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1 INTRODUCTION

Recently, with the advances in deep learning techniques [15, 49], many neural code generation models have been
proposed and extensively studied [16, 20, 38, 47, 56]. Most of these models treat code generation as a machine translation
task and are built in an end-to-end manner, i.e., a corpus of source code and comment pairs are used to train the models,
and given a natural language (NL) described programming task, the models will generate a source code snippet.

Although many neural code generation models have exerted high accuracy in generating source code from NL
described programming tasks, most of which are mainly evaluated on general programming tasks, little is known about
their effectiveness and usefulness for domain-specific tasks, In this study, we investigate Machine Learning (ML), which
has significantly different paradigms from traditional general programming tasks (relatively more deterministic and less
statistically orientated) [58]. In addition, ML programming tasks often require many complex algorithms, mathematical
operations, and data process operations [37, 50].

To investigate the effectiveness of existing neural code generation models on ML programming tasks, We use six
state-of-the-art neural code generation models as the baselines (details are in Section 3.2) and we select four widely used
ML libraries, i.e., Scikit-Learn1, Keras2, TensorFlow3, and PyTorch4 for ML programming task collection. In addition,
inspired by existing studies [50], we categorize the ML programming tasks according to the utilized APIs into three
different categories based on their purposes in the ML pipeline, i.e., data process, model building, and evaluation (details
are in Section 2.2).

For our analysis, we need a new dataset of ML programming tasks inclusively as most of the existing widely used
code generation benchmark datasets, e.g., StaQC [53], CoNaLa [54], Django [39], and ReCa [31] mainly contain general-
purpose programming tasks. Specifically, we create the new ML task-related dataset by reusing data from JuICe [1],
i.e., a refined human-curated code generation dataset including 1.5 million examples mined from over 659K publicly
available Jupyter notebooks from GitHub. We use the API information from the four studied ML libraries to extract
ML-related programming tasks. Note that, we also have collected a non-ML task-related dataset from JuICe [1] as
a comparison dataset. We then evaluate the six selected state-of-the-art neural code generation models on the two
datasets (ML vs non-ML) regarding the accuracy, syntactic and semantic correctness, and usefulness of the generated
code. Our empirical study reveals some good, bad, and missing aspects of state-of-the-art neural code generation
models on ML tasks, with a few major ones listed below. (Good) Neural code generation models perform significantly
better on ML tasks than on non-ML tasks. (Good) The generated code can help developers write more correct code by
providing developers with clues for using correct APIs. (Bad) Most of the generated code is semantically incorrect.
(Bad) Code generation models cannot significantly improve developers’ completion time. (Missing) The observation
from our user study reveals the missing aspects of code generation for ML tasks, e.g., decomposing code generation for
divide-and-conquer into two tasks: API sequence identification and API usage generation.

This paper makes the following contributions:

• The first empirical study for evaluating six state-of-the-art neural code generation models on ML programming
tasks regarding the accuracy, syntactic and semantic correctness, and usefulness of the generated code.

• The missing viewpoints between existing automatic neural code generation models and practical ML program-
ming tasks, as well as future research directions for improving code generation.

1https://scikit-learn.org/stable/
2https://keras.io/
3https://www.tensorflow.org/
4https://pytorch.org/
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• A new dataset that is composed of 83K pairs of NL descriptions and the corresponding source code that are
implemented by four ML libraries, which facilitate the follow-up studies in this direction.

• The released source code of our tool and the dataset of our experiments to help other researchers replicate and
extend our study5.

The rest of this paper is organized as follows. Section 2 presents the background of this study. Section 3 describes
the methodology and the study design of our work. Section 4 presents the evaluation results. Section 5 discusses open
questions and the threats to the validity of this work. Section 6 presents the related studies. Section 7 concludes this
paper.

2 BACKGROUND

This section introduces the background of this study, i.e., the neural source code generation model and ML programming
tasks.

2.1 Neural Code Generation

Neural code generation techniques exploit deep neural generation models to learn the distribution or the density
estimation of source code with different representations such as the sequence of tokens or tree structures such as
abstract syntax tree (AST) [14, 33]. Due to the similarity of the data representation, the source code generation model
inherit many of the techniques from NL generation models. In NL generation, many tasks can be categorized such as
content determination, text structuring sentence aggregation, lexicalization, referring expression generation, linguistic
realization, and so on [18]. There are also different tasks in the source code generation such as code completion [30],
code search [19], program synthesis via rules or examples [13], domain-specific [17] or general-purpose code generation
[8], code to code translation [3], API recommendation [11], and so on. The generation model that this paper focuses on
is the multi(bi) modal modeling of source code and NL, which usually uses an end-to-end encoder-decoder architecture
of the model that is widely used in neural machine translations. The encoder takes in the sequence of an NL description
of a code and maps them in a latent space and then the decoder decodes them into a source code. The encoder-decoder
layers learn to map similar data points of each modal to be closely mapped in the latent space so that it generates
similar source codes.

To evaluate code generation models, many different benchmark datasets have been proposed. Django [39] dataset was
first mined to generate pseudo-code from source code for the Django framework (Python-to-English). The data contains
18K pairs of python statements and their corresponding English pseudo-code. CoNaLa [54] is a dataset mined from Stack
Overflow posts which consists of 3K pairs of human-annotated python code snippets and its NL intent. StaQC [53] is
another source code and NL description pair that are mined from Stack Overflow. It consists of 1.4K Python and 1.2K SQL
queries which were mined using a neural network to incorporate textual similarities. ReCa [31] is a large-scale dataset
of NL requirements and its programming language. ReCa consists of data for multiple general languages, i.e., C, C++,
Java, and Python. It also has multiple programs for the same requirement. JuIce [1] is a new large-scale open-domain
dataset composed of 1.5M pairs of Python code examples and the corresponding NL descriptions collected from 659K
publicly available Jupyter notebooks on GitHub. Table 1 shows more detailed statistics of these existing datasets.

5https://zenodo.org/record/7036255
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Table 1. Statistics of existing benchmark datasets. PL denotes the program languages, Loc denotes the average lines of code, and
Length denotes the average length of NL tasks in token.

Dataset Domain PL #Pairs Loc Length
Django general Python 18.8K 1 14
CoNaLa general Python 2.9K 1.1 14
StaQC general Python/SQL 2.6k 10.1 10
ReCa general C/Java/Python 101K 37.2 185
JuIce general Python 1.5M 10.0 39.7

2.2 Machine Learning Tasks

Machine learning-based tasks often contain different steps, which are also known as the pipeline of machine learning [4].
Specifically, constructing an ML pipeline contains the following three steps. The first step is mainly about the

processing of the dataset that is needed to train a model. It involves pre-processing tasks such as data loading, noise
filtering, format converting, data imputation, scaling or normalization, and feature engineering (e.g., feature selection,
elimination, word embedding) [26]. After processing the data, one needs to further specify the learning algorithm to
infer relations that capture the hidden patterns in the dataset. In the specified algorithm, there is information regarding
the parameters that are learned and fit the input data, the loss function to be minimized, the optimizer and the learning
rate to lead the model in better learning, and the architecture of the model that specifies the construction of the
network’s layers and nodes [27]. And finally, one needs to evaluate the trained model. This step includes choosing the
evaluation metrics to assess the performance of trained models, e.g., accuracy, precision, and recall [22]. Evaluations
are applied to an unseen dataset that is separate from the training data to assess the generalizability of the trained
model. In this work, to understand the effectiveness of existing neural code generation models on different types of ML
programming tasks, we categorize ML programming tasks into different steps in the ML pipeline [50].

• Data processing: tasks that are related to data processing, e.g., data loading, format transformation, normaliza-
tion, feature engineering, and data transformation.

• Model building: tasks that are related to building the machine/deep learning models, which can be conventional
ML models such as classification models, regression models, clustering models, or neural network models with
specific neural architecture regarding the type of layers and activation function used.

• Evaluation: tasks that are related to evaluating the performance of the trained machine/deep learning models,
e.g., getting the values of different evaluation metrics such as accuracy, f-measure, AUC, or getting the probability
of instances from the model.

Note that while we focus on three types of ML programming tasks in the ML pipeline (i.e., data process, model building,
and evaluation), there are other tasks in the ML pipeline, e.g., model deployment and performance monitoring [4]. As
finishing these tasks mainly requires auxiliary functions or scripts rather than the APIs from the ML libraries, thus we
exclude these tasks in this study.

3 STUDY DESIGN

In this section, we discuss the design of our empirical study on evaluating the performance of code generation models
on ML programming tasks.
Manuscript submitted to ACM
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Table 2. The studied ML libraries in this work.

Library Description #API
Scikit-learn A library for ML algorithms. 1.2k
Keras An interface for artificial neural networks. 1.4k
TensorFlow A library for DL developed by Google. 8.0k
PyTorch A library for ML and DL tasks. 0.4k

Table 3. Statistics of the experimental datasets. #API is the average number of APIs involved.

ML task #Training #Testing Loc Length #API
data 30.9K 5.5K 3.93 12.67 1.48
model 26.3K 5.5K 4.18 12.44 1.28
evaluation 13K 2.6K 3.28 11.59 1.13
non-ml 34K 5.5K 3.23 13.26 1.63

Fig. 1. Distribution of experiment data in each ML library.

3.1 Data Collection

In this work, we prepare a new dataset that contains the three types of ML programming tasks (i.e., data process, model

building, and evaluation) as most of the existing widely used code generation benchmark datasets, e.g., StaQC [53],
CoNaLa [54], Django [39], and ReCa [31] mainly contains general-purpose programming tasks. Specifically, we create
our dataset from JuICe [1], i.e., a refined human-curated code generation dataset including 1.5 million Python code
examples mined from over 659K publicly available Jupyter notebooks from GitHub.

Manuscript submitted to ACM
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ML API selection: The original JuICe dataset [1] contains open-domain programming tasks. For our study, we focus
on ML programming tasks that are developed by four widely used ML libraries, i.e., Scikit-learn, Keras, TensorFlow, and
PyTorch. The list of studied libraries is organized in Table 2. Specifically, three of the authors independently use the
following two steps to manually identify all the APIs in each of the four ML libraries that are related to the three types
of ML programming tasks (i.e., data process, model building, and evaluation) based on the documentation of these APIs:
1). We read the documentation of the API to understand its functionality. A category will be assigned to the API based
on its major intent. 2). If a decision cannot made based on the documentation of the API as the description might not
contain enough information, we further check the source code following the instructions in Step 1 to label the API.
The value of Fleiss’ kappa during this process is 0.90, which shows an almost perfect agreement. In total, 128, 244, and
51 APIs are identified for the three types of ML programming tasks, i.e., data process, model building, and evaluation

respectively.
ML-task data construction: After we identify the APIs in an ML library for each of the three ML programming tasks,
we further use the corresponding APIs as the filter to collect ML programming tasks from the JuICe dataset [1], e.g., we
scan the source code of each programming task in JuICe, a programming task will be labeled as data process task if it
only contains data process related APIs from each of the four ML libraries. We discard any instances that use multiple
ML libraries to distinguish programming tasks that use different libraries.
Data cleaning: We also remove duplicated data instances, meaningless source code elements, i.e., ‘>>>’, single and
multi-line comments, lines that start with ‘!’ and ‘%’ for commands, code snippets with just imports, and none ASCII
code. We also apply additional filtering to further denoise the dataset and make the problem simpler by discarding
instances with NL description lengths below 20 and over 150, and source code with more than 10 LOC as suggested by
existing work [25]. To assess the quality of the collected data, the first three authors performed a manual analysis on
100 random samples from each splits, i.e. data processing, evaluation, andmodel building. The authors first checked if the
source code of the instance is relevant to the ML programming task. Then we check if the NL description is relevant to
the source code. We found that 64%-81% of the samples have both source code and NL relevant to the ML programming
task and its description. We also carefully split the instances on a project level, i.e. instances from the same project go
to the same split, to avoid any information leakage.

The new dataset of ML programming tasks is organized in Table 3. We also show the distribution of the different ML
programming tasks in each ML library in Figure 1.

3.2 Studied Neural Code Generation Models

In this work, we select six state-of-the-art neural code generation models proposed in the recent three years as our
experiment subjects. These models are selected mainly based on the following inclusion criteria:

• The model should not stick to a specific programming language, which makes it practical and generalizable for it
to work on our dataset.

• The model’s implementation should be publicly available and replicable, which can remove potential implemen-
tation bias and facilitates the evaluation process.

• The model should be proposed in recent years and represents the state-of-the-art, i.e., has a high performance in
generation in BLEU score.

As a result, six neural code generation models are selected from 29 candidate papers published on ACL, ICLR, AAAI,
TSE, EMNLP, etc. Details of these models are as follows:
Manuscript submitted to ACM
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tranX [56]: proposed a transition-based neural semantic parser that maps NL utterances into formal meaning repre-
sentations such as executable programs. Specifically, it develops a transition system that decomposes the generation
procedure of an AST into a sequence of tree-constructing actions.
External-Knowledge-Codegen (EK Codegen) [52]: proposed a model-agnostic approach based on data augmenta-
tion, retrieval, and data re-sampling, to incorporate external knowledge into code generation models. Specifically, the
mined NL-code pairs from the online programming QA forum Stack Overflow and API documentation for pre-training.
The basic architecture of this model uses tranX as its base.
CG-RL [24]: proposed an extended Seq2Tree model equipped with a context-based branch selector, which is capable of
dynamically determining optimal branch expansion orders for multi-branch nodes. Specifically, it adopts reinforcement
learning to train the whole model with an elaborate reward that measures the loss difference between different branch
expansion orders.
Codegen-TAE [38]: exploited the use of a large amount of monolingual programming language corpus to fit a generic
transformer-based Seq2Seq model with minimal code-generation-specific inductive bias.
TreeCodeGen [14]: proposed a Transformer-based structure-aware tree-to-tree model. They adopted a Tree Trans-
former, an attention-based tree-to-tree model with a hierarchical accumulation for code generation.
PyCodeGPT [57]: proposed a large pre-trained language model based on the GPT-Neo [6] with 110M parameters,
which is comparable to the powerful GPT-3 model [7]. They mined 1.2M Python repositories in GitHub and filtered/pre-
processed high-quality Python code resulting in 96GB of training data.

In our experiment, to remove potential bias, we use the implementation of their publicly available code with the
settings that have the best performance reported in their papers or used in their replication packages.

3.3 ResearchQuestions

We answer the following research questions to evaluate the performance of the studied neural code generation models
on ML programming tasks.

• RQ1 (Accuracy): How accurate are the code generation models on different ML programming tasks?
• RQ2 (Syntactic Correctness): How often does the generated code for ML programming tasks pass syntactic
checking?

• RQ3 (Semantic Correctness): How often is the generated code for ML programming tasks pass semantic
checking?

• RQ4 (Usefulness): Is the generated code for ML programming tasks useful for developers?

In RQ1, we set out to investigate the performance of state-of-the-art neural code generation models on the three
different types of ML programming tasks. In RQ2 and RQ3, we assess the soundness of the generated code by checking
its syntactic and semantic correctness, respectively. In RQ4, we explore the usefulness of the generated code to
developers in practice via a user case study.

3.4 Experiment Setup

The selected six neural code generation models are required to apply specific data pre-processing steps, i.e., building
AST from the source code used in tranX [56]. Thus to rebuild these models, we first apply the data pre-processing
scripts provided in their replication packages. For training each model, we select 80% of our training data to train the
model and the left 20% are used as validation data.

Manuscript submitted to ACM
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To maximize the potential of the evaluated approaches, we perform hyper-parameter tuning for each of the evaluated
approaches. For tranX, we use 0.3 for the dropout, a hidden size of 256 and an embedding size of 128, a learning rate
of 0.001, batch size of 64. We train the model for a maximum of 20 epochs and use the beam size of 15 when testing.
For EK-codegen, we use the same value of hyper-parameter used in tranX. For CG-RL, we used the same dropout,
network size, and learning rate for the training. However, we use 10 epochs to pre-train the branch selector following
the original paper of CG-RL [24]. For Code-gen-TAE, we use 1e-05 for encoder learning rate and 7.5e-05 for decoder
learning rate, the hidden size of the encoder is 768 with 12 layers, the decoder size is 256 with 4 layers, and the batch
size used is 16. We also trained them for 20 epochs like the rest of the model and used a beam number of 10 when
testing. For TreeCodeGen, 0.1 is used for the dropout, and the hidden and embedding size used is the same as tranX.
The learning rate used is 1e-4. The max epoch used for training is 20 and the beam size used for testing is 30. For
PyCodeGPT, the model is trained with 32K vocabularies, 768 for hidden size, 12 for the number of heads and layers, a
window size of 256, and an initializer range of 0.02, which is the same settings reported from GPT-Neo and PyCodeGPT.
The model was trained for 100K steps as suggested in the original paper.

All the aforementioned settings used for the training are from the papers of the six models and any details missing
from the paper are set as the default settings provided by their replication packages. We used the GPUs in the Google
Colab Pro 6, which dedicates either NVIDIA Tesla P100 or T4, for training models. For training PyCodeGPT, we used
NVIDIA A100 40GB from google computing platform7. The time cost of model training of these models ranges from 3
hours (i.e., tranX) to 16 hours (i.e., PyCodeGPT).

3.5 Evaluation Metrics

To assess the performance of the models in generating high-quality source code, we use the following three evaluation
measures, i.e., BLEU [40], METEOR [5], and ROUGE [28].

BLEU score [40] is an evaluation metric commonly used in assessing the generation models in natural language
processing. It measures the similarity of the model-generated text to the ground truth text by computing the overlapping
n-grams of the two texts. A value of 0 indicates that the generated source code has no overlap of n-grams with the
ground truth source code, while the value of 1 indicates that it is a perfect overlap with the ground truth source code.
There are different ways to calculate the BLEU score. We can set a different number of n-grams we want to assess in
overlapping, i.e. unigram, bigram, trigram, and 4-gram. This is also referred as to BLEU-1, BLEU-2, BLEU-3, and BLEU-4
respectively. METEOR metric [5] is also commonly used to assess machine language generation models. The metric
is based on the harmonic mean of unigram precision and recall but with a higher weight on recall. ROUGE [28] is a
metric used for evaluating natural language generation models to compare the generated sequence to the reference.
There are also multiple sets of assessing different ROUGE values. In this study, we report the ROUGE-L value of each
model which uses the Longest Common Sub-sequence (LCS) in assessing the similarity of the two texts.

4 RESULTS AND ANALYSIS

This section presents the experimental results and answers the research questions discussed in Section 3.3.

6https://colab.research.google.com/
7https://cloud.google.com/
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Table 4. Performance of the studied six neural code generation models on different ML tasks and non-ML tasks. The best performance
of a model on different tasks is shown in bold, while the overall best model on each ML task is shown with asterisk (*).

Models Tasks BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

tranX

data process
model building
evaluation

0.3606
0.3646
0.3621

0.2670*
0.2717
0.2677

0.2237*
0.2277
0.2233

0.1905
0.1940
0.1886

0.3380
0.3167
0.3532

0.3600*
0.3598
0.3712

non-ml 0.2855 0.1714 0.1236 0.0929 0.1636 0.2282

EK Codegen

data process
model building
evaluation

0.3391
0.3549
0.3593

0.2541
0.2690
0.2698*

0.2154
0.2289
0.2282

0.1853
0.1978
0.1953

0.3441
0.3241
0.3616

0.3592
0.3633
0.3759*

non-ml 0.2969* 0.1838* 0.1348* 0.1028* 0.1705 0.2365*

CG-RL

data process
model building
evaluation

0.2503
0.1923
0.2404

0.1943
0.1471
0.1840

0.1678
0.1257
0.1575

0.1471
0.1089
0.1366

0.3397
0.3160
0.3620

0.3333
0.3057
0.3480

non-ml 0.1213 0.0776 0.0578 0.0450 0.1723 0.1916

TreeCodeGen

data process
model building
evaluation

0.3465
0.3483
0.3644*

0.2540
0.2559
0.2681

0.2125
0.2134
0.2235

0.1810
0.1812
0.1883

0.3530*
0.3122
0.3530

0.3476
0.3377
0.3619

non-ml 0.1997 0.1255 0.0932 0.0723 0.1929* 0.1979

Codegen-TAE

data process
model building
evaluation

0.3775*
0.3279
0.2919

0.2444
0.1993
0.1743

0.1857
0.1438
0.1260

0.1441
0.1052
0.0914

0.3145
0.2339
0.2357

0.3233
0.2623
0.2358

non-ml 0.2620 0.1451 0.0985 0.0703 0.1217 0.1944

PyCodeGPT

data process
model building
evaluation

0.3347
0.4036*
0.3397

0.2562
0.3286*
0.2693

0.2219
0.2925*
0.2361*

0.1958*
0.2634*
0.2094*

0.3333
0.3701*
0.3667*

0.3462
0.3893*
0.3654

non-ml 0.0789 0.0352 0.0217 0.0141 0.0619 0.0938

4.1 RQ1: Accuracy

Approach: To answer this RQ, we follow our experiment setups (described in Section 3.4) to re-train each of the
six neural code generation models with data from different ML programming tasks, i.e., data process, model building,
and evaluation datasets. We also evaluate the performance of the six neural code generation models on the non-ML
programming task dataset for comparison. For creating the non-ML programming task dataset, we randomly select
samples from JuIce [1] with ML programming tasks removed. To make a fair comparison, we set the size of the non-ML
task dataset to our biggest ML task dataset, i.e. data process dataset. To remove potential bias, we repeat the data creation
for non-ML tasks 10 times and re-train the models accordingly. We use the average performance of each studied neural
code generation model for comparison. To assess the model’s capability of generating source code on the different ML
libraries, we label each testing instance with the studied ML library using the ML API name.

Result: The performance of the studied six neural code generation models on different types of ML tasks and non-ML
tasks are organized in Table 4. Overall, PyCodeGPT performs best, especially on ML-related tasks. For example,
PyCodeGPT achieves the largest values regarding all the metrics on model building. However, on non-ML tasks, EK
Codegen performs best with 5/6 of the metrics. A possible reason for these two models to have better performance is
that they exploit external data for pre-training. Specifically, PyCodeGPT uses corpus mined from GitHub, and EK

Manuscript submitted to ACM
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Codegen uses corpus mined from Python Standard Library 8 and StackOverflow9. Due to the abundant number of ML
projects on GitHub, PyCodeGPT benefits in generating ML-related code. Similarly, non-ML tasks are composed of
short standalone code snippets, which are very similar to the code snippets answered in StackOverflow. This could be
the reason why EK Codegen has benefited in generating non-ML programming tasks. Regarding the performance
on a specific type of ML task, we can see that the best performance tasks for each neural code generation model vary.
For example, tranX performed best on model building tasks over other tasks, while CG-RL and Codegen-TAE have
better performance for data process tasks than the performance on other tasks regarding BLEU scores. EK Codegen
and TreeCodeGen perform better on evaluation, while PyCodeGPT performs better on model building related ML
tasks than the other tasks.

In addition, we can also see that all the six neural code generation models perform significantly better on ML tasks
compared to non-ML tasks regarding all the different metrics, i.e., BLEU-1/2/3/4, ROUGE-L, and METEOR. Possible
reasons for this can be as follows. First, the non-ML tasks are much more diverse than ML tasks as we limited the ML
tasks to only four libraries, i.e., TensorFlow, Keras, Pytorch, and Scikit-learn. The variance of programs from ML tasks
is less than the non-ML dataset. Second, the natural language descriptions of the non-ML-related tasks were also more
varied and context-free since the domain does not have a constraint compared to the descriptions of ML tasks. This
finding is interesting, as previous studies state that traditional programs are more deterministic and less statistically
orientated [58]. However, from the generation point of view, it is the opposite. Even though the ML libraries are more
dynamic and statistically orientated, programs built upon them are often not.

Good: Neural code generation models generate significantly better performance on ML tasks than non-ML tasks.
Bad: Neural code generation models perform not stable on different ML programming tasks.

4.2 RQ2: Syntactic Checking

Approach: To answer this RQ, we conduct syntactic checking on the generated programs for each instance in the
testing dataset. Following existing work [31], we conduct a static syntactic checking on the generated programs with
the state-of-the-practice tool Pylint10, a Python static code analysis tool that looks for programming errors. Note that,
codegen-TAE generates all code statements in one line for a given programming task, while Python programs have
strict style requirements, e.g., Python uses indentation to indicate a block of code. To avoid any style errors, we first
parse the generated source code and output it with proper indentation. During this step, we do not change any content
for avoiding potential bias. We then use Pylint to check the syntactic correctness of each instance in the testing dataset,
we consider an instance syntactically correct if it passes the checking.

Result: Table 5 shows the results of the syntactic checking for programs generated by different neural code generation
models in different ML tasks and non-ML tasks. We can observe that in general, all the state-of-the-art models have a
high accuracy in generating syntactically correct programs. However, we observed a significant decline in generating
syntactically correct code using PyCodeGPT compared to other models. One of the possible reasons for this is that
these five models are AST-based approaches, given a programming task, they first generate the corresponding AST
and then transfer them into a code snippet. On the other hand, PyCodeGPT uses a token-based seq2seq Transformer,
giving the model the freedom to generate any token sequences, which can be easily syntactic incorrect. In addition, we

8https://docs.python.org/3/library/index.html
9https://stackoverflow.com/
10https://pylint.pycqa.org/
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Table 5. Syntactical correctness (in percentage) of the generated code by different neural code generation models on different types
of machine learning tasks.

Methods data model evaluation non-ml
tranX 98.40 98.68 99.36 97.06
EK codegen 96.39 97.92 97.68 95.16
CG-RL 97.37 98.07 97.97 94.70
TreeCodeGen 92.24 95.46 97.00 82.85
Codege-TAE 92.35 93.99 90.70 93.22
PyCodeGPT 71.36 70.53 72.88 67.16

Table 6. Semantic correctness (in percentage) of the generated code by different neural code generation models on different types of
machine learning tasks.

Methods data model evaluation non-ml
tranX 6% 14% 34% 0%
EK codegn 16% 12% 30% 10%
PyCodeGPT 34% 14% 30% 6%

Table 7. Correctness of identified APIs on the generated code by different neural code generation models on different types of
machine learning tasks.

Methods Metrics data model evaluation non-ml

tranX Precision 0.2129 0.2740 0.4348 0.1214
Recall 0.2215 0.2729 0.5105 0.1364

EK codegen Precision 0.3458 0.2104 0.4234 0.2278
Recall 0.3400 0.2693 0.4452 0.2078

PyCodeGPT Precision 0.6133 0.4085 0.5500 0.0867
Recall 0.5811 0.3943 0.4649 0.0783

can also see that all the six neural code generation models perform better on most of the ML tasks compared to non-ML
tasks, which is consistent with our findings in RQ1.

Good: The neural code generation models generate highly accurate syntactically correct programs for ML tasks.
Good: Our results confirm the advantage of AST-based code generation used in current neural code generation
models compared to the token-based model.

4.3 RQ3: Semantic Checking

Approach: To further analyze the soundness of the generated programs by these state-of-the-art neural code generation
models, we also check the semantics of the generated programs manually as most of the generated programs require
specific inputs to be executed, which cannot be generated automatically. For this experiment, we examine the semantic
correctness of the generated programs from the best three models, i.e., tranX, EK codegen, and PyCodeGPT on the
TensorFlow library. Specifically, we first randomly select 50 examples from each type of ML programming task, thus in
total, we have 450 programming tasks to be checked, i.e., 50 samples × 3 types of ML programming tasks × 3 models. We
consider a generated program of a given programming task is semantically equivalent to the ground-truth program if
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the generated program shares the same logic with the ground-truth program and can solve the given programming task.
For checking the semantic correctness of each sample, all the authors work together and make the decision together.

To further illustrate the effectiveness of the generated programs for ML programming tasks, we also evaluate the
correctness of a generated program regarding the APIs called in the program. Specifically, given an ML programming
task, we first parse its corresponding ground truth source code and extract the APIs from these four ML libraries that
are used to solve the task. Then we follow the same process to extract APIs in the generated program for this task by a
neural code generation model. Note that, for the non-ML tasks, we also follow the same process to collect APIs used in
the ground-truth and generated programs. For measuring the performance of neural code models regarding identifying
the correct APIs, we use Precision and Recall, where Precision measures the percentage of correct identified APIs
among all the used APIs in the generated programs and Recall is the percentage of correct identified APIs among the
ground-truth APIs.

Listing 1. An example of generated code by EK codegen for a given ML programming task

# NL description

# using a feed_dict, same graph,but without

# hardcoding inputs when building session

# ground truth

a = tf.placeholder(dtype=tf.int32, shape=(None,))

b = tf.placeholder(dtype=tf.int32, shape=(None,))

c = tf.add(a, b)

with tf.Session() as sess:

result = sess.run(c, feed_dict={

a: [3, 4, 5], b: [-1, 2, 3]})

print(result)

# generated

x = tf.placeholder(tf.float32)

with tf.Session() as sess:

print(sess.run(x))

Result: Table 6 shows the semantic correctness of the generated programs of the three neural code generation
models. We can observe that only a small number of samples of the generated source code are semantically correct
with an average of 17% out of the 450 samples. PyCodeGPT outperforms EK Codegen followed by tranX with 13%,
17%, and 21% of average percentage, respectively, which is consistent with the results from RQ1. Similar to the trends
revealed in RQ1 and RQ2, the examined models also have better performance on ML programming tasks than non-ML
programming tasks.

Despite the low values in semantic correctness, we observe that these neural code generation models have better
performance in suggesting the correct APIs for the given programming tasks compared to directly generating source
code. Table 7 shows the performance of these models in identifying the correct APIs. As we can see, the precision and
recall values for identifying correct APIs are higher across all different ML programming tasks, which suggests they
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Fig. 2. Precision of identifying correct APIs of tranX and EK Codegen PyCodeGPT, on data, model, eval, nonml, respectively.
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Fig. 3. Recall of identifying correct APIs of tranX and EK codegen PyCodeGPT, on data, model, eval, nonml, respectively.

can help identify an average of 39% of correct APIs for solving ML tasks. We further show the box plots of precision
and recall values regarding identifying correct APIs of the three models in Figure 2 and Figure 3 respectively.

We further show an example ML task that cannot be solved by existing neural code generation models while some of
the required APIs can be identified in Listing 1. The task is labeled as amodel building task finished with the TensorFlow
library, which is about building and running a session by loading a dictionary object. The ground truth code instantiates
two placeholders with a tf.int32 type and adds them before running a session. When they run the session, they feed
a dictionary object before running them. While the generated source code failed to generate the dictionary part, it
successfully generates code that instantiates a tf.int32 typed placeholder and then builds and runs a session successfully.
The precision and recall regarding identifying the correct APIs are 100% and 57% respectively.

Bad: All the examined neural code generation models are weak in generating semantically correct programs. Good:
The generated programs have the potential to be used for identifying correct APIs for ML programming tasks.

4.4 RQ4: Usefulness

Approach: To explore the practical value of neural code generation models, we further conduct a user case study to
investigate whether programs generated by these neural code models can help developers finish given programming
tasks efficiently and accurately. In this experiment, we examine the programs generated by the best two models, i.e.,
PyCodeGPT and EK codegen on the TensorFlow library. We randomly selected 20 programming tasks from the test
dataset of TensorFlow. We invited 12 students (i.e., six Ph.D. students and six MS students) who are familiar with the
TensorFlow framework to complete the 20 programming tasks. Their experience in developing ML tasks based on
TensorFlow varied from two to four years, with an average of three years. We then divided the participants into two
groups (Group1 and Group2) based on their experience. The 20 tasks were also randomly divided into two groups (Task1
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Fig. 4. Performance of participants with (denoted as ‘With’ in the figure) and without (denoted as ‘Without’ in the figure) the help
of code generation models.

and Task2). The experiment was conducted in two steps. In the first step, Group1 and Group2 were asked to work
on Task1 while Group1 will be given the generated program from both PyCodeGPT and EK codegen, in the second
step, Group1 and Group2 were asked to work on Task2 while Group2 will be given the generated program from both
PyCodeGPT and EK codegen. Each participant was asked to record his/her screen during the experiment for getting
the time he/she spent on solving each programming task. Following existing studies [31, 51], we use correctness and
completion time to measure the performance of the participants in solving ML tasks. Specifically, correctness evaluates
whether a participant can write the correct code for a given task. Note that, as developers might solve the same task
with different logic, thus we measure the proportion of correct APIs submitted by a participant among all APIs in the
ground truth answer of the task. Completion time evaluates how quickly a participant can solve a given task. For each
task, we recorded the correctness and completion time of each participant.

Result: Figure 4 shows the distribution of correctness and completion time of participants to finish the given 20 ML
tasks. Overall, with the generated code from the two code generation models, participants completed the programming
tasks more accurately and took slightly less time than participants without any clues. On average, the correctness and
completion time of participants with and without the generated code are 0.62 and 5.2, versus 0.51 and 5.6 respectively.
We further used Wilcoxon signed-rank test for verifying the statistical significance of the differences. The p-value
for correctness is small than 0.05 while the p-value for completion time is larger than 0.05. The result suggests that
the generated code cannot significantly reduce the time cost of ML programming tasks, while it can help developers
write more correct code. One possible reason for this is that most of the generated programs are semantic incorrect,
modifying the generated programs is not easy and requires a great amount of time. Our discussion with the participants
confirmed that the examined code generation models can help find a part of the correct APIs for ML tasks, which
provides developers with useful clues, thus further improving developers’ correctness.

Bad: Code generation models cannot significantly improve developers’ completion time as most of the generated
programs are semantic incorrect, which requires a non-trivial time for modifications. Good: The generated code
can help developers write more correct code by providing developers with clues for using correct APIs.
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5 DISCUSSION

5.1 The Missing of Code Generation on ML Tasks

The above results and analysis have revealed several good and bad aspects of state-of-the-art neural code generation
models on ML programming tasks. This section further summarizes the missing aspect that can serve as the practical
guidelines for improving code generation tasks for ML tasks.

Decompose code generation for divide-and-conquer. Even powered with state-of-the-art deep neural techniques,
code generation for ML programming tasks is still a challenge. Directly generating code from a given NL-described
programming task often produces incorrect and incompetent programs that cannot be used by developers. Nevertheless,
the findings of our user case study reveal that incorrectly generated code could still be useful for developers as far as it
contains essential APIs to solve the tasks. Meanwhile, identifying the correct APIs is easier than generating the correct
programs directly. Taken in this sense, future code generation techniques for ML tasks can be decomposed into two
sequential tasks, i.e., API sequence identification and API usage generation. Crowd-sourced knowledge from Stack
Overflow can be used to help generate the context of the identified API sequences, which has been proved to be useful
in mining API usage scenarios [23, 48].

Human-machine collaborated code generation. The examined state-of-the-art neural code generation models treat
code generation as a machine translation task and generate statements/blocks from a given NL-described programming
task sequentially, during which any incorrect statement could mislead the generation of the sequential code snippets.
Meanwhile, during our case study, similar to the findings of Murali et al. [36], we also find that, despite lacking the
whole knowledge for certain programming tasks, developers usually know whether it is correct for some generated
statements, or whether a specific API should be utilized based on their knowledge of an ML library. If human knowledge
could be integrated into the process of automatic code generation, e.g., in the form of simple feedback from end-users
to assess the correctness of the intermediate uncertain statements, the code generation could be significantly improved.

Such practice has another advantage, i.e. personalize the generated code that fit the knowledge of different end-users,
by integrating developers’ knowledge into the code generation process.

Focus on domain-specific tasks. Compared to the general non-ML programming tasks, all of the six neural code
generation models exert better performance regarding syntactic correctness, semantic correctness, and identifying
essential APIs, on domain-specific tasks, i.e., ML programming tasks. We assume this might be because the domain-
specific task only involves a smaller set of APIs (indicating little knowledge needed to be learned), thus training an
effective model is relatively easier compared to the model training on a dataset with diversified tasks. We also notice
that previous practices on code generation were usually conducted on general tasks [1, 39, 53, 54]. Thus, future code
generation should focus on training or fine-tuning models with data from specific domains to improve the performance
of generating programs for domain-specific tasks, which have much more potential than general programming tasks.
We also encourage the need for the design of domain-specific models by incorporating the characteristics of the domain,
which might further improve the performance of specific tasks.

5.2 Threats to Validity

Internal Validity. The main threat to the internal validity of our study is the limited number of models that are
compared. Due to this limitation, we can not generalize our findings from this paper to all the source code generation
models. However, we have used the most recently published and the state-of-the-art performing ones to conduct our
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experiments, we also described a detailed methodology and the setup of the study and the data used, which will allow
future researchers to replicate our study and further explore other source code generation models.
External Validity. The main threat to external validity is the labeling of ground-truth data explored in the study.
Although we have put much effort to maintain high-quality data by using real-world programs contributed by developers
on GitHub, it could not be enough to validate the implementation of the source code. Also, programming or implementing
a programming task can lead to many different forms and logic of source code. Thus, these programs in our dataset
might not represent all the ways to implement a given programming task.
Construct Validity. The main threat to the construct validity can be the evaluation metrics we used. BLEU, ROUGE-
L, and METEOR scores can assess program generation by calculating how the generated programs of neural code
generation models are similar to the ground-truth programs of given tasks in our dataset. However as mentioned from
the external validity, other implementations can be a reasonable answer rather than using similarity to the ground truth.
In our future study, we plan to examine a different set of evaluation metrics to assess the generation of the program.

6 RELATEDWORK

6.1 Automatic Code Generation

Besides the six neural code generation models used in this paper, there are many other methods for automatic code
generation from natural language descriptions proposed in the recent decade [29, 42, 55]. More specifically, deep
neural networks in the natural language processing field have been increasingly adopted to encapsulate the complexity
of generating general-purpose programming languages such as Java and Python. Dong and Lapata [17] proposed
Coarse2Fine which uses a structure-aware neural architecture that applies two decoding steps of semantic parsing. First,
the approach decodes a rough sketch of the meaning representation with a high level where it omits the details such
as identifiers. Then they apply another mechanism that fills the missing details by conditioning the natural language
description together with the sketch of the general meaning representation. Hayati et al. [21] proposed ReCode which
exploits sub-tree retrieval for explicitly referencing code examples within a neural code generation model. This approach
adopts a retrieval-based neural machine translation approach in the context of source code generation. This is the
first approach that introduced the retrieval technique to code generation. Murali et al. [36] proposed an approach that
combines neural network and combinatorial search to generate source code from sketches, which is an abstract style of
source code that masks user-defined constants and identifiers. Sun et al. [46] proposed a grammar-based structural
convolutional neural network (CNN) that utilizes tree-based convolution, pre-order convolution, and attentive pooling
layers for a more compact prediction than seq2seq models. The tree-based convolution applies a sliding window on
the AST structures. Pre-order convolution that traverses the nodes of the partial AST. These two modules of CNN
help capture the neighbor information of the trees. The attentive pooling is designed to aggregate the CNN features to
predict better identifier names. Sun et al. [47] proposed TreeGen which is a tree-based neural architecture that uses
the attention mechanism of Transformers to alleviate the long dependency issues and utilizes an AST encoder to
incorporate grammar rules and AST structures into the network. They utilized a convolution sub-layer only on the
first Transformer decoder blocks to prevent the Transformer to mix information from other nodes which may leak the
original information. Lyu et al. [33] proposed a generation model that exploits the dependencies of the API method as
an API dependency graph and utilizes the graph embedding into a seq2seq model. They incorporate an encoder-decoder
module that captures both the global structural dependencies and textual program descriptions when generating the
source code. Ahmad et al. [2] proposed PLBART, which is an auto-regressive transformer model that pre-trains on
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an extensive collection of unlabeled Java and Python functions that are paired with natural language texts through
denoising auto-encoders. This approach helps reduce the effort of mining highly human-curated annotations when
fine-tuning specific tasks. They have evaluated PLBART on several tasks, i.e. code summarization, code generation,
code translation, program repair, clone detection, and vulnerability detection.

API recommendation is can be seen as a kind of code generation, which targets to generate a specific API set for a
given query from developers [9–11, 32, 35, 44, 45, 51]. Liu et al. [32] proposed a method called RecRank that applies a
novel ranking-based discriminative approach that leverages API usage path features to improve their performance on the
recommendation. Xie et al. [51] studied the relationship between verb phrase patterns that describes the functionality
of APIs and the user queries for finding those APIs. Chen et al. [11] proposed a novel API recommendation method that
combines API usage with the text information in the source code based on an API context graph network. Chen et al. [10]
propose COOK, which is an API sequence recommendation that combines deep learning models and post-processing
strategies. They have enhanced the beam search with code-specific heuristics that helped them improve the quality of
the recommendation.

6.2 Analysis of Model Effectiveness

There also have been numerous empirical studies that investigated the effectiveness of source code generation models in
different contexts. Liu et al. [31] investigated the effectiveness of source code generation models when natural language
requirement texts of general programming are given. They have built a large-scale dataset, ReCa, to assess five source
code generation models in handling longer sequences of requirement texts. Chirkova and Troshin [12] conducted
an empirical study on approaches that apply Transformers [49] to source code in the software engineering domain.
They investigated how Transformers utilize the syntactic information of source code in modeling code completion,
function naming, and bug fixing tasks. Antonio et al. [34] empirically assessed the effect of T5 (Text-to-Text Transfer
Transformer) [43] architecture when applied to source code. They found that their T5 model outperforms four existing
baselines when bigger data is used in pre-training. Peng et al. [41] did a study to unify the tasks and benchmark datasets
of API recommendations to fully facilitate future studies. They grouped the different approaches concerning the input
they handle (i.e. query or code). They propose a general benchmark dataset, APIBENCH, to assess 11 existing approaches
in both query and code-based API recommendations.

These empirical studies assess the effectiveness of source code generation models in generating general programming
tasks with respect to different levels of NL complexity [31] and different architecture [12, 34]. The difference in our
work is that we investigate the effectiveness of generation models in generating machine/deep learning-related source
code using ML libraries.

7 CONCLUSION

This paper conducts an empirical study to explore the performance of six state-of-the-art neural code generation models
onML programming tasks. A new benchmark dataset that contains 83K pairs of natural language described programming
tasks and the corresponding programs implemented by four ML libraries is introduced. Our empirical study reveals some
good, bad, and missing aspects, with a few major ones listed below. (Good) Neural code generation models perform
significantly better on ML tasks than on non-ML tasks. (Bad) Most of the generated code is semantically incorrect.
(Bad) Code generation models cannot significantly improve developers’ completion time. (Good) The generated code
can help developers write more correct code by providing developers with clues for using correct APIs. (Missing) The
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observation from our user study reveals the missing aspects of code generation for ML tasks, e.g., decomposing code
generation for divide-and-conquer into two tasks: API sequence identification and API usage generation.
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