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Abstract

Context: Code changes to software occur due to various reasons such as bug

fixing, new feature addition, and code refactoring. Change intents have been

studied for years to help developers understand the rationale behind code com-

mits. However, in most existing studies, the intent of the change is rarely

leveraged to provide more specific, context aware analysis.

Objective: In this paper, we present the first study to leverage change intent

to characterize and identify Large-Review-Effort (LRE) changes—changes with

large review effort.

Method: Specifically, we first propose a feedback-driven and heuristics-based

approach to identify change intents of code changes. We then characterize the

changes regarding review effort by using various features extracted from change

metadata and the change intents. We further explore the feasibility of auto-

matically classifying LRE changes. We conduct our study on four large-scale

projects, one from Microsoft and three are open source projects, i.e., Qt, An-

droid, and OpenStack.

Results: Our results show that, (i) code changes with some intents (i.e., Feature

and Refactor) are more likely to be LRE changes, (ii) machine learning based

prediction models are applicable for identifying LRE changes, and (iii) predic-

tion models built for code changes with some intents achieve better performance
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than prediction models without considering the change intent, the improvement

in AUC can be up to 19 percentage points and is 7.4 percentage points on av-

erage.

Conclusion: The change intent analysis and its application on LRE identifica-

tion proposed in this study has already been used in Microsoft to provide the

review effort and intent information of changes for reviewers to accelerate the

review process. To show how to deploy our approaches in real-world practice,

we report a case study of developing and deploying the intent analysis system

in Microsoft. Moreover, we also evaluate the usefulness of our approaches by

using a questionnaire survey. The feedback from developers demonstrate its

practical value.

Keywords: Change intent analysis, review effort, machine learning

1. Introduction

Code changes to software occur due to various reasons such as bug fixing,

feature addition, and code refactoring. Often different changes have different

motivations on behalf of the developers. For example, it is possible that a

code merge, refactoring change, new feature addition all have different risk

profiles due to the fact that they are different types of work actions performed

by developers. In the past, in the large body of existing work about change

analysis [26, 15, 43, 47], changes are all considered to be uniform. It is our goal

in the paper to investigate if all changes are equal or if using the change intent

for an example scenario of effort prediction, i.e., predicting changes that require

large review effort, would result in building better, more accurate context-aware

models.

This paper presents the first study to leverage change intent [70, 9] to char-

acterize and understand Large-Review-Effort (LRE) changes, i.e., changes that

have more than two iterations of code review. Other changes are treated as reg-

ular changes. In this study, we characterize the uniqueness of the LRE changes

by using various features collected from the change metadata and the change
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intents, and explore the feasibility of automatically identifying the LRE changes

by building machine learning based classifiers.

First, for understanding the change intent, following existing studies [24, 23,

36, 35], we use heuristics to annotate changes with different change intents by

analyzing the commit messages, e.g., changes made for fixing bugs are labelled

as ‘Bug Fix’. For obtaining accurate change intents, we propose a feedback-

driven approach to design and refine the heuristics. Our manual evaluation

shows the heuristics for categorizing changes achieve an accuracy higher than

80% on each category. Second, in order to characterize the changes, we have

collected various features from the metadata of changes and change intents, such

as the process features [86, 26, 85], author information and experience, and the

Word2Vec [45, 8] features generated from the commit messages to represent the

changes. Third, based on the collected features, we further explore the fea-

sibility of building machine learning based prediction models, i.e., Alternating

Decision Tree (ADTree), Logistic Regression (Logistic), Naive Bayes (NB), Sup-

port Vector Machine (SVM), and Random Forest (RF), to classify the changes

with and without considering the change intents. To evaluate the practical

value of our work, we have conducted a case study to discuss the development

and deployment of our proposed change intent analysis tool in Microsoft and

a survey to further evaluate the usefulness and effectiveness of our proposed

approach.

This paper makes the following contributions:

• We propose a feedback-driven and heuristics-based approach to classify

code changes into different change intents accurately for understanding

changes.

• We show that change intents have a strong correlation with the review

effort of the changes and changes with some intents (i.e., Feature and

Refactor) are more likely to have more review iterations.

• We explore the feasibility of leveraging machine learning models to identify

LRE changes on one project from Microsoft (referred to as Microsoft
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project) and three open source projects, i.e., Qt, Android, and OpenStack.

Experiment results suggest that machine learning based models can be

used to identify LRE changes. Random Forest, which is the best prediction

model in our experiments, achieves AUC values larger than 0.71 on each

of the four projects.

• We show that code review effort prediction models built on changes with

particular change intents achieve better performance than the general pre-

diction models that do not consider the change intents. The tool devel-

oped in this study has already been used in Microsoft to provide

the review effort and intent information of changes for reviewers

to accelerate the review process.

• We have conducted a case study to show the deployment of the intent

analysis system in Microsoft. In addition, a questionnaire survey have

been conducted to show the usefulness of our approaches.

• We have released our data and source code to collect features, label

changes, and build LRE change classification models for facilitating the

replication of our study1.

The rest of this paper is organized as follows. Section 2 presents the back-

ground and motivation. Section 3 describes the methodology of our approach.

Section 4 shows the experimental setup. Section 5 presents the evaluation re-

sults. Section 6 presents our case study on the deployment of the intent analysis

system in Microsoft. Section 7 discusses open questions and our survey on the

usefulness of our proposed approaches. Section 8 shows the threats to the va-

lidity of this work. Section 9 presents the related studies. Section 10 concludes

this paper. This paper extends our prior publication [84] presented at the 15th

International Conference on Predictive Models and Data Analytics in Software

1https://bitbucket.org/wangsonging/ist2020_repo/
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Figure 1: The distributions of review durations (hour) for regular and LRE changes.

Gray bars ( ) denote regular changes, light gray bars ( ) denote LRE changes.

Engineering (PROMISE’19). New materials with respect to the conference ver-

sion include:

• We have conducted a case study to discuss the development and deploy-

ment of our proposed change intent analysis tool in Microsoft. The tool

provides intent labelling service for pull requests with different intent cat-

egories for over 200 repositories inside Microsoft using the Azure DevOps

platform [3] (Section 6). We believe our tool can provide practical guide-

lines for developing and integrating change intent analysis into real-world

software development.

• We have conducted a survey to further evaluate the usefulness and effec-

tiveness of our proposed approach. Feedback shows that more than 90%

participants agree with the usefulness of our tool and would like to use it

in real practice of code review process (Section 7.4).

• Additional details regarding the experimental design (Section 3), results

analysis (Section 5), and related work (Section 9.2) are provided.

2. Background and Motivation

Code changes could be problematic, e.g., they may introduce quality issues

such as bugs, improper implementations, and maintenance issues. As a conse-

quence, reviewing them could require much more code review effort. This study

focuses on exploring the code review effort of changes. Specifically, based on
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Figure 2: The distributions of #reviewers involved for reviewing changes. Gray bars

( ) denote regular changes, light gray bars ( ) denote LRE changes.

the consensus of developers from Microsoft, we define a Large-Review-Effort

(LRE) change as a code change that has more than two iterations of code review,

e.g., if a code change cannot pass the first iteration of code review, developers

have to conduct a second iteration of code review and even more iterations until

they resolve all the review suggestions posted by reviewers. Other changes are

treated as regular changes.

Code review is a manual inspection of source code by humans, aims at identi-

fying potential defects and quality problems in the source code before its deploy-

ment in a live environment [11, 61, 48, 40]. However, such a manual inspection

could be a time-consuming and expensive process [75, 61, 48, 40, 27, 62, 79].

For example, to effectively assess a code change, developers are required to read,

understand, and critique the code change [62, 79].

In this section, we motivate this study by showing the review effort of regular

and LRE changes, i.e., review duration and the number of reviewers involved.

Specifically, for each regular change and LRE change from the four projects in

Table 1, we collect its duration in the code review system and the number of

reviewers involved. A reviewer is involved if s/he is in the “Reviewers” field.

We use the difference between the submission timestamp and the resolution

timestamp of a review request of a change to assess its review duration. Note

that we use the review duration to estimate the time effort of reviewing a change,

since the exact time cost to review each change is not recorded in the code review

systems. We then average the review duration and the number of reviewers

involved for all changes for each project.
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Table 1: Projects used in this study. #CR is the number of changes. LRERate is

the rate of LRE changes.

Project Lang First Date Last Date #CR LRERate (%)

Microsoft C# 5/05/2015 5/22/2018 >100K ∼15

Qt C 5/17/2011 5/25/2012 23,041 39.28

Android JAVA 7/18/2011 5/31/2012 7,120 31.75

OpenStack Python 7/18/2011 5/31/2012 6,430 43.31

Figure 1 shows the distribution of review duration for each project. As shown

in the figure, the average review duration of LRE changes could be 10X of that

for regular changes (in project Android). Figure 2 shows the distribution of

the number of reviewers involved to review both the regular changes and LRE

changes. As we can see, on average reviewing the LRE changes requires more

reviewers to collaborate together than reviewing the regular changes in each of

the four projects.

We further conduct the Mann-Whitney U test (p < 0.05) to compare the

differences of review duration and the number of involved between the two

groups of changes. The results suggest that the review duration and the number

of involved of LRE changes are significantly larger than that of regular changes

respectively. Intuitively, finding LRE changes when they are submitted for code

review, i.e., pre-merge and pre-deployment, can provide the review effort and

intent information of changes for reviewers to accelerate the review process.

3. Approach

Figure 3: The overview of our LRE change prediction approach.
Figure 3 illustrates that our approach consists of four steps: (1) labeling each

history change as a regular change or a LRE change (Section 3.1), (2) analyzing
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the change intents of all the changes (Section 3.2), (3) extracting features to

represent the changes (Section 3.3), and (4) using the features and labels to

build and train prediction models and then predicting new changes with the

well-trained models (Section 3.4).

3.1. Labeling LRE Changes

The first step of our approach is to label each change as a regular change or

a LRE change based on its code review history. Specifically, for the Microsoft

project, we extracted its code review database, and checked the code review

iteration count for each change, if it has more than two iterations of code review,

we labeled it as a LRE change (based on the consensus of developers from

Microsoft) otherwise we labeled it as a regular change. For the three open-

source projects, since their code review systems do not maintain the code review

iteration count, we use a heuristic approach to collect the regular and LRE

changes. Specifically, in their code review system, a code review request of a

change may have multiple iterations of code review, for each iteration, developers

may submit a patchset to be reviewed, a patchset may have multiple patches.

We counted the number of patchset for each code change. If the number of

submitted patchsets is larger than two, we labeled the change as LRE otherwise

we labeled it as regular.

3.2. Intent Analysis

Many approaches have been proposed to characterize and classify changes

based on the change intents [70, 58, 1, 24]. Most of them consider the high-level

change intents, e.g., corrective, adaptive, or perfective [70]. In this study, we

leverage the fine-grained change intent categories proposed in Hindle et al. [24],

which is shown in its Table 3, to categorize changes. Note that there are more

than 20 different categories described in [24]. We started with manual analy-

sis on 200 randomly selected changes from the four projects, and found that

some of the categories have very few numbers of changes, e.g., ‘Legal’, ‘Build’,

‘Branch’ have less than three changes. We then group the small categories into

larger ones for obtaining more instances. For example, we have grouped ‘Legal’,
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‘Data’, ‘Versioning’, ‘Platform Specific’, and ‘Documentation’ into ‘Resource’,

grouped ‘Rename’ and ‘Token Replace’ into ‘Refactor’, etc. After the group-

ing, we get eight types of change intents. Note that we also have an ‘Other’

category for changes that do not fall into any of the eight categories. In total,

we have nine types of change intents.

Table 2 shows the nine types of changes, their descriptions, and the heuristics

we used to automatically classify changes. Instead of manually labeling changes,

in this work we automate the classification process by using well-refined heuris-

tics. Thus, the accuracy of heuristics could significantly affect the result of

this study. To improve the accuracy of the classification of changes, we used

a feedback-driven approach to design and refine the heuristics for each type of

change intents and the details are as follows:

Step 1: With a randomly selected 200 instances, the first two authors first

classify them into the nine categories manually and independently. Specifically,

after reading the commit message and checking the changed files of a change,

they label the change based on their experience. For the classification conflicts

(less than 5%), the third author inspects them independently and the first three

authors make a decision for each conflict together. Then they initialize the

heuristics for each category. We use Cohen′sKappa2 to measure the inter-coder

reliability of Step 1 and the score is 0.91.

Step 2: With the initialized heuristics, we classify all changes into at least

one of the nine categories. For each category, we randomly collect 50 instances

and the authors work together to check its accuracy manually.

Step 3: If the accuracy of the heuristics designed for a category (on the

randomly collected 50 instances from Step 2) is lower than 80%, we further

refine the heuristics and then redo Step 2, otherwise we keep the heuristics for

classifying changes.

Taking the ‘Test’ category as an example, in Step 1, we found that most

changes from it have keywords “test” or “testing" in their commit messages.

2https://en.wikipedia.org/wiki/Cohen%27s_kappa
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Thus, the initialized heuristics we designed for ‘Test’ is that the commit message

of a change contains the keywords “test”. In Step 2, we randomly checked 50

of the collected changes labeled as ‘Test’. Our manual inspection revealed that

almost half of them were false positives, and we also found that most of the

false positives have irrelevant commit messages, e.g., “... use backup config if

test fails ...” and “... send a test message ...”. To improve the heuristics, in Step

3, we added another heuristic, which is the changed files can only be test files

(e.g., file names or paths contain the keyword “test”) or resource files. Then we

redo Step 2 again, by using the new heuristics, the accuracy of ‘Test’ category

is around 90%.

We use the above steps to refine the heuristics of each category to ensure

the classification of change intents has higher accuracy. Table 2 shows the final

heuristics.

3.3. Feature Extraction

In this study, we use the following features for building machine learning

based LRE change prediction models.

Change Intent: As code changes could be classified into different categories

based on their intents, we assume that changes with different intents have dif-

ferent impacts on the review effort of changes. We use a vector to represent

the change intents of a change. Each element in the vector is a binary value,

i.e., 1 or 0, representing whether the change has that intent or not. The change

intents we considered are listed in Table 2.

Revision History: As presented in previous research [30], the revision

history of a file can be a factor to predict its quality. In this study, we also

explore the impact of revision history on predicting LRE changes. Specifically,

given a change, we collect the number of files in this change that have been

revised in the last 30 and 90 days, and the number of revision on all the involved

files of this change in the last 30 and 90 days.

11



Owner Experience: This set of features represent the experience of a

change’s committer. We use a committer’s commit history information to rep-

resent her/his experience, which includes the total number of changes submitted,

the total number of LRE changes submitted, and the rate of submitted LRE

changes. We assume that the committer’s experience affects the review effort

of the changes s/he submitted.

Word2Vec Features: Word embedding is a feature learning technique in

natural language processing where individual words are no longer treated as

unique features, but represented as a d-dimensional vector of real numbers that

capture their contextual semantic meanings [45]. We train the embedding model

by using all data from each project. With the trained word embedding model,

each word can be transformed into a d-dimensional vector where d is set to

100 as suggested in previous studies [82]. Meanwhile a code change can be

transformed into a matrix in which each row represents a term in its commit

message. We then transform the code change matrix into a vector by averaging

all the word vectors the code change contains, as described in [82].

Process Features: Various process features have been shown to help pre-

dict software bugs [59, 26]. In this study, we use the following process features:

code addition, code deletion, number of changed files, and the types of changed

files. Note that for the types of changed files, following existing studies [25, 24],

we group files into source files, test files, configuration files, scripts, documenta-

tions, and others based on their suffixes and file paths. Specifically, we consider

files with extensions: .java, .cs, .py, .js, .c, .cpp, .cc, .cp, .cxx, .c++, .h, .hpp,

.hh, .hp, .hxx, and .h++, as the source files. Among them, files that contain

‘test’ in the paths or file names are considered as test files. Files with extensions:

.script, .sh, .bash are considered as scripts. Files with extensions: .xml, .conf,

.MF are considered as configuration files. Files with extensions: .htm, .html.

.css, .txt, are considered as documentation files. The left files are considered as

others.

Metadata: In addition to the above features, we also use metadata features

of changes. Specifically, given a code change, we collect its commit minute (0,

12



1, 2, ... , 59), commit hour (0, 1, 2, ... , 23), commit day in a week (Sunday,

Monday, ... , Saturday), commit day in a month (0, 1, 2, ... , 30), commit

month in a year (0, 1, 2, ... , 11), and source file/path names.

All the features we used are available when the changes are submitted into

the code review system.

3.4. Building Models and Predicting LRE Changes

After we obtain the features for changes, we split the data into the train-

ing and test datasets. We build and train the machine learning based predic-

tion models on the training dataset and evaluate their performance on the test

dataset. Following existing studies [29, 59, 23], we use 10-fold cross-validation

to evaluate the prediction models. The process of 10-fold cross-validation is: 1)

separating the data set into 10 partitions randomly; 2) using one partition as the

test data and the other nine partitions as the training data; 3) repeating step 2)

with a different partition as the test data until all data have a predicted label;

4) computing the evaluation results through comparison between the predicted

labels and the actual labels of the data. This process helps reduce the bias in

the error estimation of classification [28].

4. Experiment Setup

4.1. Research Questions

RQ1: What are the distributions of LRE and regular changes regarding change

intents?

RQ2: Is it feasible to predict LRE changes by using machine learning based

classifiers with features extracted from changes?

RQ3: Do the specific prediction models (classifiers trained on changes with

a particular intent) outperform the general models (classifiers trained on all

changes)?

RQ4: Does the performance of predicting LRE changes with a single intent

differ from that of predicting LRE changes with multiple intents?

13



In RQ1, we aim at understanding the distributions of changes regarding the

change intents. In RQ2, we explore the feasibility of predicting LRE changes.

In RQ3, we aim to explore whether prediction models built on changes with

particular intents can generate better performance. In RQ4, we investigate the

difference in predicting LRE changes with a single intent and changes with

multiple intents.

4.2. Experiment Data

To address our research questions, we perform empirical studies on software

projects that actively adopt the code review process. We begin with the review

dataset of Android, Qt, and OpenStack provided by Hamasaki et al. [18]. The

three projects adopt the Gerrit3 code review system. We also expand the review

dataset to include code review data from a large-scale proprietary project from

Microsoft. It adopts a custom code review system, which shares a similar

review process with Gerrit. Details of the projects are in Table 1.

Android4 is an operating system for mobile devices that is developed by

Google. Qt5 is a cross-platform application and UI framework. OpenStack6 is

an open-source software platform for cloud computing. The last project is a

widely used web service from Microsoft.

4.3. Evaluation Measures

To measure the performance of predicting LRE changes, we use four metrics:

Precision, Recall, F1, and AUC. These metrics are widely adopted to evaluate

prediction tasks [94, 26, 86, 81, 72, 10, 83]. Here is a brief introduction:

Precision = true positive

true positive + false positive
(1)

Recall = true positive

true positive + false negative
(2)

3https://www.gerritcodereview.com/
4https://www.android.com/
5https://www.qt.io/developers/
6https://www.openstack.org/
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F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(3)

Precision and recall are composed of three numbers regarding true positive,

false positive, and false negative. True positive is the number of predicted LRE

changes that are truly LRE changes, while false positive is the number of pre-

dicted LRE changes that are regular changes. False negative records the number

of predicted regular changes that are LRE changes. F1 considers both precision

and recall.

AUC is the area under the ROC curve, which measures the overall discrim-

ination ability of a classifier. It has been widely used to evaluate classification

algorithms in prediction tasks [57, 12, 92, 51, 52]. AUC can evaluates the ability

of classifiers in discriminating between defective and clean modules. The AUC

score for a perfect model would be 1, for random guessing would be 0.5. A

machine learning model is considered applicable to classify a given dataset if

the AUC score is larger than 0.7 [74].

5. Results and Analysis

5.1. RQ1: Distribution of Changes

Following the change intent taxonomy approach described in Section 4.1, we

automatically label each change from the four projects. As reported in existing

studies [46, 13], software changes could be made for multiple purposes, e.g., a

change could be made for correcting bugs and refactoring existing code at the

same time. Thus, we also label changes with multiple intents. Table 3 shows the

number of changes, the percentage of changes with a particular change intent

among all changes, and the percentage of LRE changes for each change intent

in the four projects. In addition, we also show the numbers of changes that

have single and multiple intents. Note that the ‘Auto’ changes only exist in

Microsoft project and we find all of them are regular changes, thus we exclude

these changes for building change prediction models. Since there exist overlaps
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among different change intents, the sum of the percentages of change intents is

larger than 100.

As shown in Table 3, the distribution of changes regarding intents varies in

different projects. We can see that changes are unevenly distributed regard-

ing the intents. For example, changes with intents ‘Bug Fix’ and ‘Resource’

are dominating across the four projects, i.e., they take up more 50% of all the

changes, while the percentages of changes with intents ‘Refactor’ and ‘Merge’

are less than 4%. Note that the distribution in our dataset is consistent with

that of manually categorized changes from existing study [24], in which changes

under categories Corrective (i.e., addressing failures), Adaptive (i.e., changes

for data and processing environment), and Perfective (i.e., addressing ineffi-

ciency, performance, and maintainability issues) are dominating with a percent-

age higher than 60%, which also confirms the effectiveness of our automated

heuristic-based change intent classification (details are presented in Section 3.2).

While ‘Feature’ and ‘Refactor’ have higher rates of LRE changes, this is

reasonable since both the ‘Feature’ and ‘Refactor’ introduce new function-

alities or restructure existing code snippets, which are easy to be problematic

and require more code review effort. Category ‘Resource’ has a lower rate

across the four projects. This may be because, compared to all other categories,

changes in the ‘Resource’ category modify the source code rarely.

Software code changes are unevenly distributed regarding change intents.

Changes with some change intents, i.e., ‘Feature’ and ‘Refactor’, have a

higher probability to be LRE changes.

5.2. RQ2: Feasibility of Predicting LRE Changes

This question explores whether machine learning algorithms can learn mod-

els that identify among the submitted new changes under review. We use off-

the-shelf machine learning algorithms from Weka [17] to build classification

models. The used features include change intent, change history, owner experi-

ence, Word2Vec features, process features and metadata features (details are in

Section 3.3).
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Table 4: Comparison of different classifiers on predicting LRE changes. The best F1

and AUC values are in bold.

Project
ADTree Logistic NB SVM RF

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Microsoft 0.40 0.65 0.37 0.72 0.37 0.72 0.41 0.63 0.46 0.76

Qt 0.53 0.62 0.54 0.72 0.41 0.66 0.34 0.59 0.57 0.71

Android 0.58 0.68 0.54 0.71 0.58 0.70 0.50 0.65 0.58 0.74

OpenStack 0.60 0.64 0.64 0.76 0.62 0.68 0.66 0.70 0.66 0.76

Following existing studies [86, 23, 26, 94], we experiment with five widely

used classifiers, i.e., Alternating Decision Tree (ADTree), Logistic Regression

(Logistic), Naive Bayes (NB), Support Vector Machine (SVM), and Random

Forest (RF). Note that this work does not intend to find the best-fitting classi-

fiers or models, but to explore the feasibility of identifying LRE changes by using

machine learning algorithms. Existing work [73] showed that selecting optimal

parameter settings for machine learning algorithms could achieve better perfor-

mance, thus we tune each of the classifiers with various parameters and use the

ones that could achieve the best AUC value as our experiment settings. For

each project, we build classification models and use the commonly used 10-fold

cross-validation method to evaluate the prediction models [29, 59, 26, 23].

Table 4 shows the F1 and AUC values of each machine learning algorithm on

the four experimental projects. Overall, of the five classifiers, RF consistently

outperforms the others on each project. The improvements of RF compared to

the other four classifiers range from 5.0 percentage points to 13.0 percentage

points in AUC and 5.0 percentage points to 9.0 percentage points in F1. RF

achieves similar AUC values on both the Microsoft project and open source

projects, while it has a significantly lower F1 score (Wilcoxon signed-rank test,

p < 0.05) on the Microsoft project. This may be because the Microsoft

project has a lower rate of LRE changes, e.g., as shown in Table 1, the LRE

rates of open-source projects are around 20.0 percentage points higher than that

of the Microsoft project, which makes the data distribution more unbalanced in
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the Microsoft project. Previous studies showed that the unbalance issue could

decline the F1 scores [73]. As revealed in existing work [73], the unbalance

issue of a dataset does not impact the AUC measure and they suggested that a

machine learning model is considered applicable to classify a given dataset if the

AUC is larger than 0.7. Hence, we use the AUC to compare prediction models.

We could find that among the five examined machine learning classifiers, two

of them, i.e., Logistic and RF, achieve AUC values larger than 0.7 on each of

the four experimental projects, which confirms the feasibility of identifying LRE

changes by using machine learning algorithms.

Machine learning based prediction models can help predict LRE changes.

The best model (i.e., RF) achieves AUC values larger than 0.71 on each

experimental project.

5.3. RQ3: Specific Models vs. General Models

In RQ2, we show that it is feasible to leverage machine learning classifiers

to identify LRE changes. In this RQ, we further explore whether the machine

learning classifiers built and trained on changes with a particular change intent,

i.e., specific model, could achieve better performance than machine learning

classifiers built and trained on all changes, i.e., general model. Specifically,

for each project, we build and train the RF-based specific prediction models

on changes with one particular change intent. We tune each of the RF-based

classifiers with various parameter values and use the ones that could achieve

the best AUC value as our experiment settings. In addition, we use 10-fold

cross-validation method to evaluate the prediction models. The general model

on the project is trained and evaluated on all changes without considering the

change intents. Note that we exclude the specific model for category ‘Merge’

on the project OpenStack, because it has very few numbers of instances.

Table 5 shows the comparison between the performance of the specific pre-

diction models and the general models. Regarding F1, we can see that at least

half of specific models outperform the general models across the four experimen-

tal projects. For example, six out of the eight specific models on the Microsoft
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(d) OpenStack

Figure 4: Comparison of perdition performance (AUC) between the specific models and the

general models. The model with a prefix “G” means using the trained general model to predict

changes with a particular intent. “b” represents ‘Bug Fix’, “re” represents ‘Resource’, “f”

represents ‘Feature’, “t” represents ‘Test’, “r” represents ‘Refactor’, “m” represents ‘Merge’,

“d” represents ‘Deprecate’, and “o” represents ‘Others’. For example G-b means using the

trained general model to predict changes with the ‘Bug Fix’ intent. S-b is the specific model

trained and evaluated on changes with the ‘Bug Fix’ intent.

project generate better F1 values than the general model, the improvement is

up to 25.0 percentage points and is 6.0 percentage points on average. We ob-

serve a similar situation on Qt and OpenStack, i.e., overall specific models are

better than the general models, the improvements are up to 16.0 and 15.0 per-

centage points on Qt and OpenStack respectively. However, we also observe an

exception in Android, although five out of the eight specific models generate

better (or the same) F1 values than the general model, the overall improvement

is negative, the reason is that the ‘Merge’ category has an F1 value that is

28.0 percentage points lower than that of the general model. This is because

the ‘Merge’ category has a much lower LRE rate (i.e., 13.1%) than that of
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all other categories (range from 29.0% to 50.4%) in Android, which makes the

‘Merge’ unbalanced. Regarding AUC, we can observe that all the specific mod-

els outperform the general models across the four experimental projects. The

improvement could be up to 19.0 percentage points and is 7.4 percentage points

on average. Thus, from the comparison shown in Table 5, we conclude that

overall the specific models achieve better prediction performance than the gen-

eral models. Table 6 reports the standard deviation (SD) and mean values in

our 10-fold cross validation based evaluation. As we can see from the table, the

SD values for all the prediction models on the four projects are smaller than

0.1, which suggests the robustness of our proposed approaches.

Above all, we show that the specific models (built on changes with a par-

ticular change intent) are overall better than the general models (built on all

the changes). One could also argue that using the general models to predict

changes with a particular intent may have better performance than the corre-

sponding specific model. To explore this issue, we further examine the perfor-

mance of leveraging the general models to predict changes with a particular

intent. Specifically, for each change intent, we randomly divide its changes into

training dataset and test dataset (2/3 for training, 1/3 for test) following exist-

ing studies [37, 22]. For the specific model, we train the model on the training

data and evaluate its performance on the test dataset. For the corresponding

general model, we combine the training data from all specific models, and eval-

uate its performance on the test dataset of a specific model. We repeat the data

splitting, model training, and evaluation 50 times to reduce bias.

Figure 4 shows the boxplots of the 50 times classification for each specific

model and its corresponding general model on each project. In addition, we also

show the boxplots of overall-general models (i.e., using 2/3 of all changes to train

the models and evaluate the models on the left 1/3 changes without consider-

ing change intents). Each boxplot presents the AUC distribution (median and

upper/lower quartiles) of a prediction model. We use gray ( ), light gray ( ),

and white ( ) to represent the specific models, corresponding general models,

and the overall-general models respectively. We could observe that overall the
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Table 7: Performance of predicting LRE changes with single and multiple change in-

tents. Better F1 or AUC values are in bold.

Change Intent
Microsoft Qt Android OpenStack

F1 AUC F1 AUC F1 AUC F1 AUC

Single 0.48 0.78 0.58 0.75 0.58 0.73 0.67 0.80

Multiple 0.41 0.75 0.54 0.70 0.57 0.71 0.66 0.77

specific models outperform the general models on almost all the change intents

across the four experimental projects. Specifically, for the Microsoft project,

the mean AUC values of the specific models are around ten percentage points

higher than that of the corresponding general models. For the open source

projects, the mean AUC values of the specific modes are around five percentage

points higher than that of the corresponding general models. In addition, all

the specific models outperform the overall-general models.

Code review effort prediction models built on changes with particular change

intents achieve better performance than the general prediction models that

do not consider the change intents. Thus, we suggest to build specific models

for better LRE changes prediction.

5.4. RQ4: Single Intent vs. Multiple Intents

As shown in RQ1 (Section 5.1), in this study we labeled changes with mul-

tiple intents. This RQ explores the performance of LRE changes prediction

models on changes with a single intent and changes with multiple intents. Specif-

ically, for each project, we build and train the RF-based prediction models with

changes with only a single intent and changes with multiple intents respectively.

We tune each of the RF-based classifiers with various parameter values and use

the ones that could achieve the best AUC value as our experiment settings. We

also use the 10-fold cross-validation method to evaluate the models.

Table 7 shows the F1 scores and AUC values of the prediction models

for changes with single and multiple change intents in the four experimental

projects. As we can see, the prediction models for changes with a single in-

tent significantly outperform the prediction models for changes with multiple
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intents in both F1 and AUC across the four experimental projects (Wilcoxon

signed-rank test, p < 0.05). In terms of F1, the improvement could be up to

7.0 percentage points and is 3.3 percentage points on average. For AUC, the

improvement could be up to 5.0 percentage points and is 3.3 percentage points

on average. One of the possible reasons for this difference is that changes with a

single intent are mainly made for one specific purpose, which makes them easier

to be distinguished by machine learning classifiers than complex changes with

multiple intents.

Machine learning based classifiers generate better performance on changes

with a single change intent than changes with multiple change intents.

6. Large-scale Deployment of Intent Analysis

The above change intent analysis and its application on LRE identification

proposed in this work has already been used in Microsoft to provide the re-

view effort and intent information of changes for reviewers to accelerate the

review process. To show how to deploy our approaches in real-world practice,

in this section, we discuss the large-scale deployment of code change intent

analysis in Microsoft. Specifically, the tool provides intent labelling service

for pull requests with different intent categories for over 200 repositories inside

Microsoft using the Azure DevOps platform [3]. The feature has been enabled

since November 2018.

6.1. Implementation

We built the change intent analysis tool and integrated it into Azure by

using the extensibility mechanisms in Azure DevOps. In this section, We first

briefly introduce the Azure DevOps platform (Section 6.1.1) and then discuss

the architecture for the intent labelling service (Section 6.1.2).

6.1.1. Background of Azure DevOps

Azure DevOps is a platform for collaborative software development used

both inside and outside Microsoft by hundreds of thousands of users. It offers
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key functionalities needed for software development such as GIT based version

control, boards for work item tracking and build/release pipelines for continuous

integration and continuous testing. It is the primary platform used in Microsoft

for software development. So, as the logical choice, we decided to enable intent

labelling for Pull Requests on the Azure DevOps platform. In order to auto-

matically label Pull Requests, we leverage these extensibility features offered by

Azure DevOps:

1. REST APIs - Azure DevOps provides a rich set of APIs which allows 3rd

party services to perform CRUD operations for various entities such as

Pull Requests, Builds, Tests, etc.

2. Service Hooks - In order to label the Pull Requests in real time, we use

the service hooks provided by Azure DevOps. These service hooks allow

us to subscribe to various events such as pull request creation, update and

completion. So, the intent labelling service can react to these events in

real time before the pull request is reviewed.

3. Pull Request Labels - This is a key extensibility feature offered by Azure

DevOps for Pull requests. Azure provides labels [4] to each pull request,

which can be used to as tags for various purposes such as importance,

status, etc. In this work, we use the label feature for tagging the pull

requests with the semantic intents. These labels can be added or removed

by anyone allowing collaborative tagging. As we discuss later in this sec-

tion, we rely on the removal of labels as a feedback channel. Note that,

we use the intent labels listed in Table 2 to label each pull request.

6.1.2. Architecture of Intent Analysis Service

For each type of intents listed in Table 2, we followed its heuristics to im-

plement its identification process. We implemented the change intent labelling

service based on the Microsoft Azure cloud platform. We used Azure SQL as

the underlying data store and Azure Cloud Services for building the service.

Here are the key components of this service:
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1. Data store - We use SQL Azure for the relational data store where we

persist pull request meta-data such as title, description, etc. that are used

for change intent identification. We also store the results of the intent

classification in a separate table for reporting and analytics. This allows

us to do experimentation retrospectively as we refine the heuristics for

intent classification.

2. Cloud service - We have implemented the intent labelling service based

on the multi-tier application architecture as described in [53]. We first

use Azure Service Bus to subscribe to pull request messages from Azure

DevOps. Then, we implement a cloud service which is triggered by the

service bus. Specifically, whenever there is a new message, the intent

labelling service will be triggered and further processes the message and

fetches the meta-data for the pull requests using the Azure DevOps APIs.

After that, it performs the intent classification and adds intent labels to

the pull requests again using the Azure DevOps API.

6.2. User Scenarios

The intent labels provide semantic summarization of the pull requests to

identify what kind of changes are being proposed in the code review. This

information is helpful not just for the code reviewers but even for people like

product managers and project leads. We surface the intent labels at two key

user interfaces in the Azure DevOps:

1. Pull Request Listing - We surface the intent labels in the pull request

listing page in Azure DevOps, as shown in Figure 5. For each pull request,

an intent label with gray background is attached. For example, in Figure 5,

the pull request titled “Code complexity analysis” is labelled as ‘Feature’.

Such feature allows users to glance through the list of pull requests and

understand the semantic type of pull requests which are currently active or

have been completed. In addition,this new feature is especially useful for
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architects, tech leads, and product managers to have a high level overview

of the software development activity.

2. Pull Request Detail - We also surface the intent labels in the pull request

details page in Azure DevOps. For example, Figure 6 shows the detailed

page of pull request “Bug fix for fetching timestamp for build ingestion”.

The change intent of this pull request, i.e., ’BugFix’, is also presented

in the right bottom panel. This new feature allows developers who are

reviewing the pull request to have a quick insight into the intent of the

pull request.

6.3. Feedback Loop

In order to gather user feedback, we have designed and implemented an ex-

plicit feedback loop. Unlike scenarios such as alerting, we don’t directly interact

with the end users, i.e., pull request authors and reviewers. Also, feedback chan-

nels such as surveys are prohibitive in terms of time and efficiency. So, we rely

on the removal of intent labels by the users as a negative feedback mechanism.

At the time of the study, we have observed less than 1% of the intent labels

being removed. Once we have a significant amount of feedback, we further do a

detailed analysis and also use it to improve the intent classifiers as part of future

work. We also received offline feedback (over email) about incorrect labelling

for pull requests from few repositories.

6.4. Practical Guidelines

In this work, we have used the label feature provided by Azure DevOps7 and

Github8 to categorize and tag the Pull Requests with the semantic intents. Prior

work has focused on using Pull Request comments [32, 41, 88, 90, 39] which can

easily get crowded with the comments from the reviewers and the automated

7https://docs.microsoft.com/en-us/azure/devops
8https://help.github.com/en/github/managing-your-work-on-github/applying-labels-to-

issues-and-pull-requests
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bots. To the best of our knowledge, this is the first work to use automated labels

for improving Pull Request organization and review experience. Here are the

key takeaways for researchers and practitioners based on our experience from

building and deploying the automated intent labelling service at Microsoft:

1. Plugin-based Tool Development: Software projects usually have their

workflow. As a tool to help developers accelerate their review process,

we were not expected to break the existing code review procedures at

Microsoft. To achieve this goal, we developed our tool as a plugin, which

does not affect the code review process used in Microsoft. For researchers

who plan to deploy their tools into real-world software projects, we rec-

ommend the plugin-based software development.

2. Bugs due to pull request templates: Both Azure DevOps9 and GitHub10

provide the functionality to create pull request templates. These templates

are generally created by repository admins to standardize the pull request

descriptions. For instance, at Microsoft we have observed templates with

placeholders for the pull request authors to fill-in information about the

testing and the related bugs, if any. While this is a very useful feature,

it can affect any bots which mines the pull request descriptions because

the templates often contain keywords such as “bugs”, “testing”, “feature”,

etc. We learnt about this important issue from offline feedback from some

of our users. For developers who plan to deploy our tool by using the pull

request templates provided by GitHub should notice this issue.

3. Feedback mechanism: Pull Request comment based bots have several

ways to collect explicit feedback such as comment resolution status, replies

to the comments and even likes on the comments. However, collecting

feedback on labels is non-trivial. Our proposed methodology of mining

9https://docs.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates
10https://help.github.com/en/github/building-a-strong-community/about-issue-and-pull-

request-templates
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Figure 5: Pull request list in Azure DevOps with intent labels.

Figure 6: Pull request UI in Azure DevOps with change intent labels.

label edits and removals can be used as a feedback mechanism for other

bots which uses the label feature.

7. Discussion

7.1. LRE Rate Analysis

As shown in Table 3, in three of the four projects, changes with a single

intent have a higher LRE rate than that of changes with multiple intents. To

explore the reason behind this phenomenon, we first break down the number

of changes with multiple intents from the four projects, which are shown in
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Figure 7: The distribution of changes with multiple change intents.
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Figure 8: The distribution of code changes with multiple intents.

Figure 7. We could observe that among the changes with multiple intents,

changes that have two intents are dominating, i.e., 90% of the changes with

multiple intents involve only two different intents. Thus, we narrow down the

analysis to explore the distribution of changes with two change intents. To do

this, we collect the changes with two intents from the four projects and count the

number of different intent combinations among these changes. Figure 8 shows

the top ten types of changes with two intents, which cover more than 97% of all

the changes with two intents.

As we could see that ‘Bug Fix’ & ‘Resource’, ‘Bug Fix’ & ‘Test’, ‘Deprecate’

& ‘Resource’, and ‘Test’ & ‘Resource’ are the dominating combinations. With
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Figure 9: The distributions of correlated and uncorrelated features in each project and

across the projects (i.e., Together).

the distribution chart in Figure 8, we infer the reasons why changes with multi-

ple intents have lower LRE rates as follows. First, each intent may represent an

independent task and developers may modify source code for each intent sepa-

rately, which provides them more opportunities to check the modified code and

eventually improve the quality of the change. Second, some of the combined in-

tents represent the standard software quality assurance process, which can help

improve the quality of the changes. Taking changes with double intents ‘Bug

Fix’ & ‘Test’ as an example, developers may first fix a bug and then modify the

test cases to validate the fix of the bug, which makes the changes more reliable.

7.2. Feature Correlation Analysis

Following existing studies [14], we use the Spearman rank correlation [87] to

compute the correlations between the metrics described in Section 3.3 and the

review effort of changes, i.e., regular changes or LRE changes. Values greater

than 0.10 can be considered a small effect size; values greater than 0.30 can be

considered a medium effect size [93]. In this work, we consider the values larger

than 0.10 or smaller than -0.10 as correlated, others are uncorrelated.

Figure 9 shows the distributions of correlated and uncorrelated features in

each project and across the four projects. As we could observe, in the Microsoft

project, the percentage of correlated features (around 60%) is larger than that

of the open source projects (less than 50%). One of the possible reasons is

that compared to the open source projects, the Microsoft project has a larger

experimental dataset, e.g., around 5X of the size of open source projects, which
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provides sufficient data to evaluate each feature and reduce the potential bias.

Overall more than 70% features are correlated with review effort of changes, i.e.,

regular changes or LRE changes. We further examined the selected features and

found that they covered five different feature types, i.e., change intents, revision

history, owner experience, Word2Vec features, and process features, while none

of the metadata features is selected as correlated. This observation suggests

that the commit time of a change does not affect its review effort.

The Spearman correlation analysis shows that most of the collected features

are correlated with the review effort of changes, thus the collected features are

applicable for identifying LRE changes.

7.3. Performance of LRE Prediction on Other Intent Categorization

In this work, we proposed a new categorization of change intent based on

the existing study [24]. As [24] has also proposed a high-level categorization,

which contains six types of changes, i.e., ‘Corrective’, ‘Adaptive’, ‘Perfective’,

‘Implementation’, ‘Non functional’, and ‘Others’. To examine our proposed LRE

prediction models on the high-level categorization, we followed their categoriza-

tion instructions and grouped the nine different types of changes in Table 2 into

the six high-level categories, the detailed mapping between the two types of

categorization is shown in Table 8. Note that as the ‘Auto’ changes only exist

in Microsoft project, we exclude them in this experiment.

Following our experiment settings in Section 4, we rebuild and evaluate

LRE prediction models with features described in Section 3.3 on changes la-

beled with the high-level categorization on the three open source projects. Note

that, we only examine Random Forest (RF) based classification models as RF

achieves better performance compared to the other four examined classifiers,

i.e., ADTree, Logistic, NB, and SVM (details are in Section 5.2). Table 9 shows

the F1 scores and AUC values of the prediction models for changes with change

intent categorization proposed in [24]. In order to check whether our LRE

prediction model has different performance on the two different change intent

categorizations, We further conduct the Wilcoxon signed-rank test (p < 0.05) to
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Table 8: Mapping between change intent categories proposed in this study and the

high-level change intent categorization proposed in [24].

Change categories in [24] Change categories proposed in this work

Corrective ‘Bug Fix’

Adaptive ‘Resource’, ‘Test’

Perfective ‘Refactor’, ‘Deprecate’

Implementation ‘Feature’

Non functional ‘Merge’

Other ‘Other’

Table 9: Performance of LRE prediction models with change intent categorization

proposed in [24].

Change Intent
Qt Android OpenStack

F1 AUC F1 AUC F1 AUC

Corrective 0.57 0.77 0.55 0.76 0.69 0.79

Adaptive 0.52 0.77 0.58 0.82 0.63 0.83

Perfective 0.60 0.77 0.61 0.78 0.72 0.81

Implementation 0.73 0.78 0.67 0.77 0.81 0.81

Non functional 0.55 0.77 0.30 0.81 / /

Other 0.57 0.74 0.55 0.76 0.56 0.78

compare the F1 values and AUC values of the two change intent categorizations

on the three open source projects. Our results show that there is no significant

difference between the performance of LRE prediction models on our change

intent categorization and the high-level categorization from [24], which suggests

that our proposed approach is generalizable for change intent prediction tasks.

7.4. Survey on the usefulness of our approach

To further assess the usefulness of our approach, we have conducted a a

questionnaire survey with 20 developers who have 1 to 5 years’ experience with
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Table 10: Distribution of participants regarding their experience with code review.

Experience Num of participants

3-5 years experience in code review 8

1-3 years experience in code review 9

<1 years experience in code review 3

code review. Specifically, these developers were selected from local IT companies

during offline technical summits/conferences through the connections of the first

author, we approached and discussed with 30 developers and filtered out 10 who

either did not have enough background knowledge with code review or did not

have time to do our survey (which may take 10 minutes). We collected 20 fin-

ished hard-copy questionnaires, the questionnaire is available online11. Details

of these participants according to their experience are summarized in Table 10.

To avoid evaluation bias, none of these participants are from Microsoft.

In the questionnaire, we first demonstrates a short description of our ap-

proaches, the change intent identification and its performance, and a summa-

rized evaluation result of our LRE change identification model on the four eval-

uation projects. Then it asks four questions shown in Table 11. We provide

five options for these questions and also allow respondents freely express their

opinion for each of these questions. Specifically, in the first question, we ask

developers whether they think finding LRE changes is reasonable. Questions 2

and 3 investigate our change intent analysis approach and Questions 4 and 5

investigate our LRE change identification model.

As showed in Table 11, of all 20 respondents, 19 of them (95%) agree that

finding the LRE changes is useful for accelerating code review. This confirms

the usefulness of our LRE changes identification approach in general. Only 1

(5%) holds a conservation option, i.e., disagreed. The participant also gives his

reason for the option, i.e., only finding out LRE changes without identifying the

11https://bitbucket.org/wangsonging/ist2020_repo/src/master/survery/
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reason of LRE changes may not enough. This paves the direction for further

research. For the change intent analysis, all the participants agree that our

change intent analysis is useful and are willing to use it in their development

tasks. In addition, for LRE change identification, 70% of the participants agree

that our LRE identification approach could be useful and would like to use

our tool to help with their code review process. Meanwhile, 30% participants

also hold conservation options. For the reason of disagreement, the participant

mainly concerns the performance of our approach on projects with different

program languages, as well as the potential risk of false positives, i.e., LRE

changes that are missed by our approach. In the future, we will explore new

approaches to improve the performance of our approach.

8. Threats to Validity

Internal Validity. The main threat to internal validity is about the annotation

of change intents, subjectivity of annotation, and miscategorization. The anno-

tation relied on our manually refined heuristics, and although this approach is a

common practice, this process contains bias since the authors of this paper are

not the developers of these projects. To mitigate this, authors worked indepen-

dently to annotated the data and refined the heuristics. In addition, we chose a

setup that ensures that every heuristic is cross-validated and the classification

conflicts have to pass the third inspection. Note that since these heuristics are

summarized on changes collected from four different projects, although they

come from different domains and use four different program languages, these

heuristics may not work well for projects that have special characteristics that

do not appear in the four projects studied in this study. In this work, we define

Large-Review-Effort (LRE) changes based on the consensus of developers from

Microsoft, the performance of our approach may vary with different thresh-

olds. For labeling LRE changes on the three open-source projects, we use the

number of submitted patchsets as the threshold, i.e., if the number of submitted

patchsets is larger than two, we labeled the change as a LRE change otherwise
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we labeled it as regular. However, such an approach might be inaccurate, the

performance of our approach might be different with different thresholds to label

LRE changes on these open source projects.

In this work, we use the review duration and the number of reviewers involved

to measure the review effort for each change since current code review systems

(both commercial and open-source) do not support review effort measurement,

which might be imperfect. Thus, future research should revisit our study by

using more accurate approaches to measure the review effort.

External Validity. In this work, we use a project from Microsoft and three

open source projects to evaluate our proposed approach. Since they adopt

different code review systems, i.e., the Microsoft project adopts a custom code

review system and the open source projects adopt the Gerrit code review system.

Thus, the proposed approach might not work for projects that adopt other code

review systems.

In this work, following the existing studies [94, 26, 86, 81, 72, 10, 83], we use

the widely adopted Precision, Recall, F1, and AUC to measure the performance

of predicting LRE changes. The results of this work could be different with

different performance metrics, e.g., Matthews correlation coefficient (MCC)12.

Thus, future research should revisit our study by using different metrics to

measure the performance of our approaches.

9. Related Work

In this section, we discuss related work from three different aspects: change

intent analysis, software defect prediction, and software code review.

9.1. Change Intent Analysis

In order to understand the change intents of code changes, Swanson [70]

first proposed a classification of maintenance activities as corrective, adaptive,

12https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
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and perfective. Along this line, many change analysis models have been pro-

posed [67, 68, 9, 35, 36, 19, 89, 55, 42, 24, 95]. Buckley et al. [9] proposed

a taxonomy of software evolution to characterize the mechanisms of changes.

Lehnert et al. [35, 36] proposed comprehensive investigations of software change

impact analysis. Later, Hassan et al. [19] extended Swanson’s categorization

by adding three new categories, i.e., bug fixing changes, general maintenance

changes, and feature introduction changes. Wilkerson et al. [89] proposed a tax-

onomy of the types of impacts that can result from source code changes in both

procedural and object-oriented code. Paulius et al. [55] proposed a taxonomy

of change aspects in the feature modeling domain. Hindle et al. [24] extended

Swanson’s categorization with two new categories, i.e., feature addition and

non-functional. Hassan’s categories are not specific enough, which only pro-

vided high-level information of categories. Hindle’s extended categories contain

more detailed types of changes for each category. In this study we adopted the

fine-grained change type information provided Hindle’s work [24].

In order to classify changes, Mockus et al. [46] and Hassan et al. [19] proposed

to classify software changes by using the textual information. Experiment results

showed their approaches could produce results similar to manual classifications

performed by professional developers. Their work inspired us to heuristically

classify changes based on the textual information. Hindle et al. [23] provided

another classification model focusing on large code commits only (i.e., the top

1% of the commits in a project ranked by the number of files changed). They

took the distribution of terms from commit messages, author, module, and file

type as features. They validated the models on 2,000 commits from 9 projects

via 10-fold cross-validation, which achieved accuracies consistently above 50%.

Yan et al. [91] presented a discriminative Probability Latent Semantic Analysis

(DPLSA) model to classify software changes as corrective, adaptive, and per-

fective. Their experiments showed that the proposed prediction models could

achieve an average precision above 70%.

Note that we do not use the machine learning based change classification

models proposed by Hindle et al. [23] or Yan et al. [91], the reason is that we
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find the refined heuristics provide us relatively acceptable accuracies, i.e., above

80%.

9.2. Software Defect Prediction

Software prediction techniques leverage various software metrics to build

machine learning models to predict unknown defects in the source code [20,

94, 59, 34, 50, 49]. Most defect prediction techniques leverage features that

are manually extracted from historical defect data to train machine learning

based classifiers [44]. Software prediction features can be divided into static

code features, process features, semantic features [86], etc. The process features

include code deletion, code addition, authors, etc., which are collected during

the development process [59]. Moser et al. [49] used the number of revisions,

authors, past fixes, and ages of files as features to predict defects. Nagappan

et al. [50] proposed code churn features, and shown that these features were

effective for defect prediction. Hassan et al. [20] used entropy of change fea-

tures to predict defects. Lee et al. [34] proposed 56 micro interaction metrics to

improve defect prediction. Other process features, including developer individ-

ual characteristics [26, 71] and collaboration between developers [44], were also

useful for defect prediction. In this study we also use the process features to

build the risky change prediction models. Menzies et al. [43] showed that the

local defect prediction models, i.e., built on a subset of the data, result in better

performance than the global models that built on all the data. We report a

similar finding that specific risky change prediction models outperform general

models.

Different from the above studies, instead of predicting whether the changes

or changed files are fault-prone, i.e., contain bugs, we measure the riskiness of

changes regarding the code review effort and aim at finding the risky changes

that have more than one round code review, which we believe can provide the

riskiness regarding the code review effort and intent information of changes for

reviewers to accelerate the review process.
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9.3. Software Code Review

Code review is a manual inspection of source code by humans, which aims

at identifying potential defects and quality problems in the source code before

its deployment in a live environment [33, 56, 66, 38, 48, 7, 65, 54]. Many

studies have examined the practices of code review. Stein et al. [66] explored

the distributed, asynchronous code inspections. They studied a tool that allowed

participants at separate locations to discuss faults. Porter et al. [56] reported

on a review of studies on code inspection in 1995 that examined the effects of

different factors on code inspections. Laitenburger [33] surveyed code inspection

methods, and presented a taxonomy of code inspection techniques.

Votta [80] found that 20% of the interval in a “traditional inspection” is

wasted due to scheduling. In recent years, Modern Code Review (MCR) has

been developed as a tool-based code review system and becomes popular and

widely used in both commercial software (e.g., Google [64], Microsoft [2, 32])

and open-source software (e.g., Android, Qt, and OpenStack) [18]. Rigby et

al. [61, 62, 60] have done extensive work examining code review practices in

OSS development. Hellendoorn et al. [21] used language models to quanti-

tatively evaluate the influence of stylistic properties of code contributions on

the code review process and outcome. Sutherland and Venolia [69] conducted

a study at Microsoft regarding using code review data for later information

needs. Bacchelli & Bird find that understanding of the code and the reason

for a change is the most important factor in the quality of code reviews [5].

Some other studies focus on accelerating code review process by recommend-

ing reviewers [79, 63, 78, 77], decomposing code review changes with multiple

changesets [6, 76, 31, 16].

In this paper, we explore the feasibility of accelerating code review by iden-

tifying the risky code changes that require multiple rounds of code review or

are reverted.
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10. Conclusion

This paper presents the first study of LRE changes in code review system,

i.e., changes that have more than two iterations of code review by using the

change intents. We conduct our study on one large-scale commercial project

from Microsoft, and three open source projects, i.e., Qt, Android, and Open-

Stack. Our experiment results show the feasibility of using machine learning

based prediction models to identify LRE changes. The change intent analysis

and its application on LRE changes identification proposed in this study has

already been used in Microsoft to provide the review effort and intent infor-

mation of changes for reviewers to accelerate the review process. To show how

to deploy our approaches in real-world practice, We report a case study of de-

veloping and deploying the intent analysis system in Microsoft. We have also

shared practical guidelines for help other developers who plan to develop the

proposed approach for LRE changes identification. Moreover, we also evaluate

the usefulness of our approaches by using a questionnaire survey. The feedback

from developers demonstrates its practical value.

Our work on change intents is just the first step in a large body of work. In

the future, we would like to explore if change intent improves the fidelity and

accuracy of other prediction tasks, e.g., code reviewer recommendation, software

defect prediction, and effort estimation.

11. Acknowledgments

We would like to acknowledge the invaluable contributions and support of

B. Ashok, Jim Kleewein, Shawn Martelock, Nitin Sharma and Rahul Kumar.

References

[1] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. 2008. What’s

a typical commit? a characterization of open source software repositories.

In ICPC’08. 182–191.

42



[2] Sumit Asthana, Rahul Kumar, Ranjita Bhagwan, Christian Bird, Chetan

Bansal, Chandra Maddila, Sonu Mehta, and B Ashok. 2019. WhoDo: au-

tomating reviewer suggestions at scale. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 937–945.

[3] Azure. 2019. Azure DevOps Services | Microsoft Azure. https://azure.

microsoft.com/en-in/services/devops/. Accessed: 2019-12-10.

[4] Azure. 2019. Pull Request Labels (Azure DevOps Git). https:

//docs.microsoft.com/en-us/rest/api/azure/devops/git/pull%

20request%20labels. Accessed: 2019-12-10.

[5] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and

challenges of modern code review. In ICSE’13. 712–721.

[6] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K Lahiri. 2015.

Helping developers help themselves: Automatic decomposition of code re-

view changesets. In ICSE’15. 134–144.

[7] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens.

2014. Modern code reviews in open-source projects: Which problems do

they fix?. In MSR’14. 202–211.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.

2003. A Neural Probabilistic Language Model. The Journal of Machine

Learning Research 3 (2003), 1137–1155.

[9] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter

Kniesel. 2005. Towards a taxonomy of software change. Journal of Software

Maintenance and Evolution: Research and Practice 17, 5 (2005), 309–332.

[10] Qiang Cui, Song Wang, Junjie Wang, Yuanzhe Hu, Qing Wang, and Ming-

shu Li. 2017. Multi-Objective Crowd Worker Selection in Crowdsourced

Testing. In SEKE’17. 1–6.

43

https://azure.microsoft.com/en-in/services/devops/
https://azure.microsoft.com/en-in/services/devops/
https://docs.microsoft.com/en-us/rest/api/azure/devops/git/pull%20request%20labels
https://docs.microsoft.com/en-us/rest/api/azure/devops/git/pull%20request%20labels
https://docs.microsoft.com/en-us/rest/api/azure/devops/git/pull%20request%20labels


[11] Michael Fagan. 2002. Design and code inspections to reduce errors in pro-

gram development. In Software pioneers. 575–607.

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The ele-

ments of statistical learning. Vol. 1.

[13] Ying Fu, Meng Yan, Xiaohong Zhang, Ling Xu, Dan Yang, and Jeffrey D

Kymer. 2015. Automated classification of software change messages by

semi-supervised Latent Dirichlet Allocation. IST’15 57 (2015), 369–377.

[14] Emanuel Giger, Martin Pinzger, and Harald C Gall. 2012. Can we predict

types of code changes? an empirical analysis. In MSR’12. 217–226.

[15] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. 2000.

Predicting fault incidence using software change history. TSE’00 26, 7

(2000), 653–661.

[16] Bo Guo and Myoungkyu Song. 2017. Interactively Decomposing Compos-

ite Changes to Support Code Review and Regression Testing. In COMP-

SAC’17, Vol. 1. 118–127.

[17] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H Witten. 2009. The WEKA data mining software:

an update. ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[18] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, AE Cruz,

Kenji Fujiwara, and Hajimu Iida. 2013. Who does what during a code

review? datasets of oss peer review repositories. In MSR’13. 49–52.

[19] Ahmed E Hassan. 2008. Automated classification of change messages in

open source projects. In Proceedings of the 2008 ACM symposium on Ap-

plied computing. 837–841.

[20] Ahmed E. Hassan. 2009. Predicting Faults Using the Complexity of Code

Changes. In ICSE’09. 78–88.

44



[21] Vincent J Hellendoorn, Premkumar T Devanbu, and Alberto Bacchelli.

2015. Will they like this?: Evaluating code contributions with language

models. In MSR’15. 157–167.

[22] Kim Herzig, Sascha Just, Andreas Rau, and Andreas Zeller. 2013. Pre-

dicting defects using change genealogies. In 2013 IEEE 24th International

Symposium on Software Reliability Engineering (ISSRE). IEEE, 118–127.

[23] Abram Hindle, Daniel M German, Michael W Godfrey, and Richard C Holt.

2009. Automatic classication of large changes into maintenance categories.

In ICPC’09. 30–39.

[24] Abram Hindle, Daniel M German, and Ric Holt. 2008. What do large com-

mits tell us?: a taxonomical study of large commits. In MSR’08. 99–108.

[25] Abram Hindle, Michael W Godfrey, and Richard C Holt. 2007. Release pat-

tern discovery via partitioning: Methodology and case study. In MSR’07.

19.

[26] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect predic-

tion. In ASE’13. 279–289.

[27] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch

make it? and how fast?: Case study on the linux kernel. In MSR’13.

101–110.

[28] Ji-Hyun Kim. 2009. Estimating classification error rate: Repeated cross-

validation, repeated hold-out and bootstrap. Computational statistics &

data analysis 53, 11 (2009), 3735–3745.

[29] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Classifying

software changes: Clean or buggy? TSE’08 34, 2 (2008), 181–196.

[30] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas

Zeller. 2007. Predicting faults from cached history. In ICSE’07. 489–498.

45



[31] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M Eskofier,

and Michael Philippsen. 2016. Automatic clustering of code changes. In

MSR’16. 61–72.

[32] Rahul Kumar, Chetan Bansal, Chandra Maddila, Nitin Sharma, Shawn

Martelock, and Ravi Bhargava. 2019. Building sankie: an AI platform

for DevOps. In 2019 IEEE/ACM 1st International Workshop on Bots in

Software Engineering (BotSE). IEEE, 48–53.

[33] Oliver Laitenberger. 2002. A survey of software inspection technologies. In

Handbook of Software Engineering and Knowledge Engineering: Volume II:

Emerging Technologies. 517–555.

[34] Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Pe-

ter In. 2011. Micro interaction metrics for defect prediction. In FSE’11.

311–321.

[35] Steffen Lehnert. 2011. A taxonomy for software change impact analysis. In

IWPSE-EVOL’11. 41–50.

[36] Steffen Lehnert, Matthias Riebisch, et al. 2012. A taxonomy of change

types and its application in software evolution. In ECBS’12. 98–107.

[37] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.

2008. Benchmarking classification models for software defect prediction: A

proposed framework and novel findings. IEEE Transactions on Software

Engineering 34, 4 (2008), 485–496.

[38] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird,

and Jacek Czerwonka. 2017. Code Reviewing in the Trenches: Understand-

ing Challenges and Best Practices. IEEE Software (2017).

[39] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. 2019. Pre-

dicting pull request completion time: a case study on large scale cloud

services. In Proceedings of the 2019 27th ACM Joint Meeting on European

46



Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 874–882.

[40] Vahid Mashayekhi, Janet M Drake, W-T Tsai, and John Riedl. 1993. Dis-

tributed, collaborative software inspection. IEEE software 10, 5 (1993),

66–75.

[41] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra

Maddila, B Ashok, Sumit Asthana, Christian Bird, and Aditya Kumar.

2020. Rex: Preventing bugs and misconfiguration in large services using

correlated change analysis. In 17th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 20). 435–448.

[42] Tom Mens, Jim Buckley, Matthias Zenger, and Awais Rashid. 2003. To-

wards a taxonomy of software evolution. In Proceedings of the International

Workshop on Unanticipated Software Evolution.

[43] Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas Zimmermann,

and David Cok. 2011. Local vs. global models for effort estimation and

defect prediction. In ASE’11. 343–351.

[44] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and

Ayşe Bener. 2010. Defect prediction from static code features: current

results, limitations, new approaches. Automated Software Engineering 17,

4 (2010), 375–407.

[45] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Dis-

tributed Representations of Words and Phrases and Their Compositional-

ity. In NIPS’13. 3111–3119.

[46] Audris Mockus and Lawrence G Votta. 2000. Identifying Reasons for Soft-

ware Changes Using Historic Databases. In ICSM’00. 120.

[47] Audris Mockus and David M Weiss. 2000. Predicting risk of software

changes. Bell Labs Technical Journal 5, 2 (2000), 169–180.

47



[48] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do code

review practices impact design quality? a case study of the qt, vtk, and itk

projects. In SANER’15. 171–180.

[49] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A compara-

tive analysis of the efficiency of change metrics and static code attributes

for defect prediction. In ICSE’08. 181–190.

[50] Nachiappan Nagappan and Thomas Ball. 2007. Using software dependen-

cies and churn metrics to predict field failures: An empirical case study. In

ESEM’07. 364–373.

[51] Jaechang Nam, Wei Fu, Sunghun Kim, Tim Menzies, and Lin Tan. 2017.

Heterogeneous defect prediction. TSE’17 (2017).

[52] Jaechang Nam and Sunghun Kim. 2015. CLAMI: Defect Prediction on

Unlabeled Datasets. In ASE’15. 452–463.

[53] .NET. 2019. .NET multi-tier application using Azure Service Bus.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/

service-bus-dotnet-multi-tier-app-using-service-bus-queues.

Accessed: 2019-12-10.

[54] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and

Alberto Bacchelli. 2018. Information needs in contemporary code review.

Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018),

135.

[55] Paulius Paskevicius, Robertas Damasevicius, and Vytautas Štuikys. 2012.

Change impact analysis of feature models. In ICIST’12. 108–122.

[56] Adam Porter, Harvey Siy, and Lawrence Votta. 1996. A Review of Software

Inspections. Advances in Computers 42 (1996), 39–76.

[57] Jens C Pruessner, Clemens Kirschbaum, Gunther Meinlschmid, and Dirk H

Hellhammer. 2003. Two formulas for computation of the area under

48

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-multi-tier-app-using-service-bus-queues
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-multi-tier-app-using-service-bus-queues


the curve represent measures of total hormone concentration versus time-

dependent change. Psychoneuroendocrinology 28, 7 (2003), 916–931.

[58] Ranjith Purushothaman and Dewayne E Perry. 2005. Toward understand-

ing the rhetoric of small source code changes. TSE’05 31, 6 (2005),

511–526.

[59] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process

metrics are better. In ICSE’13. 432–441.

[60] Peter C Rigby. 2012. Open source peer review–lessons and recommenda-

tions for closed source. (2012).

[61] Peter C Rigby, Daniel M German, and Margaret-Anne Storey. 2008. Open

source software peer review practices: a case study of the apache server. In

ICSE’08. 541–550.

[62] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast

based peer review on open source software projects. In ICSE’11. 541–550.

[63] Shade Ruangwan, Patanamon Thongtanunam, Akinori Ihara, and Kenichi

Matsumoto. 2018. The impact of human factors on the participation deci-

sion of reviewers in modern code review. Empirical Software Engineering

(2018), 1–44.

[64] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Al-

berto Bacchelli. 2018. Modern code review: a case study at google. In

ICSE-SEIP’18. 181–190.

[65] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink,

and Alberto Bacchelli. 2018. When Testing Meets Code Review: Why and

How Developers Review Tests. In ICSE’18. 677–687.

[66] Michael Stein, John Riedl, Sören J Harner, and Vahid Mashayekhi. 1997.

A case study of distributed, asynchronous software inspection. In ICSE’97.

107–117.

49



[67] Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen, and Sai Zhang. 2010.

Change impact analysis based on a taxonomy of change types. In COMP-

SAC’10. 373–382.

[68] Xiaobing Sun, Bixin Li, Wanzhi Wen, and Sai Zhang. 2013. Analyzing

impact rules of different change types to support change impact analysis.

SEKE’13 23, 03 (2013), 259–288.

[69] Andrew Sutherland and Gina Venolia. 2009. Can peer code reviews be

exploited for later information needs?. In ICSE-Companion’09. 259–262.

[70] E Burton Swanson. 1976. The dimensions of maintenance. In ICSE’76.

492–497.

[71] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect

prediction for imbalanced data. In ICSE’15. 99–108.

[72] Xinye Tang, Song Wang, and Ke Mao. 2015. Will this bug-fixing change

break regression testing?. In ESEM’15. 1–10.

[73] Chakkrit Tantithamthavorn, Ahmed E Hassan, and Kenichi Matsumoto.

2018. The impact of class rebalancing techniques on the performance and

interpretation of defect prediction models. arXiv preprint arXiv:1801.10269

(2018).

[74] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and

Kenichi Matsumoto. 2016. Automated parameter optimization of classi-

fication techniques for defect prediction models. In ICSE’16. 321–332.

[75] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim.

2012. How do software engineers understand code changes?: an exploratory

study in industry. In FSE’12. 51.

[76] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to

facilitate code review. In MSR’15. 180–190.

50



[77] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo

Cruz, Norihiro Yoshida, and Hajimu Iida. 2014. Improving code review

effectiveness through reviewer recommendations. In CHASE’14. 119–122.

[78] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Ha-

jimu Iida. 2016. Revisiting code ownership and its relationship with soft-

ware quality in the scope of modern code review. In ICSE’16. 1039–1050.

[79] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina

Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who

should review my code? A file location-based code-reviewer recommenda-

tion approach for modern code review. In SANER’15. 141–150.

[80] Lawrence G Votta Jr. 1993. Does every inspection need a meeting? ACM

SIGSOFT Software Engineering Notes 18, 5 (1993), 107–114.

[81] Junjie Wang, Qiang Cui, Song Wang, and Qing Wang. 2017. Domain

adaptation for test report classification in crowdsourced testing. In ICSE-

SEIP’17. 83–92.

[82] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing Wang.

2019. Images dont lie: Duplicate crowdtesting reports detection with

screenshot information. IST’19 110 (2019), 139–155.

[83] Junjie Wang, Song Wang, and Qing Wang. 2018. Is there a golden fea-

ture set for static warning identification?: an experimental evaluation. In

ESEM’18. 17.

[84] Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham

Philip. 2019. Leveraging Change Intents for Characterizing and Identifying

Large-Review-Effort Changes. In PROMISE’19. 46–55.

[85] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. 2018. Deep seman-

tic feature learning for software defect prediction. IEEE Transactions on

Software Engineering (2018).

51



[86] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning seman-

tic features for defect prediction. In ICSE’16. 297–308.

[87] Arnold D Well and Jerome L Myers. 2003. Research design & statistical

analysis. Psychology Press.

[88] Mairieli Wessel, Igor Steinmacher, Igor Wiese, and Marco A Gerosa. 2019.

Should I Stale or Should I Close? An Analysis of a Bot that Closes Aban-

doned Issues and Pull Requests. In 2019 IEEE/ACM 1st International

Workshop on Bots in Software Engineering (BotSE). IEEE, 38–42.

[89] Jerod W Wilkerson. 2012. A software change impact analysis taxonomy.

In ICSM’12. 625–628.

[90] Marvin Wyrich and Justus Bogner. 2019. Towards an autonomous bot for

automatic source code refactoring. In 2019 IEEE/ACM 1st International

Workshop on Bots in Software Engineering (BotSE). IEEE, 24–28.

[91] Meng Yan, Ying Fu, Xiaohong Zhang, Dan Yang, Ling Xu, and Jeffrey D

Kymer. 2016. Automatically classifying software changes via discriminative

topic model: Supporting multi-category and cross-project. JSS’16 113

(2016), 296–308.

[92] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. 2016. Cross-

project defect prediction using a connectivity-based unsupervised classifier.

In ICSE’16. 309–320.

[93] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. 2010.

Searching for a needle in a haystack: Predicting security vulnerabilities for

windows vista. In ICST’10. 421–428.

[94] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predict-

ing defects for eclipse. In PROMISE’07. 9–9.

[95] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan

Diehl. 2005. Mining version histories to guide software changes. TSE’05

31, 6 (2005), 429–445.

52


	Introduction
	Background and Motivation
	Approach
	Labeling LRE Changes
	Intent Analysis
	Feature Extraction
	Building Models and Predicting LRE Changes

	Experiment Setup
	Research Questions
	Experiment Data
	Evaluation Measures

	Results and Analysis
	RQ1: Distribution of Changes
	RQ2: Feasibility of Predicting LRE Changes
	RQ3: Specific Models vs. General Models
	RQ4: Single Intent vs. Multiple Intents

	Large-scale Deployment of Intent Analysis
	Implementation
	Background of Azure DevOps
	Architecture of Intent Analysis Service

	User Scenarios
	Feedback Loop
	Practical Guidelines

	Discussion
	LRE Rate Analysis
	Feature Correlation Analysis
	Performance of LRE Prediction on Other Intent Categorization
	Survey on the usefulness of our approach

	Threats to Validity
	Related Work
	Change Intent Analysis
	Software Defect Prediction
	Software Code Review

	Conclusion
	Acknowledgments

