
Leveraging Change Intents for Characterizing and Identifying
Large-Review-Effort Changes

Song Wang∗

wangsong@eecs.yorku.ca
York University

Chetan Bansal
chetanb@microsoft.com

Microsoft Research

Nachiappan Nagappan
nachin@microsoft.com

Microsoft Research

Adithya Abraham Philip
adithyaphilip@gmail.com
Microsoft Research India

ABSTRACT
Code changes to software occur due to various reasons such
as bug fixing, new feature addition, and code refactoring.
In most existing studies, the intent of the change is rarely
leveraged to provide more specific, context aware analysis.

In this paper, we present the first study to leverage change
intent to characterize and identify Large-Review-Effort (LRE)
changes regarding review effort—changes with large review
effort. Specifically, we first propose a feedback-driven and
heuristics-based approach to obtain change intents. We then
characterize the changes regarding review effort by using
various features extracted from change metadata and the
change intents. We further explore the feasibility of auto-
matically classifying LRE changes. We conduct our study on
a large-scale project from Microsoft and three large-scale
open source projects, i.e., Qt, Android, and OpenStack. Our
results show that, (i) code changes with some intents are
more likely to be LRE changes, (ii) machine learning based
prediction models can efficiently help identify LRE changes,
and (iii) prediction models built for code changes with some
intents achieve better performance than prediction models
without considering the change intent, the improvement in
AUC can be up to 19 percentage points and is 7.4 percent-
age points on average. The tool developed in this study has
already been used in Microsoft to provide the review effort
and intent information of changes for reviewers to accelerate
the review process.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;
Programming teams.

∗Work done while interning at Microsoft.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
PROMISE’19, September 18, 2019, Recife, Brazil
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7233-6/19/09. . . $15.00
https://doi.org/10.1145/3345629.3345635

KEYWORDS
Code review, change intent, review effort, machine learning

ACM Reference Format:
Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya
Abraham Philip. 2019. Leveraging Change Intents for Charac-
terizing and Identifying Large-Review-Effort Changes. In The
Fifteenth International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE’19), September
18, 2019, Recife, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3345629.3345635

1 INTRODUCTION
Code changes to software occur due to various reasons such
as bug fixing, feature addition, and code refactoring. Often
different changes have different motivations on behalf of the
developers. For example, it is possible that a code merge,
refactoring change, new feature addition all have different risk
profiles due to the fact that they are different types of work
actions performed by developers. In the past, in the large
body of existing work about change analysis [10, 18, 27, 30],
changes are all considered to be uniform. It is our goal in the
paper to investigate if all changes are equal or if using the
change intent for an example scenario of effort prediction,
i.e., predicting changes that require large review effort, would
result in building better, more accurate context-aware models.

This paper presents the first study to leverage change
intent [6, 41] to characterize and understand Large-Review-
Effort (LRE) changes, i.e., changes that have more than two
iterations of code review. Other changes are treated as regular
changes. In this study, we characterize the uniqueness of
the LRE changes by using various features collected from
the change metadata and the change intents, and explore the
feasibility of automatically identifying the LRE changes by
building machine learning based classifiers.

First, for understanding the change intent, following ex-
isting studies [15, 16, 22, 23], we use heuristics to annotate
changes with different change intents by analyzing the com-
mit messages, e.g., changes made for fixing bugs are labeled
as ‘Bug Fix’. As revealed in existing studies [8, 29], soft-
ware changes could be made for multiple purposes, e.g., a
change could be made for correcting bugs and refactoring
existing code at the same time. In this study, we also label
changes with multiple intents. For obtaining accurate change
intents, we propose a feedback-driven approach to design

https://doi.org/10.1145/3345629.3345635
https://doi.org/10.1145/3345629.3345635

PROMISE’19, September 18, 2019, Recife, Brazil Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip

and refine the heuristics. Our manual evaluation shows the
heuristics for categorizing changes achieve an accuracy higher
than 80%. By using the change intents, we further analyse
the statistical difference between regular changes and LRE
changes, e.g., the distribution and the rate of LRE changes
with different change intents. Second, in order to character-
ize the changes, we have collected various features from the
metadata of changes and change intents, such as the process
features [18, 49, 50], author information and experience, and
the Word2Vec [5, 28] features generated from the commit
messages to represent the changes. Correlation analysis shows
that more than 70% of the features are correlated with the
code review effort of changes. Third, based on the collected
features, we further explore the feasibility of building machine
learning based prediction models to classify the changes with
and without considering the change intents.

This paper makes the following contributions:
∙ We propose a feedback-driven and heuristics-based

approach to classify code changes into different change
intents accurately for understanding changes.

∙ We show that change intents have a strong correla-
tion with the review effort of the changes and changes
with some intents are more likely to have more review
iterations.

∙ We explore the feasibility of leveraging machine learn-
ing models to identify LRE changes on one project from
Microsoft (referred to as Microsoft project) and three
open source projects, i.e., Qt, Android, and OpenStack.
Experiment results suggest that machine learning based
models can be used to identify LRE changes. Random
Forest, which is the best prediction model in our ex-
periments, achieves AUC values larger than 0.71 on
each of the four projects.

∙ We show that code review effort prediction models
built on changes with particular change intents achieve
better performance than the general prediction models
that do not consider the change intents. The tool devel-
oped in this study has already been used in Microsoft
to provide the review effort and intent information of
changes for reviewers to accelerate the review process.

The rest of this paper is organized as follows. Section 2
presents the background and motivation. Section 3 describes
the methodology of our approach. Section 4 shows the ex-
perimental setup. Section 5 presents the evaluation results.
Section 6 discusses open questions and the threats to the
validity of this work. Section 7 presents the related studies.
Section 8 concludes this paper.

2 BACKGROUND AND MOTIVATION
Code changes could be problematic, e.g., they may introduce
quality issues such as bugs, improper implementations, and
maintenance issues. As a consequence, reviewing them could
require much more code review effort. This study focuses
on exploring the code review effort of changes. Specifically,
based on the consensus of developers from Microsoft, we
define a Large-Review-Effort (LRE) change as a code change
that has more than two iterations of code review, e.g., if a

Microsoft Qt Android OpenStack
0

200

400

600

800

Figure 1: The distributions of review durations (hour) for regular
and LRE changes. Gray bars () denote regular changes, light gray
bars () denote LRE changes.

Microsoft Qt Android OpenStack
0

5

10

15

Figure 2: The distributions of #reviewers involved for reviewing
changes. Gray bars () denote regular changes, light gray bars ()
denote LRE changes.

code change cannot pass the first iteration of code review,
developers have to conduct a second iteration of code review
and even more iterations until they resolve all the review
suggestions posted by reviewers. Other changes are treated
as regular changes.

In this section, we motivate this study by showing the
review effort of regular and LRE changes, i.e., review duration
and the number of reviewers involved. Specifically, for each
regular change and LRE change from the four projects in
Table 1, we collect its duration in the code review system and
the number of reviewers involved. A reviewer is involved if
s/he is in the “Reviewers” field. We use the difference between
the submission timestamp and the resolution timestamp of a
review request of a change to assess its review duration. Note
that we use the review duration to estimate the time effort of
reviewing a change, since the exact time cost to review each
change is not recorded in the code review systems. We then
average the review duration and the number of reviewers
involved for all changes for each project.

Figure 1 shows the distribution of review duration for each
project. As shown in the figure, the average review duration
of LRE changes could be 10X of that for regular changes
(in project Android). Figure 2 shows the distribution of the
number of reviewers involved to review both the regular
changes and LRE changes. As we can see, on average review-
ing the LRE changes requires more reviewers to collaborate
together than reviewing the regular changes in each of the
four projects.

We further conduct the Mann-Whitney U test (p < 0.05)
to compare the differences of review duration and the number
of involved between the two groups of changes. The results
suggest that the review duration and the number of involved
of LRE changes are significantly larger than that of regu-
lar changes respectively. Intuitively, finding LRE changes
when they are submitted for code review, i.e., pre-merge
and pre-deployment, can provide the review effort and intent
information of changes for reviewers to accelerate the review
process.

Leveraging Change Intents for Characterizing and Identifying Large-Review-Effort Changes PROMISE’19, September 18, 2019, Recife, Brazil

Table 1: Projects used in this study. #CR is the number of changes.
LRERate is the rate of LRE changes.

Project Lang First Date Last Date #CR LRERate (%)
Microsoft C# 5/05/2015 5/22/2018 >100K ∼15
Qt C 5/17/2011 5/25/2012 23,041 39.28
Android JAVA 7/18/2011 5/31/2012 7,120 31.75
OpenStack Python 7/18/2011 5/31/2012 6,430 43.31

3 APPROACH

Figure 3: The overview of our LRE change prediction approach.

Figure 3 illustrates that our approach consists of four steps:
(1) labeling each history change as a regular change or a LRE
change (Section 3.1), (2) analyzing the change intents of all
the changes (Section 3.2), (3) extracting features to represent
the changes (Section 3.3), and (4) using the features and labels
to build and train prediction models and then predicting new
changes with the well-trained models (Section 3.4).
3.1 Labeling LRE Changes
The first step of our approach is to label each change as a
regular change or a LRE change based on its code review
history. Specifically, for the Microsoft project, we extracted
its code review database, and checked the code review itera-
tion count for each change, if it has more than two iterations
of code review, we labeled it as a LRE change (based on
the consensus of developers from Microsoft) otherwise we
labeled it as a regular change. For the three open-source
projects, since their code review systems do not maintain the
code review iteration count, we use a heuristic approach to
collect the regular and LRE changes. Specifically, in their
code review system, a code review request of a change may
have multiple iterations of code review, for each iteration,
developers may submit a patchset to be reviewed, a patch-
set may have multiple patches. We counted the number of
patchset for each code change. If the number of submitted
patchsets is larger than two, we labeled the change as LRE
otherwise we labeled it as regular.
3.2 Intent Analysis
Many approaches have been proposed to characterize and
classify changes based on the change intents [1, 16, 33, 41].
Most of them consider the high-level change intents, e.g.,
corrective, adaptive, or perfective [41]. In this study, we lever-
age the fine-grained change intent categories proposed in
Hindle et al. [16], which is shown in its Table 3, to categorize
changes. Note that there are more than 20 different cate-
gories described in [16]. We started with manual analysis on
randomly selected 200 changes from the four projects, and
found that some of the categories have very few numbers of
changes, e.g., ‘Legal’, ‘Build’, ‘Branch’ have less than three

changes. We then group the small categories into larger ones
for obtaining more instances. For example, we have grouped
‘Legal’, ‘Data’, ‘Versioning’, ‘Platform Specific’, and ‘Doc-
umentation’ into ‘Resource’, grouped ‘Rename’ and ‘Token
Replace’ into ‘Refactor’, etc. Finally, we use eight types of
change intents to categorize changes. Note that we also have
an ‘Other’ category for changes that do not fall into any of
the eight categories.

Table 2 shows the nine types of changes, their descrip-
tions, and the heuristics we used to automatically classify
changes. Instead of manually labeling changes, in this work
we automate the classification process by using well-refined
heuristics. Thus, the accuracy of heuristics could significantly
affect the result of this study. To improve the accuracy of the
classification of changes, we used a feedback-driven approach
to design and refine the heuristics for each type of change
intents and the details are as follows:

Step 1: With a randomly selected 200 instances, the first
two authors first classify them into the nine categories manu-
ally and independently. Specifically, after reading the commit
message and checking the changed files of a change, they
label the change based on their experience. For the classifica-
tion conflicts (less than 5%), the third author inspects them
independently and the first three authors make a decision
for each conflict together. Then they initialize the heuristics
for each category. We use 𝐶𝑜ℎ𝑒𝑛′𝑠𝐾𝑎𝑝𝑝𝑎1 to measure the
inter-coder reliability of Step 1 and the score is 0.91.

Step 2: With the initialized heuristics, we classify all
changes into at least one of the nine categories. For each
category, we randomly collect 50 instances and the authors
work together to check its accuracy manually.

Step 3: If the accuracy of a category is lower than 80%, we
further refine the heuristics and then redo Step 2, otherwise
we keep the heuristics for classifying changes.

Taking the ‘Test’ category as an example, in Step 1, we
found that most changes from it have keywords “test” or “test-
ing" in their commit messages. Thus, the initialized heuristics
we designed for ‘Test’ is that the commit message of a change
contains the keywords “test”. In Step 2, we randomly checked
50 of the collected changes labeled as ‘Test’. Our manual
inspection revealed that almost half of them were false pos-
itives, and we also found that most of the false positives
have irrelevant commit messages, e.g., “... use backup config
if test fails ...” and “... send a test message ...”. To improve
the heuristics, in Step 3, we added another heuristic, which
is the changed files can only be test files (e.g., file names or
paths contain the keyword “test”) or resource files. Then we
redo Step 2 again, by using the new heuristics, the accuracy
of ‘Test’ category is around 90%.

We use the above steps to refine the heuristics of each
category to ensure the classification of change intents has
higher accuracy. Table 2 shows the final heuristics.
3.3 Feature Extraction
In this study, we use the following features for building ma-
chine learning based LRE change prediction models.
1https://en.wikipedia.org/wiki/Cohen%27s_kappa

https://en.wikipedia.org/wiki/Cohen%27s_kappa

PROMISE’19, September 18, 2019, Recife, Brazil Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip

Table 2: Heuristics for categorizing changes.
Change Intent Description Heuristics

Bug Fix changes are made to fix bugs 1. the commit message contains keywords: “bug” or “fix” AND
2. the commit message does not contain keywords: “test case” or “unit test”

Resource changes are made to update non-source code resources,
configurations, or documents

1. the commit message contains keywords: “conf” or “license” or “legal”
OR 2. if no keyword is matched in step 1, the changed files do not involve
any source/test files

Feature changes are made to implement new or update existing
features

1. the commit message contains keywords: “update” or “add” or “new” or
“create” or “add” or “implement feature”
OR 2. changes in the ‘Other’ category that contain keywords: “enable”
or “add” or “update” or “implement” or “improve”

Test changes are made to add new or
update existing test cases

1. the commit message contains the keyword: “test”
OR 2. the changed files contain only test files or resource files

Refactor changes are made to refactor existing code the commit message contains the keyword: “refactor”

Merge changes are made to merge branches the commit message contains keywords: “merge” or
“merging” or “integrate” or “integrated” or “integrated”

Deprecate changes are made to remove deprecated code the commit message contains keywords: “deprecat” or “delete” or “clean up”

Auto changes that are committed by automated
accounts or bots the change is submitted by automated accounts or bots

Others changes that are not in any of the above categories -

Change Intent: As code changes could be classified into
different categories based on their intents, we assume that
changes with different intents have different impacts on the
review effort of changes. We use a vector to represent the
change intents of a change. Each element in the vector is a
binary value, i.e., 1 or 0, representing whether the change
has that intent or not. The change intents we considered are
listed in Table 2.

Revision History: As presented in previous research [20],
the revision history of a file can be a factor to predict its
quality. In this study, we also explore the impact of revi-
sion history on predicting LRE changes. Specifically, given
a change, we collect the number of files in this change that
have been revised in the last 30 and 90 days, and the number
of revision on all the involved files of this change in the last
30 and 90 days.

Owner Experience: This set of features represent the expe-
rience of a change’s committer. We use a committer’s commit
history information to represent her/his experience, which
includes the total number of changes submitted, the total
number of LRE changes submitted, and the rate of submitted
LRE changes. We assume that the committer’s experience
affects the review effort of the changes s/he submitted.

Word2Vec Features: Word embedding is a feature learning
technique in natural language processing where individual
words are no longer treated as unique features, but repre-
sented as a 𝑑-dimensional vector of real numbers that capture
their contextual semantic meanings [28]. We train the em-
bedding model by using all data from each project. With
the trained word embedding model, each word can be trans-
formed into a 𝑑-dimensional vector where 𝑑 is set to 100 as
suggested in previous studies [47]. Meanwhile a code change
can be transformed into a matrix in which each row repre-
sents a term in its commit message. We then transform the
code change matrix into a vector by averaging all the word
vectors the code change contains, as described in [47].

Process Features: Various process features have been shown
to help predict software bugs [18, 34]. In this study, we use
the following process features: code addition, code deletion,
number of changed files, and the types of changed files. Note

that for the types of changed files, following existing stud-
ies [16, 17], we group files into source files, test files, config-
uration files, scripts, documentations, and others based on
their suffixes and file paths. Specifically, we consider files with
extensions: .java, .cs, .py, .js, .c, .cpp, .cc, .cp, .cxx, .c++, .h,
.hpp, .hh, .hp, .hxx, and .h++, as the source files. Among
them, files that contain ‘test’ in the paths or file names are
considered as test files. Files with extensions: .script, .sh,
.bash are considered as scripts. Files with extensions: .xml,
.conf, .MF are considered as configuration files. Files with
extensions: .htm, .html. .css, .txt, are considered as documen-
tation files. The left files are considered as others.

Metadata: In addition to the above features, we also use
metadata features of changes. Specifically, given a code change,
we collect its commit minute (0, 1, 2, ... , 59), commit hour
(0, 1, 2, ... , 23), commit day in a week (Sunday, Monday, ... ,
Saturday), commit day in a month (0, 1, 2, ... , 30), commit
month in a year (0, 1, 2, ... , 11), and source file/path names.

All the features we used are available when the changes
are submitted into the code review system.

3.4 Building Models and Predicting LRE
Changes

After we obtain the features for changes, we split the data
into the training and test datasets. We build and train the
machine learning based prediction models on the training
dataset and evaluate their performance on the test dataset.
Following existing studies [15, 19, 34], we use 10-fold cross-
validation to evaluate the prediction models.

4 EXPERIMENT SETUP
4.1 Research Questions
RQ1: What are the distributions of LRE and regular changes
regarding change intents?
RQ2: Is it feasible to predict LRE changes by using ma-
chine learning based classifiers with features extracted from
changes?
RQ3: Do the specific prediction models (classifiers trained
on changes with a particular intent) outperform the general
models (classifiers trained on all changes)?

Leveraging Change Intents for Characterizing and Identifying Large-Review-Effort Changes PROMISE’19, September 18, 2019, Recife, Brazil

RQ4: Does the performance of predicting LRE changes with
a single intent differ from that of predicting LRE changes
with multiple intents?

In RQ1, we aim at understanding the distributions of
changes regarding the change intents. In RQ2, we explore
the feasibility of predicting LRE changes. In RQ3, we aim
to explore whether prediction models built on changes with
particular intents can generate better performance. In RQ4,
we investigate the difference in predicting LRE changes with
a single intent and changes with multiple intents.
4.2 Experiment Data
To address our research questions, we perform empirical
studies on software projects that actively adopt the code
review process. We begin with the review dataset of Android,
Qt, and OpenStack provided by Hamasaki et al. [12]. The
three projects adopt the Gerrit2 code review system. We also
expand the review dataset to include code review data from
a large-scale proprietary project from Microsoft. It adopts
a custom code review system, which shares a similar review
process with Gerrit. Details of the projects are in Table 1.

4.3 Evaluation Measures
To measure the performance of predicting LRE changes, we
use four metrics: 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹 1, and 𝐴𝑈𝐶. These
metrics are widely adopted to evaluate prediction tasks [7, 18,
42, 46, 48, 50, 53]. Precision and recall are composed of three
numbers regarding true positive, false positive, and false neg-
ative. True positive is the number of predicted LRE changes
that are truly LRE changes, while false positive is the number
of predicted LRE changes that are regular changes. False
negative records the number of predicted regular changes that
are LRE changes. F1 considers both precision and recall.

AUC is the area under the ROC curve, which measures
the overall discrimination ability of a classifier. A machine
learning model is considered applicable to classify a given
dataset if the AUC score is larger than 0.7. It has been
widely used to evaluate classification algorithms in prediction
tasks [34, 43].

5 RESULTS AND ANALYSIS
5.1 RQ1: Distribution of Changes
Following the change intent taxonomy approach described
in Section 4.1, we automatically label each change from the
four projects. As reported in existing studies [8, 29], software
changes could be made for multiple purposes, e.g., a change
could be made for correcting bugs and refactoring existing
code at the same time. Thus, we also label changes with
multiple intents. Table 3 shows the number of changes, the
percentage of changes with a particular change intent among
all changes, and the percentage of LRE changes for each
change intent in the four projects. In addition, we also show
the numbers of changes that have single and multiple intents.
Note that the ‘Auto’ changes only exist in Microsoft project

2https://www.gerritcodereview.com/

and we find all of them are regular changes, thus we exclude
these changes for building change prediction models. Since
there exist overlaps among different change intents, the sum
of percentages of change intents is larger than 100.

As shown in Table 3, the distribution of changes regarding
intents varies in different projects. We can see that changes
are unevenly distributed regarding the intents. For example,
changes with intents ‘Bug Fix’ and ‘Resource’ are dominat-
ing across the four projects, i.e., they take up more 50%
of all the changes, while the percentages of changes with
intents ‘Refactor’ and ‘Merge’ are less than 4%. Note that
the distribution in our dataset is consistent with that of man-
ually categorized changes from existing study [16], in which
changes under categories Corrective (i.e., addressing failures),
Adaptive (i.e., changes for data and processing environment),
and Perfective (i.e., addressing inefficiency, performance, and
maintainability issues) are dominating with a percentage
higher than 60%, which also confirms the effectiveness of
our automated heuristic-based change intent classification
(details are presented in Section 3.2).

While ‘Feature’ and ‘Refactor’ have higher rates of LRE
changes, this is reasonable since both the ‘Feature’ and
‘Refactor’ introduce new functionalities or restructure ex-
isting code snippets, which are easy to be problematic and
require more code review effort. Category ‘Resource’ has a
lower rate across the four projects. This may be because,
compared to all other categories, changes in the ‘Resource’
category modify the source code rarely.

Software code changes are unevenly distributed regard-
ing change intents. Changes with some change intents,
i.e., ‘Feature’ and ‘Refactor’, have a higher probability to
be LRE changes.

5.2 RQ2: Feasibility of Predicting LRE Changes
This question explores whether machine learning algorithms
can learn models that identify LRE changes among the sub-
mitted new changes under review. We use off-the-shelf ma-
chine learning algorithms from Weka [11] to build classifica-
tion models. The used features include change intent, change
history, owner experience, Word2Vec features, process fea-
tures and metadata features (details are in Section 3.3).

Following existing studies [15, 18, 50, 53], we experiment
with five widely used classifiers, i.e., Alternating Decision Tree
(ADTree), Logistic Regression (Logistic), Naive Bayes (NB),
Support Vector Machine (SVM), and Random Forest (RF).
Note that this work does not intend to find the best-fitting
classifiers or models, but to explore the feasibility of iden-
tifying LRE changes by using machine learning algorithms.
Existing work [43] showed that selecting optimal parameter
settings for machine learning algorithms could achieve bet-
ter performance, thus we tune each of the classifiers with
various parameters and use the ones that could achieve the
best AUC value as our experiment settings. For each project,
we build classification models and use the commonly used

PROMISE’19, September 18, 2019, Recife, Brazil Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip

Table 3: Taxonomy of code changes. #Change is the number of code changes. Percent is the percentage of changes with a particular change
intent among all the changes. LRERate is the rate of LRE changes, which is measured in a percentage. Single contains changes that have only
one intent. Multiple contains changes that have multiple intents. For confidentiality reasons, we did not release the numbers from Microsoft.

Change
Intent

Microsoft Qt Android OpenStack
Percent LRERate #Change Percent LRERate #Change Percent LRERate #Change Percent LRERate

Bug Fix ∼20 19.11 9,042 39.24 35.43 2,143 30.10 35.88 3,380 52.57 46.95
Resource ∼39 8.98 5,326 23.12 28.56 1,561 21.92 29.66 2,300 35.77 34.26
Feature ∼12 33.55 3,526 15.30 55.05 1,735 24.37 46.63 771 12.00 60.83
Test ∼4 15.14 3,840 16.67 38.75 663 9.31 35.6 1,005 15.63 54.23
Refactor ∼2 41.97 696 3.02 49.28 117 1.64 50.43 195 3.03 65.64
Merge ∼4 14.67 217 0.94 35.02 245 3.44 13.06 31 0.48 48.39
Deprecate ∼6 18.52 3,826 16.61 36.96 752 10.56 37.9 905 14.07 44.75
Auto ∼10 0 / / / / / / / / /
Others ∼15 20.96 4,036 17.52 40.21 1,513 21.25 35.23 577 8.97 34.66
Single ∼87 17.12 17,200 74.65 40.69 5,802 81.50 38.12 4,209 65.47 41.29
Multiple ∼13 14.71 5,841 25.35 35.13 1,317 18.50 32.88 2,220 34.53 47.07

Table 4: Comparison of different classifiers on predicting LRE
changes. The best F1 and AUC values are in bold.

Project ADTree Logistic NB SVM RF
F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Microsoft 0.40 0.65 0.37 0.72 0.37 0.72 0.41 0.63 0.46 0.76
Qt 0.53 0.62 0.54 0.72 0.41 0.66 0.34 0.59 0.57 0.71
Android 0.58 0.68 0.54 0.71 0.58 0.70 0.50 0.65 0.58 0.74
OpenStack 0.60 0.64 0.64 0.76 0.62 0.68 0.66 0.70 0.66 0.76

10-fold cross-validation method to evaluate the prediction
models [15, 18, 19, 34].

Table 4 shows the F1 and AUC values of each machine
learning algorithm on the four experimental projects. Overall,
of the five classifiers, RF consistently outperforms the others
on each project. The improvements of RF compared to the
other four classifiers range from 5.0 percentage points to 13.0
percentage points in AUC and 5.0 percentage points to 9.0
percentage points in F1. RF achieves similar AUC values
on both the Microsoft project and open source projects,
while it has a significantly lower F1 score (Wilcoxon signed-
rank test, 𝑝 < 0.05) on the Microsoft project. This may
be because the Microsoft project has a lower rate of LRE
changes, e.g., as shown in Table 1, the LRE rates of open-
source projects are around 20.0 percentage points higher than
that of the Microsoft project, which makes the data distri-
bution more unbalanced in the Microsoft project. Previous
studies showed that the unbalance issue could decline the F1
scores [43]. As revealed in existing work [43], the unbalance
issue of a dataset does not impact the AUC measure and
they suggested that a machine learning model is considered
applicable to classify a given dataset if the AUC is larger
than 0.7. Hence, we use the AUC to compare prediction
models. We could find that among the five examined machine
learning classifiers, two of them, i.e., Logistic and RF, achieve
AUC values larger than 0.7 on each of the four experimental
projects, which confirms the feasibility of identifying LRE
changes by using machine learning algorithms.

Machine learning based prediction models can help predict
LRE changes. The best model (i.e., RF) achieves AUC
values larger than 0.71 on each experimental project.

5.3 RQ3: Specific Models vs. General Models
In RQ2, we show that it is feasible to leverage machine learn-
ing classifiers to identify LRE changes. In this RQ, we further
explore whether the machine learning classifiers built and
trained on changes with a particular change intent, i.e., spe-
cific model, could achieve better performance than machine
learning classifiers built and trained on all changes, i.e., gen-
eral model. Specifically, for each project, we build and train
the RF-based specific prediction models on changes with one
particular change intent. We tune each of the RF-based clas-
sifiers with various parameter values and use the ones that
could achieve the best AUC value as our experiment settings.
In addition, we use 10-fold cross-validation method to evalu-
ate the prediction models. The general model on the project
is trained and evaluated on all changes without considering
the change intents. Note that we exclude the specific model
for category ‘Merge’ on the project OpenStack, because it
has very few numbers of instances.

Table 5 shows the comparison between the performance
of the specific prediction models and the general models.
Regarding F1, we can see that at least half of specific models
outperform the general models across the four experimental
projects. For example, six out of the eight specific models
on the Microsoft project generate better F1 values than the
general model, the improvement is up to 25.0 percentage
points and is 6.0 percentage points on average. We observe a
similar situation on Qt and OpenStack, i.e., overall specific
models are better than the general models, the improvements
are up to 16.0 and 15.0 percentage points on Qt and Open-
Stack respectively. However, we also observe an exception
in Android, although five out of the eight specific models
generate better (or the same) F1 values than the general
model, the overall improvement is negative, the reason is
that the ‘Merge’ category has an F1 value that is 28.0 per-
centage points lower than that of the general model. This is
because the ‘Merge’ category has a much lower LRE rate (i.e.,
13.1%) than that of all other categories (range from 29.0%
to 50.4%) in Android, which makes the ‘Merge’ unbalanced.
Regarding AUC, we can observe that all the specific models
outperform the general models across the four experimental

Leveraging Change Intents for Characterizing and Identifying Large-Review-Effort Changes PROMISE’19, September 18, 2019, Recife, Brazil

Table 5: Comparison between machine learning classifiers built on changes having a particular intent and machine learning classifiers built on
all changes (i.e., general). Numbers in parenthesis are the differences between the specific models and the general models. Better F1 scores or
AUC values that are larger than that of the general models are highlighted in bold. Note that we exclude the specific model for ‘Merge’ on the
project OpenStack, since it only has 31 instances, which is not enough for training a machine learning classifier.

Change Intent Microsoft Qt Android OpenStack
P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC

Bug Fix 0.68 0.40 0.51(+0.05) 0.84(+0.08) 0.70 0.47 0.57(+0.00) 0.77(+0.06) 0.64 0.49 0.55(-0.03) 0.76(+0.02) 0.72 0.66 0.69(+0.03) 0.79(+0.03)
Resource 0.48 0.24 0.32(-0.14) 0.79(+0.03) 0.68 0.39 0.50(-0.07) 0.76(+0.05) 0.67 0.51 0.58(+0.00) 0.82(+0.08) 0.68 0.55 0.61(-0.05) 0.81(+0.05)
Feature 0.69 0.55 0.61(+0.15) 0.81(+0.05) 0.73 0.73 0.73(+0.16) 0.78(+0.07) 0.67 0.67 0.67(+0.09) 0.77(+0.03) 0.77 0.85 0.81(+0.15) 0.81(+0.05)
Test 0.61 0.22 0.32(-0.14) 0.82(+0.06) 0.71 0.55 0.62(+0.05) 0.79(+0.08) 0.62 0.53 0.58(+0.00) 0.74(+0.00) 0.74 0.77 0.76(+0.10) 0.80(+0.04)
Refactor 0.70 0.62 0.65(+0.19) 0.79(+0.03) 0.70 0.64 0.67(+0.10) 0.76(+0.05) 0.70 0.68 0.69(+0.11) 0.76(+0.02) 0.75 0.81 0.78(+0.12) 0.78(+0.02)
Merge 0.86 0.60 0.71(+0.25) 0.95(+0.19) 0.58 0.51 0.55(-0.02) 0.77(+0.06) 0.50 0.22 0.30(-0.28) 0.81(+0.07) / / / /
Deprecate 0.66 0.37 0.47(+0.01) 0.84(+0.08) 0.68 0.51 0.58(+0.01) 0.77(+0.06) 0.66 0.56 0.61(+0.03) 0.78(+0.04) 0.72 0.65 0.69(+0.03) 0.80(+0.04)
Others 0.68 0.50 0.58(+0.12) 0.83(+0.07) 0.65 0.51 0.57(+0.00) 0.74(+0.03) 0.60 0.51 0.55(-0.03) 0.76(+0.02) 0.62 0.51 0.56(-0.10) 0.78(+0.02)
General 0.51 0.41 0.46 0.76 0.60 0.54 0.57 0.71 0.61 0.55 0.58 0.74 0.68 0.65 0.66 0.76

G
-b S-
b

G
-r

e
S-

re G
-f S-
f

G
-t S-
t

G
-r S-
r

G
-m S-
m

G
-d S-
d

G
-o S-
o G

0.6

0.7

0.8

0.9

1

(a) Microsoft

G
-b S-
b

G
-r

e
S-

re G
-f S-
f

G
-t S-
t

G
-r S-
r

G
-m S-
m

G
-d S-
d

G
-o S-
o G

0.6

0.7

0.8

0.9

1

(b) Qt
G

-b S-
b

G
-r

e
S-

re G
-f S-
f

G
-t S-
t

G
-r S-
r

G
-m S-
m

G
-d S-
d

G
-o S-
o G

0.4

0.6

0.8

1

(c) Android

G
-b S-
b

G
-r

e
S-

re G
-f S-
f

G
-t S-
t

G
-r S-
r

G
-d S-
d

G
-o S-
o G

0.6

0.7

0.8

0.9

1

(d) OpenStack

Figure 4: Comparison of perdition performance (AUC) between the specific models and the general models. The model with a prefix “G” means
using the trained general model to predict changes with a particular intent. “b” represents ‘Bug Fix’, “re” represents ‘Resource’, “f” represents
‘Feature’, “t” represents ‘Test’, “r” represents ‘Refactor’, “m” represents ‘Merge’, “d” represents ‘Deprecate’, and “o” represents ‘Others’. For
example G-b means using the trained general model to predict changes with the ‘Bug Fix’ intent. S-b is the specific model trained and evaluated
on changes with the ‘Bug Fix’ intent.

projects. The improvement could be up to 19.0 percentage
points and is 7.4 percentage points on average. Thus, from
the comparison shown in Table 5, we conclude that overall
the specific models achieve better prediction performance
than the general models.

Above all, we show that the specific models (built on
changes with a particular change intent) are overall better
than the general models (built on all the changes). One could
also argue that using the general models to predict changes
with a particular intent may have better performance than
the corresponding specific model. To explore this issue, we
further examine the performance of leveraging the general
models to predict changes with a particular intent. Specifi-
cally, for each change intent, we randomly divide its changes
into training dataset and test dataset (2/3 for training, 1/3
for test) following existing studies [14, 24]. For the specific
model, we train the model on the training data and evaluate
its performance on the test dataset. For the corresponding
general model, we combine the training data from all specific
models, and evaluate its performance on the test dataset of a
specific model. We repeat the data splitting, model training,
and evaluation 50 times to reduce bias.

Figure 4 shows the boxplots of the 50 times classification
for each specific model and its corresponding general model
on each project. In addition, we also show the boxplots of
overall-general models (i.e., using 2/3 of all changes to train
the models and evaluate the models on the left 1/3 changes

without considering change intents). Each boxplot presents
the AUC distribution (median and upper/lower quartiles)
of a prediction model. We use gray (), light gray (), and
white () to represent the specific models, corresponding
general models, and the overall-general models respectively.
We could observe that overall the specific models outperform
the general models on almost all the change intents across the
four experimental projects. Specifically, for the Microsoft
project, the mean AUC values of the specific models are
around ten percentage points higher than that of the corre-
sponding general models. For the open source projects, the
mean AUC values of the specific modes are around five per-
centage points higher than that of the corresponding general
models. In addition, all the specific models outperform the
overall-general models.

Code review effort prediction models built on changes
with particular change intents achieve better performance
than the general prediction models that do not consider
the change intents. Thus, we suggest to build specific
models for better LRE changes prediction.

5.4 RQ4: Single Intent vs. Multiple Intents
As shown in RQ1 (Section 5.1), in this study we labeled
changes with multiple intents. This RQ explores the perfor-
mance of LRE changes prediction models on changes with a
single intent and changes with multiple intents. Specifically,

PROMISE’19, September 18, 2019, Recife, Brazil Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip

Table 6: Performance of predicting LRE changes with single and
multiple change intents. Better F1 or AUC values are in bold.

Change Intent Microsoft Qt Android OpenStack
F1 AUC F1 AUC F1 AUC F1 AUC

Single 0.48 0.78 0.58 0.75 0.58 0.73 0.67 0.80
Multiple 0.41 0.75 0.54 0.70 0.57 0.71 0.66 0.77

Microsoft Qt Android OpenStack

0

0.5

1

2 intents 3 intents 4 intents 5 intents

Figure 5: The distribution of changes with multiple change intents.

for each project, we build and train the RF-based prediction
models with changes with only a single intent and changes
with multiple intents respectively. We tune each of the RF-
based classifiers with various parameter values and use the
ones that could achieve the best AUC value as our experiment
settings. We also use the 10-fold cross-validation method to
evaluate the models.

Table 6 shows the F1 scores and AUC values of the pre-
diction models for changes with single and multiple change
intents in the four experimental projects. As we can see, the
prediction models for changes with a single intent signifi-
cantly outperform the prediction models for changes with
multiple intents in both F1 and AUC across the four exper-
imental projects (Wilcoxon signed-rank test, 𝑝 < 0.05). In
terms of F1, the improvement could be up to 7.0 percentage
points and is 3.3 percentage points on average. For AUC, the
improvement could be up to 5.0 percentage points and is 3.3
percentage points on average. One of the possible reasons for
this difference is that changes with a single intent are mainly
made for one specific purpose, which makes them easier to
be distinguished by machine learning classifiers than complex
changes with multiple intents.

Machine learning based classifiers generate better per-
formance on changes with a single change intent than
changes with multiple change intents.

6 DISCUSSION
6.1 LRE Rate Analysis
As shown in Table 3, in three of the four projects, changes
with a single intent have a higher LRE rate than that of
changes with multiple intents. To explore the reason behind
this phenomenon, we first break down the number of changes
with multiple intents from the four projects, which are shown
in Figure 5. We could observe that among the changes with
multiple intents, changes that have two intents are dominat-
ing, i.e., 90% of the changes with multiple intents involve only
two different intents. Thus, we narrow down the analysis to
explore the distribution of changes with two change intents.
To do this, we collect the changes with two intents from

Bug Fix & Resource

40%
Bug Fix & Test

14%

Deprecate & Resource

12%

Test & Resource

12%

Merge & Resource

5%

Bug Fix & Deprecate

5%
Bug Fix & Feature

4% Test & Deprecate

3% Bug Fix & Refactor
3% Feature & Resource
2%

Figure 6: The distribution of code changes with multiple intents.

Microsoft Qt Android OpenStack Together
0.2
0.4
0.6
0.8

1

correlated uncorrelated

Figure 7: The distributions of correlated and uncorrelated features
in each project and across the projects (i.e., Together).

the four projects and count the number of different intent
combinations among these changes. Figure 6 shows the top
ten types of changes with two intents, which cover more than
97% of all the changes with two intents.

As we could see that ‘Bug Fix’ & ‘Resource’, ‘Bug Fix’ &
‘Test’, ‘Deprecate’ & ‘Resource’, and ‘Test’ & ‘Resource’ are
the dominating combinations. With the distribution chart
in Figure 6, we infer the reasons why changes with multiple
intents have lower LRE rates as follows. First, each intent
may represent an independent task and developers may mod-
ify source code for each intent separately, which provides
them more opportunities to check the modified code and
eventually improve the quality of the change. Second, some
of the combined intents represent the standard software qual-
ity assurance process, which can help improve the quality of
the changes. Taking changes with double intents ‘Bug Fix’ &
‘Test’ as an example, developers may first fix a bug and then
modify the test cases to validate the fix of the bug, which
makes the changes more reliable.

6.2 Feature Correlation Analysis
Following existing studies [9], we use the Spearman rank
correlation [51] to compute the correlations between the
metrics described in Section 3.3 and the review effort of
changes, i.e., regular changes or LRE changes. Values greater
than 0.10 can be considered a small effect size; values greater
than 0.30 can be considered a medium effect size [52]. In this
work, we consider the values larger than 0.10 or smaller than
-0.10 as correlated, others are uncorrelated.

Figure 7 shows the distributions of correlated and uncorre-
lated features in each project and across the four projects. As
we could observe, in the Microsoft project, the percentage

Leveraging Change Intents for Characterizing and Identifying Large-Review-Effort Changes PROMISE’19, September 18, 2019, Recife, Brazil

of correlated features (around 60%) is larger than that of the
open source projects (less than 50%). One of the possible
reasons is that compared to the open source projects, the
Microsoft project has a larger experimental dataset, e.g.,
around 5X of the size of open source projects, which provides
sufficient data to evaluate each feature and reduce the po-
tential bias. Overall more than 70% features are correlated
with review effort of changes, i.e., regular changes or LRE
changes. We further examined the selected features and found
that they covered five different feature types, i.e., change in-
tents, revision history, owner experience, Word2Vec features,
and process features, while none of the metadata features
is selected as correlated. This observation suggests that the
commit time of a change does not affect its review effort.

The Spearman correlation analysis shows that most of
the collected features are correlated with the review effort
of changes, thus the collected features are applicable for
identifying LRE changes.

6.3 Threats to Validity
Internal Validity. The main threat to internal validity is about
the annotation of change intents, subjectivity of annotation,
and miscategorization. The annotation relied on our manually
refined heuristics, and although this approach is a common
practice, this process contains bias since the authors of this
paper are not the developers of these projects. To mitigate
this, authors worked independently to annotated the data
and refined the heuristics. In addition, we chose a setup that
ensures that every heuristic is cross-validated and the classifi-
cation conflicts have to pass the third inspection. In this work,
we define Large-Review-Effort (LRE) changes based on the
consensus of developers from Microsoft, the performance of
our approach may vary with different thresholds.
External Validity. In this work, we use a project from Microsoft
and three open source projects to evaluate our proposed ap-
proach. Since they adopt different code review systems, i.e.,
the Microsoft project adopts a custom code review system
and the open source projects adopt the Gerrit code review
system. Thus, the proposed approach might not work for
projects that adopt other code review systems.

7 RELATED WORK
7.1 Change Intent Analysis
In order to understand the change intents of code changes,
Swanson [41] first proposed a classification of maintenance
activities as corrective, adaptive, and perfective. Along this
line, many change analysis models have been proposed [6, 13,
16, 22, 23, 39, 40]. Buckley et al. [6] proposed a taxonomy of
software evolution to characterize the mechanisms of changes.
Lehnert et al. [22, 23] proposed comprehensive investigations
of software change impact analysis. Later, Hassan et al. [13]
extended Swanson’s categorization by adding three new cate-
gories, i.e., bug fixing changes, general maintenance changes,
and feature introduction changes. Hindle et al. [16] extended
Swanson’s categorization with two new categories, i.e., fea-
ture addition and non-functional. Hassan’s categories are not
specific enough, which only provided high-level information

of categories. Hindle’s extended categories contain more de-
tailed types of changes for each category. In this study we
adopted the fine-grained change type information provided
Hindle’s work [16].

7.2 Software Code Review
Code review is a manual inspection of source code by humans,
which aims at identifying potential defects and quality prob-
lems in the source code before its deployment in a live environ-
ment [2–4, 25, 26, 31, 32, 44, 45]. Many studies have examined
the practices of code review. Stein et al. [38] explored the
distributed, asynchronous code inspections. Laitenburger [21]
surveyed code inspection methods, and presented a taxon-
omy of code inspection techniques. In recent years, Modern
Code Review (MCR) has been developed as a tool-based
code review system and becomes popular and widely used in
both commercial software (e.g., Google [37], Microsoft) and
open-source software (e.g., Android, Qt, and OpenStack) [12].
Rigby et al. [35, 36] have done extensive work examining code
review practices in OSS development. Bacchelli & Bird find
that understanding of the code and the reason for a change is
the most important factor in the quality of code reviews [2].

In this paper, we explore the feasibility of accelerating code
review by identifying the code changes that require multiple
rounds of code review.

8 CONCLUSION
This paper presents the first study of LRE changes in code
review system, i.e., changes that have more than two itera-
tions of code review by using the change intents. We conduct
our study on one large-scale project from Microsoft, and
three open source projects, i.e., Qt, Android, and OpenStack.
Experiment results show that: (i) changes with some intents
are more likely to be reviewed with multiple iterations, (ii)
machine learning based prediction models could help identify
LRE changes, and (iii) prediction models built for changes
with some intents achieve better performance than prediction
models without considering the intents. The tool developed in
this study has already been used in Microsoft to provide the
review effort and intent information of changes for reviewers
to accelerate the review process.

In the future, we plan to conduct real-world case studies to
explore how much our approach can accelerate code review
process. In addition, our work on change intents is just the
first step in a large body of work. We would like to explore if
change intent improves the fidelity and accuracy of other pre-
diction tasks, e.g., code reviewer recommendation, software
defect prediction, and effort estimation.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feedback
which helped improve this paper.

REFERENCES
[1] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. 2008.

What’s a typical commit? a characterization of open source soft-
ware repositories. In ICPC’08. 182–191.

PROMISE’19, September 18, 2019, Recife, Brazil Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, out-
comes, and challenges of modern code review. In ICSE’13. 712–
721.

[3] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W
Godfrey. 2013. The influence of non-technical factors on code
review. In WCRE’13. 122–131.

[4] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juer-
gens. 2014. Modern code reviews in open-source projects: Which
problems do they fix?. In MSR’14. 202–211.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian
Janvin. 2003. A Neural Probabilistic Language Model. The
Journal of Machine Learning Research 3 (2003), 1137–1155.

[6] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and
Günter Kniesel. 2005. Towards a taxonomy of software change.
Journal of Software Maintenance and Evolution: Research and
Practice 17, 5 (2005), 309–332.

[7] Qiang Cui, Song Wang, Junjie Wang, Yuanzhe Hu, Qing Wang,
and Mingshu Li. 2017. Multi-Objective Crowd Worker Selection
in Crowdsourced Testing. In SEKE’17. 1–6.

[8] Ying Fu, Meng Yan, Xiaohong Zhang, Ling Xu, Dan Yang, and
Jeffrey D Kymer. 2015. Automated classification of software
change messages by semi-supervised Latent Dirichlet Allocation.
IST’15 57 (2015), 369–377.

[9] Emanuel Giger, Martin Pinzger, and Harald C Gall. 2012. Can we
predict types of code changes? an empirical analysis. In MSR’12.
217–226.

[10] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy.
2000. Predicting fault incidence using software change history.
TSE’00 26, 7 (2000), 653–661.

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H Witten. 2009. The WEKA data min-
ing software: an update. ACM SIGKDD explorations newsletter
11, 1 (2009), 10–18.

[12] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, AE
Cruz, Kenji Fujiwara, and Hajimu Iida. 2013. Who does what
during a code review? datasets of oss peer review repositories. In
MSR’13. 49–52.

[13] Ahmed E Hassan. 2008. Automated classification of change mes-
sages in open source projects. In SAC’08. 837–841.

[14] Kim Herzig, Sascha Just, Andreas Rau, and Andreas Zeller. 2013.
Predicting defects using change genealogies. In ISSRE’13. 118–
127.

[15] Abram Hindle, Daniel M German, Michael W Godfrey, and
Richard C Holt. 2009. Automatic classication of large changes
into maintenance categories. In ICPC’09. 30–39.

[16] Abram Hindle, Daniel M German, and Ric Holt. 2008. What do
large commits tell us?: a taxonomical study of large commits. In
MSR’08. 99–108.

[17] Abram Hindle, Michael W Godfrey, and Richard C Holt. 2007.
Release pattern discovery via partitioning: Methodology and case
study. In MSR’07. 19.

[18] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect
prediction. In ASE’13. 279–289.

[19] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Clas-
sifying software changes: Clean or buggy? TSE’08 34, 2 (2008),
181–196.

[20] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and
Andreas Zeller. 2007. Predicting faults from cached history. In
ICSE’07. 489–498.

[21] Oliver Laitenberger. 2002. A survey of software inspection tech-
nologies. In Handbook of Software Engineering and Knowledge
Engineering: Volume II: Emerging Technologies. 517–555.

[22] Steffen Lehnert. 2011. A taxonomy for software change impact
analysis. In IWPSE-EVOL’11. 41–50.

[23] Steffen Lehnert, Matthias Riebisch, et al. 2012. A taxonomy
of change types and its application in software evolution. In
ECBS’12. 98–107.

[24] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje
Pietsch. 2008. Benchmarking classification models for software de-
fect prediction: A proposed framework and novel findings. TSE’08
34, 4 (2008), 485–496.

[25] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E
Hassan. 2014. The impact of code review coverage and code review
participation on software quality: A case study of the qt, vtk, and
itk projects. In MSR’14. 192–201.

[26] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E
Hassan. 2016. An empirical study of the impact of modern code

review practices on software quality. Empirical Software Engi-
neering 21, 5 (2016), 2146–2189.

[27] Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas Zim-
mermann, and David Cok. 2011. Local vs. global models for effort
estimation and defect prediction. In ASE’11. 343–351.

[28] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013.
Distributed Representations of Words and Phrases and Their
Compositionality. In NIPS’13. 3111–3119.

[29] Audris Mockus and Lawrence G Votta. 2000. Identifying Reasons
for Software Changes Using Historic Databases. In ICSM’00. 120.

[30] Audris Mockus and David M Weiss. 2000. Predicting risk of
software changes. Bell Labs Technical Journal 5, 2 (2000), 169–
180.

[31] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do
code review practices impact design quality? a case study of the
qt, vtk, and itk projects. In SANER’15. 171–180.

[32] Adam Porter, Harvey Siy, and Lawrence Votta. 1996. A Review of
Software Inspections. Advances in Computers 42 (1996), 39–76.

[33] Ranjith Purushothaman and Dewayne E Perry. 2005. Toward
understanding the rhetoric of small source code changes. TSE’05
31, 6 (2005), 511–526.

[34] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why,
process metrics are better. In ICSE’13. 432–441.

[35] Peter C Rigby, Daniel M German, and Margaret-Anne Storey.
2008. Open source software peer review practices: a case study of
the apache server. In ICSE’08. 541–550.

[36] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding
broadcast based peer review on open source software projects. In
ICSE’11. 541–550.

[37] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko,
and Alberto Bacchelli. 2018. Modern code review: a case study
at google. In ICSE-SEIP’18. 181–190.

[38] Michael Stein, John Riedl, Sören J Harner, and Vahid Mashayekhi.
1997. A case study of distributed, asynchronous software inspec-
tion. In ICSE’97. 107–117.

[39] Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen, and Sai Zhang.
2010. Change impact analysis based on a taxonomy of change
types. In COMPSAC’10. 373–382.

[40] Xiaobing Sun, Bixin Li, Wanzhi Wen, and Sai Zhang. 2013. Ana-
lyzing impact rules of different change types to support change
impact analysis. SEKE’13 23, 03 (2013), 259–288.

[41] E Burton Swanson. 1976. The dimensions of maintenance. In
ICSE’76. 492–497.

[42] Xinye Tang, Song Wang, and Ke Mao. 2015. Will this bug-fixing
change break regression testing?. In ESEM’15. 1–10.

[43] Chakkrit Tantithamthavorn, Ahmed E Hassan, and Kenichi Mat-
sumoto. 2019. The impact of class rebalancing techniques on
the performance and interpretation of defect prediction models.
TSE’19 (2019).

[44] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan,
and Hajimu Iida. 2016. Revisiting code ownership and its rela-
tionship with software quality in the scope of modern code review.
In ICSE’16. 1039–1050.

[45] Lawrence G Votta Jr. 1993. Does every inspection need a meeting?
FSE’93 18, 5 (1993), 107–114.

[46] Junjie Wang, Qiang Cui, Song Wang, and Qing Wang. 2017.
Domain adaptation for test report classification in crowdsourced
testing. In ICSE-SEIP’17. 83–92.

[47] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing
Wang. 2019. Images Don’t Lie: Duplicate Crowdtesting Reports
Detection With Screenshot Information. IST’19 (2019).

[48] Junjie Wang, Song Wang, and Qing Wang. 2018. Is there a golden
feature set for static warning identification?: an experimental
evaluation. In ESEM’18. 17.

[49] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. 2018. Deep
semantic feature learning for software defect prediction. TSE’18
(2018).

[50] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learn-
ing semantic features for defect prediction. In ICSE’16. 297–308.

[51] Arnold D Well and Jerome L Myers. 2003. Research design &
statistical analysis. Psychology Press.

[52] Thomas Zimmermann, Nachiappan Nagappan, and Laurie
Williams. 2010. Searching for a needle in a haystack: Predicting
security vulnerabilities for windows vista. In ICST’10. 421–428.

[53] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007.
Predicting defects for eclipse. In PROMISE’07. 9–9.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Labeling LRE Changes
	3.2 Intent Analysis
	3.3 Feature Extraction
	3.4 Building Models and Predicting LRE Changes

	4 Experiment Setup
	4.1 Research Questions
	4.2 Experiment Data
	4.3 Evaluation Measures

	5 Results and Analysis
	5.1 RQ1: Distribution of Changes
	5.2 RQ2: Feasibility of Predicting LRE Changes
	5.3 RQ3: Specific Models vs. General Models
	5.4 RQ4: Single Intent vs. Multiple Intents

	6 Discussion
	6.1 LRE Rate Analysis
	6.2 Feature Correlation Analysis
	6.3 Threats to Validity

	7 Related Work
	7.1 Change Intent Analysis
	7.2 Software Code Review

	8 Conclusion
	References

