We use the same evaluation metrics with the original
papers of NeuralCodeSum, CODE2SEQ, and CODE2VEC for
comparison purpose. NeuralCodeSum adopts BLEU [35] to
evaluate its performance on predicting the summarization of
programs. bilingual evaluation understudy(BLEU) is widely
used to assess the quality of machine translation systems [36].
BLEU’s output is always a number between 0 and 1. This
value indicates how similar the predicting summarization is to
the ground truth, with values closer to 1 representing higher
similarity.

Differently, CODE2VEC and CODE2SEQ used precision,
recall, and F1 for measuring performance. Precision and Recall
are computed on a per-subtoken basis. F1 is the weighted
average of Precision and Recall.



6

C. Baseline

1) Baseline for Mutation Operators: As two of the ten
mutation operators are used in prior studies [17], [18], namely
Op1 (i.e., dead code inserting) and Op10 (i.e.,renaming). We
treat them as baselines to evaluate the eight new mutation
operators, i.e., Op2– Op9.

2) Baseline for NC-Guided Test Generation:
CoCoFuzzing uses neuron coverage to guide the test
generation via the combination of mutation operators. To
evaluate the effectiveness of CoCoFuzzing we have also
designed a baseline approach that generates tests without
neuron coverage guidance, i.e., Random@K, which randomly
picks K mutation operators to generate mutants as tests. K
indicates the maximum number of mutations tries on a seed
program. As described in Section III, CoCoFuzzing limits
the maximum number of mutation tries to three, thus in our
experiment we also set K to three. Given a seed program,
Random@3 first randomly selects a mutation operator opi
and mutate the sample to get the mutant M1. Then, it mutates
M1 with another randomly selected mutation operator opj to
get a new mutant M2, after that it further mutates M2 with
a randomly selected mutation operator oph to generate a new
mutant M3. Through the process, opi, opj , and oph can be
the same operator. Random@3 produces a total of 3 mutants
for a given seed program.

D. Research Questions

We have implemented CoCoFuzzing as a self-contained
fuzz testing framework in Python based on deep learn-
ing framework Keras, TensorFlow, and Pytorch. With
CoCoFuzzing, we perform a large-scale comparative study
to answer the following four research questions.

RQ1: Are the neural code models robust against simple per-
turbations? Robustness has been extensively studied in classic
deep learning application domains, e.g., image processing,
speech recognition, and Natural Language Processing (NLP).
Numerous of these deep learning models have been shown
to be susceptible to simple perturbations. As the first study
to examine the robustness of neural code models, this RQ
investigates whether they are susceptible to the same issues.
RQ2: What is the effectiveness of each mutation operator?

This RQ illustrates the effectiveness of each mutation op-
erator (a total of ten in Table I) regarding its capability of
introducing perturbations that can affect the performance of
neural code models and activate different neurons. Further-
more, this RQ also examines the effectiveness of the two
baseline operators (i.e., Op1 and Op10) in comparison to the
other eight new mutation operators.

RQ3: What is the effectiveness of the NC-guided test genera-
tion in CoCoFuzzing?
CoCoFuzzing uses neuron coverage to guide the search

for new tests that are continuously transformed through mul-
tiple mutation operators. This RQ explores the performance
of CoCoFuzzing and compares it with our constructed
baseline, i.e., Random@3.

TABLE III: The results of testing the three neural code models
on the test data before (i.e., 1K original) and after (1K mutants)
introducing simple perturbations.

Model Test data Performance (%)

NeuralCodeSum 1K original BLEU = 40.82
1K mutants BLEU = 12.46

CODE2SEQ 1K original F1 = 71.16
1K mutants F1 = 66.96

CODE2VEC 1K original F1 = 47.68
1K mutants F1 = 45.56

RQ4: Is CoCoFuzzing useful for improving neural code
models?

This RQ explores whether the synthetic programs can
improve the neural code models, i.e., whether retraining with
CoCoFuzzing’s synthetic programs can make these models
more robust.

V. RESULT ANALYSIS

This section shows the result analysis for answering the
research questions asked in Section IV-D.

A. RQ1: Robustness of Neural Code Models

Approach. To answer this question, we re-use the original
test sets of each model as a start point of the experiment.

Specifically, for each studied neural code model, 1,000
samples are randomly selected from its original test dataset.
For each sample, one of the ten mutation operators is randomly
selected from Table I and apply the mutation operator to the
sample to generate a test. Note that, given a sample program,
it is possible that some mutation operators are not applicable,
e.g., Op4-duplication cannot be applied if a program does
not have any assignment statements. If this happens, another
mutation operator is randomly selected until one mutated
program is generated. Based on our experiments, at least
one of the ten mutation operators can be applied to any of
the samples. Hence, we have 1,000 mutated programs from
the 1,000 samples for each neural model. Then the three
pre-trained neural models with the 1,000 sample (i.e., 1k
original) and the generated 1,000 mutants (i.e., 1k mutants)
are evaluated.

Result Analysis. Table III shows the impacts of the simple
perturbations on the performance of the neural models. In
particular, we show the performance (either BLEU or F1) of
the studied neural code models under two test datasets, i.e.,
before and after perturbations. For all the three neural code
models, we notice the performance on 1k mutants decreases
compared to 1k original. Specifically, for NeuralCodeSum, the
BLEU score reduces 69.5% (from 40.82 to 12.46). The F1
scores of CODE2SEQ and CODE2VEC reduce 5.9% (from
71.16% to 66.96%) and 4.44% (from 47.68% to 45.56%)
respectively.

Although all three neural code models are susceptible to
semantic-equivalent transformations; however, the impact of
simple perturbations on the performance differs across the
three neural models.

Conclusion. As we can see the performance of Neural-
CodeSum has declined significantly compared to CODE2SEQ



7

TABLE IV: Performance of different operators on Neural-
CodeSum, CODE2SEQ, and CODE2VEC. ‘Original’ shows
the 1k original test set. ‘Op1’–‘Op10’ represent the test sets
with the perturbations introduced by one mutation operator
respectively. Numbers in the brackets are the performance
decline of the examined neural models on the mutated test
set compared with the original test set.

NeuralCodeSum CODE2SEQ CODE2VEC
BLEU (%) F1 (%) F1 (%)

Original 40.82 71.16 47.68
Op1 8.59 (78.95%↓) 68.23 (4.29%↓) 45.32 (5.05%↓)
Op2 8.88 (78.26%↓) 70.75 (0.58%↓) 47.50 (0.23%↓)
Op3 8.84 (78.34%↓) 70.70 (0.65%↓) 47.15 (0.97%↓)
Op4 9.29 (77.21%↓) 70.85 (0.43%↓) 47.10 (1.08%↓)
Op5 6.02 (85.25%↓) 60.57 (17.49%↓) 44.73 (6.32%↓)
Op6 6.16 (84.90%↓) 58.65 (21.33%↓) 44.78 (6.32%↓)
Op7 6.23 (84.73%↓) 59.82 (18.96%↓) 46.13 (3.21%↓)
Op8 7.19 (82.38%↓) 64.67 (10.04%↓) 43.81 (8.69%↓)
Op9 7.16 (82.45%↓) 63.72 (11.68%↓) 41.04 (16.01%↓)
Op10 37.08 (9.16%↓) 71.06 (0.14%↓) 47.49 (0.25%↓)

TABLE V: The average neuron coverage of the test sets
generated using different mutation operators. Numbers in the
brackets are the average number of newly activated neurons.

NeuralCodeSum CODE2SEQ CODE2VEC
Original 44.94% 90.79% 60.99%
Op1 47.33% (722.80) 91.46% (39.08) 61.48% (19.13)
Op2 47.07% (702.65) 90.73% (16.72) 61.00% (32.90)
Op3 47.06% (702.32) 90.76% (11.17) 60.98% (25.12)
Op4 45.75% (700.31) 90.68% (19.80) 61.17% (31.00)
Op5 47.55% (745.05) 88.61% (55.83) 62.37% (50.82)
Op6 47.49% (742.95) 89.53% (55.44) 62.33% (44.40)
Op7 47.48% (741.40) 88.98% (53.99) 62.04% (41.91)
Op8 48.11% (768.31) 91.36% (52.39) 62.66% (48.44)
Op9 48.10% (772.08) 91.50% (53.21) 62.70% (49.41)
Op10 44.91% (459.86) 90.86% (21.82) 60.97% (25.17)

and CODE2VEC. The main reason is that NeuralCodeSum
uses one token sequence to represent the entire body of a
method and most of our proposed mutation operators can
introduce new tokens into the method body, which impacts the
representation vector and may further impact the performance
of the model. While CODE2SEQ and CODE2VEC use both
AST paths and AST token information to represent the entire
body of a method, which are more stable than the token-based
representation of NeuralCodeSum. Thus these two models
are less susceptible to the perturbation introduced by random
mutation.

Answer to RQ1: The studied neural code models face ro-
bustness issues as their performance is negatively impacted
by simple perturbations to test data. However, the negative
impacts vary due to the use of different representations of
code by each neural code model.

B. RQ2: Comparison Across Different Mutation Operators

Approach. To answer this question, we use the same 1K
original test sets for the three neural code models collected
in RQ1 (Section V-A). For each mutation operator in Table I,
we apply it on the 1K original test dataset to generate new
test data. In total, 10 new test sets are generated, i.e., each test
set is generated by applying one particular mutation operator.

Then the performance of the three neural code models are
evaluated on each of the new test sets.

We investigate the neuron coverage differences between
each new test set and the original test set. In particular, we
compute the neuron coverage of each set of test data and
then the average neuron coverage of each set of test data.
Additionally, we calculate the average number of newly acti-
vated neurons in each test set based on a pairwise comparison
between original test data and mutated data, i.e. the activated
neurons in mutated data that are not activated by original data.

In addition, we examine the difference between the two sets
of activated neurons, one activated by the original test set and
the other by the new test set with mutations. For each test
set, we calculate the Jaccard distance between each mutant
sample and the original sample. Given two sets of neurons
N1 and N2 respectively. We measure their Jaccard distance
by 1− N1∩N2

N1∪N2 . The Jaccard distance can have a value between
0 and 1, with 1 indicating no overlap between the two sets and
0 indicating complete overlap.

Result Analysis. Comparison Across the Ten Mutation
Operators. Overall, from the results shown in Table IV, we
observe that the performance of each model decreases on
each of the 10 new test sets, i.e., the performance decline of
NeuralCodeSum ranges from 9.16% (Op10) to 85.25% (Op5)
and the performance decline of CODE2SEQ and CODE2VEC
ranges from 0.14% (Op10) to 21.33% (Op6) and 0.23% (Op2)
to 16.01% (Op9) respectively.

We investigate further the variance in performance decline
among the ten operators. Compared to the other operators,
operator ten has the least effect on the NeuralCodeSum
model. This is because the NeuralCodeSum model’s prediction
depends not only on the tokens in the input but also on the
hidden ordering information in the input sequence. Since the
new code is inserted in the middle of the original sequence,
this information is lost following mutation operations one
through nine. Because it only replaces one or two tokens
in the sequence, rather than introducing a new sequence of
tokens into the input, operator ten has the least impact. We also
observe that the CODE2SEQ and CODE2VEC models are rel-
atively resistant to Op2 (numerical obfuscation), Op3 (adding
zero), Op4 (duplication), and Op10 (numerical duplication)
(renaming). This is due to the fact that the aforementioned
mutation operations have minimal impact on the input of the
two models. The inputs of the two models are AST paths, and
the aforementioned operations only modify one or two tokens
or duplicate one path of the inputs, which has a smaller impact
than other mutation operators that introduce new AST paths.

In addition, we can also see that the most effective mutation
operators for each model are different, e.g., Op5 is the most
effective mutation operator for NeuralCodeSum, while for
CODE2SEQ and CODE2VEC, the most effective mutation
operator is Op6 and Op9 respectively. We further conduct the
Mann-Whitney U test (p < 0.05) to compare the performance
of the three neural code models under test data with (i.e., Op1–
Op10) and without perturbations (i.e., original test set). The
results suggest that the performance decline caused by simple
perturbations is statistically significant in all the ten test sets
and for all the three studied neural code models.



8

(a) NeuralCodeSum (b) CODE2SEQ (c) CODE2VEC

Fig. 3: Difference in neuron coverage caused by different mutation operators in the three models.

Table V shows the comparison results across different
mutation operators with regards to the impact on neuron
coverage. Overall, the impact of each operator on neuron
coverage varies across the studied neural code models. For
example Op2–Op7 significantly improve the neuron coverage
on NeuralCodeSum, while decreasing the neuron coverage on
CODE2SEQ. This may be caused by the unique architecture of
different models and properties of the test data. Interestingly,
despite the decreased neuron coverage, we notice that all the
mutation operators can activate new neurons compared to the
original test sets. This supports our design choice of using
newly activated neurons instead of neuron coverage when
guiding the search in fuzzing (line 12, Algorithm 1).

Figure 3a, Figure 3b, and Figure 3c show the distribution of
the Jaccard distance between the neuron coverage caused by
each of the ten test datasets and the 1k original test data for
NeuralCodeSum, CODE2SEQ, and CODE2VEC respectively.
From these figures, we can see that the Jaccard distances
vary for different operators and these results also confirm
that different mutation operators activate different neurons at
different rates.

TABLE VI: Comparison results across original test sets,
newly generated test sets using Random@3 and NC-guided
(CoCoFuzzing) strategies. NC denotes Neuron Coverage
and JD is the Jaccard Distance.

Model Strategies #New Tests Performance (%) NC(%) JD

NeuralCodeSum
1k original - BLEU = 40.82 44.94 -
Random@3 3,000 BLEU=8.59 (78.95%↓) 47.39 0.29
NC-guided 2,906 BLEU=6.20 (84.81%↓) 48.95 0.32

CODE2SEQ
1k original - F1 = 71.16 90.79 -
Random@3 3,000 F1=63.36 (10.96%↓) 95.15 0.05
NC-guided 2,969 F1=55.46 (22.06%↓) 95.71 0.08

CODE2VEC
1k original - F1 = 47.68 60.99 -
Random@3 3,000 F1=42.93 (9.96%↓) 72.24 0.17
NC-guided 3,000 F1=34.53 (27.58%↓) 75.23 0.25

Op2–Op9 v.s. Op1 and Op10. As we described in Sec-
tion III-C, operators Op1 and Op10 are proposed and used in
prior studies [17], [18] to generate adversarial examples for
neural code models. Regarding the effectiveness on reducing
the performance of a neural model for code, five (i.e., Op5–
Op8) of the eight operators (i.e., Op2–Op9) can outperform
Op1 and all can outperform Op10 on NeuralCodeSum. We can
also observe similar results on CODE2SEQ and CODE2VEC,
i.e., five and four of the new proposed eight mutation operators
can outperform Op1 respectively and Op10 is worse than all
the eight new operators.

Conclusion. In this work, we use all the ten mutation
operators for the mutation-based test case generation, as
each operator represents a unique type of semantic-preserving
transformations, which may trigger a different part of the
examined neural code models, their different neuron coverage
also confirms this.

Answer to RQ2: All the ten mutation operators are
shown to be effective in introducing perturbations that can
significantly impact the performance of the studied neural
code models. Our detailed analysis reveals that a mutated
test set often activates a different set of neurons compared
with the original test set. Last, the eight new mutation
operators (i.e., Op2–Op9) are comparable or outperform
the two operators (Op1 and Op10) used in prior studies.

C. RQ3: Effectiveness of CoCoFuzzing

Approach. We reuse the 1k original test data collected in
RQ1 (Section V-A) to explore the performance of the NC-
guided mutation generation in CoCoFuzzing. For each test
program in 1k original dataset, we use CoCoFuzzing and
the baseline approach Random@3 to generate new test data
respectively. Note that, the number of new test data generated
by CoCoFuzzing has an upper bound, i.e., three times of
the seed programs (see details in Section III-A). The actual
generated test set may contain less than the upper bound as
the test data that does not activate new neurons is discarded.
Meanwhile, Random@3 generates three new mutants for each
seed program and yields a total of 3,000 generated programs.
Thus the number of generated mutants of these two approaches
might not be the same. Then we examine the performance of
the three models on the two new test sets (i.e., CoCoFuzzing
and Random@3) respectively. Last, we calculate the average
neuron coverage of each test set and the average Jaccard
distance between each mutated test data and its original test
data (i.e., one seed program in the 1k original test set). Result
Analysis. As we can see from the results in Table VI, both
CoCoFuzzing and Random@3 can generate new tests that
detect more classification errors on the neural code models.
With the newly generated tests, the performance of each exam-
ined model decreases significantly and the decline rate can be
up to 84.81% (i.e., NC-guided on NeuralCodeSum). In terms
of neuron coverage, the NC-guided strategy (CoCoFuzzing)
achieves a lightly higher neuron coverage than Random@3 and
1k original.



9

TABLE VII: Model retrain scenarios and the corresponding per-
formance. TrData indicates the randomly selected 10K training
data from the original training dataset. TrData+CoCoFuzzing
indicates an enhanced training dataset by combining TrData and
the synthetic inputs generated by applying CoCoFuzzing on Tr-
Data. TrData+Random indicates an enhanced training dataset by
combining TrData and the synthetic inputs generated by applying
Random@3 on TrData.

Model Training data Performance (%)

NeuralCodeSum
TrData BLEU = 16.50
TrData+Random BLEU = 20.32
TrData+CoCoFuzzing BLEU = 22.30

CODE2SEQ
TrData F1 = 22.98
TrData+Random F1 = 23.16
TrData+CoCoFuzzing F1 = 25.01

CODE2VEC
TrData F1 = 11.54
TrData+Random F1 = 15.13
TrData+CoCoFuzzing F1 = 15.48

Conclusion. Compared with the 10 test sets by applying
each mutation operator individually (Table V), the NC-guided
strategy also achieves the highest neuron coverage. Based on
Jaccard distance, on average, the NC-guide strategy gener-
ates a new test set that activates more neurons compared
to Random@3, which suggests that the neuron coverage
metric can provide positive and meaningful guidance to the
CoCoFuzzing.

Answer to RQ3: By utilizing coverage-guided fuzzing
strategy, CoCoFuzzing is more effective in testing neural
code models than the baseline Random@3, i.e., a lower
BLEU or F1 value, a higher neuron coverage, and a higher
ratio of newly activated neurons.

D. RQ4: Usefulness of CoCoFuzzing on Improving Models

Approach. Similar to Deeptest [31], as a proof-of-concept,
we showcase the usefulness of the mutated test data by using
a subset of the entire training data. In particular, the three
neural models are trained with 10k randomly selected original
training data from scratch.The validation dataset provided by
each of the three models are used during the training process.

Then for each neural code model, CoCoFuzzing and
Random@3 are applied on the selected 10K training data
to generate two new test sets. Combining the mutated test
sets and the 10K randomly selected training data, two sets of
enhanced training datasets are collected, i.e., one enhanced by
CoCoFuzzing and one by Random@3. We then re-train each
of the three models with the two enhanced training datasets
respectively. Finally, we evaluate these re-trained models on
the 1K original test dataset.
Result Analysis. Table VII compares the performance across
three types of training sets, i.e., original data, original data
enhanced by Random@3 strategy, and original data enhanced
by CoCoFuzzing. As we can see from the table, in all cases,
the performance of the re-trained model improved significantly
over the original model and the improvements are 35.15%
on NeuralCodeSum, 8.83% on CODE2SEQ, and 34.14% on
CODE2VEC.

Conclusion. Compared with the original models, all three
models can be improved by retraining the models with syn-
thetic data generated by CoCoFuzzing.

Answer to RQ4: Performance of the three neural code
models can be improved 35.15% on NeuralCodeSum,
8.83% on CODE2SEQ, and 34.14% on CODE2VEC by
retraining the models with synthetic data generated by
CoCoFuzzing.

VI. DISCUSSION

This section discusses open questions regarding the effec-
tiveness of CoCoFuzzing.

A. Impact of the Applied Locations of Mutation Operators

Some of the mutation operators in CoCoFuzzing can be
applied in any location of a given program (i.e., location
independent). For example, Op1 inserts an unused variable
declaration into a randomly selected basic block of in a
program, thus for any non-empty program, there exists more
than one location for Op1. Among the ten mutation operators
listed in Table I, Op1 and Op5–Op9 are location independent.
To better understand the impact of this randomness on the
performance of CoCoFuzzing, for each location indepen-
dent operator, we apply it on the 1K original test dataset to
get a new test dataset. Then we collect the performance of
the three models on the new test datasets. We rerun the above
process 10 times and calculate the standard deviation values
and the distribution of the performance of the three neural
models. Table VIII shows the detailed results.

We find that, for all the location-independent operators, their
effectiveness on the neural code model is insensitive to the
applied locations, i.e., the variance is small. Our One-Way
ANOVA test results show that there is no significant difference
in the performance of the 10 runs, which suggests that the
locations of generated mutants do not significantly impact the
effectiveness of CoCoFuzzing. Thus, in our experiments, we
randomly pick a location to apply these mutation operators.

B. Distribution of the Selected Mutation Operators

CoCoFuzzing adopts a neuron coverage guidance algo-
rithm to generate new tests with the ten pre-defined mutation
operators. To further understand the operator selection process
in CoCoFuzzing, we collected the selected operator for
each mutant generated by CoCoFuzzing for each of the
three neural code models, i.e., NeuralCodeSum, CODE2SEQ,
and CODE2VEC. Table IX shows the percentage of each
operator used among the tests generated by CoCoFuzzing
on each model. Overall, we can see that distribution of the
selected operators varies dramatically among different neural
code models, e.g., Op10 was used among 5% of all the
generated tests in NeuralCodeSum while less than 1% of the
generated tests from CODE2SEQ used Op10. In addition,
we can also see that some of the operators are dominating
across different models e.g, Op5 has been used in more than
15% of the generated tests on each model. While these also



10

TABLE VIII: Statistics of the impact of the position independent
mutation operations used in this study. Performance Distribution
indicates the distribution of the performance of a model with 10
different test datasets generated by a mutation operator. SD is the
standard deviation of the performance of a model with different test
datasets.

Model Operator Performance Distribution SD
Average (± Range)

NeuralCodeSum
BLEU(%)

Op1 7.10 (±0.28) 0.16
Op5 5.78 (±0.43) 0.27
Op6 5.88 (±0.38) 0.23
Op7 5.92 (±0.40) 0.24
Op8 6.50 (±0.00) 0.00
Op9 6.61 (±0.00) 0.00

CODE2SEQ
F1(%)

Op1 65.05 (±1.47) 0.01
Op5 63.98 (±1.02) 0.006
Op6 62.09 (±1.56) 0.009
Op7 64.02 (±1.26) 0.008
Op8 64.65 (±1.34) 0.008
Op9 65.66 (±1.14) 0.008

CODE2VEC
F1(%)

Op1 60.51 (±2.46) 0.02
Op5 59.95 (±2.01) 0.01
Op6 57.81 (±2.44) 0.01
Op7 60.34 (±1.29) 0.009
Op8 58.42 (±2.14) 0.01
Op9 54.62 (±1.91) 0.01

TABLE IX: The distribution of selected mutation operators on the
three models.

Operator NeuralCodeSum CODE2SEQ CODE2VEC
Op1 9.05% 6.46% 0.87%
Op2 8.39% 10.83% 15.30%
Op3 4.43% 2.13% 2.63%
Op4 2.82% 0.63% 1.23%
Op5 15.79% 19.00% 26.07%
Op6 14.83% 14.83% 11.03%
Op7 13.97% 9.13% 5.53%
Op8 12.73% 18.33% 16.67%
Op9 13.21% 16.50% 19.37%

Op10 4.74% 1.10% 1.30%

exist in the operators that are selected less frequent across
the three models, i.e., Op1,Op3, Op4, and Op10 are used in
less than 10% of the generated test cases across the three
models. One of the possible reasons is that Op5 activates
relatively more new neurons than other operators (As shown
in Table V). We have conducted a Spearman rank correlation
to compute the correlation between the number of newly
activated neurons of mutants generated by an operator and
the frequency of an operator used in a neural code model. The
Spearman correlation values are 0.78 in NeuralCodeSum, 0.68
in CODE2SEQ, and 0.92 in CODE2VEC, which indicates that
the frequency of an operator used in a neuron code model is
positively correlated with its ability to activate new neurons
(compared to the original tests).

C. Cost effectiveness

In CoCoFuzzing, a mutated program extends the original
program up to three times. CoCoFuzzing applies each
mutation operator to the original program and selects the
most efficient operator based on the neuron coverage in each
mutation. Thus, for each original program, CoCoFuzzing
executes and evaluates all eleven operators three times, result-
ing in a complexity of O(n) where n is the number of inputs.
In our experiment, we observe that 1,000 testing examples

Seed Program (s) Neural Network

Generated TestsCoCoFuzzing Robustness guided

Neural Network

Fig. 4: The re-training pipline of our proposed
CoCoFuzzing.

take approximately 10 hours to execute. It is equivalent to an
average of 36 seconds per test case.

D. Apply to New Model

Figure 4 shows the retraining pipeline of using
CoCoFuzzing for robustness-guided training of a
new model. Specifically, there are three steps to apply
CoCoFuzzing to a given new model M . First, inject the
neuron activation listener into the activation layer of the
model, which is usually the second-to-last layer. Second,
running the model with CoCoFuzzing and collecting the
mutated dataset generated. Third, combining the training
dataset and the mutated dataset into a new training dataset
for re-training. The effectiveness of robustness-guided
training with CoCoFuzzing can be enhanced by repeatedly
performing steps two and three.

E. Limitations of CoCoFuzzing

One limitation of CoCoFuzzing is that the ability of
error discovery significantly depends on the mutated input,
which may be less effective than a mathematical approach
such as gradient fuzzing [30]. In addition, the performance of
mutation testing also relies on the human-designed mutation
operators. In this work, we design CoCoFuzzing to show
that the existing code generation model is not robust against
dead code mutation test rather than exhaustively discovering
malfunctions of the code models, we keep the task of defining
optimal mutation operators as our future work.

Another limitation of CoCoFuzzing is that neuron cover-
age may not be the best metric for operator selection. Recent
study [37] shows that the neuron coverage metric rises from 0
to close to 100% by giving only 25 examples. The neuron
coverage metric is quickly saturated and the difference of
activation between each testing example decreases dramati-
cally, which means that only the first few testing examples
are meaningful to the metric. However, CoCoFuzzing only
evaluates the neuron coverage across three accumulative mu-
tations, which means the impact of metric saturation is minor
to our study.

F. Threats to Validity

The selection of the studied neural code models and ex-
perimental projects could be a threat to validity. In this
work, we only evaluated CoCoFuzzing on NeuralCodeSum,
CODE2SEQ, and CODE2VEC with Java programs. Therefore,



11

TABLE X: Estimated execution time of CoCoFuzzing on
different testing datasets.

CoCoFuzzing Java-small Java-med Java-large
data - training 10,000 665,115 3,004,536 15,344,512
data - test 1,000 56,165 411,751 417,003
training - Code2Vec 4 hrs 11 days* 50 days* 255 days*
training - Code2Seq 6 hrs 16.5 days* 75 days* 383.5 days*
training - NeuralCodeSum 10 hrs 27.7 days* 125 days* 639.3 days*
mutation - Code2Vec 1 day 56 days* 411 days* 411 days*
mutation - Code2Seq 1 day 56 days* 411 days* 411 days*
mutation - NeuralCodeSum 6 hrs 14 days* 103 days* 104 days*

our results may not generalize to other neural code models
or other programming languages. We leave the evaluation of
the general applicability of our approach as future work. To
generate new tests, this paper adopts ten different mutation
operators for program transformations. Although these muta-
tion operators have been examined can help generate effective
mutants, these mutation operators may not represent many
possible transformations for software programs. In addition,
most of the used mutation operators are designed for object-
oriented programming languages, e.g., Java, which might not
work for other program languages.

The naturalness of the mutated source code can be a threat
to validity as well. In our experiments (Figure 2), we observe
that the percentage of the dead code in the mutated program
increases as we mutate the program multiple times, thus we
need a trade-off between the naturalness of the source code
and the number of mutants inserted. The existing study found
that on average there are 28% dead code in the open-source
projects [34]. To make the mutated program close to the
statistics of natural programs, we set the controller MAX equal
to 3, which limits the percentage of dead code to less than 30%
in our experiments on average. However, the optimal value for
MAX could be different for different projects or projects with
different programming languages.

Table X shows the data size and mutation time cost of
Java-subset used in this work (CoCoFuzzing), Java-small,
Java-mid and Java-large. The statistics of data size are from
CODE2SEQ [1]. The time cost labeled with * is the estimation
execution time. The time cost of CoCoFuzzing on Java-
subset is calculated based on the actual execution time on
Google Cloud Platform, from where we bought computation
power to conduct our experiments. We estimate the execution
time of Java-small, Java-med, and Java-large based on the
execution time of the data used in this paper.

Although the training complexity of each of the three stud-
ied neural code models can be different, their lower boundary
is the training complexity is linear, i.e., the training time is
linear to the size of the dataset. Thus, the estimated time
in Table I is the lower boundaries. For example, the size
of the Java-small dataset is about 66 times more than the
size of CoCoFuzzing dataset, so the estimated execution
time of Java-small is about 66 times more than the execution
time of CoCoFuzzing, which is around 11 days. The same
estimation method applies to other models and datasets.

The calculation of neuron coverage is the bottleneck of the
testing execution. The neuron coverage calculation necessitates
intensive memory I/O operations and storage space for the
weights. In addition, memory is required for the storage

of multiple weights, as the activation difference between
mutations must be computed. Due to the aforementioned
restrictions, performance optimization strategies like multi-
threading and parallel computing are ineligible.

We will extend our approach with more mutation operators
for supporting more program languages. CoCoFuzzing uses
a threshold MAX to limit the maximum number of mutation
tries on a seed program. We set MAX to three in this
work to simulate the natural statistics of unused code in
software projects, while the performance of CoCoFuzzing
could vary with different values of MAX . We plan to explore
the effectiveness of CoCoFuzzing with more MAX values
in the future. In this work, following existing studies [14],
[31] we use neuron coverage to guide the generation of valid
mutants.

In this work, following existing fuzzers for testing deep
learning models, we also use neuron coverage to guide the
generation of tests. Although there have been increasing
discussions on whether neuron coverage is a meaningful
metric, our experiments show that it works for testing neu-
ral code models. We plan to examine the effectiveness of
CoCoFuzzing with more criteria. In this work, we did
not examine CoCoFuzzing on the pre-trained models (e.g.,
CodeBERT [38] and GraphCodeBERT [39]) due to resource
limitation. We believe CoCoFuzzing is also applicable to
CodeBERT and GraphCodeBERT, as they are transformer-
based models that are similar to the NeuralCodeSum model.
We will continue to apply CoCoFuzzing to these large pre-
trained models in the future.

VII. RELATED WORK

This section presents the existing research related to our
work.

A. Testing Deep Learning Models

In recent years, there are many studies on testing deep
learning models. Pei et al. [13] proposed DeepXplore to
systematically find inputs that can trigger inconsistencies be-
tween multiple deep neural networks. They introduced neuron
coverage as a systematic metric for measuring how much of
the internal logic of a model have been tested. DeepXplore
improves the classification accuracy by 3% via retraining the
deep learning models with augmented data.

Tian et al. [31] proposed DeepTest for failure detection
on Deep Neural Network (DNN)-based Autonomous driving
systems. They adopted the neuron coverage metric as the
criteria to generate synthetic inputs to test deep learning
models. DeepTest improves the accuracy of examined models
up to 46% by re-training the model with an augmented dataset
generated by the neuron-coverage-guided greedy search. We
also use neuron coverage as guidance to our Mutation operator
selection algorithm in our work. In addition, CoCoFuzzing
applies neuron coverage to maximize the difference of neu-
ron activation of code models, while DeepTest focuses on
image processing. Ma et al. [12] purposed DeepGauge with
5 coverage criteria for deep learning models, which extend
the coverage metrics from neuron-level to layer-level. Xie et



12

al. [14] proposed DeepHunter, a fuzzing testing-based tool for
testing deep learning models, in which they examined different
types of seed selection strategy and test criteria. DeepHunter
applied both neuron coverage and coverage criteria from
DeepGauge in mutation generation. Odena et al. [30] presented
TensorFuzz which applied fuzz-based coverage testing for
deep learning systems. Guo et al. [40] proposed DLFuzz, a
differential fuzzing testing framework to guide deep learning
systems exposing incorrect behaviors. Wang et al. [41] propose
a novel approach to detect artificially generated adversarial
examples for Deep Neural Network models at runtime. The
main difference between our work and the above studies is
that most of the existing tools focus on general deep learning
models in classic deep learning application domains, e.g.,
image processing, speech recognition, and natural language
processing (NLP). While CoCoFuzzing is the first fuzzing
framework for neural code models.

B. Adversarial Machine Learning.

Adversarial machine learning primarily focuses on generat-
ing adversarial examples to improve the performance of deep
learning models.

Gradient ascent-based adversarial examples generation such
as FGSM (Goodfellow et al. [42]) and BIM (Kurakin et al.
[43]), which leverages the gradient of the model for finding
adversarial example similar to the original input, has been
widely used to accelerate the adversarial example generation
problem for deep learning applications in the domains of
image processing, speech recognition, and natural language
processing. Recently, Yefet et al. [18] proposed DAMP, i.e.,
a gradient-based adversarial example generation technique, to
generate adversarial examples for deep learning models in the
domain of source code process. DAMP adopted two semantic
preserving transformation operators, i.e., renaming variables
and dead code inserting. Zhang et al. [17] proposed MHM
that generated adversarial examples by renaming variables
based on a sampling algorithm. Their experimental results
demonstrate that MHM could effectively generate adversarial
examples to attack the subject code process models. Ma et
al. [44] introduced DeepMutation, a testing framework for
deep learning systems based on FNN models. DeepMutation
applies eight mutation operators for FNN models. On top
of DeepMutation, Hu et al. [45] introduced DeepMutation++
with 9 mutation operators on RNN models. Vahdat et al. [46]
proposed a search-based testing framework for adversarial
robustness testing. The differences to CoCoFuzzing are,
firstly, out of the 10 operators CoCoFuzzing uses, there are
8 different operators compared to Vahdat et al.’s work. For
the two similar operators (Renaming and Argument adding),
CoCoFuzzing rename the variables with an 8-characters-
length random string, while Vahdat et al.’s work uses the syn-
onym of variables. Secondly, they used an evaluation metric
derived from DeepMutation++ [45] to guide the mutation,
while CoCoFuzzing uses neuron coverage (NC) to guide
the mutation.

C. Robustness of Neural Code Models

Gehr et al. [47] proposed AI2, a neural network analyzer
that can automatically certify the robustness and safety prop-
erties of a neural network. It introduces two modified neural
network layers, abstract transformers, and max-pooling layer,
to effectively evaluate the real-world neural networks that use
transformers and max-pooling. The goal of AI2 is to formally
verify the safety and robustness of a model while our work
aims to test and improve the robustness of a deep learning
model via neuron-coverage-guided mutation testing. Hong et
al. [48] demonstrated that CODE2VEC cannot be effectively
leveraged when being readily generalized to other code-to-text
downstream tasks, i.e. comments generation, code authorship
identification, and code clones detection. Their experiment
shows that CODE2VEC does not perform better than a
simpler method in the downstream tasks. Our work focuses
on testing the robustness of CODE2VEC on its original task,
while their study is on re-using the trained CODE2VEC model
for other downstream tasks. Pavol and Martin [49] introduced
an adversarial training approach for a code model that is
specific to the type-inference task. they train a model [50]
that only gives prediction when the certainty of result is high
and does not give prediction otherwise. Then, they apply
adversarial training [42] and collect the information of how
the part of the program affects the prediction. Last, they train
multiple smaller but more robust models with subsets of the
training data according to the information collected. Since the
task of their model is to infer the type of variable of a piece of
program, they could replace input tokens using the adversarial
training approach without the concern of execution consis-
tency. Adversarial training cannot be directly applied to our
case since we have to make sure the ground truth is preserved
after mutation. Rhys and Panos [51] observed that variable
renaming could significantly affect CODE2VEC prediction.
Re-training CODE2VEC with Variable Obfuscation improves
the performance of CODE2VEC on 6 out of 7 models. Our
research includes more mutation operators and more models,
which have a larger scale compared to this work. Goutham
et al. [52] introduces an adversarial training approach for
source code models. The training target is to achieve transform
robustness by re-train the model with an augmented dataset
generated with 8 transform operators. Our mutation proposed
6 types of dead code injection while their work only considers
adding dead if statement (similar to Op4). Md Rafiqul et
al. [53] explored the generalizability of source code models
by metamorphic testing using 6 types of transformation. They
evaluated the performance of 3 models including CODE2VEC,
and CODE2SEQ with datasets containing different percent-
ages of mutation. The observation is that the prediction change
of a model increases as the degree of mutation increases.
Compared to our research, this work focuses on how mutation
affects the generalizability of code models, while we further
explored how an augmented dataset can help increase the
robustness of code models. Zhang et al. [54] conducted a
survey on machine learning testing. The survey provides a
landscape on machine learning testing with several important
topics including fairness, efficiency, robustness, and security.



13

VIII. CONCLUSION

This paper presents a coverage-based fuzzing framework,
CoCoFuzzing, for testing deep learning-based models for
code processing. In particular, we first propose and imple-
ment ten mutation operators to automatically generate valid
(i.e., semantically preserving) source code examples as tests;
Then, we propose an approach based on neuron coverage
to guide the generation of tests. We investigate the perfor-
mance of CoCoFuzzing on three state-of-the-art and typical
neural code models, namely NeuralCodeSum, CODE2SEQ,
and CODE2VEC. Our experiment results demonstrate that
CoCoFuzzing can generate diverse and valid tests for eval-
uating the robustness and generalizability of neural code mod-
els. Moreover, the generated tests can be used for adversarial
retraining to improve the performance of the target neural code
models.

IX. ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their feed-
back which helped improve this paper.

REFERENCES

[1] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[3] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” arXiv
preprint arXiv:2005.00653, 2020.

[4] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 200–20 010.

[5] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in International
conference on machine learning, 2016, pp. 2091–2100.

[6] M. Chen and X. Wan, “Neural comment generation for source code with
auxiliary code classification task,” in 2019 26th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2019, pp. 522–529.

[7] Y. Huang, M. Wei, S. Wang, J. Wang, and Q. Wang, “Yet another
combination of ir-and neural-based comment generation,” Information
and Software Technology, vol. 152, p. 107001, 2022.

[8] L. Shi, F. Mu, X. Chen, S. Wang, J. Wang, Y. Yang, G. Li, X. Xia, and
Q. Wang, “Are we building on the rock? on the importance of data pre-
processing for code summarization,” arXiv preprint arXiv:2207.05579,
2022.

[9] M. Wei, N. S. Harzevili, Y. Huang, J. Wang, and S. Wang, “Clear:
contrastive learning for api recommendation,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 376–387.

[10] G. Kang, J. Liu, B. Cao, and M. Cao, “Nafm: neural and attentional
factorization machine for web api recommendation,” in 2020 IEEE
international conference on web services (ICWS). IEEE, 2020, pp.
330–337.

[11] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 631–642.

[12] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp.
120–131.

[13] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[14] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146–157.

[15] P. Zhang, Q. Dai, and P. Pelliccione, “Cagfuzz: Coverage-guided ad-
versarial generative fuzzing testing of deep learning systems,” arXiv
preprint arXiv:1911.07931, 2019.

[16] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-
W. Chang, “Generating natural language adversarial examples,” arXiv
preprint arXiv:1804.07998, 2018.

[17] H. Zhang, Z. Li, G. Li, L. Ma, Y. Liu, and Z. Jin, “Generating adversarial
examples for holding robustness of source code processing models,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 01, 2020, pp. 1169–1176.

[18] N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of
code,” arXiv preprint arXiv:1910.07517, 2019.

[19] M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, 2019, pp. 143–153.

[20] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-
based representation for predicting program properties,” ACM SIGPLAN
Notices, vol. 53, no. 4, pp. 404–419, 2018.

[21] Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive
comments for code blocks,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “Abcnn: Attention-based
convolutional neural network for modeling sentence pairs,” Transactions
of the Association for Computational Linguistics, vol. 4, pp. 259–272,
2016.

[24] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[25] T. Shen, T. Zhou, G. Long, J. Jiang, S. Wang, and C. Zhang, “Reinforced
self-attention network: a hybrid of hard and soft attention for sequence
modeling,” arXiv preprint arXiv:1801.10296, 2018.

[26] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in International Conference on Ma-
chine Learning, 2019, pp. 7354–7363.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[28] M. Zalewski, “American fuzzy lop,” 2014.
[29] M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and M. Whittaker,

“Announcing oss-fuzz: Continuous fuzzing for open source software,”
Google Testing Blog, 2016.

[30] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: De-
bugging neural networks with coverage-guided fuzzing,” in International
Conference on Machine Learning. PMLR, 2019, pp. 4901–4911.

[31] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[32] K. Serebryany, “Libfuzzer: A library for coverage-guided fuzz testing
(within llvm).”

[33] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in 23rd {USENIX}
Security Symposium ({USENIX} Security 14), 2014, pp. 861–875.

[34] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and K.-H.
Prommer, “How much does unused code matter for maintenance?” in
2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 1102–1111.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[36] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[37] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 109–119.



14

[38] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[39] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[40] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
739–743.

[41] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, “Adversarial sample
detection for deep neural network through model mutation testing,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1245–1256.

[42] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[43] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[44] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep learning
systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[45] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
A mutation testing framework for deep learning systems,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1158–1161.

[46] M. Vahdat Pour, Z. Li, L. Ma, and H. Hemmati, “A search-based testing
framework for deep neural networks of source code embedding,” arXiv

e-prints, pp. arXiv–2101, 2021.
[47] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and

M. Vechev, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 3–18.

[48] H. J. Kang, T. F. Bissyandé, and D. Lo, “Assessing the generalizability
of code2vec token embeddings,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 1–12.

[49] P. Bielik and M. Vechev, “Adversarial robustness for code,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 896–907.

[50] Z. Liu, Z. Wang, P. P. Liang, R. R. Salakhutdinov, L.-P. Morency,
and M. Ueda, “Deep gamblers: Learning to abstain with portfolio
theory,” Advances in Neural Information Processing Systems, vol. 32,
pp. 10 623–10 633, 2019.

[51] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java
classes with code2vec: Improvements from variable obfuscation,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 243–253.

[52] G. Ramakrishnan, J. Henkel, Z. Wang, A. Albarghouthi, S. Jha, and
T. Reps, “Semantic robustness of models of source code,” arXiv preprint
arXiv:2002.03043, 2020.

[53] M. R. I. Rabin, N. D. Bui, K. Wang, Y. Yu, L. Jiang, and M. A.
Alipour, “On the generalizability of neural program models with re-
spect to semantic-preserving program transformations,” Information and
Software Technology, vol. 135, p. 106552, 2021.

[54] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.


	Introduction
	Background
	Neural Code Models
	Fuzz Testing

	The Approach of CoCoFuzzing
	Overview of CoCoFuzzing
	Neuron Coverage Analysis
	Mutation Generation

	Experiment Setup
	Subject Models and Datasets
	Studied Models
	Dataset

	Evaluation Metrics
	Baseline
	Baseline for Mutation Operators
	Baseline for NC-Guided Test Generation

	Research Questions

	Result Analysis
	RQ1: Robustness of Neural Code Models
	RQ2: Comparison Across Different Mutation Operators
	RQ3: Effectiveness of CoCoFuzzing
	RQ4: Usefulness of CoCoFuzzing on Improving Models

	Discussion
	Impact of the Applied Locations of Mutation Operators
	Distribution of the Selected Mutation Operators
	Cost effectiveness
	Apply to New Model
	Limitations of CoCoFuzzing
	Threats to Validity

	Related Work
	Testing Deep Learning Models
	Adversarial Machine Learning.
	Robustness of Neural Code Models

	Conclusion
	ACKNOWLEDGMENTS
	References

