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Identifying and optimizing open participation is essential to the success of open software development.
Existing studies highlighted the importance of worker recommendation for crowdtesting tasks in order to
improve bug detection efficiency, i.e., detect more bugs with fewer workers. However, there are a couple of
limitations in existing work. First, these studies mainly focus on one-time recommendations based on expertise
matching at the beginning of a new task. Second, the recommendation results suffer from severe popularity
bias, i.e., highly experienced workers are recommended in almost all the tasks, while less experienced workers
rarely get recommended. This paper argues the need for context- and fairness-aware in-process crowdworker
recommendation in order to address these limitations. We motivate this study through a pilot study, revealing
the prevalence of long-sized non-yielding windows, i.e., no new bugs are revealed in consecutive test reports
during the process of a crowdtesting task. This indicates the potential opportunity for accelerating crowdtesting
by recommending appropriate workers in a dynamic manner, so that the non-yielding windows could be
shortened. Besides, motivated by the popularity bias in existing crowdworker recommendation approach, this
study also aims at alleviating the unfairness in recommendations.

Driven by these observations, this paper proposes a context- and fairness-aware in-process crowdworker
recommendation approach, iRec2.0, to detect more bugs earlier, shorten the non-yieldingwindows, and alleviate
the unfairness in recommendations. It consists of three main components: 1) the modeling of dynamic testing
context, 2) the learning-based ranking component, and 3) the multi-objective optimization-based re-ranking
component. The evaluation is conducted on 636 crowdtesting tasks from one of the largest crowdtesting
platforms, and results show the potential of iRec2.0 in improving the cost-effectiveness of crowdtesting by
saving the cost, shortening the testing process and alleviating the unfairness among workers. In detail, iRec2.0
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could shorten the non-yielding window by a median of 50% - 66% in different application scenarios, and
consequently have potential of saving testing cost by a median of 8% - 12%. Meanwhile, the recommendation
frequency of the crowdworker drop from 34% - 60% to 5% - 26% under different scenarios, indicating its
potential in alleviating the unfairness among crowdworkers.

CCS Concepts: • Software and its engineering → Software creation and management.

Additional Key Words and Phrases: Crowdsourced testing, worker recommendation, multi-objective optimiza-
tion, fair recommendation
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1 INTRODUCTION
Abundant internet resources has driven software engineering activities to be more open than ever.
Besides free, successful open source software and cheap, on-demand web storage and computation
facilities, more and more companies are leveraging on crowdsourced software development to
obtain solutions and achieve quality objectives faster, cheaper [2–4]. As an example, uTest has
more than 400,000 software experts with diverse expertise spanning more than 200 countries to
validate various aspects of digital quality [3].

Various methods and approaches have been proposed to support utilizing crowdtesting to
substitute or aid in-house testing for reducing cost, improving quality, and accelerating schedule
[32, 40, 77, 95]. One of the most essential functions is to identify appropriate workers for a particular
testing task [22, 23, 75, 88]. This is because the shared crowdworker resources, while cheap, are
not free. To help identify appropriate workers for crowdtesting tasks, many different approaches
have been proposed by modeling the workers’ testing environment [75, 88], experience [22, 88],
capability [75], or expertise with the task [22, 23, 75], etc. Unfortunately, these approaches have
limited applicability for the highly dynamic and volatile crowdtesting processes. They merely
provide one-time recommendation at the beginning of a new task, without considering constantly
changing context information of ongoing testing processes.
This study aims at filling in this gap and shedding light on the necessity and feasibility of

dynamically in-process worker recommendation. From a pilot study conducted on real-world
crowdtesting data (Section 2.2), this study first reveals the prevalence of long-sized non-yielding
windows, i.e., consecutive testing reports containing no new bugs during crowdtesting process.
84.5% tasks have at least one 10-sized non-yielding window, and an average of 39% of spending is
wasted on these non-yielding windows. This indicates the ineffectiveness of current crowdtesting
practice because these non-yielding windows would 1) cause wasteful spending of task requesters;
2) potentially delay the progress of crowdtesting. It also implies the potential opportunity for
accelerating testing process by recommending appropriate crowdworkers in a dynamic manner, so
that the non-yielding windows could be shortened.
Our previous work led to the development of a context-aware in-process crowdworker recom-

mendation approach (named iRec) [78]. iRec can dynamically recommend a diverse set of capable
crowdworkers based on various contextual information of the crowdtesting process, aiming at
shortening the non-yielding window and improving bug detection efficiency. It designs a learning-
based ranking component to learn the probability of crowdworkers being able to detect bugs
within specific context, and a diversity-based re-ranking component to adjust the ranked list of
recommended workers based on the diversity measurement to potentially reduce duplicate bugs.
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The evaluation result shows that iRec is able to shorten the non-yielding window by a median of
50% - 58% in different scenarios.

Nonetheless, iRec has one major limitation associated with most recommender systems (RS), i.e.,
popularity bias in recommendation results. Many RS suffer from popularity bias in their output,
which refers that popular items are recommended frequently and less popular ones rarely, if at all [5,
7, 15, 62]. Specifically, our pilot study with iRec (see Section 2.4) shows that some highly experienced
crowdworkers could be recommended for almost all the tasks, while some less experienced workers
rarely get recommended. Such popularity bias not only leads to recommendation results biased
towards experienced workers, but lacks of support for less experienced workers. Existing work
shows that in software crowdsourcing market, the majority long-tail workers are less-experienced,
learning-oriented workers [47, 92]. In this study, we argue that such less-experienced workers are
often desirable recommendations, not only because they are thirsty for recommendation, but the
lack of consideration or accommodation in RS would lead to unfair recommendations, potential
discouraging worker motivation, and hindering the prosperous of the platform.

To address this limitation, this paper proposes an extension to iRec called iRec2.0, to alleviate the
unfairness. This extension employs a multi-objective optimization-based re-ranking component,
which can jointly maximize the crowdworkers’ bug detection probability, the expertise diversity and
device diversity of crowdworkers so as to produce less duplicate bugs, and meanwhile, minimize
the recommendation frequency difference among crowdworkers to alleviate the unfairness. iRec2.0
extends and reinforces iRec, thus offers better crowdworker recommendations regarding both bug
detection performance and recommendation fairness.
The rest of the paper is structured as follows. We first present the background and motivation

of this study. This material is driven by the preliminary empirical analysis and observations on
an industry crowdtesting dataset. We then introduce iRec2.0 which consists of three main compo-
nents: testing context modeling, learning-based ranking, and multi-objective optimization-based
re-ranking. First, the testing context model is constructed in two perspectives, i.e., process context
and resource context, to capture the in-process progress-oriented information and crowdworkers’
characteristics respectively. Second, a total of 26 features are defined and extracted from both
process context and resource context; based on these features, the learning-based ranking com-
ponent learns the probability of crowdworkers being able to detect bugs within specific context.
Third, the multi-objective optimization-based re-ranking component generates the re-ranking
list of recommended workers by jointly maximizing the bug detection probability of workers,
the expertise and device diversity of workers, and minimizing the recommendation frequency
difference of crowdworkers.

iRec2.0 is evaluated on 636 crowdtesting tasks (involving 2,404 crowdworkers and 80,200 reports)
from one of the largest crowdtesting platforms. Results show that iRec2.0 could shorten the non-
yielding window by a median of 50% - 66% in different application scenarios, and consequently
have potential of saving testing cost by a median of 8% - 12%. Meanwhile, the recommendation
frequency of crowdworker drop from 34% - 60% to 5% - 26% under different scenarios, indicating
its potential in alleviating the unfairness among crowdworkers. It significantly outperforms four
commonly-used and state-of-the-art baseline approaches, and outperforms the original iRec in bug
detection performance and the recommendation fairness.

This paper makes the following contributions:

• The formation of the in-process crowdworker recommendation problem based on the empiri-
cal investigation on real-world crowdtesting data. This is the first study to explore the
in-process worker recommendation problem to the best of our knowledge.
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• The first empirical investigation of the popularity bias and unfairness in crowdworker
recommendation to motivate this work and our approach.

• The crowdtesting context model which consists of two perspectives, i.e., process context and
resource context, to facilitate in-process crowdworker recommendation.

• The development of the learning-based ranking method to learn appropriate crowdworkers
who can detect bugs in a dynamic manner.

• The development of the multi-objective optimization-based re-ranking method to generate
the re-ranked list to reduce duplicate bugs and alleviate the unfairness among workers.

• The evaluation of the proposed approach on 636 crowdtesting tasks (involving 2,404 crowd-
workers and 80,200 reports) from one of the largest crowdsourced testing platforms, with
affirmative results1.

The paper extends a prior publication (presented at ICSE 2020 [78]2) as follows:
• The empirical investigation of the popularity bias and unfairness in crowdworker recom-
mendation to illustrate the limitation of prior work and motivate this study (Section 2.4).

• The development of multi-objective optimization-based re-ranking component, which gener-
ates the re-ranked list of crowdworkers to reduce duplicate bugs and alleviate the unfairness
(Section 3.4).

• The experimental evaluation of the newly-proposed iRec2.0 to prove its effectiveness in terms
of bug detection performance and recommendation fairness (Section 5).

• The discussion of objectivity and fairness in crowdworker recommendation to motivate
future research in this field (Section 6.3).

2 BACKGROUND ANDMOTIVATION
2.1 Background
In practice, a task requester prepares the task (including the software under test and test require-
ments), and distributes it online. Crowdworkers can freely sign in their interested tasks and submit
testing reports in exchange of monetary prizes. Managers then inspect and verify each report to
find the detected bugs. There are different payout schema in crowdtesting [77, 95], e.g., pay by
report. As discussed in previous work [75, 77], the cost of a task is positively correlated with the
number of received reports.

The following lists important concepts with examples in Table 1:
Test Task is the input to a crowdtesting platform provided by a task requester. It contains a task

ID, and a list of test requirements in natural language.
Test Report is the test record submitted by a crowdworker. It contains a report ID, a worker ID

(i.e., who submit the report), a task ID (i.e., which task is conducted), the description of how the test
was performed and what happened during the test, bug label, duplicate label, and submission time.
Specifically, bug label indicates whether the report contains a bug3; and duplicate label indicates
with which the report is duplicate. Note that, in the following paper, we refer to “bug report” (also
short for “bug”) as the report whose bug label is bug, refer to “test report” (also short for “report”) as
any submitted report, and refer to “unique bug” as the report whose bug label is bug and duplicate
label is null.
Crowdworker is a registered worker in a crowdtesting platform, and is denoted by worker ID,

and his/her device. It is associated with the historical reports he/she submitted. Note that, in our

1https://github.com/wangjunjieISCAS/InProcessRecommendation
2This paper received an ACM SIGSOFT Distinguished Paper award at ICSE 2020.
3In our experimental platform, a report corresponds to either 0 or 1 bug, and there is no report containing more than 1 bug.
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Table 1. Important concepts and examples

Test Task
Task ID T000012
Requirement 1 Browse the videos through list mode IQIYI, rank the videos using different conditions, check whether

the rank is reasonable.
Requirement 2 Cache the video, check whether the caching list is right.

Test Report
Report ID R1002948308
Task ID T000012
Worker ID W5124983210
Description I list the videos according to the popularity. It should be ranked according to the number of views.

However, there were many confused rankings, for example, the video “Shibuya century legend” with
130 million views was ranked in front of the video “I went to school” with 230 million views.

Bug label bug
Duplicate label R1002948315, R1002948324
Submission time Jan 30. 2016 15:32

Crowdworker
Worker Id W5124983210
Device Phone type: Samsung SN9009

Operating system: Android 4.4.2
ROM type: KOT49H.N9009
Network environment: WIFI

Historical
Reports

R1002948308, R1037948352

experimental dataset which spans across six months, we did not observe the crowdworkers’ device
change; thus this paper assumes each crowdworker corresponds to a stable device variable.

2.2 Non-yielding Windows in Crowdtesting Processes
Most open call formats of crowdtesting frequently lead to ad hoc worker behaviors and ineffective
outcomes. In some cases, workers may choose tasks they are not good at and end up with finding
none bugs. In other cases, many workers with similar experience may submit duplicate bug reports
and cause wasteful spending of the task requester. More specifically, an average of 80% duplicate
reports are observed in our dataset.
To better understand this issue, we examine the bug arrival curve for 306 historical tasks from

real-world crowdtesting projects (details are in Section 4.2). We notice that there are frequently
non-yielding windows, i.e., the flat segments, of the increasing bug arrival curve. Such flat windows
correspond to a collection of test reports failing to reveal new bugs, i.e., either no bugs or only
duplicate bugs. We refer to the length of a non-yielding window as the number of consecutive test
reports.
Figure 1a illustrates the bug arrival curve of an example task with highlighted non-yielding

windows (length >10, only for illustration purpose). The non-yieldingwindows can 1) cause wasteful
spending on these non-yielding reports; 2) potentially delay the progress of crowdtesting.

We further investigate this phenomenon and present a summarized view in Figure 1b. The x-axis
shows the length of the non-yielding window, while the y-axis shows the relative position of the
non-yielding window expressed using the task’s progress. We can observe that the long-sized
non-yielding window is quite common during crowdtesting process. There are 84.5% (538/636) tasks
with at least one 10-sized non-yielding window, 67.8% (431/636) tasks with at least one 15-sized
window. Furthermore, these long-sized non-yielding windows mainly take place in the second half
of crowdtesting processes. For example, 90.7% (488/538) 10-sized non-yielding windows happened
at the latter half of the process.
We then explore the cost waste of these non-yielding windows. Specifically, an average of 39%

cost4 is wasted on these 10- or longer-sized non-yielding windows of all experimental tasks, and an
4Following previous work [75, 77], we treat the number of reports as the amount of cost.
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(a) Bug arrival curve (b) Non-yielding windows

Fig. 1. Observations based on Baidu dataset

(a) Crowdworkers’ activeness (b) Crowdworkers’ preference

Fig. 2. Characterizing crowdworker’s bug detection capability

average of 32% cost is wasted on these 15- or longer-sized non-yielding windows. In addition, an
average of 33 hours5 are spent on these 10- or longer-sized non-yielding windows of all experimental
tasks.
The prevalence of long-sized non-yielding windows indicates that current workers possibly

have similar bug detection capability with previous workers on the same task. In order to break
the flatness, we investigate the potential root causes and study if we can learn from the dynamic,
underlying contextual information in order to mitigate such situation. This also suggests the
unsuitability of existing one-time worker recommendation approaches, and indicates the need for
in-process crowdworker recommendation.

2.3 Characterizing Crowdworker’s Bug Detection Capability
This subsection presents more explorations about the characteristics of crowdworkers which can
influence their test participation and bug detection performance to motivate the modelings of
testing context.

Activeness. Figure 2a shows the distribution of crowdworkers’ activity intensity. The x-axis
is the random-selected 20 crowdworkers among the top-50 workers ranked by the number of
submitted reports, and the y-axis is 20 equal-sized time interval which is obtained by dividing the
whole time space. We color-code the blocks, using a darker color to denote a worker submitting

5We measure the duration of each non-yielding window using the time difference between the last and first report’s
submission time associated with that window.
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more reports during the specific time interval. We can see that the crowdworkers’ activities are
greatly diversified and not all crowdworkers are equally active in the crowdtesting platform at
specific time. Intuitively, the inactive crowdworkers would be less likely to conduct the task, let
alone detect bugs.

Preference. Figure 2b shows the distribution of crowdworkers’ activity at a finer granularity. The
x-axis is the same as Figure 2a, and the y-axis is the random-selected 20 terms (which capture the
content under testing) from the top-50 most popular descriptive terms (see Section 3.1 for details).
The block in the heat map demonstrates the number of reports which are submitted by the specific
worker and contain the specific term. We color-code the blocks, using a darker color to denote a
worker submitting reports with corresponding terms more frequently, i.e., worker’s preference
in different aspects. The differences across columns in the heat map further reveal the diversified
preference across workers. Considering there are usually dozens of crowdtesting tasks open in the
platform, even if a crowdworker is active, he/she cannot take all tasks. Intuitively, if a crowdworker
has a preference on the specific aspects of a task, he/she would show greater willingness in taking
the task and further detecting bugs.

Expertise. Similarly, we explore the heat map with the terms from the crowdworkers’ bug reports
(rather than reports), we observe a similar trend. Due to space limit, we leave the detailed figure
in our website. This indicates the crowdworkers’ diversified expertise over different crowdtesting
tasks. We also conduct correlation analysis between the number of bug reports (i.e., denoting
expertise) and number of reports (i.e., denoting preference) for each pair of the 20 crowdworkers
on the top-50 most popular terms, the median coefficients is 0.26 indicating these two types of
characteristics are not tightly correlated with each other. Preference focuses more on whether a
crowdworker would take a specific task, and expertise focuses more on whether a crowdworker
can detect bugs in the task.

To summarize, the exploration results reveal that workers have greatly diversified activeness,
preferences, and expertise, which significantly affect their availability on the platform, choices of
tasks, and quality of their submissions. To guarantee the effectiveness of recommendation, a worker
is desirable to be active in the platform, and equipped with satisfactory preference and expertise for
the given tasks. Thus, all these factors need to be precisely captured and jointly considered within
the recommendation approach. Besides, the approach should also consider the diversity among
the recommended set of workers so as to reduce duplicates and further improve bug detection
performance.

2.4 Observations on Popularity Bias in Existing Crowdworker Recommendation
Approach

The popularity bias in recommendation systems has been noticed and investigated in product
recommendation, i.e., the recommendation typically emphasizes popular items (those with more
ratings) much more than other “long-tail” items [5, 7, 15, 62]. Researchers have pointed out that the
recommendation should seek a balance between popular and less-popular items, so as to alleviate
the item display difference and potential unfairness of the items.
In crowdworker recommendation, similarly, the crowdworkers hope to be recommended in a

relatively fair manner, i.e., with no big difference in the recommended number of times. This section
seeks to explore the current status of popularity bias in crowdworker recommendation with the
state-of-the-art approach iRec [78].
In detail, we run iRec and obtain the recommendation results for each crowdtesting task. We

then count the number of tasks each crowdworker is recommended within one week, and the
number of open tasks during same duration, then derive the percentage of tasks a crowdworker is
recommended. We assume the distribution of this percentage among crowdworkers reflects the
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(a) Time slice -1 (b) Time slice -2 (c) Time slice -3

Fig. 3. Popularity bias in current crowdworker recommendation

popularity bias. The reason we investigate the recommendation results by each week is to consider
the time-series crowdworker activities as demonstrated in Section 2.3, and the duration one week
is set empirically only for demonstration purpose.

Figure 3 presents the distribution of the percentage of recommendations in term of three random-
chosen time slices. We show the top 500 crowdworkers with the highest value to improve the
readability of the plots (all other crowdworkers having zero values).

We can see that the recommended number of times are highly unevenly distributed, inwhich some
highly experienced crowdworkers would be recommended in terms of almost all the tasks, yet some
less experienced crowdworkers can only be recommended in a tiny fraction of tasks (or never be
recommended). This implies the significant popularity bias and unfairness in current crowdworker
recommendation approach. This work targets at alleviating the unfairness by introducing the
fairness-aware aspect in the recommendation approach.

3 APPROACH
Figure 4 shows the overview of the proposed iRec2.0. It can be automatically triggered when the
size of non-yielding window exceeding a certain threshold value (i.e., recThres) is observed during
crowdtesting process, as introduced in Section 2.2. For brevity, we use the term recPoint to denote
the point of time under recommendation, as illustrated at the bottom-left corner of Figure 4.
iRec2.0 has three main components. First, it models the time-sensitive testing contextual infor-

mation in two perspectives, i.e., the process context and the resource context, respectively, with
respect to the recPoint during the crowdtesting process. The process context characterizes the
process-oriented information related to the crowdtesting progress of the current task, while resource
context reflects the availability and capability factors concerning the competing crowdworker
resources in the crowdtesting platform. Second, a learning-based ranking component extracts 26
features from both process context and resource context, and learns the success knowledge of
the most appropriate crowdworkers, i.e., the workers with the greatest potential to detect bugs
abstracted from historical tasks. Third, a multi-objective optimization-based re-ranking component
generates the re-ranking list of recommended workers in order to potentially reduce duplicate bugs
and alleviate the unfairness among crowdworkers.
Note that, the optimization-based re-ranking component is the new part which differs iRec2.0

from its pioneer iRec. There is a diversity-based re-ranking component after the learning-based
ranking in iRec. The new re-ranking component in iRec2.0 employs themulti-objective optimization-
based algorithm to optimize the re-ranking list which can help adjust the whole re-ranking and
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Fig. 4. Overview of iRec2.0

would come out with improved results. By comparison, the diversity-based re-ranking in iRec uses
greedy-based algorithm to adjust the ranking list so that it is less effective.

iRec2.0 first develops a learning-based ranking which can find the workers with greatest potential
to detect bugs abstracted from historical tasks. Then it develops amulti-objective optimization-based
re-ranking which jointly optimize the bug detection effectiveness (i.e., the bug detection probability
in objective 1), the recommendation fairness (i.e., recommendation frequency difference among
workers in objective 4), and others. We adopt the NSGA-II algorithm (i.e., Non-dominated Sorting
Genetic Algorithm-II) for optimization. The NSGA-II algorithm is a widely used multi-objective
optimizer in and out of software engineering area. Taken in this sense, our proposed iRec2.0 can
come out with improved bug detection results and recommendation fairness.

3.1 Data Preprocessing
To extract the time-sensitive contextual information at recPoint, the following data are obtained for
further processing (refer to Section 2.1 for more details of these concepts): 1) test task: the specific
task currently under testing and recommendation; 2) test reports: the set of already received reports
for this specific task up till the recPoint; 3) all registered crowdworkers (with historical reports a
crowdworker submitted, including reports in this specific task); 4) historical test tasks.

There are two types of textual documents in our data repository: one is test reports and the other
is test requirements. Following the existing studies [72, 76], each document goes through standard
word segmentation, stopwords removal, with synonym replacement being applied to reduce noise.
As an output, each document is represented using a vector of terms.

Descriptive term filtering. After the above steps, we find that some terms may appear in a
large number of documents, while some other terms may appear in only very few documents.
Both of them are less predictive and contribute less in modeling the testing context. Therefore,
we construct a descriptive terms list to facilitate the effective modeling. We first preprocess all the
documents in the training dataset (see Section 4.3) and obtain the terms of each document. We rank
the terms according to the number of documents in which a term appears (i.e., document frequency,
also known as df ), and filter out 5% terms with the highest document frequency and 5% terms
with the lowest document frequency (i.e., less predictive terms) following previous work [22, 75].
Note that, since the documents in crowdtesting are often short, the term frequency (also known as
tf ), which is another commonly-used metric in information retrieval [66], is not discriminative, so
we only use document frequency to rank the terms. In this way, the final descriptive terms list is
formed and used to represent each document in the vector space of the descriptive terms.
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3.2 Testing Context Modeling
The testing context model is constructed in two perspectives, i.e., process context and resource
context, to capture the in-process progress-oriented information and crowdworkers’ characteristics
respectively.

3.2.1 Process Context. To model the process context of a crowdtesting task, we first represent
the task’s requirements in the vector space of descriptive terms list and denote it as task terms
vector. We then use the notion of test adequacy to measure the testing progress regarding to what
degree each descriptive term of task requirements (i.e., task terms vector) has been tested.

TestAdeq: the degree of testing for each descriptive term 𝑡 𝑗 in task terms vector. It is measured
as follows:

TestAdeq(tj) =
number of bug reports with tj

number of received bug reports in a task
(1)

where 𝑡 𝑗 ∈ task terms vector, i.e., it is one descriptive term in the description of task’s requirements. The
larger TestAdeq(𝑡 𝑗 ), the more adequate of testing for the corresponding aspects of the task. This definition
enables the learning of underlying knowledge tomatch workers’ expertise or preference with inadequate-tested
terms at a finer granularity.

In other words, 𝑇𝑒𝑠𝑡𝐴𝑑𝑒𝑞(𝑡 𝑗 ) is measured in terms of each descriptive term 𝑡 𝑗 in the task’s requirements,
i.e., the extent to which a descriptive term 𝑡 𝑗 has been covered by already submitted reports. Guided by
𝑇𝑒𝑠𝑡𝐴𝑑𝑒𝑞(𝑡 𝑗 ), iRec2.0 would try to find the workers who can cover the terms which are inadequate-tested.
This is realized through the characterization of worker’s preference and expertise which are also measured in
terms of descriptive terms, which will be shown as follows.

3.2.2 Resource Context. Based on the observations from Section 2.3, activeness, preference, and expertise of
crowdworkers are integrated to model the resource context of a general crowdtesting platform. In addition, we
include device of crowdworkers as a separate dimension of resource context, since several studies reported its
diversifying role in crowdtesting environment [75, 88].

1) Activeness measures the degree of availability of crowdworkers to represent relative uncertainty
associated with inactive crowdworkers. Activeness of a crowdworker𝑤 is characterized using the following
four attributes :

LastBug: Duration (in hours) between recPoint and the time when worker𝑤 ’s last bug is submitted.
LastReport: Duration (in hours) between recPoint and the time when worker𝑤 ’s last report is submitted.
NumBugs-X : Number of bugs submitted by worker𝑤 in past X time, e.g., past 2 weeks.
NumReports-X : Number of reports submitted by worker𝑤 in past X time, e.g., past 8 hours.
Based on the concepts in Table 1, we can derive the above attributes of worker𝑤 from the historical reports

submitted by him/her.
2) Preference measures to what degree a potential crowdworker might be interested in a candidate task.

The higher the preference, the greater the worker’s willingness/potential in taking the task/detecting bugs.
Preference of a crowdworker𝑤 is characterized using the following attribute:

ProbPref : the preference of worker𝑤 regarding each descriptive term. In other words, it is the probability
of recommending the worker𝑤 when aiming at generating a report with specific term 𝑡 𝑗 . It is measured based
on bayes rules [61] as follows:

ProbPref (w, tj) = 𝑃 (𝑤 |𝑡 𝑗 ) =
tf (𝑤, 𝑡 𝑗 )∑

𝑤𝑘
tf (𝑤𝑘 , 𝑡 𝑗 )

·
∑

𝑤𝑘
df (𝑤𝑘 )

df (𝑤) (2)

where tf (w, tj) is the number of occurrences of 𝑡 𝑗 in historical reports of worker 𝑤 , df (w) is the total
number of reports submitted by worker𝑤 , and 𝑘 is an iterator over all available crowdworkers at the platform.

As mentioned in Section 3.1, after data preprocessing, each report is expressed with a set of descriptive
terms. This attribute can be derived from the crowdworker’s historical submitted reports.

3) Expertise measures a crowdworker’s capability in detecting bugs. When a crowdworker brings in
matching expertise required for the given task, he/she would have greater possibility in detecting bugs.
Expertise of a crowdworker𝑤 is characterized using the following attribute:
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ProbExp: the expertise of worker𝑤 regarding each descriptive term. It is measured similarly as ProbPref
as follows:

ProbExp(w, tj) = 𝑃 (𝑤 |𝑡 𝑗 ) =
tf (𝑤, 𝑡 𝑗 )∑

𝑤𝑘
tf (𝑤𝑘 , 𝑡 𝑗 )

·
∑

𝑤𝑘
df (𝑤𝑘 )

df (𝑤) (3)

where tf (w, tj) is the number of occurrences of 𝑡 𝑗 in historical bug reports of worker𝑤 , df (w) is the total
number of bug reports submitted by worker 𝑤 , and 𝑘 is an iterator over all available crowdworkers at the
platform.

The difference between ProbPref and ProbExp is that the former is measured based on worker’s submitted
reports, while the latter is based on worker’s submitted bug reports, following the motivating studies in Section
2.3. The reason why we characterize expertise in terms of each term is because it enables the more precise
matching with the inadequate-tested terms, and the identification of more diverse workers for finding unique
bugs in a much-finer granularity.

4) Device measures the device-related attributes of the crowdworker which is critical in testing an applica-
tion and in revealing device-related bugs [83]. Device of a crowdworker𝑤 is characterized using all his/her
device-related attributes including: Phone type used to run the testing task, Operating system of the device
model, ROM type of the phone, Network environment under which a task is run. These are necessary to
reproduce the bugs for the software under test, shared among various crowdtesting platforms [32, 95].

3.3 Learning-based Ranking
Based on the dynamic testing context model, a learning-based ranking method is developed to derive the ranks
of crowdworkers based on their probability of detecting bugs with respect to a particular testing context.

3.3.1 Feature Extraction. 26 features are extracted based on the process context and resource context for
the learning model, as summarized in Table 2. Features #1-#12 capture the activeness of a crowdworker.
Previous work demonstrated the developer’s recent activity has greater indicative effect on his/her future
behavior than the activity happened long before [75, 97], so we extract the activeness-related features with
varying time intervals. Features #13-#19 capture the matching degree between a crowdworker’s preference
and the inadequate-tested aspects of the task. Features #20-#26 capture the matching degree between the a
crowdworker’s expertise and the inadequate-tested aspects of the task. Note that, since the learning-based
ranking method focuses on learning and matching the crowdworker’s bug detection capability related to the
descriptive terms of a task, we do not include the device dimension of resource context.

The first group of 12 features can be calculated directly based on the activeness attributes defined in the
previous section. The second and third group of features are obtained in a similar way by examining the
similarities. For brevity, we only present the details to produce the third group of features, i.e. #20-#26.

Table 2. Features for learning to rank

Category ID Feature

Activeness
indexing

1 LastBug
2 LastReport
3-7 NumBugs-8 hours, NumBugs-24 hours, NumBugs-1 week, NumBugs-2

week, NumBugs-all (i.e., in the past)
8-12 NumReports-8 hours, NumReports-24 hours, NumReports-1 week,

NumReports-2 week, NumReports-all (i.e., in the past)
Preference
matching

13-14 Partial-ordered cosine similarity, partial-ordered euclidean similarity
between worker’s preference and test adequacy

15-19 Partial-ordered jaccard similarity between worker’s preference and test
adequacy with the cutoff threshold of 0.0, 0.1, 0.2, 0.3, 0.4

Expertise
matching

20-21 Partial-ordered cosine similarity, partial-ordered euclidean similarity
between worker’s expertise and test adequacy

22-26 Partial-ordered jaccard similarity between worker’s expertise and test
adequacy with the cutoff threshold of 0.0, 0.1, 0.2, 0.3, 0.4
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Previous work has proven extracting features from different perspectives can help improve the learning
performance [17, 44, 60], so we extract the similarity-related features from different viewpoints. Cosine
similarity, euclidean similarity, and jaccard similarity are the three commonly-used similarity measurements
and have proven to be efficient in previous studies [29, 30, 72, 76], therefore we utilize all these three similarities
for feature extraction. In addition, a crowdworker might have extra expertise beyond the task’s requirements
(i.e., the test adequacy), to alleviate the potential bias introduced by the unrelated expertise, we define the
partial-ordered similarity to constrain the similarity matching only on the descriptive terms within the task
terms vector.

Partial-ordered cosine similarity (POCosSim) is calculated as the cosine similarity between test ade-
quacy and a worker’s expertise, with the similarity matching constraint only on terms appeared in task terms
vector.

𝑃𝑂𝐶𝑜𝑠𝑆𝑖𝑚 =

∑
𝑥𝑖 ∗ 𝑦𝑖√∑
𝑥2
𝑖

√∑
𝑦2
𝑖

(4)

,where 𝑥𝑖 is 1.0 - TestAdeq(𝑡𝑖 ), 𝑦𝑖 is ProbExp(𝑤, 𝑡𝑖 ), and 𝑡𝑖 is the 𝑖𝑡ℎ descriptive term in task terms vector.
Partial-ordered euclidean similarity (POEucSim) is calculated as the euclidean similarity between test

adequacy and a worker’s expertise, with a minor modification on the distance calculation.

𝑃𝑂𝐸𝑢𝑐𝑆𝑖𝑚 =


√∑ (𝑥𝑖 − 𝑦𝑖 )2, 𝑖 𝑓 𝑥𝑖 >= 𝑦𝑖

0, 𝑖 𝑓 𝑥𝑖 < 𝑦𝑖 ,

(5)

,where 𝑥𝑖 and 𝑦𝑖 are the same as in POCosSim.
Partial-ordered jaccard similarity with the cutoff threshold of 𝜃 (POJacSim) is calculated as the

modified jaccard similarity between test adequacy and a worker’s expertise based on the set of terms whose
probabilistic values are larger than 𝜃 .

𝑃𝑂𝐽 𝑎𝑐𝑆𝑖𝑚 =
𝐴 ∩ 𝐵

𝐴
(6)

,where A is a set of descriptive terms whose (1.0 -TestAdeq(𝑡𝑖 )) is larger than 𝜃 , and B is a set of descriptive
terms whose ProbExp(𝑤, 𝑡𝑖 ) is larger than 𝜃 .

3.3.2 Ranking. We employ LambdaMART, which is the state-of-the-art learning to rank algorithm and
reported as effective in many learning tasks of SE [86, 96].

Model training. For every task in the training dataset, at each recPoint, we first obtain the process context
of the task and resource context for all crowdworkers, then extract the features for each crowdworker in
Table 2. We treat the crowdworkers who submitted new bugs after recPoint (not duplicate with the submitted
reports) as positive instances and label them as 1. As reported by existing work that unbalanced data could
significantly affect the model performance [69, 70], to make our dataset balanced, we randomly sample an
equal number of crowdworkers (who didn’t submit bugs in the specific task) with the positive instances and
label them as 0. The instances close to the boundary between the positive and negative regions can easily
bring noise to the machine learner, therefore, to facilitate the generation of more effective learning model,
we choose crowdworkers who are different from the positive instances [19, 60], i.e., to select those majority
instances which are away from the boundary.

Ranking based on trained model. At the recPoint, we first obtain the process context and resource
context for all crowdworkers, extract the features in Table 2, and apply the trained model to predict the bug
detection probability of each crowdworker. We sort the crowdworkers based on the predicted probability in
a descending order, and treat this ranked list of crowdworkers together with each worker’s predicted bug
detection probability, as the output of the learning-based ranking component, i.e., initial ranking in Figure 4.

3.4 Multi-Objective Optimization-based Re-ranking
To improve the bug detection performance and reduce potential duplicate reports, as discussed in Section 2.3,
we should optimize the diversity among crowdworkers. Meanwhile, as indicated in Section 2.4, this study
also hopes to balance the number of times a crowdworker get recommended in order to alleviate the issue
of popularity bias. More than that, Section 3.3 has derived a ranked list of crowdworkers based on their
probability in detecting bugs. Overall, we have the above several objectives to consider. Taken in this sense,
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we design a multi-objective optimization method to jointly optimize these objectives and attain the re-ranking
list of recommended crowdworkers. The designed multi-objective optimization-based re-ranking method has
the following four objectives to optimize.

First, we aim at ensuring the crowdworkers with higher probability in detecting bugs being ranked higher,
so that more bugs can be revealed earlier. Second, we aim at ensuring the crowdworkers with larger degree
of diverse expertise being ranked higher, in order to help produce less duplicate reports. Third, similar with
expertise diversity, we also want to have the crowdworkers with larger degree of diverse device being ranked
higher, so as to facilitate the exploration in new testing environment and revealing new bugs. Fourth, we hope
the crowdworkers with the lower frequency of recommendation in previous tasks being ranked higher, so as
to balance the recommendation frequency and alleviate the unfairness among crowdworkers. In the following
subsections, we first illustrate the multi-objective optimization framework, followed by the details of these
four objectives.

3.4.1 Multi-Objective Optimization Framework. iRec2.0 needs to optimize four objectives. Obviously,
it is difficult to get optimal results for all objectives at the same time. For example, to maximize bug detection
probability, we might need to maintain the original ranking list of crowdworkers, thus, potentially sacrifice
other three objectives. Our proposed iRec2.0 seeks a Pareto front (or set of solutions). Solutions outside Pareto
front cannot dominate (better than, under all objectives) any solutions within the front.

iRec2.0 usesNSGA-II algorithm (i.e., Non-dominated Sorting Genetic Algorithm-II) to optimize the aforemen-
tioned four objectives. NSGA-II is a widely used multi-objective optimizer in and out of Software Engineering
area. According to [41], more than 65% optimization techniques in software analysis are based on Genetic
Algorithm (for problems with single objective), or NSGA-II (for problems with multiple objectives). For more
details of NSGA-II algorithm, please see [24].

In our recommendation scenario, a Pareto front represents the optimal trade-off between the four objectives
determined by NSGA-II. The manager can then inspect a Pareto front to find the best compromise between
having a crowdworker re-ranking list that balances bug detection probability, expertise diversity, device
diversity, and recommendation frequency difference or alternatively having a re-ranking list that maximizes
one/two/three objective/s penalizing the remain one/s.

iRec2.0 has the the following four steps:
1) Solution encoding. Like other prioritization problems [25, 63], we encode each solution as a list of 𝑛

integer numbers which are arranged as a permutation of size 𝑛. Each value of the permutation is stored in a
solution variable. The solution space for the re-ranking problem is the set of all possible permutations about
how the crowdworkers are ranked.

2) Initialization. The starting population is initialized randomly, i.e, randomly selecting 𝐾 (𝐾 is the size
of initial population) solutions among all possible solutions (i.e., the solution space). We set 𝐾 as 200 as
recommended by [43].

3) Genetic operators. For the evolution of permutation encoding for the solutions, we exploit standard
operators as described in [79]. We use partially matched crossover and swap mutation to produce the next
generation. We use binary tournament as the selection operator, in which two solutions are randomly chosen
and the fitter of the two will survive in the next population.

4) Fitness functions. Since our goal is to optimize the four considered objectives, each candidate solution is
evaluated by our objective functions described in Section 3.4.2 to 3.4.5. For bug detection probability, expertise
diversity, and device diversity, the larger these values are, the faster the convergence of a solution is. The
recommendation frequency difference objective benefits from the smaller values.

3.4.2 Objective 1: Maximize Bug Detection Probability. The bug detection probability of a crowd-
worker is obtained based on the trained ranking model in Section 3.3. It denotes the success probability of a
crowdworker in detecting bugs with respect to the particular testing context.

We refer to the multi-objective test case prioritization studies [25, 63] to measure this objective for each
solution. Bug detection probability for a solution 𝑠 𝑗 (i.e., a candidate re-ranked list of crowdworkers) can be
calculated as follows.
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BDPrbsj =

∑n
i=1 BDP (wi) × n−i+1

n∑n
i=1 BDP (wi)

(7)

where 𝑛 is the total number of workers in the solution,𝑤𝑖 is the worker being ranked in the 𝑖𝑡ℎ place in the
solution, and 𝐵𝐷𝑃 (𝑤𝑖 ) represents the bug detection probability of worker𝑤𝑖 .

A higher value of bug detection probability implies a crowdworker is more capable in finding bugs. The
goal is to maximize the bug detection probability of a solution since we aim at finding a re-ranking list
of crowdworkers that detect bugs as early as possible, i.e., having the workers with higher bug detection
probability being ranked higher.

3.4.3 Objective 2: Maximize Expertise Diversity. We define expertise diversity delta, which measures
the newly-added expertise diversity of a worker with respect to current re-ranked list of workers (i.e., the
workers ahead of the considered worker in the re-ranked list).

Expertise diversity delta gives higher score to these workers who have most different expertise from the
current re-ranked list 𝑅.

ExpDivDlt (wi, R) =
∑
𝑡 𝑗

ProfExp(wi, tj) ×
∏
𝑤𝑘 ∈𝑅

(1.0 − ProfExp(wk, tj)) (8)

where the first part is the expertise of crowdworker𝑤𝑖 towards the descriptive term 𝑡 𝑗 , and the later part
(i.e.,

∏
) estimates the extent to which term 𝑡 𝑗 is tested by the workers on the current re-ranked list.

Similar with Section 3.4.2, the expertise diversity for a solution 𝑠 𝑗 can be calculated as follows.

ExpDivsj =

∑n
i=1 ExpDivDlt (wi, R) × n−i+1

n∑n
i=1 ExpDivDlt (wi, R)

(9)

where 𝑛 is the total number of workers in the solution, 𝑅 is the current re-ranked list of 𝑖 − 1 workers, and
𝑤𝑖 is the worker being ranked in the 𝑖𝑡ℎ place in the solution.

A higher value of expertise diversity delta implies a crowdworker can contribute more different expertise
with respect to the current re-ranked list. The goal is to maximize the expertise diversity of a solution since
we aim at finding a re-rank list of crowdworkers that demonstrates diversified expertise as early as possible.

3.4.4 Objective 3: Maximize Device Diversity. Similar with Section 3.4.3, we define device diversity
delta, which measures the newly-added device diversity of a worker with respect to current re-ranked list of
workers.

Device diversity delta gives higher scores to these workers who can bring more new device’s attributes
(e.g., phone type, operating system, etc.) to those of the workers on current re-ranked list 𝑅, so as to facilitate
the exploration in new testing environment.

DevDivDlt (wi, R) = (w′
i s attributes) − ∪𝑤𝑘 ∈𝑅 (w

′
ks attributes) (10)

where w′
i s attributes is a set of attributes of crowdworker w

′
i s device, i.e., Samsung SN9009, Android 4.4.2,

KOT49H.N9009, WIFI as in Table 1.
The device diversity for a solution 𝑠 𝑗 is calculated similar as 𝐸𝑥𝑝𝐷𝑖𝑣𝑠 𝑗 . And the goal is to maximize the

device diversity of a solution since we aim at finding a re-rank list of crowdworkers that contribute various
device attributes as early as possible.

3.4.5 Objective 4:MinimizeRecommendation FrequencyDifference. The recommendation frequency
denotes the frequency of each worker being recommended in the short past. It is obtained based on the
recommendation results on the open crowdtesting tasks during previous week. The reason why we mea-
sure it by one week is to consider the time-series crowdworker activities as demonstrated in Section 2.3,
and we find the features NumBugs-1 week and NumReports-1 week (in Table 2) play relatively large role
than other activeness-related features. It is measured as the percentage of tasks where a worker is be-
ing recommended among all the tasks under recommendation in the past week, and is represented as
𝑅𝑒𝑐𝐹𝑟𝑞(𝑤𝑖 ) = #𝑡𝑎𝑠𝑘𝑠 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 𝑖𝑠 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑

#𝑡𝑎𝑠𝑘𝑠 𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑎𝑠𝑡 𝑤𝑒𝑒𝑘
.

For the recommendation frequency difference among the crowdworkers, we hope to have the crowdworkers
with the smaller recommendation frequency being ranked higher, so that the recommendation frequency
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difference of the list of crowdworkers can be balanced. Similar as Section 3.4.2, recommendation frequency
difference for a solution 𝑠 𝑗 can be calculated as follows.

RecFrqDif sj =

∑n
i=1 RecFrq(wi) × n−i+1

n∑n
i=1 RecFrq(wi)

(11)

Note that, a smaller value of recommendation frequency difference implies a better solution. The goal is to
minimize the recommendation frequency difference of a solution since we aim at having the crowdworkers
with smaller recommendation frequency being ranked higher, so as to balance the recommendation number
of times among workers and alleviate the unfairness among crowdworkers.

4 EXPERIMENT DESIGN
4.1 ResearchQuestions

• RQ1: (Performance Evaluation) How effective is iRec2.0 for crowdworker recommendation?
For RQ1, we first present some general views of iRec2.0 for worker recommendation. To further demonstrate

its advantages, we then compare its performance with five state-of-the-art and commonly-used baseline
methods (details are in Section 4.5).

• RQ2: (Context Sensitivity) To what degree iRec2.0 is sensitive to different categories of context?
The basis of this work is the characterization of the test context model (details are in Section 3.2). RQ2

examines the performance of iRec2.0 when removing different sub-category of the context, to understand the
context sensitivity of recommendation.

• RQ3: (Re-rankingGain) Howmuch is the re-ranking gain by introducing themulti-objective optimization-
based method in recommendation?

Besides the learning-based ranking component, we further design a multi-objective optimization-based
re-ranking component to adjust the original ranking. RQ3 aims at examining its role in recommendation.

• RQ4: (Optimization Quality) Do the results of iRec2.0 achieve high quality?
RQ4 is to evaluate the quality of Pareto fronts produced by our multi-objective optimization-based approach,

which can further demonstrate the effectiveness of our approach. We apply three commonly-used quality
indicators, i.e., HyperVolume (HV ), Inverted Generational Distance (IGD), and Generalized Spread (GS) (see
Section 4.4).

• RQ5: (Runtime Overhead) What is the runtime cost of iRec2.0?
Since the multi-objective optimization algorithm is commonly-known as time-consuming, RQ5 is to

investigate the runtime overhead of iRec2.0 to further demonstrate its practical value.

4.2 Dataset
We collected crowdtesting data from Baidu6 crowdtesting platform, which is one of the largest industrial
crowdtesting platform.

We collected the crowdtesting tasks that are closed between May. 1st 2017 and Nov. 1st 2017. In total, there
are 636 mobile application testing tasks from various domains (details are in our website), involving 2,404
crowdworkers and 80,200 submitted reports. For each testing task, we collected its task-related information,
all the submitted test reports and related information, e.g., submitter, device, etc. The minimum, average, and
maximum number of reports (and unique bugs) per task are 20 (3), 126 (24), and 876 (98) respectively.

4.3 Experimental Setup
To simulate the usage of iRec2.0 in practice, we employ a commonly-used longitudinal data setup [68, 72, 77].
That is, all the 636 experimental tasks were sorted in the chronological order, and then divided into 21 equally
sized folds with each fold having 30 tasks (the last fold has 36 tasks). We then employ the former N-1 folds
as the training dataset to train iRec2.0 and use the tasks in the Nth fold as the testing dataset to evaluate
the performance of worker recommendation. We experiment N from 12 to 20 to ensure a relatively stable
performance because a too small training dataset could not reach an effective model.

For each task in the testing dataset, at the triggered recPoint (see Section 3), we run iRec2.0 and other
approaches to recommend crowdworkers. We experimented recThres from 3 to 12; and due to space limit, we
6test.baidu.com
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only present the results with four representative recThres (i.e., 3, 5, 8, and 10), others demonstrate similar
trend. The size of the experimental dataset (i.e., number of total recPoint) under the four recThres are 676, 479,
345, and 278 respectively.

4.4 Evaluation Metrics
Given a crowdtesting task, we measure the performance of worker recommendation approach based on
whether it can find the “right” workers who can detect bugs, and how early it can find the first one. Following
previous studies, we use the commonly-used bug detection rate [22, 23, 75] for the evaluation.

Bug Detection Rate at k (BDR@k) is the percentage of unique bugs detected by the recommended k
crowdworkers out of all unique bugs historically detected after the recPoint for the specific task. Since a
smaller subset is preferred in crowdworker recommendation, we obtain BDR@k when k is 3, 5, 10, and 20.

Besides, as our in-process recommendation aims at shortening the non-yielding windows, we define another
metric to intuitively measure how early the first bug can be detected.

FirstHit is the rank of the first occurrence, after recPoint, where a worker from the recommended list
actually submitted a unique bug to the specific task.

Furthermore, to measure the role of re-ranking in alleviating the unfairness, we additionally obtain fair-
Rate@k to measure the frequency of the crowdworkers being recommended. Related studies utilized similar
indicator for measuring the fairness and popularity bias. For example, [5] uses the number of long tail items,
and [14] counts the amount of popular items in high positions. For fairRate@k, we first calculate the percent-
age of tasks where each crowdworker is recommended in the past one week, and then obtain the average
percentage for the top 𝑘 recommended workers in this recommendation. As BDR@k, we set 𝑘 as 3, 5, 10, and
20 since a smaller subset is preferred in crowdworker recommendation. Take fairRate@3 of a task being 80%
as an example, it denotes, for that task, the top 3 recommended workers are recommended in an average of
80% open tasks in the past week.

To further demonstrate the superiority of our proposed approach, we perform one-tailed Mann Whitney U
test [58] between our proposed iRec2.0 and other approaches. We include the Bonferroni correction [84] to
counteract the impact of multiple hypothesis tests. Besides the p-value for signifying the significance of the
test, we also present the Cliff’s delta to demonstrate the effect size of the test. We use the commonly-used
criteria to interpret the effectiveness levels, i.e., Large (0.474-1.0), Median (0.33-0.474), Small (0.147-0.33), and
Negligible (-1, 0.147) (see details in [21]).

In addition, we apply HyperVolume (HV ), Inverted Generational Distance (IGD), and Generalized Spread
(GS) to evaluate the quality of Pareto fronts produced by our multi-objective optimization-based re-ranking,
which have been widely used in existing Search-Based Software Engineering studies [26, 41, 79]. These three
quality indicators compare the results of the algorithm with the reference Pareto front, which consists of best
solution.

HyperVolume (HV ) is the combination of convergence and diversity indicator. It calculates the volume
covered by the non-dominated set of solutions from an algorithm. A higher value of HV demonstrates a better
convergence as well as diversity; i.e., higher values of HV are better. Inverted Generational Distance (IGD)
is a performance indicator. It computes the average distance between set of non-dominated solutions from the
algorithm and the reference Pareto set. A lower IGD indicates the result is closer to the reference pareto front
of a specific problem; i.e. lower values of IGD are better. Generalized Spread (GS) is a diversity indicator. It
computes the extent of spread for the non-dominated solutions found by the algorithm. A higher value of GS
shows that the results have a better distribution; i.e. higher values of GS are better. Due to the limited space,
for details about the three quality indicators, please refer to [79].

4.5 Ground Truth and Baselines
The Ground Truth of bug detection of a given task is obtained based on the historical crowdworkers who
participated in the task after the recPoint. In detail, we first rank the crowdworkers based on their submitted
reports in chronological order, then obtain the BDR@k and FirstHit based on this order.

To further explore the performance of iRec2.0, we compare iRec2.0 with five commonly-used and state-of-
the-art baselines.
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(a) FirstHit (b) BDR@k for recThres=3 (c) BDR@k for recThres=5

(d) BDR@k for recThres=8 (e) BDR@k for recThres=10

Fig. 5. Performance of iRec2.0

iRec [78]: This is the state-of-the-art crowdworker recommendation approach to recommend a diverse
set of capable crowdworkers based on the dynamic contextual information. The difference between iRec
and the newly-proposed iRec2.0 is that iRec develops a diversity-based re-ranking method to generate the
final ranking of recommended workers which aims at improving the diversity among crowdworkers, while
iRec2.0 designs a multi-objective optimization-based re-ranking method to optimize both the diversity and
the recommendation fairness.

MOCOM [75]: This is a multi-objective crowdworker recommendation approach by maximizing the bug
detection probability of workers, the relevance with the test task, the diversity of workers, and minimizing
the test cost.

ExReDiv [22]: This is a weight-based crowdworker recommendation approach that linearly combines
experience strategy, relevance strategy, and diversity strategy.

MOOSE [23]: This is a multi-objective crowdworker recommendation, which can maximize the coverage
of test requirement, maximize the test experience of workers, and minimize the cost.

Cocoon [88]: This crowdworker recommendation approach is designed to maximize the testing quality
(measured in worker’s historical submitted bugs) under the test coverage constraint.

For baseline iRec, we use the same experimental setup as the newly-proposed iRec2.0. For other four baselines,
since they are not proposed for the in-process recommendation, we conduct worker recommendation before
the task begins; then at each recPoint, we first obtain the set of worker who have submitted reports in the
specific task (denoted as white list workers), and use the recommended workers minus the white list workers
as the final set of recommended workers. Note that, the reason why take out the white list workers is because
99% crowdworkers only participated one time in a crowdtesting task in our experimental dataset; and without
the white list, the performance would be worse.

5 RESULTS AND ANALYSIS
5.1 Answering RQ1: Performance Evaluation
Figure 5a demonstrates the FirstHit of worker recommendation under four representative recThres (i.e., recThres-
sized non-yielding window is observed in Section 3), i.e., 3, 5, 8, and 10. We can easily see that for all four
recThres, FirstHit of iRec2.0 is significantly (p-value is 0.00) and substantially (Cliff’s delta is 0.23-0.39) better
than current practice of crowdtesting. When recThres is 5, the median FirstHit of iRec2.0 and Ground Truth are
respectively 4 and 8, indicating our proposed approach can shorten the non-yielding window by 50%. For
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(a) FirstHit (b) BDR@k

Fig. 6. Performance comparison with baselines

(a) FirstHit (b) BDR@k

Fig. 7. Context sensitivity

other application scenarios (i.e., recThres is 3, 8, and 10), iRec2.0 can shorten the non-yielding window by 50%
to 66%.

Figure 5b to 5e demonstrate the BDR@k of worker recommendation under four representative recThres.
iRec2.0 significantly (p-value is 0.00) and substantially (Cliff’s delta is 0.24-0.41) outperforms current practice
of crowdtesting for BDR@k (k is 3, 5, 10, and 20). When recThres is 5, a median of 50% remaining bugs can
be detected with the first 10 recommended crowdworkers by our proposed iRec2.0, with 400% improvement
compared with current practice of crowdtesting (50% vs. 10%). Besides, a median of 100% remaining bugs
can be detected with the first 20 recommended crowdworkers by iRec2.0, with 230% improvement compared
with current practice (100% vs. 30%). This again indicates the effectiveness of our approach not only for the
power in finding the first “right” workers, but also in terms of the bug detection with the set of recommended
workers.

We also notice that for a larger recThres, the advantage of iRec2.0 over current practice is larger. In detail,
when recThres is 3, iRec2.0 can improve the current practice by 150% (100% vs. 40%) for BDR@20, and when
recThres is 8, the improvement is 600% (100% vs. 14%). This holds true for other metrics. A larger recThres might
indicate the task is getting tough because no new bugs are reported in quite a long time, and our proposed
iRec2.0 can help the task get out of the dilemma with new bugs submitted very soon.

Furthermore, for the recPoint with larger FirstHit of Ground Truth, our proposed approach can shorten the
non-yielding window in a larger extent. For example, for the recPoint whose FirstHit of Ground Truth is 6
(resThres is 3), iRec2.0 can shorten the non-yielding window by 50% on median (3 vs. 6), while when FirstHit of
Ground Truth is 12 (resThres is 10), the improvement is 66% (4 vs. 12). This further indicates the effectiveness
of our approach since for recPoint with a larger FirstHit of Ground Truth, it is in higher demand for an efficient
worker recommendation so that the “right” worker can come soon.
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In the following paper, we use the experimental setting when recThres is 5 for further analysis and compari-
son due to space limit.

Comparison with Baselines. Figure 6 demonstrates the comparison results with five baselines. We first
put our focus on the last four baselines. Overall, our proposed iRec2.0 significantly (p-value is 0.00) and
substantially (Cliff’s delta is 0.16-0.25) outperforms the last four baselines in terms of FirstHit and BDR@k (k
is 3, 5, 10, and 20). Specifically, iRec2.0 can improve the best baseline MOCOM by 60% (4 vs. 10) for median
FirstHit; and the improvement is infinite for median BDR@k (e.g., 100% vs. 0 for BDR@20). This is because
all these baselines are designed to recommend a set of workers before the task begins and don’t consider
various context information of the crowdtesting process. Besides, the aforementioned baseline approaches
do not explicitly consider the activeness of crowdworkers which is another cause of performance decline.
Furthermore, the baselines’ performance are similar to each other which is also due to their limitations of
lacking contextual details in one-time worker recommendation

For our previous proposed iRec, the newly-proposed iRec2.0 has the same median BDR@k for 𝑘 is 3, 5, and
10, and has better median BDR@20 than iRec. Furthermore, iRec2.0 outperforms iRec in the average BDR@k
(k is 3, 5, 10, and 20). For example, iRec2.0 can improve the average BDR@3 by 20% (25% vs. 21%), and can
improve the average BDR@10 by 10% (53% vs. 48%). iRec2.0 has the same median FirstHit, and is slightly (7%)
inferior in the average FirstHit, i.e., 7.78 vs. 7.21. Overall, the newly-proposed iRec2.0 is better than iRec in bug
detection performance. This is because iRec utilizes the greedy strategy in optimizing the diversity among
crowdworkers, while iRec2.0 designs a multi-objective optimization-based method which has better chances
in achieving more optimized solution.

5.2 Answering RQ2: Context Sensitivity
Figure 7 shows the comparison results between iRec2.0 and its seven variants. Specifically, noAct, noPref,
noExp, and noDev are different variants of iRec2.0 without activeness, preference, expertise, and device
context respectively. Because process context cannot be removed, noProc denotes using the process context
at the beginning of a task. noRsr denotes using the resource context at the beginning of the task to further
demonstrate the necessity of precise context modeling. We additionally add noRank which denotes using the
random list of crowdtesting workers as the initial ranking for the re-ranking optimization.

We can see that without any type of the resource context (i.e., noAct, noPref, noExp, and noDev), the
recommendation performance would undergo a decline in both FirstHit and BDR@k. Without activeness-
related context, the FirstHit of the recommended workers undergoes a largest variation, i.e., the most sensitive
context for recommendation. This might be because this dimension of features is the only one for capturing
time-related information, and without them, the model would lack important clues for the crowdworkers’
time-series behavior. Preference-related context exerts a slightly larger influence on the recommendation
performance than expertise-related context, although they are modeled similarly. This might because many
crowdworkers submitted reports but didn’t report bugs, so preference-related context is more informative
than experience-related context, thus we can build more effective learning model. The lower performance of
noProc and noRsr compared with iRec2.0 further indicates the necessity of the precise context modeling.

In addition, we can also see that with the randomly generated initial rank, iRec2.0 performs bad. For instance,
with iRec2.0, a median of 50% remaining bugs can be detected with the first 10 recommended crowdworkers,
while this number declines to 10% when the initial ranking does not exist. This is because the initial ranking
learns the successful knowledge about the bug detection potential of crowdworkers from historical tasks, and
has great indicative effect on their bug detection performance on this new task. Without such information, the
optimization-based reranking lacks of the guidance of finding capable workers in bug detection, and would
act like searching a diverse set of workers based on expertise, device, etc.

5.3 Answering RQ3: Re-ranking Gain
Table 3 demonstrates the average bug detection performance of iRec2.0, iRec2.0 without re-ranking, and iRec,
followed by the improvement of iRec2.0. We can see that with the re-ranking component, the average bug
detection performance can be improved by 6.8% to 38.8%. Specifically, the re-ranking can increase the BDR@3
by 38.8% and increase the BDR@10 by 29.2%. This is because there are large amount of duplicate bugs, and
increasing the expertise diversity and device diversity of recommended workers can help decrease the duplicate
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bugs so as to increase the unique bugs. Furthermore, for all the investigated 𝑘 in BDR@k, the re-ranking can
improve the bug detection rate, indicating no matter how many crowdworkers are recommended, the bug
detection performance can be improved. This is because we employ the multi-objective optimization-based
re-ranking method to optimize the re-ranking list which can help adjust the whole re-ranking and improve it
at each inspected point.

The extended iRec2.0 outperforms its pioneer iRec in most metrics for bug detection performance, which
has been illustrated in Section 5.1. Nevertheless, a slight decrease in FirstHit of iRec2.0 is observed, i.e., from
7.78 to 7.21, possibly because the fair-oriented re-ranking would occasionally compromise bug detection
performance of recommended crowdworkers, especially in hitting the first correct worker.

Table 4 presents the average recommendation fairness fairRate@k of iRec2.0, iRec2.0 without re-ranking,
and iRec, followed by the improvement of iRec2.0. We can see that, before applying re-ranking, fairRate@5 is
62.2% and fairRate@20 is 48.9%, indicating the top 5 recommended crowdworkers have been recommended in
62% tasks in the past one week, and when we consider the top 20 recommended crowdworkers, this ratio is
48%. After applying re-ranking, the top 5 recommended crowdworkers are only recommended in 7% tasks in
the past one week, and the top 20 recommended crowdworkers are only recommended in 26% tasks in the
past one week. The dramatic reduction of recommendation frequency of top workers shows that iRec2.0 is
able to mitigate popularity bias and produces more fair recommendations. Also, remember that, it can retain
or increase the bug detection efficiency in the meanwhile.

Table 3. Role of re-ranking in bug detection

FirstHit BDR@3 BDR@5 BDR@10 BDR@20
Average performance

iRec2.0 7.78 25.3% 36.0% 53.0% 68.1%
iRec2.0 without re-ranking 8.35 18.4% 26.7% 41.6% 59.1%
iRec 7.21 21.5% 32.1% 48.6% 67.1%

Improvement
iRec2.0 vs. iRec2.0 without re-ranking 6.8% 38.8% 38.4% 29.2% 15.2%
iRec2.0 vs. iRec -7.9% 17.6% 12.1% 9.1% 1.5%

Table 4. Role of re-ranking in alleviating unfairness

fairRate@3 fairRate@5 fairRate@10 fairRate@20
Average performance

iRec2.0 5.6% 7.4% 12.9% 26.1%
iRec2.0 without re-ranking 61.1% 62.2% 57.6% 48.9%
iRec 60.2% 54.3% 41.4% 34.9%

Improvement
iRec2.0 vs. iRec2.0 without re-ranking 90.8% 88.1% 77.6% 47.8%
iRec2.0 vs. iRec 90.6% 86.3% 68.8% 26.9%

When compared with iRec, the newly-proposed iRec2.0 also outperform it in all the evaluation metrics,
with 47% to 90% improvement.

We have also counted the percentage of tasks each crowdworker would take per week in our experimental
crowdtesting platform, and the ratio is 25%, which is almost equal with our recommendation frequency
for the top 20 crowdworkers. This indicates, when we send the recommendation invitation to the top 20
crowdworkers produced by our approach, the recommendation frequency received by the crowdworker is
similar with the frequency he/she takes the tasks. This further implies the potential practicability of our
worker recommendation approach in real-world crowdtesting scenario.

5.4 Answering RQ4: OptimizationQuality
Since iRec2.0 is a multi-objective optimization-based approach, which produces Pareto fronts, this research
question is to evaluate the quality of Pareto front, i.e., the quality of optimization. Three commonly-used
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Fig. 8. Quality of optimization

quality indicators, i.e., HyperVolume (HV ), Inverted Generational Distance (IGD), and Generalized Spread
(GS) [79], are applied. For each experiment, we present the value of each quality indicator obtained by iRec2.0
in Figure 8.

We can see that most experiments have very high HV values, very low IGD values and very high GS values.
The average HV is 0.79, the average IGD is 0.01, and the average GS is 0.83. This denotes our optimization has
achieved high quality. Existing researches on test case selection and worker selection achieve similar results
[23, 26]. This further suggests that the results of iRec2.0 have high quality.

5.5 Answering RQ5: Runtime Overhead
The runtime overhead of iRec2.0 is composed of two parts: the training of learning-based ranking model and
the crowdworker recommendation. The training of learning-based ranking model consumes 4.35 minutes;
yet it can be conducted offline and would not influence the application of iRec2.0 in real-world practice. The
crowdworker recommendation consumes an average of 4.24 seconds (the minimum is 0.92 seconds and the
maximum is 6.68 seconds) for all experiment runs. The small runtime overhead of iRec2.0 again implies its
practical value in real-world crowdtesting scenario.

6 DISCUSSION
6.1 Benefits of In-process Recommendation
In-process worker recommendation has great potential to facilitate talent identification and utilization for
complex, intelligence-intensive tasks. As presented in the previous sections, the proposed iRec2.0 established
the crowdtesting context model at a dynamic, finer granularity, and constructed two methods to rank and
re-rank the most suitable workers based on dynamic testing progress. In this section, we discuss with more
details about why practitioners should care about such kind of in-process crowdworker recommendation.

(a) at report#32 (b) at report#86

Fig. 9. Illustrative examples of iRec2.0
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We utilize illustrative examples to demonstrate the benefits of the application of iRec2.0. Figure 9 demon-
strates two typical bug detection curve using iRec2.0 for two recPoint of the task in Figure 1a. We can easily
see that with iRec2.0, not only the current non-yielding window can be shortened, but also the following
bug detection efficiency can be improved with the recommended set of workers. In detail, in Figure 9a, we
can clearly see that with the recommended workers, the bug detection curve can rise quickly, i.e., with equal
number of workers, more bugs can be detected. Also note that, in real-world application of iRec2.0, the
in-process recommendation can be conducted dynamically following the new bug detection curve so that
the bug detection performance can be further improved. In Figure 9b, although the bug detection curve can
not always dominate the current practice, the first “right” worker can be found earlier than current practice.
Similarly, with the dynamic recommendation, the current practice of bug detection can be improved.

Table 5. Reduced cost with iRec2.0

recThres=3 recThres=5 recThres=8 recThres=10
1st-quarter 4.8% 4.2% 2.7% 2.8%
median 12.1% 9.8% 8.6% 8.1%
3rd-quarter 21.3% 18.6% 16.7% 16.4%

Based on the metrics in Section 4.4 that are applied for single recPoint, we further measure the reduced
cost for each crowdtesting task if equipped with iRec2.0 for in-process crowdworker recommendation. It
is measured based on the number of reduced report, i.e., the difference of FirstHit value between iRec2.0
and Ground Truth, following previous work [75, 77]. For a crowdtesting task with multiple recPoint, we
simply add up the reduced cost of each recPoint. As shown in Table 5, a median of 8% to 12% cost can be
reduced, indicating about 10% cost can be saved if equipped with our proposed approach for in-process
crowdworker recommendation. Note that, this figure is calculated by simply summing up the reduced cost of
single recPoint based on the offline evaluation scenario adopted in this work. However, as shown in Figure 9,
in real-world practice, the recommendation can be conducted based on the bug arrival curve after the prior
recommendation; and the reduced cost should be further improved. Therefore, crowdtesting managers could
benefit tremendously from actionable insights offered by in-process recommendation systems like iRec2.0.

6.2 Implication of In-process Recommendation
Nevertheless, in-process crowdworker recommendation is a complicated, systematic, human-centered problem.
By nature, it is more difficult to model than the one-time crowdworker recommendation at the beginning
of the task. This is because the non-yielding windows are scattered in the crowdtesting process. Although
the overall non-yielding reports are in quite large number, some of the non-yielding windows are not long
enough to apply the recommendation approach or let the recommendation approach work efficiently. Our
observation reveals that an average of 39% cost is wasted on these long-sized non-yielding windows (see
Section 2.2), but the reduced cost by our approach is only about 10% which is far less than the ideal condition.
From one point of view, this is because the front part of the non-yielding window (i.e., recPoint in Section 3)
could not be saved because it is needed for determining whether to conduct the worker recommendation. And
from another point of view, there is still room for performance improvement.

On the other hand, the true effect of in-process recommendation depends on the potential delays due to
interactions between the testing manager, the platform, and the recommended workers. The longer the delays
are, the less the benefit can take effect. It is critical for crowdtesting platforms, when deploying in-process
recommendation systems, to consider how to better streamline the recommendation communication and
confirmation functions, in order to minimize the potential delays in bridging the best workers with the tasks
under test. For example, the platform may employ instant synchronous messaging service for recommendation
communication, and innovate rewarding system to attract more in-process recruitment. More human factor-
centered research is needed along this direction to explore systematic approaches for facilitating the adoption
of in-process recommendation systems.

6.3 Objectivity vs. Fairness
The crowdworker recommendation of this study lies in the characterization of workers learned from historical
data of the crowdtesting platform, as well as fairness-aware adjustment to alleviate popularity bias. In another
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word, the generated recommendation results is a list of crowdworkers reflecting the multi-objective optimiza-
tion results of balanced objectivity and fairness goals. This advances existing objectivity-only approached
such as iRec, which leads to overloaded expert workers and potential bottleneck resources.

However, like other history-based recommendation [34, 82], the proposed approach also suffers from the
cold-start problem [89], i.e., unable to provide recommendation for newcomers who do not own any history
yet. To accommodate cold-start problems, one can use a calibrated characterization for newcomers, e.g.,
incorporate such static attributes of the workers as occupation, interest for modeling. By summarizing hot
technical aspects from recent open tasks, a decision tree type of preference/expertise questionnaire can be
formulated and is presented to the new comers, so that a default worker characterization can be configured
for the new comers and used for recommendation systems like iRec2.0.

From another point of view, ranking of people and items are at the heart of selection-making, match-making,
and recommender systems, ranging from e-commerce to crowdsourcing platforms. As ranking positions
influence the amount of attention the ranked subjects would receive, biases in rankings can lead to unfair
distribution of opportunities and resources such as buy decisions [5, 13]. Existing work focused on the equity
of attention when talking about the fairness, and they think it is the true fairness [7, 13, 15].

However, in crowdworker recommendation, we also observed that different crowdworkers tend to have
different working habit and affordable workload, e.g., some workers constantly take less than three tasks a
week while other workers can finish ten tasks a week in our experimental dataset. Considering this difference,
we argue the equity of attention is far from the true fairness in worker recommendation scenario, and
recommending tasks in accordance of each crowdworker’ aptitude might be preferred. Nevertheless, the true
fairness is very challenging to define and achieve, and requires future human-centered design research to
explore it.

6.4 Threats to Validity
First, following existing work [75, 77], we use the number of crowdtesting reports as the amount of cost when
measuring the reduced cost. As discussed in [77], the reduced cost is equal with or positively correlated with
the number of reduced reports for all the three typical payout schemas.

Second, the recommendation is triggered by the non-yielding window, which is obtained based on report’s
attributes. In crowdtesting process, each report would be inspected and triaged with these two attributes
(i.e., bug label and duplicate label) so as to better manage the reported bugs and facilitate bug fixing [32, 95].
This can be done manually or with automatic tool support (e.g., [72, 73]). Therefore, we assume our designed
methods can be easily adopted in the crowdtesting platform.

Third, we evaluate iRec2.0 in terms of each recommending point, and sum up the single performance as
the overall reduced cost. This is limited by the offline evaluation, which is quite common choice of previous
worker recommendation approaches in SE [16, 39, 45, 68, 90]. In real-world practice, iRec2.0 can be applied
dynamically based on the new bug arrival curve formed by the prior recommended crowdworkers. We assume
when applied online, the reduction of cost should be larger because the later recommendation can be based on
the results of prior recommendation which is proven to be efficient compared with current practice.

Fourth, for the generalizability of our approach, a recent systematic review [1] has shown current crowdtest-
ing services are dominated by functional, usability, and security test of mobile applications. The dataset used
in our study is largely representative of this trend, with 632 functional and usability test tasks spanning across
12 application domains (e.g., music, sport). The proposed approach is based on dynamically constructing
the testing context model using NLP techniques, learning-based or optimization-based ranking (re-ranking),
which is independent of different testing types. We believe that the proposed approach is generally applicable
to supporting other testing types such as security and performance testing, since more sophisticated skillsets
reflecting these specialty testing may be implicitly represented by corresponding descriptive terms learned in
the dynamic context. Therefore, the learning and optimization components will not be affected and can be
reused. Further verification on other testing types or scenarios is planned as our future work.

7 RELATEDWORK
Crowdtesting has been applied to facilitate many testing tasks, e.g., test case generation [20], usability
testing [37], software performance analysis [57], software bug detection and reproduction [36]. There were
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dozens of approaches focusing on the new encountered problems in crowdtesting, e.g., crowdtesting reports
prioritization [29, 30, 46], reports summarization [40], reports classification [72–74, 76], automatic report
generation [48], crowdworker recommendation [22, 23, 75, 88], crowdtesting management [77], etc.

There were many lines of related studies for recommending workers for various software engineering tasks,
such as bug triage [10, 12, 45, 53, 59, 68, 80, 81, 87, 90, 94], code reviewer recommendation [27, 39, 93], expert
recommendation [16, 51], developer recommendation for crowdsourced software development [47, 52, 91, 92],
worker recommendation for general crowdsourcing tasks [9, 49, 65], etc. The aforementioned studies either
recommended one worker or assumed the recommended set of workers are independent of each other, which
is not applicable for testing activity.

Several studies explored worker recommendation for crowdtesting tasks by modeling the workers’ testing
environment [75, 88], experience [22, 88], capability [75], expertise with the task [22, 23, 75], etc. However,
these existing worker recommendation solutions only apply at the beginning of the task, and do not consider
the dynamic nature of crowdtesting process.

The need for context in software engineering is officially proposed by Prof. Gail Murphy in 2018 [55, 56],
and she stated that the lack of context in software engineering tools would limit the effectiveness of software
development. Context-related information has been utilized in various software development activities, e.g.,
code recommendation [33], software documentation [8], static analysis [42], etc. This work provides new
insights about how to model and utilize the context information in open environment.

The growing ubiquity of data-driven learning models in algorithmic decision-making has recently boosted
concerns about the issues of fairness and bias. Friedman defined that a computer system is biased “if it
systematically and unfairly discriminates against certain individuals or groups of individuals in favor of
others” [31]. For example, job recommenders can target women with lower-paying jobs than equally-qualified
men [28]. News recommenders can favor particular political ideologies over others [50]. And even ad rec-
ommenders can exhibit racial discrimination [67]. The fairness in data-driven decision-making algorithms
(e.g., recommendation systems) requires that similar individuals with similar attributes, e.g., gender, age, race,
religion, etc., be treated similarly. For instance, the fairness-aware news recommendation aims at alleviating
the unfairness in news recommendation brought by the biases related to sensitive user attributes like genders
[85]. Geyik et al. proposed a framework for fairness-aware ranking of job searching results based on desired
proportions over the protected attribute such as gender or age [35].

Another type of unfairness in recommendation systems, which is also well studied by researchers [5–
7, 15, 54, 62], is the problem of popularity bias, i.e., popular items are being recommended too frequently
while the majority of other items do not get the deserved attention. However, less popular, long-tail items
are precisely those that are often desirable recommendations. A market that suffers from popularity bias
will lack opportunities to discover more obscure products and will be dominated by a few large brands or
well-known artists [18]. Such a market will be more homogeneous and offer fewer opportunities for innovation
and creativity [7]. To tackle this, Abdollahpouri et al. proposed a regularization-based framework to enhance
the long-tail coverage of recommendation lists and balance the recommendation accuracy and coverage [5].
Borges et al. proposed a method that penalizes scores given to items according to historical popularity for
mitigating the bias [14].

In crowdworker scenario as this work, we did not observe the sensitive user attributes towards which the
recommendation is biased. And the fairness in this work refers to the popularity bias in the crowdworker
recommendation results, which is mentioned in the pilot study.

There were researches exploring the fairness problems and solutions in various areas, e.g., e-commerce
product recommendation [5, 62], search engine [13, 15], employment [64], etc. This paper focuses on alleviating
the unfairness in worker recommendation which is another important application scenario. Existing work
suggests fairness pipeline [11] for detecting and mitigating algorithmic bias that introduces unfairness
or inequality. The fairness pipeline handles different bias through pre-processing to remove data bias, in-
processing to address algorithm bias, post-processing to mitigate recommendation bias [38, 71]. In this study,
we attempt to address the popularity bias and alleviate the unfairness by formulating the fairness-aware
optimization problem, which falls into the in-processing category.
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8 CONCLUSIONS
Open software development processes, e.g. crowdtesting, are highly dynamic, distributed, and concurrent. Ex-
isting worker recommendation studies largely overlooked the dynamic and progressive nature of crowdtesting
process, as well as the popularity bias among the crowdworkers.

This paper proposed a context- and fairness-aware in-process crowdworker recommendation approach,
iRec2.0, to bridge this gap. Built on top of a fine-grained context model, iRec2.0 incorporates the learning-based
ranking component and multi-objective optimization-based re-ranking component for worker recommen-
dation. The evaluation results demonstrate its potential benefits in shortening the non-yielding window,
improving bug detection efficiency, and alleviating the unfairness in the recommendations.

Directions of future work include: 1) design and conduct user study to validate the usage of iRec2.0; 2)
further evaluate iRec2.0 on cross-platform datasets; 3) incorporate more context-related information to improve
the performance; and 4) explore the true fairness with human-centered design researches.
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