
Characterizing and Understanding Software Security
Vulnerabilities in Machine Learning Libraries

Nima Shiri Harzevili∗, Jiho Shin∗, Junjie Wang†, Song Wang∗, Nachiappan Nagappan‡
∗ Lassonde School of Engineering, York University, Toronto, Canada
† Institute of Software Chinese Academy of Sciences, Beijing, China

‡ IIIT Delhi, New Delhi, India
{nshiri, jihoshin, wangsong}@yorku.ca, junjie@iscas.ac.cn, nnagappan@acm.org

Abstract—The application of machine learning (ML) libraries
has tremendously increased in many domains, including au-
tonomous driving systems, medical, and critical industries.
Vulnerabilities of such libraries could result in irreparable
consequences. However, the characteristics of software security
vulnerabilities have not been well studied. In this paper, to
bridge this gap, we take the first step toward characterizing
and understanding the security vulnerabilities of seven well-
known ML libraries, including TensorFlow, PyTorch, Scikit-
learn, Mlpack, Pandas, Numpy, and Scipy. To do so, we collected
683 security vulnerabilities to explore four major factors: 1)
vulnerability types, 2) root causes, 3) symptoms, and 4) fixing
patterns of security vulnerabilities in the studied ML libraries.
The findings of this study can help developers and researchers
understand the characteristics of security vulnerabilities across
the studied ML libraries.

Index Terms—Security vulnerability, machine learning li-
braries, empirical study

I. INTRODUCTION

Nowadays, machine learning (ML) libraries have been
frequently used in a wide variety of domains including but
not limited to image classification [1], [2], big data analysis
[3], pattern recognition [4], self-driving [5]–[7] and Natural
Language Processing [8]–[10]. These ML libraries can be
vulnerable to many attacks [11], and failures to detect the
vulnerabilities in these libraries could cause catastrophic out-
comes, such as car accidents [12].

In the past years, there have been multiple research studies
to characterize ML API bugs which are in various stages of the
ML pipeline, including data preprocessing, feature engineer-
ing, model training, and inference [13]–[16], or implementa-
tion bugs which are in the code of the ML libraries, such as
bugs in the core algorithms or components of the library [16]–
[20]. For example, Zhang et al. [15] studied the bugs and issues
that developers encounter when working with TensorFlow, a
popular open-source Deep Learning (DL) library developed
by Google. Islam et al. [20] conducted the first study on
characterizing API usage bugs of five DL libraries, including
Caffe, Keras, TensorFlow, Theano, and Torch. They provided
a classification for bug types, root causes, impact, and the DL
development stage where bugs occur. Despite these efforts,
the characteristics of software security vulnerabilities in ML
libraries have not been well studied, which leaves unanswered
the more directly relevant questions:

What kinds of security vulnerabilities are found in the
studied ML libraries? What are the root causes of security
vulnerabilities in the studied ML libraries? What symptoms do
these security vulnerabilities have? and Are there any fixing
patterns for resolving these security vulnerabilities?

Understanding such characteristics of security vulnerabili-
ties in the studied ML libraries has the potential to foster the
development of secure and reliable ML platforms. To fill the
above research gap, we take the first step towards characteriz-
ing and understanding security vulnerabilities in ML libraries.
More specifically, we conduct the first comprehensive study
to explore four significant factors: 1) vulnerability types, 2)
root causes, 3) symptoms and 4) fixing patterns of security
vulnerabilities in seven well-known ML libraries including
TensorFlow [21], PyTorch [22], scikit-learn [23], Mlpack [24],
Pandas [25], Numpy [26], and Scipy [27]. In our study, we
considered all available commits in the default branch of
the Github repositories of the studied ML libraries when we
conduct this study on Sept. 1st, 2021, to collect software
security vulnerabilities. We first searched commit titles and
messages with vulnerability-related keywords (details are in
Section II-A) to identify vulnerability-fixing commits. As a
result, more than 5K commits are collected. We then manually
checked each commit collected in the first step and identify
and characterize vulnerabilities from them by following sys-
tematic processes (details are in Section II-B). In total, we
obtained 683 unique security vulnerabilities from the studied
seven ML libraries. In this paper, we are to address the
following research questions:

• RQ1: What types of vulnerabilities exist in the studied
ML libraries?

• RQ2: What are the root causes for vulnerabilities in the
studied ML libraries?

• RQ3: What are the symptoms of vulnerabilities in the
studied ML libraries?

• RQ4: What are the fixing patterns for vulnerabilities in
the studied ML libraries?

This paper makes the following contributions:

• To the best of our knowledge, we conduct the first
empirical study to characterize and understand software
security vulnerabilities in ML libraries.

• We show the detailed taxonomies regarding the types,



TABLE I
STATISTICS OF EXPERIMENT SUBJECTS IN THIS STUDY

ML libraries #CVEs #Commits # Vulnerability Language
Tensorflow 36 1,197 250 C++/Python
PyTorch N.A 563 75 C++/Python
Sickit-Learn N.A 325 37 Python
Pandas N.A 869 84 Python
Mlpack N.A 664 46 C++
Numpy N.A 1,198 149 C/Python
Scipy N.A 793 42 C/Python
Overall 36 5,609 683 -

root causes, symptoms, and fixing patterns of security
vulnerabilities in the studied ML libraries.

• We provide a set of practical guidelines to help machine
learning development teams develop reliable and secure
ML libraries.

• We release the dataset and source code of our experiments
to help other researchers replicate and extend our study.

The rest of this paper is organized as follows.
Section II presents the methodology of this study. Section III

presents the results. Section IV discusses the implication.
Section V shows the threats to the validity of this work.
Section VI presents the related studies. Section VII concludes
this paper.

II. METHODOLOGY

A. Data Collection

1) Library selection: We design the following inclusion
criteria for the selection of the studied ML libraries from
GitHub: 1. Accessibility, i.e., the libraries should be popular,
widely used, and open-source, 2. Maturity, i.e., the libraries
should have been actively developed for a considerable amount
of time, 3. Comprehensiveness, i.e., the libraries cover the
current industrial machine learning practice and represent
the critical aspects of machine learning developments, 4.
Applicability, i.e., the libraries should support classical and
state-of-the-art ML and DL models, data processing and
manipulation, statistical model, etc., and 5. Availability, i.e.,
the libraries should have sufficient vulnerability fixing com-
mits stored in their GitHub repositories. Initially, we selected
the following libraries, i.e., Mlpack, TensorFlow, PyTorch,
Numpy, Pandas, Scikit-learn, Pandas, Theano, Keras, Mat-
plotlib, and Caffe. While Theano, Keras, and Caffe do not
have sufficient vulnerability-fixing commits in their GitHub
repositories. Matplotlib does not meet the applicability criteria.
Eventually, using the criteria, we select seven ML libraries
including TensorFlow [21], PyTorch [22], Scikit-learn [23],
Mlpack [24], Pandas [25], Numpy [26], and Scipy [27] as our
experiment subjects.

2) Vulnerability fixing commit collection: Our automatic
fixing commit collection procedure is based on the rule heuris-
tics implemented based on a set of security-related keywords
extracted from [28]. The outcome of automatic filtering is
5,609 commits that are identified as vulnerability candidate

commits. Note that such an automatic approach introduces
false positives since the employed regex patterns are either too
broad or not specific enough, leading to matches with commits
that are not actually security-related. Hence we further started
a manual labeling process to identify vulnerability-related
commits.

3) Vulnerability-fixing commit identification: This subsec-
tion explains the adopted steps to filter out noises and iden-
tify vulnerability-related commits from the 5,609 commits
extracted in the initial phase. We adopt the following steps:
Check possible CVE numbers: If there is any CVE number
associated with a commit, we consider the commit as a
vulnerability-related commit as CVE records are verified and
confirmed by security professionals and researchers to track,
analyze, and report on software vulnerabilities.
Analyze commit message and title: In this step, we look
for specific security-related keywords in the title and the
message of commits, e.g., buffer overflow, stack overflow,
RCE, exposure, and memory leaks, etc.
Analyze code changes: We review the code changes as-
sociated with each commit to see if they address security-
related vulnerabilities. For example, we check changes that
involve adding or removing null checkers to determine whether
the corresponding commit is related to fixing a null pointer
dereference.
Analyze linked issues and pull requests: When a security
vulnerability is discovered, it is typically reported through an
issue on the project’s issue tracker, which may include details
about the vulnerability, such as how it can be exploited and
what the potential impact is. Consequently, we review these
linked issues to determine why a particular code change was
made and whether it was made in response to a known security
issue.

B. Data Labeling

In our study, we analyze each vulnerability-fixing commit
from multiple aspects: 1) vulnerability type, 2) root cause,
3) symptom, and 4) fixing pattern. Please note that some
existing studies on analyzing general software bugs in machine
learning libraries have also provided taxonomies for these as-
pects [14], [16]. In this work, we did not adopt corresponding
taxonomies from these studies. The reason is that existing
studies mainly focus on the characteristics of general software
bugs in ML libraries. As a result, it is not valid to adopt their
classifications since general software bugs’ characteristics and
security vulnerabilities can be significantly different. In order
to build vulnerability taxonomies for the studied ML libraries,
we incrementally created them as we analyze and review each
vulnerability-fixing commit [29]–[31]. For each commit, the
first two authors analyze the commit data based on the defined
research questions and take into account the following steps:
Analyze the vulnerability-fixing commits: We analyze the
vulnerability-fixing commits data (commit title, message, code
change, discussions, issues, and pull requests) to identify if
there exist patterns and characteristics that are common among



the vulnerabilities (details are in Section II-A3). We consider
all 683 commits in the first round of reviewing.
Create preliminary taxonomies: Based on the analysis in
the previous step, we create a preliminary taxonomy that
categorizes the vulnerability-fixing commits based on their
types, root causes, symptoms, and fixing patterns.
Expand taxonomies: We continue the previous step and
assign new commits to the preliminary taxonomy. If we find
a new commit that cannot fit into the preliminary taxonomy
regarding its type, root cause, symptom, or fixing patterns,
we expand the preliminary taxonomy by adding a new type
created from the commit.

Note that, the authors worked together to reach a decision
for all the disagreements during the above processes.

III. RESULT ANALYSIS

In this section, we present and discuss our analysis results
to address the four research questions we asked in Section I.

A. RQ1: Vulnerability Types

We organized vulnerability types into five high-level cate-
gories (shown in Figure 1) (i.e., Memory, Numeric, Buffer,
Resource, Concurrency), involves more than 16 different
Common Weakness Enumeration (CWEs)1 covered by 621
(90.9%) of the 683 vulnerabilities. The remaining 62 (9%)
vulnerabilities that appear infrequently and do not belong to
any particular groups are included in the Others category.
Memory. Memory vulnerabilities happen when ML library
developers improperly handle memory allocation and deallo-
cation. This category accounts for 226 (33%) of the vulner-
abilities. Specifically, it contains the following five types of
CWEs: 1) Missing Release of Memory after Effective Lifetime
(Memory Leak (CWE-401), 2) Null Pointer Dereference (CWE-
476), 3) Infinite Loop (CWE-835), 4) Double Free (CWE-415),
and 5) Use After Free (CWE-416).
Numeric. ML libraries perform a large number of tensor-
level computations, more specifically dealing with floating
point operations, which results in Numeric vulnerabilities. This
category accounts for 198 (28.9%) of the vulnerabilities. It
mainly has four types of CWEs: 1) Integer Overflow (CWE-
190), 2) Insufficient Precision or Accuracy of a Real Number
(CWE-1339), 3) Division by Zero (CWE-369), and 4) Integer
Underflow (CWE-191).
Buffer. Buffer vulnerabilities also known as buffer overflows
or overruns, occur when a computer writes more data to a
temporary storage space in memory known as a buffer than
it can manage. This category accounts for 96 (14%) of the
vulnerabilities. It mainly covers five types of CWEs: 1) Out
of Bound Read (CWE-125), 2) Stack Overflow (CWE-121), 3)
Heap Buffer Overflow (CWE-122), 4) Buffer Overflow (CWE-
120), and 5) Out of Bound Write (CWE-787).

1CWE (https://cwe.mitre.org/) is a well-known and widely accepted stan-
dard for documenting and categorizing security vulnerabilities. The use of
CWE categories can assist in standardizing vulnerability descriptions and
make it easier for researchers and practitioners to comprehend and explain
the nature of security issues.

Fig. 1. The taxonomy of vulnerability types studied in this work.

Memory
Numeric

Buffer
Others

Resource

Concurrency0

50

100

150

200

250

23

9

3

2
5

14

41

12

13 4

83
24

15

14 9 4

31

5

4

2 3
1

10

22

1

3
1

14

27

12

7 13
2

51
70

49
21 20

39

Scipy
Pandas
Numpy
Mlpack

Sickit-Learn
PyTorch

Tensorflow

Fig. 2. The distribution of software vulnerabilities in the studied ML libraries.

Resource. Resource vulnerabilities occur when a program
fails to manage resources such as memory, and file handles.
This category accounts for 54 (7.9%) of the vulnerabilities.
It consists of only one subcategory: Use of Uninitialized
Resource (CWE-908)
Concurrency. Concurrency in ML libraries is a type of
software weakness that occur due to their complexity, a
large number of computations that are not thread-safe, and
asynchronous execution of computation graphs. This category
accounts for 47 (6.8%) vulnerabilities. It consists of two types
of CWEs: 1) Race Condition (CWE-362) and 2) Deadlock
(CWE-833).

1) Implication: ML libraries use large tensors to represent
data, which can consume a lot of memory. These intensive
usages of tensors require frequent allocation and deallocation
of memory in the implementation of ML libraries (memory
management) leading to vulnerabilities such as buffer overflow
and memory leaks. Buffer overflows occur when data is written
to a buffer more than it can contain, and can cause data to
overflow into neighboring memory areas, potentially overwrit-
ing important data or executing malicious code. As shown in
Table II, Memory Leak and Null Pointer Dereference are the
two most common subcategories of Memory vulnerabilities.
Memory Leak is common in the Numpy library where memory
management should be done manually due to the development
of language barriers. To make the matter more concrete,
we elaborate on an example of Memory Leak 2 where the

2https://github.com/numpy/numpy/commit/4e19f408de900f958441af4ec8a45
8f5ce6473eb



developer has created a slice object but never released by
decref statement. According to the Python C API reference
documentations3, if a created object is going to be returned
by the function in which it is created, the reference to the
object should be decremented.

ML libraries frequently perform calculations on the size of
arrays, multiplication of tensors together, or multiplying or
adding integer values. For example, ML libraries may use
a 32-bit integer type to store the result of a multiplication
operation that produces a value greater than 231 − 1 (the
maximum value that can be represented by a signed 32-bit
integer), an integer overflow will occur and the value will
wrap around to a negative value. This can result in numerical
instability such as leading to poor model performance or
crash. Attackers can exploit the ranges of the defined variables
and cause a denial of service attacks or make the result of
model training and inference inconsistent. An example of
integer overflow vulnerability found in the Tensorflow library4

where the developer has defined integer variables with 32 bits
precision which cause overflow. The suggested fix is defining
integer variables with higher precision, e.g., in this commit,
the author has defined 64 bits integer variables.

2) Comparison with traditional software: We further
check whether there is a similar trend regarding the distri-
bution of security vulnerability types in traditional software
systems or not. We based our comparison according to the
well-known paper published on characteristics of traditional
software systems [32]. According to Tan et al. [32], Mem-
ory Leak (CWE-401) is the most frequent vulnerability type
which is similar to our finding and confirms that Memory
Leak (CWE-401) is the dominant vulnerability type in both
the studied ML libraries and general software systems. We
also find that Integer Overflow (CWE-190) is the dominant
vulnerability type in the category of Numeric. This trend is not
similar to general software systems [32] and further confirms
our findings that Numeric is significant to the studied ML
libraries as they rely on heavy computations using tensors and
arrays, based on floating point operations. We further check a
recently publish paper [33] which characterizes bugs in web
assembly compilers. They find that Data type incompatibility
accounts for 15.75% of bugs in web assembly compilers.
These bugs arise from incompatibility in interfaces between
WebAssembly and JavaScript. This pattern is not similar to
Numeric vulnerabilities in the studied ML libraries as they
have very sophisticated vulnerability patterns.

Finding 1: Memory and Numeric are the dominant
categories of vulnerability types across the studied ML
libraries, accounting for 33% and 28.9% of vulnerabilities.

3https://docs.python.org/3/c-api/memory.html
4https://github.com/tensorflow/tensorflow/commit/

087859fce9409991164f727735743da4cb310fd4

TABLE II
SUBCATEGORIES OF MEMORY. ML DENOTES MEMORY LEAK,
NPD IS NULL POINTER DEREFERENCE, IL IS INFINITE LOOP,

AND UAF IS USE AFTER FREE.

Library ML NPD IL UAF Overall
Tensorflow 6 25 19 1 51
PyTorch 2 7 5 0 14
Sickit-Learn 8 0 2 0 10
Mlpack 26 3 2 0 31
Pandas 5 6 3 0 14
Numpy 64 10 5 4 83
Scipy 22 0 0 1 23

TABLE III
SUBCATEGORIES OF NUMERIC. IO IS INTEGER OVERFLOW, IP IS

INSUFFICIENT PRECISION, DZ IS DIVISION BY ZERO, AND IU IS INTEGER
UNDERFLOW.

Library IO IP DZ IU Overall
Tensorflow 63 4 2 1 70
Pytorch 18 6 3 0 27
Sickit-Learn 8 4 7 3 22
Mlpack 2 2 1 0 5
Pandas 34 3 3 1 41
Numpy 13 10 1 0 24
Scipy 7 1 0 1 9

B. RQ2: Root Causes

Root causes in the studied ML libraries are organized into
five high-level categories (illustrated in Figure 4) including
Data Type, Memory, API, Business Logic, and Concurrency
covered by 619 (90.6%) of the 683 vulnerabilities. The re-
maining 64 (9.3%) root causes have no clear indication about
their types, and hence we group them in Others category.
Note that although some of the high-level taxonomy names
from vulnerability types (RQ1) and root causes (RQ2) are
similar, they refer to different levels of abstraction in Figure 1
(RQ1) and Figure 4 (RQ2). For example, In RQ1, the Memory
category refers to a broader range of memory vulnerabilities.
In RQ2, Memory is a more specific category that explains the
root cause of vulnerabilities depicted in Figure 1.
Data Type. This root cause category accounts for 215 (31.4%)
of vulnerabilities. Subcategories are including 1) Lack of
Validating Tensors and Arrays Property: Sometimes imple-
mentations fail to check tensors or array properties, e.g. shape
or rank. As a result, attackers can exploit tensor or arrays
properties and craft special inputs to trigger denial of service
via segmentation fault or overflows, 2) Using Improper Data
Type: When developers have confusion about what kind of
data types should they use for variables, e.g. using a float
instead of a double, 3) Integer Variable Range Issue: When
developers define integer variables with limited range or very
large range, e.g. defining int32 bits instead of int64 bits, 4)
Lack of Overflow Checking: If the program does not check
for overflow, the result of the operation may be incorrect,
which can lead to vulnerabilities in ML libraries, 5) Float
Variable Range Issue: Similar to Integer Variable Range Issue,
for example using float32 instead of using float64 data type
for numeric operations, 6) Out of Bound Nanoseconds for
Timestamp: Generally, pandas timestamp data type represents
date object in nanosecond resolution which failure in storing

https://github.com/tensorflow/tensorflow/commit/087859fce9409991164f727735743da4cb310fd4
https://github.com/tensorflow/tensorflow/commit/087859fce9409991164f727735743da4cb310fd4


date in its default range results in out of bound vulnerability.
Memory. This root cause category accounts for 30.4% of
vulnerabilities. The subcategories are including 1) Improper
Memory Management: When a developer has confusion in
memory management, either misuses a memory release state-
ment or forgets to release memory after its effective lifetime,
2) Invalid Memory Access: When a process tries to access
memory locations filled with null values, corrupted, already
been deleted, or freed, 3) Very Deep Tensors and Computa-
tion Graphs: Sometimes tensors or computation graphs grow
unexpectedly at runtime and exceed stack or buffer size which
results in a segmentation fault, 4) Uninitialized Resource: An
uninitialized resource vulnerability occurs when a program or
application fails to properly initialize a resource, such as a
variable or a file, before using it. This can lead to unexpected
behavior and potentially allow an attacker to exploit the
vulnerability and execute malicious code or steal sensitive
information.
Business Logic. This category of the root causes accounts
for 95 (13.9%) of vulnerabilities. It includes 1) Improper
Exception Handling: When developers incorrectly handle ex-
ceptional conditions leading to termination of the software
during normal executions of the software, 2) Incorrect Index
Calculation: Normally, tensors or arrays are accessed by
indices, however, sometimes indices are vulnerable to many
attacks, e.g. assigning a large value to an index, which cause
array out of bound access vulnerability and trigger a denial
of service via crash or segmentation fault, 3) Wrong Order
of Execution: When the execution order of instructions in the
backend implementation is not in the intended order. This can
lead to unexpected behavior, data corruption, or crashes.
API. This category accounts for 71 (10.3%) of total records.
Subcategories include 1) API Misuse: When developers mis-
takenly use a specific API, e.g., passing parameters in wrong
orders, lack of using optional parameters, and mistakenly using
optional parameters, 2) Using Wrong API: When developers
mistakenly use improper APIs, e.g. using numpy.empty() in-
stead of using numpy.empty like(), 3) Malicious Parameters:
When developers pass malicious or invalid parameters to API
calls that are exploitable by attackers. Attackers can exploit
these parameters by crafting particular inputs to take control
of ML libraries, and 4) Third Party Library Issue: When
developers mistakenly use either wrong versions of APIs or
outdated ones.
Concurrency. This category involves concurrent access of
resources in a shared environment by multiple threads due to
improper resource locking, releasing, or simultaneous resource
access accounting for 30 (4.3%) vulnerabilities. Subcategories
are 1) Missing Locking Statement: When developers forget
to lock resources which mostly results in race condition or
deadlock vulnerabilities, 2) Improper Usage of Locking State-
ment: When developers use locking statements improperly on
resources, or they release locked resources inappropriately,
which may result in deadlock or race condition vulnerabilities,
and 3) Improper Resource Locking.

Figure 3 shows the distribution of root causes of vulnera-

D-Type
Mem

Logic API
Others

Concurrency0

50

100

150

200

250

8
28

5

1

34
9

16

15 10

28

75

12

25 6

3

5

33

4

1
3

8

6
14

8
1

38

11
11

5

7
3

94

46 33
17

36 24

Tensorflow
PyTorch

Sickit-Learn
Mlpack
Numpy
Pandas
Scipy

Fig. 3. Distribution of root causes across libraries

Fig. 4. Taxonomy of root causes in the studied ML libraries.

bilities in different libraries. As can be seen, the Data Type
category is the most common root cause of vulnerabilities
across the studied ML libraries. Memory is the second most
common root cause of vulnerabilities across the studied ML
libraries. Table IV and Table V further shows the distribution
of subcategories of Data Type and Memory across the studied
ML libraries respectively. As we can see, Lack of Validating
Tensors or Arrays Property and Integer Variable Range Issue
are the major subcategories in Data Type. While Improper
Memory Management and Invalid Memory Access are the
dominating subcategories in Memory.

1) Implication: Tensors and arrays have properties such
as shape, rank, axis or dimensions, and size which can be
vulnerable to attacks from external attackers. These vulner-
abilities can be exploited by passing invalid values, result-
ing in out-of-bounds read and denial of service through
a segmentation fault or crash. An intuitive example of
such attacks is this vulnerability from Tensorflow library5

where tf.raw ops.QuantizeAndDequantizeV2 allows the axis
argument to accept invalid arguments. In this example,
the constraint is that axis accepts -1 and the checker
(OP REQUIRES) is true as long as the value is less than or
equal to -1, though it results in heap underflow vulnerability
which is exploitable by attackers to write or read their data on
top of the heap.

5https://github.com/tensorflow/tensorflow/commit
/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9



TABLE IV
SUBCATEGORIES OF DATA TYPE ERRORS. LVTAP IS LACK OF

VALIDATING TENSORS AND ARRAYS PROPERTY, IVRI IS INTEGER
VARIABLE RANGE ISSUE, UIDT IS USING IMPROPER DATA TYPE, LOC
IS LACK OF OVERFLOW CHECKING, FVRI IS FLOAT VARIABLE RANGE
ISSUE, AND ONT IS OUT OF BOUND NANOSECOND FOR TIMESTAMP.

Library LVTAP IVRI UIDT LOC FVRI ONT Overall
Tensorflow 42 21 20 7 4 0 94
Pytorch 14 8 8 4 4 0 38
Sickit-Learn 0 3 1 3 1 0 8
Mlpack 2 0 2 0 1 0 5
Pandas 1 8 8 7 1 9 34
Numpy 14 4 5 5 0 0 28
Scipy 0 0 5 3 0 0 8

TABLE V
SUBCATEGORIES OF MEMORY ERRORS. IMM IS IMPROPER MEMORY

MANAGEMENT, IMA IS INVALID MEMORY ACCESS, AND VDTC IS VERY
DEEP TENSORS AND COMPUTATION GRAPHS, AND UR IS UNINITIALIZED

RESOURCE.

Library IMM IMA VDTC UR Overall
Tensorflow 3 35 8 0 46
Pytorch 1 9 1 0 11
Sickit-Learn 6 0 0 0 6
Mlpack 21 5 0 7 33
Pandas 3 5 1 0 9
Numpy 57 13 3 2 75
Scipy 21 7 0 0 28

ML library developers use statistically typed languages for
development which can be confusing for developers, as they
must decide the range of integer or float variables. A very
high precision range can result in performance degradation
and resource consumption, while a low precision range can
cause loss and unexpected behavior in the ML libraries.
These difficulties can lead to mistakes by developers and
may lead to defining variables with improper range precision.
For example, the default integer variable in the Tensorflow
library has 32 bits, we observed that defining int32 bits is
one of the major root causes of vulnerabilities. For example,
in this commit from Tensorflow library6, the developer has
defined output elements as a const int32 bits. The cause
CalculateTensorElementCount() to assign a very large value
in a 32 bits integer variable and cause integer overflow. The
suggested fix is using int64 range precision to prevent the
vulnerability.

Finding 2: Data Type category is the most common root
cause accounting for 31.4% vulnerabilities in the studied
ML libraries. This is because developers have confusion
about the range of integer or float variables during the
development process. High precision ranges can lead
to performance degradation and resource consumption,
while low precision ranges can cause loss and unexpected
behavior in the model.

2) Comparison with traditional software: We start by
investigating the difference between ML libraries versus tra-
ditional software in terms of Data Type and API as two

6https://github.com/tensorflow/tensorflow/commit
/087859fce9409991164f727735743da4cb310fd4

important root causes of vulnerabilities in the studied ML
libraries.

Similar to the findings in RQ1, we find that Data Type
category is the dominant category of root causes in the
studied ML libraries, with Lack of Validating Tensors and
Arrays Property as the most frequent subcategory. Due to
this dominance, we further check whether root causes in
traditional software systems follow the same pattern or not.
Consequently, we compare our findings with the findings
in [32] and [34]. Hirsch and Hofer [34] analyze the root cause
of vulnerability reports gathered from 103 Github projects.
According to our investigations, we find that in both papers,
semantic vulnerabilities are the major dominant root cause
of vulnerabilities accounting for 87% (maximum percentage
which belongs to Mozilla project7) and 269/512 (52.5%) in
[34] and [32]. As a result, the root cause patterns in traditional
software are not similar to patterns of root causes in the studied
ML libraries.

API vulnerabilities in the studied ML libraries and general
software are distinct in terms of their nature and impact.
One distinction is that ML libraries are frequently used for
more sophisticated tasks like image or speech recognition,
which necessitate a greater level of precision and accuracy.
Additionally, ML libraries often use third-party dependencies
(such as numerical libraries such as FP16, absl, fft2d in
TensorFlow or BLAST, and LAPACK in Numpy) in order
to perform numerical computations. If these dependencies are
not properly maintained or updated, it can cause vulnerabilities
in the ML library. For example, if a security vulnerability is
discovered in a third-party library used by an ML library,
it can cause the ML library to be vulnerable to attacks as
well. Overall, API vulnerabilities in ML libraries are more
complicated and difficult to solve than in traditional software,
although the development process and debugging methodolo-
gies are similar.

We further investigate the difference between API vulnera-
bilities in the studied ML libraries versus traditional software
highlighted by other researchers. According to a current study
on API vulnerabilities conducted by Amann et al., [35],
missing and redundant API calls are the most frequent vulner-
abilities. At the same time, these are the least vulnerabilities in
the studied ML libraries. We conclude that developers of the
studied ML libraries have difficulty understanding which APIs
they should use, how to use them, and make them secure.

Finding 3: Lack of Validating Tensors and Arrays
Property is the most frequent root cause of vulnerabilities
in the studied ML libraries. If the properties of tensors and
arrays are not properly validated, it can lead to a crash,
segmentation fault, or unexpected behavior in the model.
This can happen because of a lack of proper validation
checks in the library’s backend implementation.

7In [32], semantic vulnerabilities account for 82.5% and 70.1% in Apache
and Linux projects, respectively.



TABLE VI
SUBCATEGORIES OF API ERRORS. AM IS API MISUSE, MP IS

MALICIOUS PARAMETERS, TPLI IS THIRD PARTY LIBRARY ISSUE, AND
UWA IS USING WRONG API.

Library AM MP TPLI UWA Overall
Tensorflow 2 2 6 7 17
Pytorch 1 1 1 2 5
Sickit-Learn 3 2 0 3 8
Pandas 4 7 1 3 15
Numpy 9 4 2 10 25
Mlpack 0 0 1 0 1
Scipy 0 0 0 0 0

Resource Consumption

Seg
Fault

Unexpected Behavior
Crash

Others0

50

100

150

200 22

8

12

7

26

32
16

3

74

37

20

16

2

27
7

5

7

9 17

11

8

30

19

17

1

61 70
47

72

Tensorflow
PyTorch

Sickit-Learn
Mlpack
Numpy
Pandas
Scipy

Fig. 5. Distribution of symptoms across different libraries.

Finding 4: API in the studied ML libraries have distinct
vulnerability patterns compared to traditional software
which makes testing and debugging them difficult and
time-consuming.

C. RQ3: Symptoms

Symptoms of vulnerabilities in the studied ML libraries
are organized into 4 categories including Segmentation Fault,
Crash, and Unexpected Behaviour, Resource Consumption,
covered by 677 (99.1%) vulnerabilities. The remaining 6
vulnerabilities have no clear indication about their outcome,
and hence we group them in Others category.
Resource Consumption: Accounting for 30.45% (208) of
vulnerabilities, is the exhaustion of available resources, e.g.,
increasing memory usage because of uncontrolled or improper
allocation of the memory.
Segmentation Fault: Accounting for 26% (178) of vul-
nerabilities, when a program outputs Segmentation fault or
Segmentation fault (core dumped) in the output which is the
symptom for segmentation fault8.
Unexpected Behavior: Accounting for 22.2% (152) of vul-
nerabilities, happens when the library produces results that
are not expected. For example, in this Integer Overflow vul-
nerability from Scikit-learn library9 where pk ∗ qk returns inf

8https://stackoverflow.com/questions/49092527/
illegal-instructioncore-dumped-tensorflow

9https://github.com/scikit-learn/
scikit-learn/commit/622f912095308733ddfe572a619b1574b9da335e

Fig. 6. Mapping of root causes to symptoms.

instead of float because of exceeding int32 bits limits during
multiplication.
Crash: Accounting for 20.3% (139) of vulnerabilities, happens
when a program or application terminates unexpectedly, is
called Crash also known as crashing. This can happen for
a variety of reasons, such as accessing an invalid memory
location, a divide-by-zero vulnerability, or an infinite loop.

Figure 5 demonstrates the distribution of symptoms across
different libraries. As you can see, the most frequent symptom
is Resource Consumption accounting for 30.45% of vulnerabil-
ities. We also draw a mapping from root causes to symptoms
to interpret what is the outcome of vulnerabilities as shown in
Figure 6. It is observable from Figure 6 that the majority of
vulnerabilities caused by Memory have Resource Consumption
as their impact. Also, the majority of vulnerabilities caused
by Data Type have Unexpected Behavior as their impact.
One possible usage scenario of vulnerability symptoms in the
studied ML libraries is that ML developers can narrow down
the types of vulnerabilities present in their codebase and take
steps to fix them. Also, ML developers do not need to develop
test oracles for unit testing of the studied ML libraries in order
to understand vulnerabilities that have Segmentation Fault and
Crash as their symptoms.

Finding 5: Resource Consumption and Segmentation
Fault and are the most common symptoms of vulnera-
bilities accounting for 30.45% and 26% of vulnerabilities
respectively. The studied ML libraries are vulnerable to
resource consumption vulnerabilities because they are
designed to perform computationally intensive operations
on large amounts of data. These operations can consume
a significant amount of memory and processing power,
making it easy for vulnerabilities to cause the program
to consume too many resources and crash or become
unresponsive.

1) Comparison with traditional software: We find that Re-
source consumption and Segmentation Fault are two dominant
symptoms of vulnerabilities in the studied ML libraries. There
is still an important question that needs to be addressed:
What is the difference between symptoms in traditional soft-
ware systems and ML libraries? To answer this question, we
compare our findings with the study conducted by Tan et



al. [32]. According to the findings in [32], Functional impact
is the major symptom of bugs in traditional projects which
greatly deals with the fact that the software system is not
functioning according to its specifications. However, regarding
ML libraries, we have a completely different trend where the
majority of symptoms of vulnerabilities in the studied ML
libraries result in the crashing of the library during runtime
via Segmentation fault which is the dominant symptom.

D. RQ4: Fixing Patterns

Fixing patterns are organized into six high-level categories
(shown in Figure 7) including Add Checkers, Resolve Data
Type Vulnerabilities, Resolve Memory Vulnerabilities, Resolve
API Vulnerabilities, Resolve Concurrency Vulnerabilities, and
Modify Business Logic Errors covered by 586 (85.7%) of
vulnerabilities. The remaining 97 (14.2%) fixing patterns have
no clear indication about their types and hence are included
in the Others category.
Add Checkers. Fixing patterns in this category mainly re-
late to the addition of either library-specific or conventional
checkers to fix vulnerabilities, accounting for 155 (22.6 %)
vulnerabilities. Subcategories are 1) Add Checker for Tensors
and Arrays Property: This is the most common fixing pattern
where developers use if conditions or library-specific checkers
to validate tensor and arrays properties, e.g., shapes, ranks, val-
ues, or elements, 2) Add Checker for Null Pointer Dereference:
Developers often add checkers either using if conditions or
library-specific checkers to prevent null pointer dereferences,
3) Add Checker for Overflow: This fixing pattern is mainly
used to fix overflow vulnerabilities where developers either
add if modules or library-specific checkers to prevent overflow
or throw appropriate exceptions.
Resolve Memory Vulnerabilities. Fixing patterns in this
category relates to memory management efforts, which fix 130
(19%) of total vulnerabilities. Subcategories are 1) Manage
Memory Release: is used to fix vulnerabilities related to
incorrect or inappropriate memory allocations and 2) Resource
Initialization: when developers initialize tensors or variables
to fix vulnerabilities.
Modify Business Logic: It is accounting for 16.8% of vulner-
abilities (115), related to improving exception handling, file
handling, control flows, methods, or classes having incorrect
logic. Subcategories are 1) Improved Exception Handling:
When a program crashes, it is necessary to raise appropriate
messing to help developers with debugging operations. This
pattern adds missing error reporting or modifying existing
exception handling, 2) Modify Index Calculation: This pattern
is used to fix vulnerabilities caused by improper calculation
of tensors and arrays indices, 3) Avoid Overflow on Deep
Tensors and Graphs: This pattern is used when developers
try to prevent overflow caused by small stack size or deep
computation graphs created in runtime, 4) Modify Order of
Execution: Developers change the location of semantically re-
lated statements to fix vulnerabilities, 5) Close File Handler: It
is used to fix file descriptor leak vulnerability where developers
sometimes forget to close opened files after its lifetime.

Fig. 7. Taxonomy of fixing patterns in ML libraries.

Resolve Data Type Vulnerabilities: Fixing patterns in this
category focus on resolving vulnerabilities related to data
types, which cover 14.7% (101) of vulnerabilities. Subcat-
egories include 1) Adjust Integer Type Range: This pattern
is used to either increase or decrease the range precision of
integer variables to prevent numerical overflow vulnerabilities,
2) Modify Data Type: When data types are defined incorrectly,
this pattern alter existing defined data types to fix correspond-
ing vulnerabilities, 3) Adjust Float Type Range: Similar to
Adjust Integer Type Range, this pattern adjusts float variables
range precision, e.g., either increase the range precision or
decrease it.

Resolve API Vulnerabilities: Fixing patterns in this category
are mainly used to fix vulnerabilities introduced by inappro-
priate API usages, which help fix 60 (8.7%) of vulnerabilities
studied in this paper. The detailed subcategories are 1) Using
Proper API, 2) Update API Usage, and 3) Update Third Party
Library.

Resolve Concurrency Vulnerabilities. Accounting for 25
(3.6%) vulnerabilities, this category of fixing pattern is used
to fix vulnerabilities related to concurrency issues resulting
in deadlock or race condition errors. Subcategories include 1)
Add Locking Statement, 2) Modify Locking Statement, and 3)
Remove Locking Mechanism.

1) Implication: We find that developers of the studied ML
libraries frequently use validation checks in the code, such as
checking the shape and data type of tensors and arrays before
using them in computations. In this example10 which is Integer
Overflow, there is no checker on data[axis] to make sure it
does not exceed int32 bits range limits. The developer over-
comes the problem by adding a checker of TF LITE ENSURE
on line 76 in tensorflow/lite/kernels/concatenation.cc. We also
find that developers of the studied ML libraries usually miti-
gate Data Type vulnerabilities by explicitly setting data types
when creating tensors, for example, using tf.float32 instead of
tf.float for a tensor.

10https://github.com/tensorflow/tensorflow/commit/
4253f96a58486ffe84b61c0415bb234a4632ee73



Add
ing

Che
ck

ers

Reso
lve

M
em

ory

M
od

ify
Bus

ine
ss

Log
ic

Reso
lve

Data
Typ

e

Othe
rs

Reso
lve

API

Reso
lve

Con
cu

rre
nc

y0

50

100

150

200

4

26 5
5 2

12

4 26
18 17

7

30

58 16 9 10

23

3

5

28

4 3 5

1

4

5

14
4 3

7

22

2

13
19 11

5 3

78

7

37 43 49

17 19

Tensorflow
PyTorch

Sickit-Learn
Mlpack
Numpy
Pandas
Scipy

Fig. 8. Distribution of fixing patterns across different libraries.

TABLE VII
SUBCATEGORIES OF ADD CHECKERS. ACTAP IS ADD CHECKER FOR

TENSORS AND ARRAYS PROPERTY, ACO IS ADD CHECKER FOR
OVERFLOW, AND ACNP IS ADD CHECKER FOR NULL POINTER

DEREFERENCE.

Library ACTAP ACO ACNP Overall
Tensorflow 45 14 19 78
Pytorch 14 5 3 22
Sickit-Learn 0 3 1 4
Mlpack 2 0 3 5
Pandas 2 9 1 12
Numpy 14 5 11 30
Scipy 1 3 0 4

Finding 6: Adding Checkers for Tensors and Array
Properties is the most common fixing pattern used by
developers accounting for 11.4% of vulnerabilities. In
this pattern, developers often implement solutions such
as adding validation checks either using library-specific
macro checkers or general if statements to guard against
weaknesses corresponding to lack of validation.

IV. DISCUSSION

Our study reveals several interesting findings that can serve
as practical guidelines for both industry and academic commu-
nities to improve software security development for the studied
ML libraries.

A. Implications to ML Community

Adjust Data Types Range Precision. It is important to select
the appropriate data type for representing numerical data in the
backend implementation of the studied ML libraries, based
on the range and precision requirements of the computation
being performed, otherwise, it results in: Numerical instability:
When the range of the data types is too large or too small, the
model can become numerically unstable, leading to inaccura-
cies and errors in the computations, Overflow and underflow:
When the range of the variables exceeds the maximum or min-
imum representable value, overflow or underflow can occur,
resulting in incorrect and unexpected results, Loss of precision:
When the range of data types is not set to the appropriate

precision, the model may lose precision in the computations,
leading to inaccuracies in the results. To mitigate these issues,
developers can adjust the range precision of the data types
explicitly during the development of the backend of the studied
ML libraries.
Validate Properties of Tensors and Arrays. There are
various vulnerabilities in the studied ML libraries related to
the characteristics of tensors and arrays. Data type mistakes:
When tensor and array attributes, such as shape and data
type, are not correctly validated, it can lead to data type
problems, such as attempting to execute operations on tensors
with incompatible data types. Memory Errors: When tensor
and array characteristics such as size and shape are not handled
correctly, memory issues such as buffer overflow or out-of-
memory errors might occur. Indexing issues: When tensor and
array attributes, such as shape and dimension, are not validated
properly, it can result in indexing issues, such as attempting
to access an out-of-bounds element.
Improve Static Checkers. Even though the existing static
checkers [36]–[41] have been widely adopted to detect vulner-
abilities on traditional projects [42]–[44], it is unclear how well
they detect real-world security vulnerabilities in the studied
ML libraries. Current static checkers are mostly equipped
with simple rules to detect security vulnerabilities in general
software projects, while our root causes analysis (details are in
Section III-B) shows that the studied ML security vulnerabili-
ties are complex in nature. For example, we find that one of the
major root causes of security vulnerabilities in the studied ML
libraries is the lack of validating tensors and array attributes
which results in severe vulnerabilities such as buffer overflow
or integer overflow. As a result, it is critical to extending
existing checkers to support security vulnerabilities in the
studied ML libraries. One promising direction is to extend
the built-in rule database of static checkers by including ML-
specific APIs and macro checkers, which can be an effective
way to improve the accuracy of vulnerability detection in ML
libraries.
Use Fuzz Testing to Detect ML Security Vulnerabilities.
We find that Lack of Validating Tensors and Arrays Property
is one of the major root causes of security vulnerabilities in
the studied ML libraries, because of which, external attackers
or end-users of ML APIs intentionally or unintentionally send
malformed input to the backend implementation of the studied
ML libraries to trigger these vulnerabilities. Fuzz testing [45],
i.e., an automated testing approach that injects malformed
inputs into a system to reveal software vulnerabilities, can be
an effective approach to find edge cases that cause security
vulnerabilities in the implementation of the studied ML li-
braries.
Mitigate Memory Errors. There are several ways to prevent
memory-related vulnerabilities in the studied ML libraries.
Memory Management: Due to development language barriers,
the memory management in the backend implementation of
the studied ML libraries should be done manually. Manual
memory management is critical since it may result in memory
leak vulnerability leading to a gradual depletion of system



resources and potential crashes or security vulnerabilities. It
is important for developers to follow secure coding practices
when implementing memory management in the studied ML
libraries. This includes using secure memory allocation and
deallocation functions, checking for buffer overflows and other
memory-related vulnerabilities, and regularly testing the code
for potential memory leaks. Exception handling: Use exception
handling to catch and handle any errors that occur due to
memory issues, such as out-of-memory errors, Use Profiling
Tools: Use memory profiling tools to identify and diagnose
memory issues, such as memory leaks and excessive memory
usage.

B. Significance of Our Findings

Our work makes significant contributions to the studied
ML community since it addresses fundamental challenges
regarding the security and reliability of the studied ML li-
braries. This study gives insights into the prevalent challenges
that the studied ML libraries encounter by investigating the
types of vulnerabilities, root causes, symptoms, and repair
patterns. In particular, characterizing vulnerability types help
developers in identifying and prioritizing possible security
issues, demystifying the core causes of these vulnerabilities
can aid in the construction of more secure and trustworthy
ML libraries, and understanding vulnerability symptoms and
repairing patterns can assist developers in promptly identifying
and addressing security vulnerabilities in the studied ML
libraries.

V. THREATS TO VALIDITY

Construct validity Our study is primarily aimed at identifying
and examining vulnerabilities present in ML libraries, rather
than evaluating their severity. Although CVSS severity data
can provide important information about vulnerabilities, it is
important to note that other factors can also contribute to their
impact. Therefore, our focus is on identifying and classifying
vulnerabilities based on their types, root causes, symptoms,
and fixing approaches as they relate to the functionality of the
ML libraries, rather than assigning severity scores.
Internal Validity. The main internal threat to our work is our
manual analysis labeling and classification of software security
vulnerabilities which may suffer from subjective bias and
errors. To guard against this, two first authors who are skilled
in software security vulnerabilities have reviewed the collected
commits. Authors also discuss any possible disagreement until
a consensus is reached.
External Validity. The dominant threat to the external validity
of this study is the collected dataset. To overcome this threat,
we collected commits from seven different ML libraries; two
are very famous and widely used DL libraries, including
TensorFlow and PyTorch; two of them are Mlpack and scikit-
learn which is renowned classical ML library which often is
used beside DL libraries. We also collected data from three
well-known data analytical and visualization tools, including
Pandas, Numpy, and Scipy. The reason behind this diverse data

collection is to generalize our findings to wide domains and
increase the reliability of findings.

VI. RELATED WORK

A. Studies on General Bugs

There are many efforts to characterize software security
vulnerabilities in traditional software systems [32], [46]–[51].
Tan et al. [32] conducted an empirical study on three notable
projects, including Linux kernel, Mozilla, and Apache, via
analyzing around 2k real-world bugs. They revealed that
semantic bugs are the major common bugs in general software
systems, and memory bugs decrease as they evolve. The
significant difference with our analysis is that they did not
introduce vulnerability types; instead, they focused on root
causes analysis. Also, their analysis is based on general and
vulnerable related bugs, while we do not cover the general
bugs. Bosu et al. [46] analyzed code review requests from 10
software projects to identify vulnerable code changes. They
find that Race Condition and Buffer Overflow are the most
common vulnerability types in traditional software systems.
These findings are not aligned with our work where Race Con-
dition and Buffer Overflow are the least common vulnerability
types.

B. Studies on ML Bugs

1) Studies on ML API Usage Bugs: Islam et al. [14]
conducted the first empirical study on API usage bugs of
five DL libraries, including Caffe, Keras, TensorFlow, Theano,
and Torch. They collected data from StackOverflow posts, and
Github commits to perform their manual analysis. The authors
analyzed bug types, root causes, and the impact of bugs in DL
libraries and found that data and logic-related bugs are the
most common bugs in DL libraries. Zhang et al. [15] studied
DL application bugs built on top of TensorFlow and collected
bugs from both Stackoverflow and Github projects. They find
that fixing patterns and root causes correlate and suggest
developers and researchers make automated bug detection ap-
proaches on top of root causes. Humbatova et al. [13] provided
an extensive and comprehensive taxonomy of faults in DL
libraries. They focused on TensorFlow, Keras, and PyTorch
for their study. The notable difference between their work
with existing studies is that they interviewed 20 researchers
and practitioners to increase the reliability of their findings.
There are a couple of differences between our work. First,
our study merely focuses on Github commits while their
study also mined data from Stack overflow posts. Second,
they analyzed general bugs of DL libraries while we studied
security vulnerabilities reported in CWE and CVE portals.

2) Studies on ML Implementation Bugs: The study con-
ducted by Xiao et al. [52] covers security vulnerabilities in
three popular DL libraries including TensorFlow, PyTorch,
and Caffe. There are two major differences compared to our
work. First, they examine the attack surfaces of DL libraries
while we analyze the root cause of vulnerabilities in the back-
end implementation of ML libraries. The attack surface of
an ML library refers to the set of entry points that attackers



can potentially exploit to gain unauthorized access, manipulate
data, or disrupt ML operations, the root cause of vulnerabilities
refers to the underlying programming errors, design flaws,
or configuration issues that make the ML library vulnerable
to attacks. Second, we present a comprehensive study of
the specific vulnerabilities (security attacks) and identify 16
distinct types of vulnerabilities. While they only focus on four
potential threats to DL libraries. Thung et al. [18] studied
three popular Java-based ML libraries to characterize bugs
related to the implementation of such tools. They investigated
bug reports and bug repositories of the subject programs and
extracted data from the JIRA issue tracking system, analyzed
500 bugs, and addressed the research questions. There are
major differences compared to our empirical study. First, they
focus on analyzing bugs in three Java-based ML libraries while
we focus on seven ML and DL libraries that are developed in
Python and C/C++. Second, our study focuses on vulnerability
types, root causes, symptoms, and fixing patterns while they
only focus on the frequency and severity of bugs as well as
bug localization. Jia et al. [17] conducted an empirical study
on implementation bugs of TensorFlow. More specifically, they
targeted more than 36k Github projects that use TensorFlow
and extract pull requests, bug reports, and code changes
from the corresponding repositories to address the research
questions. There are major differences compared to our work.
First, they merely focus on the TensorFlow library while we
focus on six more ML libraries other than TensorFlow that
cover state-of-the-art DL models, classic ML models, and data
analysis. Second, we provide 16 different vulnerability types
based on CWE number while they merely focus on root causes,
symptoms, and fixing patterns. The most related papers to
our study are the studies conducted by Franco et al. [20] and
Shen et al. [16]. Franco et al. [20] conducted the first study
on characteristics of real-world numerical bugs of different
numerical libraries, including NumPy, SciPy, LAPACK, GNU
Scientific Library, and Elementa. They find that 32% of bugs
in the studied libraries are related to Numeric. Our study
complements their analysis in the sense that ours is more
general since we study both numerical and ML libraries. Shen
et al. [16] proposed an empirical study on DL compiler bugs
by manually analyzing 595 bugs from Apache TVM, Facebook
Glow, and Intel nGraph. The difference between this work
and our study is that they focus on DL compiler bugs and
provide guidelines for detecting and debugging them, while
our study focuses on security vulnerabilities in ML libraries
and characterizes their types, root causes, symptoms, and
fixing patterns.

VII. CONCLUSION

This paper conducts the first empirical study to under-
stand the characteristics of software security vulnerabilities
of ML libraries. The primary motivation behind this study
was twofold; characterize ML security vulnerabilities, and help
ML developers design and develop vulnerability detection and
debugging techniques to increase the quality and reliability
of ML libraries. To achieve this goal, we manually analyzed

683 commits from seven widely used ML libraries, including
TensorFlow, PyTorch, Scikit-learn, Mlpack, Scipy, Pandas,
and Numpy. The outcome of this study is 16 vulnerability
types, 20 root causes, 4 symptoms, 19 fixing patterns, and
ultimately six findings. Based on these findings, we further
provide a set of actionable guidelines to the ML community
to design and develop software vulnerability detection and
debugging techniques to increase the reliability and security
of ML libraries.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feed-

back which helped improve this paper.

AVAILABILITY

We make the dataset and source code of our
experiments available at https://cse19922021.github.io/
Deep-Learning-Security-Vulnerabilities/.

REFERENCES

[1] G. Algan and I. Ulusoy, “Image classification with deep learning in the
presence of noisy labels: A survey,” Knowledge-Based Systems, vol. 215,
p. 106771, 2021.

[2] F. Mahdisoltani, G. Berger, W. Gharbieh, D. Fleet, and R. Memise-
vic, “Fine-grained video classification and captioning,” arXiv preprint
arXiv:1804.09235, vol. 5, no. 6, 2018.

[3] R. Patgiri, “A taxonomy on big data: Survey,” arXiv preprint
arXiv:1808.08474, 2018.

[4] Y. Lv, B. Liu, J. Zhang, Y. Dai, A. Li, and T. Zhang, “Semi-supervised
active salient object detection,” Pattern Recognition, vol. 123, p. 108364,
2022.

[5] R. Simhambhatla, K. Okiah, S. Kuchkula, and R. Slater, “Self-driving
cars: Evaluation of deep learning techniques for object detection in
different driving conditions,” SMU Data Science Review, vol. 2, no. 1,
p. 23, 2019.

[6] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting
unexpected obstacles for self-driving cars: Fusing deep learning and
geometric modeling,” in 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 1025–1032.

[7] R. Kulkarni, S. Dhavalikar, and S. Bangar, “Traffic light detection and
recognition for self driving cars using deep learning,” in 2018 Fourth
International Conference on Computing Communication Control and
Automation (ICCUBEA). IEEE, 2018, pp. 1–4.

[8] S. Minaee and Z. Liu, “Automatic question-answering using a deep
similarity neural network,” in 2017 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2017, pp. 923–927.

[9] R. G. Athreya, S. K. Bansal, A.-C. N. Ngomo, and R. Usbeck,
“Template-based question answering using recursive neural networks,”
in 2021 IEEE 15th International Conference on Semantic Computing
(ICSC). IEEE, 2021, pp. 195–198.

[10] P. K. Roy, “Deep neural network to predict answer votes on community
question answering sites,” Neural Processing Letters, vol. 53, no. 2, pp.
1633–1646, 2021.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[12] J.-W. Hong, Y. Wang, and P. Lanz, “Why is artificial intelligence blamed
more? analysis of faulting artificial intelligence for self-driving car
accidents in experimental settings,” International Journal of Human–
Computer Interaction, vol. 36, no. 18, pp. 1768–1774, 2020.

[13] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 1110–1121.

[14] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

https://cse19922021.github.io/Deep-Learning-Security-Vulnerabilities/
https://cse19922021.github.io/Deep-Learning-Security-Vulnerabilities/


[15] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 129–140.

[16] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen, “A
comprehensive study of deep learning compiler bugs,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 968–980.

[17] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms,
causes, and repairs of bugs inside a deep learning library,” Journal of
Systems and Software, vol. 177, p. 110935, 2021.

[18] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in
machine learning systems,” in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering. IEEE, 2012, pp. 271–280.

[19] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen, “A
comprehensive study of autonomous vehicle bugs,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 385–396.

[20] A. Di Franco, H. Guo, and C. Rubio-González, “A comprehensive study
of real-world numerical bug characteristics,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2017, pp. 509–519.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[24] M. L. Y. M. S. G. S. Z. R.R. Curtin, M. Edel, “mlpack 3: a fast, flexible
c++ machine learning library,” p. 726, 2018.

[25] W. McKinney et al., “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference, vol.
445. Austin, TX, 2010, pp. 51–56.

[26] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with numpy,” Nature, vol. 585, no. 7825, pp. 357–362,
2020.

[27] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[28] Y. Zhou and A. Sharma, “Automated identification of security issues
from commit messages and bug reports,” in Proceedings of the 2017
11th joint meeting on foundations of software engineering, 2017, pp.
914–919.

[29] W. Al-Kahla, A. S. Shatnawi, and E. Taqieddin, “A taxonomy of
web security vulnerabilities,” in 2021 12th International Conference on
Information and Communication Systems (ICICS). IEEE, 2021, pp.
424–429.

[30] P. Sharma and J. Singh, “Systematic literature review on software effort
estimation using machine learning approaches,” in 2017 International
Conference on Next Generation Computing and Information Systems
(ICNGCIS). IEEE, 2017, pp. 43–47.

[31] T. Aslam, “A taxonomy of security faults in the unix operating system,”
Master’s thesis, Purdue University, vol. 199, no. 5, 1995.

[32] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical software engineering, vol. 19,
no. 6, pp. 1665–1705, 2014.

[33] A. Romano, X. Liu, Y. Kwon, and W. Wang, “An empirical study of
bugs in webassembly compilers,” in 2021 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 42–54.

[34] T. Hirsch and B. Hofer, “Root cause prediction based on bug reports,”
in 2020 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW). IEEE, 2020, pp. 171–176.

[35] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, vol. 45, no. 12, pp. 1170–1188, 2018.

[36] Facebook. (2013) Infer. [Online]. Available: https://fbinfer.com/
[37] D. A. Wheeler. (2013) Dlawfinder. [Online]. Available: http://dwheeler.

com/flawfinder/
[38] A. Dunham. (2009) rough-auditing-tool-for-security. [Online]. Available:

https://github.com/andrew-d/rough-auditing-tool-for-security
[39] D. Marjamäki. (2016) Cppcheck. [Online]. Available: https://cppcheck.

sourceforge.io/
[40] G. inc. Errorprone. [Online]. Available: https://errorprone.info/
[41] SpotBugs. (2021) Spotbugs. [Online]. Available: .https://spotbugs.

github.io/
[42] D. A. Tomassi, “Bugs in the wild: examining the effectiveness of static

analyzers at finding real-world bugs,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 980–
982.

[43] D. A. Tomassi and C. Rubio-González, “On the real-world effectiveness
of static bug detectors at finding null pointer exceptions,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2021, pp. 292–303.

[44] A. Habib and M. Pradel, “How many of all bugs do we find? a study of
static bug detectors,” in 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2018, pp. 317–328.

[45] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[46] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,” in
Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, 2014, pp. 257–268.

[47] M. Jimenez, M. Papadakis, and Y. Le Traon, “An empirical analysis
of vulnerabilities in openssl and the linux kernel,” in 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2016, pp.
105–112.

[48] C. Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip, “Practical ajax race
detection for javascript web applications,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
38–48.

[49] E. Arteca, S. Harner, M. Pradel, and F. Tip, “Nessie: Automatically
testing javascript apis with asynchronous callbacks.” ICSE, 2022.

[50] A. J. Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. Tsan-
talis, “Dependency smells in javascript projects,” IEEE Transactions on
Software Engineering, 2021.

[51] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical
study of adoption of software testing in open source projects,” in 2013
13th International Conference on Quality Software. IEEE, 2013, pp.
103–112.

[52] Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep learning
implementations,” in 2018 IEEE Security and privacy workshops (SPW).
IEEE, 2018, pp. 123–128.

https://fbinfer.com/
http://dwheeler.com/flawfinder/
http://dwheeler.com/flawfinder/
https://github.com/andrew-d/rough-auditing-tool-for-security
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://errorprone.info/
. https://spotbugs.github.io/
. https://spotbugs.github.io/

	Introduction
	Methodology
	Data Collection
	Library selection
	Vulnerability fixing commit collection
	Vulnerability-fixing commit identification

	Data Labeling

	Result Analysis
	RQ1: Vulnerability Types
	Implication
	Comparison with traditional software

	RQ2: Root Causes
	Implication
	Comparison with traditional software

	RQ3: Symptoms
	Comparison with traditional software

	RQ4: Fixing Patterns
	Implication


	Discussion
	Implications to ML Community
	Significance of Our Findings

	Threats to validity
	Related Work
	Studies on General Bugs
	Studies on ML Bugs
	Studies on ML API Usage Bugs
	Studies on ML Implementation Bugs


	Conclusion
	References

