
Yet Another Combination of IR- and Neural-based Comment
Generation

Yuchao Huang
Chinese Academy of Sciences

Beijing, China
yuchao2019@iscas.ac.cn

Moshi Wei
York University
Toronto, Canada

moshiwei@yorku.ca

Song Wang
York University
Toronto, Canada

wangsong@yorku.ca

Junjie Wang
Chinese Academy of Sciences

Beijing, China
junjie@iscas.ac.cn

Qing Wang
Chinese Academy of Sciences

Beijing, China
wq@iscas.ac.cn

ABSTRACT
Background: Code comment generation techniques aim to gener-
ate natural language descriptions for source code. There are two
orthogonal approaches for this task, i.e., information retrieval (IR)
based and neural-based methods. Recent studies have focused on
combining their strengths by feeding the input code and its similar
code snippets retrieved by the IR-based approach to the neural-
based approach, which can enhance the neural-based approach’s
ability to output low-frequency words and further improve the
performance.

Aim: However, despite the tremendous progress, our pilot study
reveals that the current combination is not generalizable and can
lead to performance degradation. In this paper, we propose a straight-
forward but effective approach to tackle the issue of existing com-
binations of these two comment generation approaches.

Method: Instead of binding IR- and neural-based approaches
statically, we combine them in a dynamic manner. Specifically,
given an input code snippet, we first use an IR-based technique
to retrieve a similar code snippet from the corpus. Then we use a
Cross-Encoder based classifier to decide the comment generation
method to be used dynamically, i.e., if the retrieved similar code
snippet is a true positive (i.e., is semantically similar to the input),
we directly use the IR-based technique. Otherwise, we pass the
input to the neural-based model to generate the comment.

Results: We evaluate our approach on a large-scale dataset
of Java projects. Experiment results show that our approach can
achieve 25.45 BLEU score, which improves the state-of-the-art IR-
based approach, neural-based approach, and their combination by
41%, 26%, and 7%, respectively.

Conclusions: We propose a straightforward but effective dy-
namic combination of IR-based and neural-based comment genera-
tion, which outperforms state-of-the-art approaches by a substan-
tial margin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’21, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Comment generation, information retrieval, deep neural network

ACM Reference Format:
Yuchao Huang, Moshi Wei, Song Wang, Junjie Wang, and Qing Wang. 2018.
Yet Another Combination of IR- and Neural-based Comment Generation. In
Proceedings of ACM Conference (Conference’21), June 03–05, 2018, Woodstock,
NY. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
Manually writing comments is very time-consuming, and code
comments are often low-quality, missing, or mismatched after the
software is upgraded [6, 20]. To assist developers in writing high-
quality comments or fill in absent comments, code comment gener-
ation techniques have been proposed, which aim to generate a sum-
mary for a given code snippet automatically [8, 16, 19, 33, 44, 49].

Most of existing code comment generation approaches can be
categorized into two orthogonal types, i.e., the information retrieval
(IR) based approaches [9, 12, 13, 21, 23, 28, 30, 47], which leverage
the comments of retrieved similar code snippets to generate com-
ments for code snippets and the neural-based approaches [15, 16,
19, 27], which treat the comment generation task as a translation
problem and build neural machine translation (NMT) models to
generate comments for code snippets. IR-based approaches can di-
rectly leverage the existing and manually written comments, which
may contain rare words or project-specific information that are
difficult to be generated by NMT [25]. In contrast, the neural-based
approaches perform more robustly on general and new-coming
samples with generalization capability [25]. Therefore, recent stud-
ies [44, 49] have gradually focused on combining the strengths of
the IR-based and neural-based approaches to achieve better perfor-
mance. Specifically, most of the existing approaches bind IR- and
neural-based approaches statically, i.e., each input code sample and
its retrieved similar code snippet from the IR-based approaches will
be fed to the NMT model of neural-based approaches to generate
comments regardless of whether the retrieved similar code snippet
is actually similar to the input one or not. In this paper, we will
refer to these approaches as IR+NMT approaches.

ar
X

iv
:2

10
7.

12
93

8v
1

 [
cs

.S
E

]
 2

7
Ju

l 2
02

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Conference’21, June 03–05, 2018, Woodstock, NY Yuchao Huang, Moshi Wei, Song Wang, Junjie Wang, and Qing Wang

Input Sample:

1. public void loadProject(String arg) throws IOException {

2. project = Project.readProject(arg);

3. projectLoadedFromFile = true;

4. }

Similar sample retrieved from the corpus:

1. public void loadProject(String arg) throws IOException {

2. Project newProject = Project.readProject(arg);

3. newProject.setConfiguration(project.getConfiguration());

4. project = newProject;

5. projectLoadedFromFile = true;

6. }

Comment of the retrieved similar sample: load given project file

Ground Truth: load given project file

Figure 1: An example where the retrieved code snippet is se-
mantically similar to the input one regarding both code and
comment.

Input Sample:
1. public void setEnabled(boolean b) {
2. this.enabled = b;
3. super.setEnabled(b);
4. }

Similar sample retrieved from the corpus:
1. public void setEnabled(boolean b) {
2. super.setEnabled(b);
3. spinner.setEnabled(b);
4. }

Comment of the similar sample: set to true if component enabled

Ground Truth: set the value displayer active inactive

Figure 2: A false positive example where the retrieved code
snippet is only textually, not semantically, similar to the in-
put code sample.

However, despite the tremendous progress of existing IR+NMT
approaches, our pilot study reveals that such a combination is
not generalizable and can lead to performance degradation. For
instances, Figure 1 shows an example that the comment from the
retrieved similar code snippet is a perfect match to the input code
sample; thus, there is no need to feed it into the neural-basedmodels.
In contrast, Figure 2 shows another example that a retrieved sample
is highly lexical similar to the input sample in codes while they are
irrelevant in comments; feeding the retrieved false-positive code
snippets into a neural-based model will confusing the neural model
and further degrade its performance.

In this paper, to tackle the issue of existing static binding of
IR- and neural-based approaches, we propose a straightforward
but effective approach to combine the strengths of the IR-based
and neural-based approaches in a dynamic manner. Specifically,
given an input code snippet, we first use an IR-based approach
to retrieve a similar code snippet from the corpus. Then we use a
Cross-Encoder based classifier to select the comment generation
method to be used dynamically, i.e., if the retrieved similar code
snippet is a true positive, we directly reuse the existing comment
from the similar sample retrieved by the IR technique. Otherwise,
we pass the input to the neural-based approach to generate its
comment.

To evaluate our approach, we conduct experiments on a large-
scale dataset provided by LeClair et al. [27], which comes from
the Sourcerer repository and contains about 2M code-comment
pairs. We employ BLEU [35], METEOR [2], ROUGE-L [29], and
CIDER [43] as evaluation metrics to evaluate predicted comments.
The experimental results show that our approach can outperform
state-of-the-art baselines on all selecting metrics. Specifically, our
approach can achieve 25.45 BLEU score, which improves the state-
of-the-art IR-based approach, neural-based approach, and their
combination by 41%, 26%, and 7%, respectively.

The main contributions of this paper are as follows:
• We propose a straightforward but effective approach to com-
bine the IR-based and neural-based comment generation
approaches in a dynamic manner.

• We have designed a Cross-Encoder based classifier, which
dynamically selects the comment generation method to be
used for each input sample.

• We conduct extensive experiments on a large-scale dataset to
evaluate the performance of our approach. The experiment
results show the effectiveness of our approach.

• We release the source code of our approach and the dataset
of our experiments to help other researchers replicate and
extend our study1.

The rest of this paper is organized as follows. Section 2 presents
the background of this study. Section 3 describes the details of our
approach. Section 4 and Section 5 present the experiment setup and
results. Section 6 discusses the strengths of our approach and threats
to validity. Section 7 reviews related work. Finally, we conclude our
work in Section 8.

2 BACKGROUND
2.1 Neural Machine Translation
Recent neural-based comment generation approaches [16, 17, 19,
27, 49] treat comment generation as an end-to-end neural machine
translation (NMT) task and leverage the encoder-decoder Sequence-
to-Sequence (Seq2Seq) model to learn the translating pattern. Specif-
ically, at each time step 𝑡 , it reads one token 𝑥𝑡 from the input code
snippet sequence 𝑋 = 𝑥1, · · · , 𝑥𝑛 , then the encoder updates the
current hidden state ℎ𝑡 :

ℎ𝑡 = 𝑓 (𝑥𝑡 , ℎ𝑡−1) (1)

where 𝑓 is a neural unit, e.g. GRU [4], LSTM [15].
Attention mechanism [1] is adopted to focus on the critical part

of the input code during decoding. For predicting target word 𝑦𝑖 ,
a context vector 𝑐𝑖 is calculated as a weighted sum of all hidden
states ℎ1, · · · , ℎ𝑛 :

𝑐𝑖 =

𝑛∑︁
𝑗=1

𝛼𝑖 𝑗ℎ 𝑗 (2)

The weight 𝛼𝑖 𝑗 of each hidden state ℎ 𝑗 is calculated as follows:

𝛼𝑖 𝑗 =
exp

(
𝑒𝑖 𝑗

)∑𝑛
𝑘=1 exp (𝑒𝑖𝑘)

, 𝑒𝑖 𝑗 = 𝑎
(
𝑠𝑖−1, ℎ 𝑗

)
(3)

where 𝑠𝑖−1 donates the last hidden state of the decoder, 𝑎 is an
alignment model, e.g., a Multi-Layer Perception (MLP) unit [34].
1https://zenodo.org/record/4757011

Yet Another Combination of IR- and Neural-based Comment Generation Conference’21, June 03–05, 2018, Woodstock, NY

At time step 𝑖 , the hidden state 𝑠𝑖 of the decoder is updated by:

𝑠𝑖 = 𝑓 (𝑦𝑖−1, 𝑠𝑖−1) (4)

where 𝑦𝑖−1 is the previous generated token. Then, the decoder
generates the target sequence 𝑌 by sequentially predicting the
conditional probability of a word 𝑦𝑖 based on the hidden state 𝑠𝑖
and the context vector 𝑐𝑖 .

𝑝 (𝑦𝑖 | 𝑦1, . . . , 𝑦𝑖−1, 𝑋) = 𝑔 (𝑦𝑖−1, 𝑠𝑖 , 𝑐𝑖) (5)

where 𝑔 is the generator function, e.g., a MLP layer [34] along with
softmax.

The cross-entropy loss function is used to train the Seq2Seq
model, i.e., minimizing the following objective function:

L(𝜃) = −
𝑁∑︁
𝑖=1

𝐿∑︁
𝑗=1

log𝑝
(
𝑦
(𝑖)
𝑗

)
(6)

where 𝜃 donates the trainable parameters, 𝑁 is the number of
training instances and 𝐿 is the length of each target sequence. 𝑦 (𝑖)

𝑗

means the 𝑗th word in the 𝑖th instance.

2.2 Semantic Textual Similarity
To better distinguish false-positive samples, like the example shown
in Figure 2, we treat determining whether the retrieved results are
similar to the input samples as a supervised learning task. The se-
mantic textual similarity (STS) task aims to determine the semantic
similarity of a given sentence pair, which is similar to our task.
The input sentence pair to the semantic classifier is the input and
retrieved code snippet. The predicted label is whether the retrieved
result is accurate.

Cross-Encoder [7] is one of the state-of-the-art methods for the
semantic textual similarity (STS) task. The structure of the Cross-
Encoder is shown in Figure 4. For the given sentence pair (𝑠1, 𝑠2),
Cross-Encoder concatenates them by a special token ([SEP]) to
encode them simultaneously. A multi-head attention pre-trained
model (e.g., BERT [7]) is used to encode the concatenated sequence.
In the encoding process, the self-attentionmechanism allows two in-
put sentences to perceive each other’s information at a fine-grained
level. The embedding result is fed into a classifier layer that pro-
duces an output value 𝑦 between 0 and 1, indicating the semantic
similarity.

In this paper, we use a Cross-Encoder based classifier to identify
samples with accurate retrieved results. For the pre-trained model
of the Cross-Encoder, we choose CodeBERT [10], which is trained
on a large-scale code corpus consists of Java and five other program-
ming languages [18]. Comparing with other pre-trained models
on natural language, CodeBERT can save the effort of semantic
migration from natural language to programming language during
fine-tuning.

3 APPROACH
In this work, we propose a comment generation approach that com-
bines the strengths of the IR- and neural-based comment generation
approaches dynamically. The key idea of our approach is straight-
forward: given an input code snippet, we first use an IR-based
approach to retrieve a similar code snippet from the corpus. Then

we use a Cross-Encoder based classifier to select the comment gen-
eration method to be used dynamically, i.e., if the retrieved similar
code snippet is a true positive, we directly use the IR result. Other-
wise, we pass the input to the neural-based approach to generate
the comment. Unlike existing IR+NMT approaches [44, 49], we do
not pass the information obtained by the IR-based approach to the
neural network model to avoid textually similar but semantically
dissimilar retrieved results to confuse the model.

3.1 Overview of Our Approach
The workflow of our approach is shown in Figure 3. Given an input
sample, our approach generates its comment using the following
three steps: 1) Comment generation with the IR-based technique
(Section 3.2). In this step, our approach extracts the comment from
the most similar sample retrieved from the corpus through the
IR-based retrieval technique. 2) Evaluate the retrieved result (Sec-
tion 3.3). We use a Cross-Encoder based classifier to determine
whether the retrieved code snippet is similar to the input semanti-
cally.We assume that directly leveraging the existing comment from
a true-positive similar sample, which may contain low-frequency
words and project-specific information that hard to be generated
by NMT [25, 44, 49], will be more accurate and informative than
the generated result of NMT models. Therefore, when the retrieved
code snippet is similar to the input, our approach will reuse the com-
ment of the retrieved code snippet. Otherwise, we assume that the
current sample needs to be inferred by generation-based methods.
3) Comment generation with the neural-based technique (Section
3.4). For the input sample whose retrieval result is determined to be
inaccurate from the previous step, the neural model is used to au-
tomatically generate its comment based on the input code snippet
and corresponding AST sequence.

3.2 Comment Generation with The IR-based
Technique

This step aims to provide an existing comment for each input sample
that may be reusable from the retrieved similar code snippet.

To identify the most similar sample for a given sample, in this
work, we reuse the retrieval method of Re2Com [44], which is a
code lexical similarity based retrieval method. The retrieval module
of Re2Com uses the training set as the corpus. It retrieves the
sample with the highest lexical similarity between code snippets
based on BM25 algorithm from search engine Lucene2, a widely
used similarity metric. For each term in the given code snippet, its
relevance score to the candidate code snippet is calculated based
on the term frequency. Then, the BM25 score between the input
and candidate code snippet is calculated as a weighted sum of the
relevance score of each term, where the weight of each term is
calculated based on its inverse document frequency. Finally, the
candidate code snippet with the highest BM25 score is selected as
the retrieved result. Note that, IR-based approach does not have a
training process. We use the settings of BM25 from Re2Com to run
our experiments.

2https://lucene.apache.org/

Conference’21, June 03–05, 2018, Woodstock, NY Yuchao Huang, Moshi Wei, Song Wang, Junjie Wang, and Qing Wang

Similar Code IR Result

Corpus

Input Code

Encoder Decoder

NMT Model

NMT Result

Semantically Similar: Use IR Result

Semantically Dissimilar: Use NMT Result

Semantic Classifier

Retrieval Technique

Cross-Encoder

Lucene

1. Comment generation with
the IR-based technique

2. Evaluate the retrieved result

3. Comment generation with
the neural-based technique

Output

Output

Figure 3: An overview of our approach

Classifier

Pre-trained Model

[SEP]s1

y: 0...1

s2𝑠1 𝑠2

ො𝑦

Figure 4: Structure of the Cross-Encoder

3.3 Evaluate The Retrieved Result with The
Cross-Encoder based Classifier

In the previous step, we have provided an existing comment from
the retrieved similar code snippet for each input sample. However,
as shown in Figure 2, the results of the IR technique could be
incorrect, thus to achieve more accurate determination, we compare
the semantic between the input and the retrieved code snippet by
a semantic model to predict whether the IR result is accurate and
can be directly reused.

To identify samples with accurate IR results, we compare the
input with the retrieved code snippet semantically rather than
textually. This is because determining the performance of IR re-
sults from text similarity is not accurate enough. As shown in
Figure 2, the input and the retrieved code snippet are very simi-
lar, with only 2-3 tokens different. However, their corresponding
comments have only one token in common. In this work, we use
the Cross-Encoder model for the semantic comparison, one of the
state-of-the-art methods for the semantic textual similarity (STS)
task. Figure 4 shows the structure of the Cross-Encoder. The input
to the model is the input and retrieved code snippet. Two snippets
are concatenated into a sequence through a specific token [SEP]
provided by BERT [7] and simultaneously passed to a pre-trained
multi-level transformer [42] network for embedding. We choose

CodeBERT [10] as the pre-trained model to save the effort of se-
mantic migration. The embedding result of the two snippets is fed
into a liner classifier layer that produces an output value between
0 and 1, indicating the degree of semantic similarity:

𝑦 = 𝑇 (𝑐𝑜𝑑𝑒𝑖𝑛𝑝𝑢𝑡 , 𝑐𝑜𝑑𝑒𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)𝑊 (7)

where 𝑦 is the predicted degree of semantic similarity,𝑊 is the
weight of the linear layer, and 𝑇 (𝑐𝑜𝑑𝑒𝑖𝑛𝑝𝑢𝑡 , 𝑐𝑜𝑑𝑒𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑) is the
embedding result of the input and retrieved code snippet.

The training process is fine-tuning the semantic model with
pairs of code snippets to the target that if a semantically similar
snippet is retrieved, the model returns 1, otherwise returns 0. We
use the classic cross-entropy loss function to fine-tune the model:

𝐿𝑜𝑠𝑠 = −(𝑦 ∗ 𝑙𝑜𝑔(𝑦) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑦)) (8)

where 𝑦 indicates the golden label of whether the retrieved result
is accurate.

The details of how we train the Cross-Encoder based classifier
are available in Section 4.2.2.

3.4 Comment Generation with The
Neural-based Technique

In the previous step, we have identified samples with accurate IR
results. While the remaining input samples, we further use the
neural-based approach to generate comments for them. Specifically,
in this step, we first build and train an NMT model on our corpus.
Then we input samples that are determined to have inaccurate IR
results in the previous step to this model to generate comments.
This step aims to use the generalization ability of NMT to generate
comments for general input samples.

In this step, we use the state-of-the-art neural-based comment
generation method, i.e., DeepCom [17]. DeepCom is an encoder-
decoder structure model with the attention mechanism [1]. The
input of the model contains both code and AST sequences, where
the code sequence contains semantic information such as identifier
names, and the AST sequence contains structural information. Us-
ing semantic and structural information from the input code snippet
simultaneously can help the model understand them more clearly

Yet Another Combination of IR- and Neural-based Comment Generation Conference’21, June 03–05, 2018, Woodstock, NY

and predict more accurately [17]. The model uses two encoders
to encode the code sequence and the AST sequence, respectively.
We follow the model training and turning processes described in
DeepCom [17] to re-train the models on our corpus (details are in
Section 4.2.1).

4 EXPERIMENT DESIGN
4.1 Dataset
We use the FunCom dataset provided by LeClair et al. [27] to
conduct our experiments, which has been used in many existing
studies [14, 27, 44]. The FunCom dataset is collected from a large
Sourcerer repository [32], which contains over 50,000 projects and
5.1 million java methods. LeClair et al. treat the first sentence of the
Javadoc of each method as its comment [26], use srcML [5] to ex-
tract AST sequences from source codes, then serialize them by the
SBT method proposed by Hu et al. [16]. To reduce the vocabulary
size, LeClair et al. adopt a series of preprocessing to the code and
comment text: splitting identifiers in code and comment by camel
case and underscore, removing non-alpha characters (including
symbols) from the text, and converting the text to lowercase. To
better simulate the case where only AST is known, identifiers in
the AST sequence are replaced with <OTHER>. To reduce dupli-
cate samples between the training and test set, LeClair et al. use a
heuristic rule [39] to filter out auto-generated codes which are very
similar to each other and too easy to be learned and predicted by
the model. In addition, LeClair et al. divide all the data by project
in the dataset building stage: data from 90% of projects are divided
as the training set, 5% as the validation set, and 5% as the test set.
After filtering, the FunCom dataset has about 2M code-comment
pairs for training and testing.

The FunCom dataset is the most reasonable dataset to the best
of our knowledge, which has a large amount of data and excludes
noisy data, thus allowing us to evaluate the model’s generalization
ability more accurately.

4.2 Experiment Settings
In this work, we train both DeepCom [17] and the Cross-Encoder
based classifier [7] on the FunCom dataset. Their training details
are as follows.

4.2.1 Training Details of DeepCom. We use the default settings of
DeepCom for training, i.e., the encoder and decoder use a single-
layer Gated Recurrent Unit (GRU) structure [4]. Both the word
embeddings and the GRU hidden states are set to 256. In the decod-
ing stage, beam search [46] is leveraged to obtain more accurate
results, with the beam width is set to 5. We use the entire FunCom
dataset for training and validation. DeepCom is trained on the Fun-
Com training set (19,548,008 samples in total). Following DeepCom,
we use Stochastic Gradient Descent (SGD) based optimizer to train
the model, the initial learning rate is set to 0.5, and the learning rate
decay factor is set to 0.95. In addition, to save GPU memory, we set
the batch size to 256. Every 2000 training steps, the checkpoint is
saved and validated on the FunCom validation set (104,273 samples
in total). After 20 epochs of training (about 150,000 steps), the best
parameters are selected from the checkpoint that performs best on
the validation set. We trained the model on a Linux server with the

NVIDIA RTX 2060S GPU with 8GB memory, which took about 70
hours for training.

4.2.2 Training Details of Cross-Encoder Based Classifier. We use
the Sentence-Bert [36] package to build and train the Cross-Encoder
based classifier. In order to save the effort of language seman-
tics migration, we adopt the widely used CodeBERT pre-trained
model [10], a 24-layer bidirectional transformer [42] network.

To label the dataset for training the Cross-Encoder based classi-
fier, we use code-comment pairs from the validation set of FunCom
(104,273 samples in total). For each sample, we use the IR-based
approach (details are in Section 3.2) to retrieve the most similar
code snippet, and the corresponding comment will be treated as
the IR result. Then we use a trained neural model (i.e., DeepCom)
to generate its comment, i.e., NMT result. The label of the sam-
ple is whether the IR result is more accurate. Specifically, we use
sentence_bleu metric in the NLTK [31] package to calculate the
similarities of the IR result and NMT result with ground truth, re-
spectively. If the score of the IR result is greater than the score of the
NMT result, it is labeled as a positive sample; otherwise, it is labeled
as a negative sample. We further exclude cases where both methods
perform poorly from positive samples (e.g., both IR result and NMT
result fail to hit any word in the ground truth comment). Finally,
we obtain a triplet for each sample: < Input code snippet, Retrieved
code snippet, Is_IR_Result_Better? >. After labeling the data, we take
90% of triplets (93,846 samples) for training, and the remaining 10%
(10,427 samples) of triplets are used as a developmentset for tuning
the parameters and testing.

We use Adam optimizer [24] to train the Cross-Encoder based
classifier, and the initial training rate is set to 2e-5, the learning
rate decay factor is set to 0.99. We set the batch size to 16, and for
every 2000 training steps, save the checkpoint and validate it on the
development set. After fine-tuning 5 epochs (about 55,000 steps),
the best parameters are selected from the checkpoint that performs
best on the development set. We fine-tuned the model on a Linux
server with the NVIDIA Titan RTX GPU with 24GB memory, which
took about 3 hours for fine-tuning.

4.3 Baselines
4.3.1 Baselines for Evaluating Our Comment Generation Approach.
To investigate the performance of our comment generation method,
we selected the IR-based approach (details are in Section 3.2), four
state-of-the-art neural-based comment generation methods [17, 27,
49], and two state-of-the-art IR+NMT methods [44, 49] as baselines.
1) Neural-based methods

Rencos NMT module [49] is the NMT module of Rencos [49],
a standard attentional Seq2Seq model where the encoder is bidirec-
tional LSTM and the decoder is LSTM. This baseline represents a
fundamental solution to use NMT on code to comment problem,
i.e., train an NMT with code as input and comment as output.

attendgru [27] is an attentional Seq2Seq-like model. This base-
line predicts only one word at a time. In the encoding process, the
model encodes both the code sequence and the output sequence
predicted in previous steps. In the decoding process, the model
predicts the next most likely word and appends it to the output
sequence for the subsequent prediction steps.

Conference’21, June 03–05, 2018, Woodstock, NY Yuchao Huang, Moshi Wei, Song Wang, Junjie Wang, and Qing Wang

ast-attendgru [27] is also an attentional Seq2Seq-like model.
This baseline adds AST as an additional input to improve the pre-
diction performance. LeClair et al. [27] use the traversal method
SBT [16] to flatten the AST into a sequence and adds an additional
encoder for the AST sequence.

DeepCom [17] is a standard attentional Seq2Seq model, where
the encoder and the decoder are both Gated Recurrent Unit (GRU).
The inputs to the model are code and AST sequences. As our pro-
posed method takes the prediction results of this baseline as the
NMT results, improvement from combining IR results can be di-
rectly measured by comparing the performance of our proposed
method with this baseline.
2) IR+NMT methods

Rencos [49] combines the IR-based and neural-based comment
generation by feeding the most semantic-level and syntactic-level
similar code snippets of an input code snippet retrieved by IR-
based approach into the neural-based approach to generate the
comment. Specifically, given an input code snippet, Rencos retrieves
its two most similar code snippets on semantic-level and syntactic-
level. Then, the input code snippet and its two similar ones are fed
separately into a trained code-to-comment NMT model to generate
the comment.

Re2Com [44] uses additional encoders to encode information
from the retrieved sample of IR-based approaches. For a given code
snippet, a similar sample with the highest text similarity is retrieved
from the corpus. Then Re2Com takes the given code, its AST, code,
and comment of the similar sample as input and encodes them
by four different encoders. The encoding results are fused by the
similarity between the input and the retrieved code and then passed
to the decoder to obtain the predicted comment.

4.3.2 Baselines for Evaluating Cross-Encoder Based Classifier. To
evaluate the effectiveness of our Cross-Encoder based classifier
(details are in Section 3.3) in determining whether IR results are
accurate, we adopt two other classification methods as the baselines.

Lexical-level Similarity is a simplemethod determiningwhether
the IR result is accurate based on the lexical similarity between
the input and retrieved code. If the similarity is greater than an
appropriate threshold, we assume that the IR result is accurate and
treat it directly as the output; otherwise, the neural-based approach
will be used to generate its comment. We follow [11] and use the
sentence_bleu metric in the NLTK [31] package to calculate the
lexical similarity. This method does not require training but needs
to determine an appropriate threshold that makes the dynamic
combination of IR- and neural-based approaches on the test dataset
can achieve optimal performance. To find the optimal threshold,
we experiment the threshold values from 0 to 1 with an interval
of 0.05. When the threshold value is 0.40, this approach achieves
optimal performance on FunCom’s validation set. Thus, we use 0.4
as the threshold value in our experiments.

Siamese Network [3] is another state-of-the-art method on
the semantic textual similarity (STS) task. It consists of two identi-
cal encoders to encode the two input sentences separately, which
share the same model structure and parameters. Then, the distance

between two embeddings is treated as the semantic similarity be-
tween the sentence pair. We use the implementation from GitHub3
to build a Siamese network, which uses a bidirectional LSTM (Bi-
LSTM) [38] with 256 hidden sizes as the encoder structure and
chooses manhattan distance as the similarity of embedding vector
of input sentence pairs. Like Cross-Encoder, we use the labeled
dataset described in Section 4.2.2 to train the Siamese network.

4.4 Evaluation Metrics
4.4.1 Metrics for Evaluating Generated Comments. In our exper-
iments, we follow Rencos [49] and evaluate the performance of
different comment generation methods with four common met-
rics, i.e., BLEU [35], METEOR [2], ROUGE-L [29], and CIDER [43],
which are widely used in machine translation [41], text summariza-
tion [37], and image captioning [48].

BLEU [35] measures the similarity between the generated com-
ment and ground truth by the geometric mean of 𝑛-gram matching
precision scores 𝑝𝑛 . A brevity penalty 𝐵𝑃 is used to prevent very
short generated sentences.

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · exp
(
𝑁∑︁
𝑛=1

𝑤𝑛 log𝑝𝑛

)
(9)

where 𝑤𝑛 is the uniform weight, and 𝑁 is set to 4 in our paper.
We report a composite BLEU score in addition to BLEU1 through
BLEU4 in our experiment.

METEOR [2] calculates the similarity scores by the unigram
precision 𝑃 and recall 𝑅, and multiplied by a penalty of language
order:

𝑀𝐸𝑇𝐸𝑂𝑅 =

(
1 − 𝛾 · 𝑓 𝑟𝑎𝑔𝛽

)
· 𝑃 · 𝑅
𝛼 · 𝑃 + (1 − 𝛼) · 𝑅 (10)

where 𝑓 𝑟𝑎𝑔 is the fragmentation fraction. 𝛼 , 𝛽 , and 𝛾 are three
parameters whose default values are 0.9, 3.0 and 0.5, respectively.

ROUGE-L [29] is calculated by the Longest Common Subse-
quence (LCS) matching F-score. Suppose the length of the target
sentence (𝑋) and the predicted sentence (𝑌) are m and n, respec-
tively, and the length of the LCS between them is 𝐿𝐶𝑆 (𝑋,𝑌), then:

𝑃𝑙𝑐𝑠 =
𝐿𝐶𝑆 (𝑋,𝑌)

𝑛
, 𝑅𝑙𝑐𝑠 =

𝐿𝐶𝑆 (𝑋,𝑌)
𝑚

, 𝐹𝑙𝑐𝑠 =

(
1 + 𝛽2

)
𝑃𝑙𝑐𝑠𝑅𝑙𝑐𝑠

𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠
(11)

where 𝐹𝑙𝑐𝑠 is the value of ROUGE-L, 𝑃𝑙𝑐𝑠 and 𝑅𝑙𝑐𝑠 denote the LCS
precision and recall, respectively, and 𝛽 = 𝑃𝑙𝑐𝑠/𝑅𝑙𝑐𝑠 .

CIDER [43] examineswhether the prediction result has captured
the critical information. Given the generated summary 𝑐𝑖 and the
ground-truth 𝑠𝑖 , CIDER is calculated by the frequency of 𝑛-grams
and TF-IDF weighting:

𝐶𝐼𝐷𝐸𝑅𝑛 (𝑐𝑖 , 𝑠𝑖) =
1
𝑀

∗
𝑀∑︁
𝑗=1

𝑔𝑛 (𝑐𝑖) ∗ 𝑔𝑛
(
𝑠𝑖 𝑗

)
∥𝑔𝑛 (𝑐𝑖)∥ ∗

𝑔𝑛 (
𝑠𝑖 𝑗

)
𝐶𝐼𝐷𝐸𝑅 (𝑐𝑖 , 𝑠𝑖) =

𝑁∑︁
𝑛=1

𝑤𝑛𝐶𝐼𝐷𝐸𝑅𝑛 (𝑐𝑖 , 𝑠𝑖)

(12)

where 𝑁 is set to 4, 𝑔𝑛 (𝑐𝑖) denotes the TF-IDF weight vector of
all 𝑛-gram in sentence 𝑐𝑖 , 𝑀 represents the number of reference
sentences for each sample (in our work, 𝑀 = 1) . The final result

3https://github.com/tlatkowski/multihead-siamese-nets

Yet Another Combination of IR- and Neural-based Comment Generation Conference’21, June 03–05, 2018, Woodstock, NY

Table 1: The performance of our method compared with other comment generation baselines (the best ones are marked in
bold). The percentages in parentheses indicate the relative improvement achieved by our method compared to the IR-based
method and NMT-based method (DeepCom), respectively.

Type Approach BLEU(%) BLEU1(%) BLEU2(%) BLEU3(%) BLEU4(%) METEOR(%) ROUGE-L(%) CIDER

IR-Based Re2Com Retrieve Module 18.04 32.04 17.84 14.4 12.88 15.41 30.64 1.643

Neural-based

Rencos NMT Module 19.15 34.64 20.58 15.11 12.49 18.92 39.54 2.074
attendgru 19.26 38.64 21.71 14.63 11.21 19.34 40.16 1.984
ast-attendgru 19.73 39.8 22.25 14.93 11.46 19.43 39.94 1.952
DeepCom 20.11 40.71 22.57 15.17 11.73 19.92 40.25 2.044

IR+NMT Rencos 19.86 36.7 21.58 15.55 12.64 19.17 39.9 2.066
Re2Com 23.69 40.38 24.74 19.12 16.48 20.28 39.91 2.282

Our Method 25.45 (41%/26%) 43.92 (37%/7%) 27.08 (51%/19%) 20.38(41%/34%) 17.3 (34%/47%) 22.03 (42%/10%) 43.21 (41%/7%) 2.46 (49%/20%)

𝐶𝐼𝐷𝐸𝑅 (𝑐𝑖 , 𝑠𝑖) is calculated by summing of the scores for different
𝑛-grams (𝐶𝐼𝐷𝐸𝑅𝑛 (𝑐𝑖 , 𝑠𝑖)) with weight𝑤𝑛 .

4.4.2 Metrics for Evaluating Cross-Encoder Based Classifier. To
evaluate whether the classifier can accurately distinguish samples
with accurate IR results, we use four metrics commonly used in clas-
sification problems to verify the performance of our Cross-Encoder
based classifier and baselines, i.e., accuracy, precision, recall, and
F1-score.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(13)

where 𝑇𝑃/𝐹𝑃 donates the number of positive samples identified by
the classifier that are/are not samples with accurate IR results, and
𝑇𝑁 /𝐹𝑁 donates the number of negative samples identified by the
classifier that are/are not samples with inaccurate IR results.

4.5 Research Questions
We perform a large-scale comparative study to answer the following
three research questions for evaluating our approach.

• RQ 1 (Performance): How does our approach compare to
the commonly-used and state-of-the-art comment genera-
tion baselines?

• RQ 2 (Accuracy of classification): What is the accuracy
of our Cross-Encoder based classifier?

• RQ 3 (Generalizability): Does our approach work with
other NMT methods?

In RQ1, we set out to investigate the performance of generated
comments of our proposed approach by comparing with seven
state-of-the-art baselines (details are in Section 4.3.1). In RQ2, we
evaluate whether the Cross-Encoder based classifier can effectively
distinguish samples with accurate retrieved results by comparing
with two baselines (details are in Section 4.3.2). In RQ3, we explore
whether our approach is applicable for other neural comment gen-
eration approaches, i.e., still can obtain a significant improvement
from dynamically combining with IR results.

5 RESULT ANALYSIS
5.1 RQ 1: Our Approach vs. Baselines
ExperimentalMethod. To answer this research question, we com-
pare our approach with comment generation baselines listed in
Section 4.3. All baselines are trained on the FunCom training set.
We compare generated comments of our approach and other base-
lines on the FunCom test set by four evaluation metrics described
in Section 4.4.1.

Result. Table 1 shows the performance of our method com-
pared to other comment generation baselines. Overall, our ap-
proach achieves the best performance on all evaluation metrics.
Our approach achieves a 26% improvement on BLEU and a 7%-47%
improvement on other metrics compared to DeepCom, the state-of-
the-art neural-based approach, and achieves a 7% improvement on
BLEU compared to Re2Com, the state-of-the-art IR+NMT approach.

From the table, we can see that the IR-based approach has a
similar performance to neural-based approaches. The IR-based ap-
proach achieves 18.04 BLEU score, while neural-based approaches
perform slightly better than it and achieve BLEU score range from
19.15 to 20.11. One of the possible reasons that the neural-based
approaches and the IR-based approach perform similarly can be
that the word distributions in the training and test datasets are
different. Some custom identifiers in the test set samples may be
rare or even absent from the training set, making it hard for the
model to capture their information accurately [22].

For the two existing combinations of IR-based and neural-based
approaches, i.e., Rencos and Re2Com, as we can see from the ta-
ble, both could outperform IR-based and neural-based approaches.
Specifically, Rencos achieves 19.86 BLEU score by fusing prediction
results of the input code snippets with similar snippets. Re2Com
achieves 23.69 BLEU scores by feeding the codes and comments
of similar samples into the neural model. Our method achieves
a higher 25.45 BLEU score by dynamically combining IR results
and NMT results. In addition, both Rencos and Re2Com fail to
improve the performance of the METEOR and ROUGE-L metrics
significantly, but our approach achieves a significant improvement.

We have also conducted the Wilcoxon signed-rank test [45]
(𝑝 < 0.05) to compare the performance of our approach and these
baselines. The test result suggests that our approach achieves sig-
nificantly better performance than baseline approaches in BLEU,
METEOR, ROUGE-L, and CIDER.

Conference’21, June 03–05, 2018, Woodstock, NY Yuchao Huang, Moshi Wei, Song Wang, Junjie Wang, and Qing Wang

Table 2: The performance of different classification algo-
rithms

Approach Classification Performance Generated Comments

Accuracy(%) Precision(%) Recall(%) F1-score(%) BLEU(%)

lexical-level similarity 71.3 65.1 37.8 47.9 24.22
Siamese Network 68.9 59.2 34.4 43.5 23.5

Cross-Encoder 73.6 70.2 41.9 52.5 25.45

Our approach significantly outperforms the state-of-the-art
comment generation baselines. The improvements on the IR-
based approach, neural-based approach, and their combination
are 41%, 26%, and 7% in terms of BLEU score, respectively.

5.2 RQ 2: Cross-Encoder vs. Other
Classification Algorithms

ExperimentalMethod. To answer this research question, we com-
pare the Cross-Encoder based classifier with other classifier base-
lines listed in Section 4.3.2. Specifically, we apply these approaches
on the test set labeled as described in Section 4.2.2 and use accu-
racy, precision, recall, and F1-score to measure the performance.
In addition, we replace the Cross-Encoder based classifier of our
approach with other classifier baselines, then use BLEU to measure
the quality of the generated comments.

Result. The performance of each classification method is shown
in Table 2. Overall, our approach (the Cross-Encoder based classi-
fier) outperforms the two baselines on all the five metrics.

The first row of Table 2 shows the performance of the lexical-
level similarity method (details are in Section 4.3.2), which achieves
an accuracy of 71.3% in inferring whether the IR results are accurate.
Its combined results achieve 24.22 BLEU score, which is better
than Re2Com. Significant improvement can also be achieved even
without training a classifier for comparison, which further validates
that our idea of dynamically combining IR results with NMT results
is indeed practical. However, the text-similarity-based approach
also suffers the issues of false-positive as shown in Figure 2. To
identify such false-positive samples, we use the Cross-Encoder, a
semantic-based classifier, to more accurately predict whether the
IR results are accurate.

The second row of Table 2 shows the performance of the Siamese
network method (details are in Section 4.3.2). We train a Bi-LSTM
network with strong expressive capability from scratch to deter-
mine semantics similarity. However, the Siamese network does not
perform as well as expected; its performance is even worse than
the lexical-level similarity method we showed above. One possible
reason is that the model focuses on irrelevant features instead of
the semantic gap between code snippet pair, leading to over-fitting
and poor performance.

The third row of Table 2 shows the performance of our Cross-
Encoder based classifier. Overall, our Cross-Encoder based classifier
achieves the best performance on all metrics. The high accuracy
(73.6%) and precision (70.2%) validate that it can help achieve our
goal of filtering false-positive retrieval results, i.e., textually sim-
ilar but semantically dissimilar. Besides, we can also see that the
performance of the combined result increases with the increase of

Table 3: The performance (BLEU) of different NMT results
combined with IR results. The percentages in parentheses
indicate the relative improvement achieved by combining
with IR results

Approach NMT Only Combined Result Improvement

Rencos NMT Module 19.15 24.95 5.8 (30%)
attendgru 19.26 25.32 6.06 (31%)
ast-attendgru 19.73 25.34 5.61 (28%)
DeepCom 20.11 25.45 5.34 (26%)

accuracy of the classification, which suggests that the performance
of our comment generation approach can be improved by better
distinguishing samples with accurate IR result.

Our Cross-Encoder based classifier can accurately identify sam-
ples with accurate IR results. Besides, our idea of dynamically
combining IR-based and neural-based approaches can outper-
form the state-of-the-art IR+NMT approaches even with the
naive textual-similarity algorithm.

5.3 RQ 3: Generalizability
Experimental Method. Different neural models might generate
different results, which can affect the generalizability of our ap-
proach. To evaluate the generalizability of our approach, we replace
the DeepCom in our approach with three other neural-based base-
line approaches (listed in Section 4.3). Then we measure the quality
of generated comments with BLEU.

Result. Table 3 shows the performance of other neural-based
approaches combined with IR results. Overall, after combining IR
results, all three neural methods achieve better performance with
24.95-25.34 BLEU score. Specifically, Rencos NMT module, attend-
gru, and ast-attendgru can achieve relative improvements of 30%,
31%, and 28% from combining IR results, respectively, which are
even higher than the relative improvement of DeepCom (26%). The
above results fully demonstrate that the performance of our pro-
posed approach remains stable across different neural approaches.
Moreover, all the combined results outperform Re2Com , the cur-
rent state-of-the-art IR+NMT method, which again validates the
feasibility of our idea of dynamically combining IR results and NMT
results.

The performance of our approach remains stable across different
neural-based comment generation approaches.

6 DISCUSSION
6.1 Why Our Approach Performs Better?
To investigatewhy our proposed approach can achieve better perfor-
mance, we partition the 90,908 samples in the test set into two sets,
i.e., samples on which the IR-based approach performs better (IR-
better samples) and samples on which the neural-based approach
(DeepCom) performs better (NMT-better samples). Overall, there
are 31,636 samples (34.8%) where the IR-based approach performs
better, and 59,272 samples (65.2%) where the neural-based approach
performs better. We then recalculate the performance (based on

Yet Another Combination of IR- and Neural-based Comment Generation Conference’21, June 03–05, 2018, Woodstock, NY

Table 4: The performance (BLEU) of each approach on the
IR-better samples and NMT-better samples

Approach All IR-better samples NMT-better samples

90908 31636 (34.8%) 59272 (65.2%)

Re2Com Retrieve Module 18.04 39.55 5.25
DeepCom 20.11 20.86 19.58
Re2Com 23.69 39.46 14.33
Our Method 25.45 37.5 18.0

BLEU) of the four methods in these two sets, i.e., Re2Com retrieve
module (IR-based approach), DeepCom (neural-based approach),
ReCom (IR+NMT approach), and our approach. The results are in
Table 4.

From the table, we can see that for IR-better samples, the IR-
based approach, i.e., Re2Com retrieve module, can directly leverage
existing comments from similar samples in the corpus and achieves
39.55 BLEU score, which is almost twice as large as the score of
the neural-based approach, i.e., DeepCom. For NMT-better sam-
ples, since no similar sample can be retrieved from the corpus,
the IR-based approach performs poorly on these general samples
and only achieves 5.25 BLEU score. In contrast, the neural-based
approach can infer more accurate results by summarizing the code-
to-comment pattern and achieves 19.58 BLEU score. The IR-based
approach and the neural-based approach perform similarly on the
whole test set, but their performance differs significantly on these
two sets of samples. Thus combining the strengths of these two
methods can achieve better performance.

By feeding information from the retrieved similar sample (code
snippet and comment) to the neural model, the IR+NMT approach,
i.e., Re2Com, performs better than the neural-based approach, i.e.,
DeepCom, on IR-better samples and achieves 39.46 BLEU score.
However, on NMT-better samples, Re2Com only achieves 14.33
BLEU score, which is 27% lower than the score of DeepCom. The
reason for such a performance degradation is that Re2Com can
not accurately distinguish false-positive samples like Figure 2, thus
incorrectly rely on the inaccurate retrieved information, i.e., the
IR-based approach only achieves 5.25 BLEU score on NMT-better
samples. Therefore, inaccurate retrieval information can lead to
the degradation of the model’s generalization. In contrast, our ap-
proach directly distinguishes whether the retrieved result is accu-
rate, which can help avoid the inaccurate retrieved information
misleading the NMT to generate inaccurate comment. Thus our
approach can outperform Re2Com on the NMT-better samples and
the whole test set. Since the Cross-Encoder based classifier cannot
perfectly predict whether the IR result is accurate, some samples
incorrectly use inaccurate IR results as output or neglect accurate
IR results. There is still a distance from the optimal performance
of combing IR results and NMT results, i.e., achieving 39.55 BLEU
score on IR-better samples and achieving 19.58 BLEU score on
NMT-better samples.

6.2 Performance of Our Approach on An
Alternative Dataset

To show the generalization of our approach, we further verify the
performance of our method on another large-scale dataset, i.e., the

Table 5: The performance of each approach on theDeepCom
dataset

Approach BLEU BLEU1 BLEU2 BLEU3 BLEU4

DeepCom 38.79 54.9 38.75 33.78 31.5
Re2Com 50.21 61.83 50.6 46.29 43.89
Re2Com Retrieval Module 55.28 65.93 55.27 51.69 49.59
Our Method 57.13 68.91 57.2 53.07 50.92

DeepCom dataset [17]. The DeepCom dataset was collected from
GitHub’s Java repositories created from 2015 to 2016 and contained
445,812 code-comment pairs for training and 20,000 code-comment
pairs for validation and testing.

We re-run our approach and the three baselines on the Deep-
Com Dataset, and the results are shown in Table 5. Overall, all
four methods achieve outstanding performance on the DeepCom
dataset, which quite different from their performance on the Fun-
Com dataset. The main reason can be that the projects used in
these two datasets are different, in which more code snippets
and comments are reused among projects. The IR-based approach,
Re2Com retrieval module, achieves 55.28 BLEU score on the test
set, which implies that code reuse is more frequent on the projects
collected by the DeepCom dataset. Thus the neural model can pre-
dict the samples in the test set more accurately due to the presence
of similar samples in the training set. The neural-based approach,
DeepCom, achieves 38.79 BLEU score, which seems to perform well,
but it is even inferior to the naive IR-based method. By feeding
codes and comments from retrieved similar samples, the IR+NMT
method, Re2Com, achieves 50.21 BLEU score on the test set. How-
ever, the performance of Re2Com is still worse than the naive IR-
based method, which implies that it fails to combine the strengths
of the IR-based and NMT-based method on the DeepCom dataset.
In contrast, our proposed approach, dynamically combining the
generated results from DeepCom and IR-based approach, achieves
57.13 BLEU score on the test set, which successfully combines the
strengths of the IR method and NMT method and achieves the best
performance.

6.3 Effort Saved Comparing to The Existing
Combination

Compared to the existing combination of IR- and NMT-based com-
ment generation approaches, which use both the two models to
generate a comment for each input sample, our approach dynami-
cally selects the model to be used. To show the effort our method
can save, we count the number of samples that do not need to run
neural-based approaches to generate comments.

Specifically, our Cross-Encoder based classifier identifies 18,912
samples and 12,979 samples on the FunCom dataset and DeepCom
dataset, respectively, that can be directly used for IR results. It
implies that about 20% and 65% of the samples do not need to be fed
into the NMT. Our approach can save the redundant effort of NMT
predicting, making it faster than the current IR+NMT approach.

6.4 Threats to Validity
Internal Validity relates to the errors in the implementation of
the baselines. To mitigate this issue, we directly use the public

Conference’21, June 03–05, 2018, Woodstock, NY Yuchao Huang, Moshi Wei, Song Wang, Junjie Wang, and Qing Wang

available code of DeepCom [17], (ast-)attendgru [27], Re2Com [44],
and Rencos [49] to implement baselines. Our experiments showed
these baselines achieve comparable performance with the result
reported in their papers.

External Validity is about the quality of our dataset. Different
data sources can have significant different characterics. Therefore,
both our proposed approach and the baselines may perform dif-
ferently on different datasets. In this paper, we only evaluate our
proposed approach and baselines on two widely used datasets, i.e.,
DeepCom [17] and FunCom [27]. In our future work, we will ex-
periment with other datasets.

Construct Validity relates to the suitability of our evaluation
metrics. We use BLEU, ROUGE-L, METEOR, and CIDER to evaluate
the generated comments of our approach and other baselines. These
metrics mainly measure the gap between generated comments and
ground truth in terms of textual similarity.

7 RELATEDWORK
Comment generation. Code comment generation techniques can
be divided into three types: manually-crafted templates [33, 40],
IR-based [8, 9, 12, 13, 47], and neural models [16, 17, 19, 27, 44, 49].

Early studies leveraged manually-craft templates to generate
comments automatically. Sridhara et al. [40] built the Software
Word Usage Model (SWUM) to capture the meaning and relation-
ship of terms in the source code, then organized them into readable
comments using different predefined templates. Moreno et al. [33]
used heuristic rules to capture critical information from the source
code and further used them to generate comments.

Information retrieval (IR) techniques are also widely used in
comment generation. One way is to provide extractive summaries
of the source code, using IR techniques to extract keywords from the
source code and compose them into term-based comments. Haiduc
et al. [12, 13] treated each function of source code as a document
and leveraged Vector Space Model and Latent Semantic Indexing
(LSI) to extract relevant terms from source code, then organized
selected terms into comments. Eddy et al. [8] took a similar idea and
adopted a hierarchical topic model for improvement. Another way
is directly use the existing comment of a similar sample. Since code
reuse and cloning are common in software development, similar
code snippets that use the same code fragments may be found
in large project repositories (e.g., GitHub) or software Q&A sites
(e.g., Stack Overflow). Edmund et al. [9, 47] retrieved the replicated
samples from the corpus by code clone detection techniques.

More and more researchers have focused on neural-based meth-
ods, which train probabilistic models from large-scale source code
in recent years. Iyer et al. [19] treated code to comment as an end-
to-end translation problem and first introduced neural machine
translation (NMT) into comment generation. They leveraged an
attentional seq2seq model to translate code to comment, which
used token embedding as the encoder and an LSTM layer as the
decoder. Other researchers followed this way. Hu et al. [16] argued
that treating code as natural language sequences may lose its syn-
tactical information. They proposed a new structure-based traversal
(SBT) method to flatten the AST into sequence and replaced code
with it as the model input. Later they proposed another hybrid
model [17] that simultaneously used codes and AST sequences for

prediction. LeClair et al. [27] also proposed a similar hybrid model
but proved that the neural model also works with only the AST
sequence known. The NMT-based method can automatically learn
code to comment patterns from the corpus, which saves the manual
effort to design features or templates and brings impressive gener-
alization capability. The IR-based method may fail when there are
no similar samples in the training set, but the NMT-based method
can give more accurate answers.

IR-based Neural Comment Generation. The neural mod-
els are difficult to generate low-frequency tokens [25]. LeClair et
al. [27] showed that about 21% of comments in their test set con-
tained low-frequency words (frequency ≤100). However, only 7%
generated results of their method contained low-frequency words.
The IR-based methods leverage existing comments from similar
samples, which may contain low-frequency words and project-
specific information. Therefore, researchers have begun to combine
IR-based methods with NMT-based methods by feeding informa-
tion from similar samples (their codes only/ and comments) to
assist neural models in better generating low-frequency words.
Zhang et al. [49] proposed an approach that fuzed decoded results
of the input code snippet and its similar code snippets, which were
retrieved based on syntactic similarity and semantical similarity.
Wei et al. [44] treated the existing comments of similar codes as
exemplars, which can be reference examples for generating new
comments. They introduced additional encoders to encode codes
and comments from similar samples, then jointly trained model.
To avoid the disturbance of inaccurate search results, both mod-
els decided the degree of using retrieved information based on
the embedding similarity of the input and retrieved code snippets.
The result shows that these methods can improve both the per-
formance of generated comments and generating low-frequency
words. However, both methods may be confused by false-positive
samples like Figure 2. Without supervised learning, the input and
retrieved code snippet of this example will yield similar embedding,
making the model mistakenly believe that the retrieved results are
accurate and wrongly rely on the inaccurate retrieved result, and
leading to a decrease in generalization performance. In our work,
we treat determining whether the retrieved result is accurate as a
supervision task to distinguish false-positive retrieval results more
accurately, and combine the IR-based and NMT-based methods
in a dynamic manner to avoid the neural model over-rely on the
retrieved information.

8 CONCLUSION
In this paper, we propose a dynamic approach to combine the
strength of the IR-based and neural-based comment generation
approaches. Specifically, given an input code snippet, we first use
an IR-based technique to retrieve a similar code snippet from the
corpus. Then we use a Cross-Encoder based classifier to decide
the comment generation method to be used dynamically, i.e., if
the retrieve similar code snippet is a true positive, we directly
use the comment generated by IR-based approach. Otherwise, we
input it to the neural-based approach to generate its comment. We
have evaluated the effectiveness and generality of our approach
on a large-scale Java dataset. The results show that our approach
outperforms the state-of-the-art baselines by a significant margin.

Yet Another Combination of IR- and Neural-based Comment Generation Conference’21, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65–72.

[3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature verification using a" siamese" time delay neural network. Ad-
vances in neural information processing systems 6 (1993), 737–744.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[5] Michael L Collard, Michael J Decker, and Jonathan I Maletic. 2011. Lightweight
transformation and fact extraction with the srcML toolkit. In 2011 IEEE 11th
international working conference on source code analysis and manipulation. IEEE,
173–184.

[6] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. 2005. A
study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information. 68–75.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft, and Jeffrey C Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
13–22.

[9] Wong Edmund. 2014. Mining Question and Answer Sites for Automatic Comment
Generation. Master’s thesis. University of Waterloo.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[11] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to
Comment “Translation”: Data, Metrics, Baselining & Evaluation. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 746–757.

[12] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program com-
prehension with source code summarization. In 2010 acm/ieee 32nd international
conference on software engineering, Vol. 2. IEEE, 223–226.

[13] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
use of automated text summarization techniques for summarizing source code.
In 2010 17th Working Conference on Reverse Engineering. IEEE, 35–44.

[14] Sakib Haque, Aakash Bansal, Lingfei Wu, and Collin McMillan. 2021. Ac-
tion Word Prediction for Neural Source Code Summarization. arXiv preprint
arXiv:2101.02742 (2021).

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment gener-
ation. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 200–20010.

[17] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering 25, 3 (2020), 2179–2217.

[18] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[19] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073–2083.

[20] Mira Kajko-Mattsson. 2005. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.

[21] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[22] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and An-
drea Janes. 2020. Big code!= big vocabulary: Open-vocabulary models for source
code. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 1073–1085.

[23] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical
study of code clone genealogies. In Proceedings of the 10th European software en-
gineering conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering. 187–196.

[24] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[25] Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine
translation. arXiv preprint arXiv:1706.03872 (2017).

[26] Douglas Kramer. 1999. API documentation from source code comments: a case
study of Javadoc. In Proceedings of the 17th annual international conference on
Computer documentation. 147–153.

[27] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795–806.

[28] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on software Engineering 32, 3 (2006), 176–192.

[29] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[30] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 373–384.

[31] Edward Loper and Steven Bird. 2002. Nltk: The natural language toolkit. arXiv
preprint cs/0205028 (2002).

[32] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. 2010. UCI Source Code Data
Sets. (2010). http://www.ics.uci.edu/\simlopes/datasets/

[33] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 23–32.

[34] Sankar K Pal and Sushmita Mitra. 1992. Multilayer perceptron, fuzzy sets, classi-
fiaction. (1992).

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[36] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. http://arxiv.org/abs/1908.10084

[37] Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention
model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685
(2015).

[38] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[39] Kento Shimonaka, Soichi Sumi, Yoshiki Higo, and Shinji Kusumoto. 2016. Iden-
tifying auto-generated code by using machine learning techniques. In 2016 7th
International Workshop on Empirical Software Engineering in Practice (IWESEP).
IEEE, 18–23.

[40] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. 43–52.

[41] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. arXiv preprint arXiv:1409.3215 (2014).

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[43] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 4566–4575.

[44] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine:
exemplar-based neural comment generation. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 349–360.

[45] Frank Wilcoxon, SK Katti, and Roberta A Wilcox. 1963. Critical values and
probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test.
American Cyanamid Company Pearl River, NY.

[46] Sam Wiseman and Alexander M Rush. 2016. Sequence-to-sequence learning as
beam-search optimization. arXiv preprint arXiv:1606.02960 (2016).

[47] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom: Mining existing source
code for automatic comment generation. In 2015 IEEE 22nd International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 380–389.

[48] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. 2016.
Image captioning with semantic attention. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 4651–4659.

[49] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1385–1397.

http://www.ics.uci.edu/$\sim $lopes/datasets/
http://arxiv.org/abs/1908.10084

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Machine Translation
	2.2 Semantic Textual Similarity

	3 Approach
	3.1 Overview of Our Approach
	3.2 Comment Generation with The IR-based Technique
	3.3 Evaluate The Retrieved Result with The Cross-Encoder based Classifier
	3.4 Comment Generation with The Neural-based Technique

	4 Experiment Design
	4.1 Dataset
	4.2 Experiment Settings
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Research Questions

	5 Result Analysis
	5.1 RQ 1: Our Approach vs. Baselines
	5.2 RQ 2: Cross-Encoder vs. Other Classification Algorithms
	5.3 RQ 3: Generalizability

	6 Discussion
	6.1 Why Our Approach Performs Better?
	6.2 Performance of Our Approach on An Alternative Dataset
	6.3 Effort Saved Comparing to The Existing Combination
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion
	References

